zxur 9000 gsm (v6.50.00) product description

62
ZXUR 9000 GSM Base Station Controller Product Description Version: 6.50.00 ZTE CORPORATION NO. 55, Hi-tech Road South, ShenZhen, P.R.China Postcode: 518057 Tel: +86-755-26771900 Fax: +86-755-26770801 URL: http://ensupport.zte.com.cn E-mail: [email protected]

Upload: jar-jarwadi

Post on 06-May-2017

353 views

Category:

Documents


28 download

TRANSCRIPT

Page 1: ZXUR 9000 GSM (V6.50.00) Product Description

ZXUR 9000 GSMBase Station ControllerProduct Description

Version: 6.50.00

ZTE CORPORATIONNO. 55, Hi-tech Road South, ShenZhen, P.R.ChinaPostcode: 518057Tel: +86-755-26771900Fax: +86-755-26770801URL: http://ensupport.zte.com.cnE-mail: [email protected]

Page 2: ZXUR 9000 GSM (V6.50.00) Product Description

LEGAL INFORMATIONCopyright © 2011 ZTE CORPORATION.

The contents of this document are protected by copyright laws and international treaties. Any reproduction or

distribution of this document or any portion of this document, in any form by any means, without the prior written

consent of ZTE CORPORATION is prohibited. Additionally, the contents of this document are protected by

contractual confidentiality obligations.

All company, brand and product names are trade or service marks, or registered trade or service marks, of ZTE

CORPORATION or of their respective owners.

This document is provided “as is”, and all express, implied, or statutory warranties, representations or conditions

are disclaimed, including without limitation any implied warranty of merchantability, fitness for a particular purpose,

title or non-infringement. ZTE CORPORATION and its licensors shall not be liable for damages resulting from the

use of or reliance on the information contained herein.

ZTE CORPORATION or its licensors may have current or pending intellectual property rights or applications

covering the subject matter of this document. Except as expressly provided in any written license between ZTE

CORPORATION and its licensee, the user of this document shall not acquire any license to the subject matter

herein.

ZTE CORPORATION reserves the right to upgrade or make technical change to this product without further notice.

Users may visit ZTE technical support website http://ensupport.zte.com.cn to inquire related information.

The ultimate right to interpret this product resides in ZTE CORPORATION.

Revision History

Revision No. Revision Date Revision Reason

R1.0 2011–04–25 First edition

Serial Number: SJ-20101019110320-002

Publishing Date: 2011–04–25(R1.0)

Page 3: ZXUR 9000 GSM (V6.50.00) Product Description

ContentsAbout This Manual ......................................................................................... I

Chapter 1 Product Overview ..................................................................... 1-11.1 Product Context ................................................................................................. 1-1

1.2 Whole Cabinet Appearance ................................................................................ 1-2

1.3 Product Features................................................................................................ 1-2

1.3.1 Advanced System Architecture.................................................................. 1-3

1.3.2 A Software Platform of High Scalability ...................................................... 1-4

1.3.3 Higher Capability for Service Processing ................................................... 1-4

1.3.4 The Carrier-Class Reliability...................................................................... 1-4

1.3.5 Environment-Friendly Design .................................................................... 1-4

1.3.6 More Competitive Evolution Potential ........................................................ 1-4

1.3.7 2G/3G Handover Compatibility .................................................................. 1-4

Chapter 2 Service Functions and Technical Specifications................... 2-12.1 Service Functions............................................................................................... 2-1

2.1.1 Basic Services ......................................................................................... 2-1

2.1.2 Mobility Management ............................................................................... 2-7

2.1.3 Channel Management .............................................................................. 2-8

2.1.4 External Interface ..................................................................................... 2-8

2.1.5 Radio Resource Management................................................................... 2-9

2.1.6 Network Management Functionality ......................................................... 2-10

2.2 Technical Specifications.................................................................................... 2-10

2.2.1 Physical Specifications ........................................................................... 2-10

2.2.2 Power Specifications .............................................................................. 2-10

2.2.3 Backup Configuration ..............................................................................2-11

2.2.4 Environment Requirements......................................................................2-11

2.2.5 Security Specifications............................................................................ 2-13

2.2.6 Interface Specifications........................................................................... 2-13

2.2.7 Capacity Specifications........................................................................... 2-14

2.2.8 Clock Specifications ............................................................................... 2-14

2.2.9 Reliability Specifications ......................................................................... 2-14

Chapter 3 Product Structure ..................................................................... 3-13.1 Logic Structure................................................................................................... 3-1

3.1.1 System Logical Structure .......................................................................... 3-1

I

Page 4: ZXUR 9000 GSM (V6.50.00) Product Description

3.1.2 System Logical Units ................................................................................ 3-1

3.2 Hardware........................................................................................................... 3-3

3.2.1 Cabinet Structure ..................................................................................... 3-3

3.2.2 Subrack Structure .................................................................................... 3-4

3.2.3 Front Boards............................................................................................ 3-6

3.2.4 Rear Boards ............................................................................................ 3-7

3.3 Software ............................................................................................................ 3-9

3.3.1 NE Software and the EMS ........................................................................ 3-9

3.3.2 Classification of NE Software .................................................................. 3-10

Chapter 4 Networking ................................................................................ 4-14.1 Networking via the Abis Interface ........................................................................ 4-1

4.1.1 Star Networking ....................................................................................... 4-1

4.1.2 Chain Networking..................................................................................... 4-1

4.1.3 Ring Networking....................................................................................... 4-2

4.1.4 Star-Chain Hybrid Networking .................................................................. 4-2

4.2 Networking via the A/Gb Interface ....................................................................... 4-3

4.2.1 Networking via the Gb Interface ................................................................ 4-3

4.2.2 Networking via the A Interface................................................................... 4-4

Chapter 5 System Configuration............................................................... 5-15.1 Configuration Description.................................................................................... 5-1

5.2 Board Configuration ........................................................................................... 5-2

5.3 Subrack Configuration ........................................................................................ 5-3

5.3.1 Typical Configuration for Single Service Subrack........................................ 5-3

5.3.2 Typical Configuration for Double Service Subracks..................................... 5-3

5.3.3 Typical Configuration for Triple Service Subracks ....................................... 5-4

5.4 Cabling Configuration ......................................................................................... 5-5

5.5 Configuration of Network Management Software .................................................. 5-6

Chapter 6 Signal Processing Flow............................................................ 6-16.1 Circuit-Switched User Plane Data ....................................................................... 6-1

6.2 Packet-Switched User Plane Data ...................................................................... 6-2

6.3 Control Plane Signaling ..................................................................................... 6-2

6.4 BTS Operation and Maintenance Data................................................................. 6-3

Chapter 7 Reliability ................................................................................... 7-17.1 Hardware Reliability Design ................................................................................ 7-1

7.1.1 Types of Board Backup............................................................................. 7-1

7.1.2 Supported Backup Mode for Different Boards............................................. 7-1

7.2 Software Reliability Design ................................................................................. 7-2

II

Page 5: ZXUR 9000 GSM (V6.50.00) Product Description

7.3 Heat Dissipation Design...................................................................................... 7-3

7.3.1 Introduction to Heat Dissipation................................................................. 7-3

7.3.2 Air Duct for Heat Dissipation ..................................................................... 7-3

Figures............................................................................................................. I

Tables ............................................................................................................ III

Glossary .........................................................................................................V

III

Page 6: ZXUR 9000 GSM (V6.50.00) Product Description

IV

Page 7: ZXUR 9000 GSM (V6.50.00) Product Description

About This ManualPurpose

ZXUR 9000 GSM is a new generation radio network controller (that is, BSC) in the ZTE 2Gmulti-mode series products. It performs functions including system access control, securitymode control, mobility management, and radio resource management and control.

ZXUR 9000 GSM provides all the functions defined in the 3GPP R4/R5/R6/R7 protocols,and offers series standard interfaces including A-interface, Abis interface, and Gbinterface, which enable it to connect with CN, BSC, and BTS. ZXUR 9000 GSM isdeveloped on the basis of ZTE all-IP unified hardware platform. It features a distributeddesign, separating control plane and user plane as well as interface and application. Itsupports TDM/IP dual protocol stack, and can smoothly evolve into all-IP GERAN.

What Is in This Manual

Chapter Description

Chapter 1, Product

Overview

Introduces the context of ZXUR 9000 GSM, the cabinet appearance,

and the features provided.

Chapter 2, Service

Functions and Technical

Specifications

Describes the service functions and technical specifications of the

product.

Chapter 3, Product

Structure

Describes the logical structure, the hardware, and the software of the

product.

Chapter 4, Networking Describes different networking modes with illustrations.

Chapter 5, System

Configuration

Presents three typical configuration scenarios with illustrations.

Chapter 6, Signal

Processing Flow

Illustrates the signal processing flow on the user plane, control plane,

and the BTS operation and maintenance data flow.

Chapter 7, Reliability Presents hardware backup modes and the heat dissipation design.

Intended Audience

Communication engineers

I

Page 8: ZXUR 9000 GSM (V6.50.00) Product Description

II

Page 9: ZXUR 9000 GSM (V6.50.00) Product Description

Chapter 1Product OverviewTable of Contents

Product Context .........................................................................................................1-1Whole Cabinet Appearance........................................................................................1-2Product Features........................................................................................................1-2

1.1 Product ContextZXUR 9000 GSM is part of the GSM/EDGERadio Access Network (GERAN). The GERANincludes one or more Base Station Subsystems (BSSs), each of which is made up of oneBSC and one or more BTSs. The BSC and the BTS are connected via the Abis interface,while the GERAN and the CN are connected via the A/Gb interface.

The network location of ZXUR 9000 GSM (BSC) and its relations with other networkelements are shown in Figure 1-1.

Figure 1-1 The Context of BSC

The external system and interfaces are illustrated in Table 1-1.

Table 1-1 The External System and Interfaces

External System Function Related Interface

BTS Establish the radio environment and

transport data under the control of BSC.

Abis

MSC/MGW Connect BSC with MS to establish radio

voice channel for voice switching.

A

1-1

SJ-20101019110320-002|2011–04–25(R1.0) ZTE Proprietary and Confidential

Page 10: ZXUR 9000 GSM (V6.50.00) Product Description

ZXUR 9000 GSM Product Description

External System Function Related Interface

SGSN Connect BSC with MS to establish PS

radio channel for data switching.

Gb

1.2 Whole Cabinet AppearanceZXUR 9000 GSM adopts the standard 19-inch cabinet. The whole cabinet appearance isshown in Figure 1-2.

Figure 1-2 ZXUR 9000 GSM Cabinet

1.3 Product FeaturesZXUR 9000 GSM is a radio network controller developed by ZTE according to 3GPP R7.With all functionalities specified by 3GPP R7, the product provides a series of standardinterfaces and supports connectivity with the CNs from different manufacturers. Theproduct features high capacity, high reliability, with high-scalability. It also supports IPGERAN transmission.

l High Scalability

1-2

SJ-20101019110320-002|2011–04–25(R1.0) ZTE Proprietary and Confidential

Page 11: ZXUR 9000 GSM (V6.50.00) Product Description

Chapter 1 Product Overview

ZXUR 9000 GSM is adaptable to service growth and different traffic volumes,providing high-capacity and high-scalability. The resource-processing capacity onboth the user plane and the control plane can be expanded as required.

l High Capacity

ZXUR 9000 GSM is committed to shortening the investment made by customers inthe entire 2G product lifecycle and providing large-capacity one-stop products.

l High Reliability

ZXUR 9000 GSM has high reliability. Backup is supported for all components, withonline software downloading provided.

l High-efficiency Radio Resource Management

ZXUR 9000 GSM supports automatic optimization of radio parameters. Moreover,radio resource priority allocation and scheduling can be performed intelligentlyaccording to the network load and QoS level.

l Flexible Networking

ZXUR 9000 GSM supports Abis interface-based star network, chain network, treenetwork, and ring network. The product is also compatible with transmissions throughthe Ethernet, E1/T1, and optical fibers.

l Variety of Interfaces

The BSC supports TDM/IP, and such physical interfaces as E1/T1, CSTM-1, EthernetFE/GE. These interfaces make flexible networking possible.

The BSC adopts IP-based switching platform. IP-based architecture makes datatransmission highly effective and flexible. Moreover, high performance packet dataprocessing platform ensures the unblocked data switching capability. Comparedto TDM architecture, IP-based switching has the advantages of convenientmaintenance, easy configuration, flexible expansion, highly efficient transmissionwith flexible transmission mechanism. Therefore, it is more adaptable to rapidlydeveloping mobile data services in the future.

1.3.1 Advanced System ArchitectureThe ZXUR 9000 GSM system is based on the ATCA architecture, providing astandard-platform architecture with features like high reliability and maintainability forcarrier-class applications.

The service control unit adopts standard ATCA architecture.

Themedia access unit adds several rear boards to ATCA.With the capacity of original frontboards, the added rear boards can improve the processing capacity with more interfaces.The rear boards can be fully utilized to meet the requirements of relatively large amountof low-speed interfaces for a BSC.

1-3

SJ-20101019110320-002|2011–04–25(R1.0) ZTE Proprietary and Confidential

Page 12: ZXUR 9000 GSM (V6.50.00) Product Description

ZXUR 9000 GSM Product Description

1.3.2 A Software Platform of High ScalabilityThe system software adopts the Linuxmulti-process architecture. Themiddleware conceptis introduced for restructuring software design to enable a highly cohesive system withloose coupling.

The multi-process architecture ensures the independence of individual processes,separating the errors occurring within one process from others.

1.3.3 Higher Capability for Service ProcessingZXUR 9000 GSM is a highly integrated system with great processing capability, whichprovides the operator with strong competitiveness in the mobile Internet era.

1.3.4 The Carrier-Class ReliabilityZXUR 9000 GSM adopts a modular design that facilitates installation and maintenanceand makes capacity expansion or adjustment flexible. With good strength and rigidity, thecabinet will hardly become loose, deformed, or damaged during installation/uninstallation,storage and transportation. Besides, the cabinet structure has well-designed cooling andgood electromagnetic compatibility (EMC).

1.3.5 Environment-Friendly DesignThe system is designed by observing relevant environment preserving regulations andstandards. The increasing energy tense and ever deteriorating environment have madeenvironment-friendly design and low power consumption important concerns for telecomoperators, who not only take environment preservation a social responsibility and a meansfor reducing cost, but also promote the formulation of relevant regulations and standards.

1.3.6 More Competitive Evolution PotentialZXUR 9000 GSM has more competitive evolution potential, which can be explained by thefollowing features:

l varieties of external interfaces that are compatible with both full-IP requirements andtraditional E1 and TDM access.

l compatible with IPV6l compatible with future development: the media access system considers the

operator's investment benefit in that it is compatible with multi-mode application andthe evolution to 3G.

1.3.7 2G/3G Handover CompatibilityThe ZXUR 9000 GSM system provides handover between 2G and 3G networks in boththe CS domain and PS domain. This feature can reserve the investment in 2G networkand provide 3G handover capability for 2G operators.

1-4

SJ-20101019110320-002|2011–04–25(R1.0) ZTE Proprietary and Confidential

Page 13: ZXUR 9000 GSM (V6.50.00) Product Description

Chapter 2Service Functions andTechnical SpecificationsTable of Contents

Service Functions.......................................................................................................2-1Technical Specifications ...........................................................................................2-10

2.1 Service Functions

2.1.1 Basic ServicesZXUR 9000 GSM supports the service functions of the BSC specified in GSM Phase II+standards, while compatible with GSM Phase II standards. The major functions are listedas follows:

1. Supports GSM900, GSM850, GSM1800 and GSM1900 network.2. Connects with NetNumen M31 via the OMC interfaces for the management of BSS(s).3. Supports various types of services, including

a. Circuit-Switched Voice Servicesl Full Rate (FR) Speech Servicel Enhanced Full Rate Speech Servicel Half Rate (HR) Speech Servicel AMR Speech Service

Adaptive Multirate (AMR) technique is a kind of speech coding algorithm withvariable rates. It can automatically adjust speech coding rate based on C/Ivalue, thus ensuring the best speech quality for different C/I values.

According to relevant protocols, AMR-FR speech coder has 8 rate modes,which are all supported by ZXUR 9000 GSM. ZXUR 9000 GSM also supportsthe five rates for AMR-HR speech coding7.4 kbit/s, 6.7 kbit/s, 5.9 kbit/s, 5.15kbit/s, 4.75 kbit/s .

b. Circuit Switched Data Service at 9.6 kbit/s

c. Short Message Services (SMS) (supporting messages in Chinese)l MS terminated point-to-point short message servicel MS initiated point-to-point short message servicel Cell broadcast service originated from the SMC or the Operation and

Maintenance System

2-1

SJ-20101019110320-002|2011–04–25(R1.0) ZTE Proprietary and Confidential

Page 14: ZXUR 9000 GSM (V6.50.00) Product Description

ZXUR 9000 GSM Product Description

d. GPRS Service

Supports point-to-point interactive telecom service, such as database access,session service and tele-action service.

e. EDGE Service

4. Supports frequency hopping.5. Supports discontinuous transmission (DTX) and voice activation detection (VAD).6. Supports various handover modes.

Supports synchronous handover, non-synchronous handover andpseudo-synchronous handover.

Supports handover within frequency bands of 900 MHz, 1800 MHz, and between900 MHz and 1800 MHz; it can process handover measurement; supports handovermeasurement before handover; supports network initiated handover due to service orinterference management; supports handover between channels of different speechcoding rates; supports handover for DTX; supports handover caused by trafficreasons; supports cocentric circle handover based on the carrier-to-interference ratio.

7. Supports 6-level static and 15-level dynamic power control for the MS and the BTS,and supports fast power control based on the receiving quality.

8. Supports overload control and traffic control.

ZXUR 9000 GSM can locate and analyze system overload and report the cause to theOMC. When the traffic is heavy, it can control the traffic through the A interface, theAbis interface and the Gb interface by limiting some services, thus keeping the normalsystem running while ensuring maximum call traffic capacity.

9. Supports call re-establishment upon radio link faults.10. ZXUR 9000 GSM supports call queuing and forced call release in the provisioning and

handover programs.11. Supports Enhanced Multi-level Precedence and Preemption (EMLPP).

The EMLPP classifies mobile subscribers into different priority levels. The subscriberswith higher levels are prioritized over others in obtaining channel resources.

12. Supports Co-BCCH.

Co-BCCH is used in dual-band cells. A dual-band cell is a cell that supports twofrequency bands that share the same BCCH.

Co-BCCH has the following advantages:

l Saves a BCCH timeslot.l For the configuration of 1800M frequency in the 900M cell, it is unnecessary to

modify the existing adjacent cells and re-plan the network. The re-selection andhandover is also not required between dual-band cells that share the same site.

13. Supports dynamic HR channel conversion.

ZXUR 9000 GSM supports dynamic HR channel conversion. The system candynamically and automatically switch between HR and FR channels in real timeaccording to the call traffic.

2-2

SJ-20101019110320-002|2011–04–25(R1.0) ZTE Proprietary and Confidential

Page 15: ZXUR 9000 GSM (V6.50.00) Product Description

Chapter 2 Service Functions and Technical Specifications

14. Supports dynamic radio channel assignment.

ZXUR 9000 GSM supports the dynamic assignment of CS and PS channels.

Dynamic channel assignment means that the logic type of radio channels can bedynamically generated according to the current call type, instead of being configuredat the OMM (OMC client). The dynamic radio channel assignment makes it possibleto make the most of radio resources according to the service type.

ZXUR 9000 GSM performs channel allocation according to integrated analysis ofthe channel rate, carrier priority, interference band, channel allocation on intra-cellhandover, allocation of reserved channels, and sub-cell channel selection.

15. Supports voice version selection.

ZXUR 9000 GSM supports voice version selection, which enables the user to set apreferred voice version for FR and HR channels. The FR voice versions include FR,EFR and AMR. The HR voice versions include HR and AMR.

16. Supports three-digit network IDs.

ZXUR 9000 GSM supports three-digit network IDs. Two-digit or three-digit network IDscan be used according to the current network conditions. Based on the network ID,the MNC in the signaling messages received over the A interface and the Gb interfacecan be interpreted, thus determining the MNC format in the signaling messages to besent. The network ID is also the basis for determining the MNC format in broadcastmessages over the Um interface.

17. Supports handover between 2G and 3G systems.l Supports the 3G-to-2G incoming handover for CS services.l Supports the 2G-to-3G outgoing handover for CS services.

18. Supports full dynamic Abis.

Full dynamic Abis means the relation between radio channels and Abis channels isnot generated in the O&M system, but dynamically configured in the service process.Dynamic Abis provides wider bandwidths for data services when the transmissionbandwidth over Abis is fixed.

19. Supports coding control.

Compared with GPRS, EDGE has significantly improvedmeasurement reports. EDGEmeasurement could be performed by pulses, that is, by the granularity of BURST.

The feature of rapid EGPRSmeasurement enables the network side to respond timelyto changes in radio environment, that is, choosing the most proper coding mode andperforming power control.

In the downlink direction, BSC supports the determination of coding modes bytimeslots and by TBF.

In the uplink direction, BSC determines the uplink TFB coding mode based on theuplink channel measurement parameters reported by the BTS.

20. Supports retransmission.

2-3

SJ-20101019110320-002|2011–04–25(R1.0) ZTE Proprietary and Confidential

Page 16: ZXUR 9000 GSM (V6.50.00) Product Description

ZXUR 9000 GSM Product Description

In the packet services, retransmission is controlled by negative feedback. The TXside determines which packets are not correctly received by the RX side accordingto the bitmaps sent from the RX side, thus deciding whether the network side shouldretransmit the corresponding packets.

In GPRS, packet data is retransmitted using the same coding mode as the firsttransmission. For example, if the packet data was originally transmitted using CS4coding, it will be retransmitted with CS4 code.

EDGE introduces two new retransmission methods: Segmentation and Assembly(SAR) and incremental redundancy.

21. Optimizes the algorithm for packet channel allocation.

ZXUR 9000 GSM supports the multi-timeslot function of MSs, and assigns GPRS TBFor EDGE TBF to MSs according to their capacity of supporting GPRS or EDGE.

ZXUR 9000 GSM chooses low-load carriers first when assigning PDTCHs to the MSs.After the carrier is selected, it chooses the most suitable PDTCH combination in thecarrier according to MS requirements.

22. Supports QoS.

When the GSM network evolves to GERAN, the high-speed transmission of packetdata brought by EDGE enables operators to provide subscribers with lots of colorfulnew services, such as session service, stream media service, and interaction service.ZXUR 9000 GSM supports different QoS requirements for these services.

23. Supports extended uplink Temporary Block Flow (TBF).

Before extended uplink dynamic allocation is introduced into the GPRS, the number ofuplink channels available for the uplink TBF is always less than or equal to the numberof downlink channels occupied by at the same time. However, ZXUR 9000 GSMsupports extended uplink TBF, which can realize more uplink channels than downlinkchannels, thus better meeting the actual service needs.

24. Supports intelligent power-off.

When the performance data reaches the power-on/power-off threshold, ZXUR 9000GSM notifies the BTS to perform power-on/power-off operations through a message.

ZXUR 9000 GSM can combine multiple scattered timeslots to allocate them to theminimum number of carriers possible, and then shut down the unused carriers toreduce power consumption. The scattered timeslots are preferentially combined ontoBCCH carriers.

ZXUR 9000 GSM supports the customization of intelligent shutdown by period toprevent the intelligent shutdown from influencing the network in busy hours.

25. Supports TFO.

Tandem Free Operation (TFO) is an in-band codec negotiation protocol that makescodec negotiation between two Transcoders (TC) after a call is set up. It eliminatesunnecessary voice code conversion at the sending and receiving ends of calls betweenmobile subscribers, thus increasing voice quality and reducing transmission delay.

2-4

SJ-20101019110320-002|2011–04–25(R1.0) ZTE Proprietary and Confidential

Page 17: ZXUR 9000 GSM (V6.50.00) Product Description

Chapter 2 Service Functions and Technical Specifications

26. Supports transparent channel.

The transparent channel implements transparent transfer of data between a timeslotin the E1 line of an interface at one end and another timeslot in the E1 line of anotherinterface at the other end.

ZXUR 9000 GSM supports transparent channels from the Abis interface to the Ainterface, from the Abis interface to the Abis interface, and from the A interface tothe A interface. When remote TC is implemented, transparent channel from the Abisinterface to the Ater interface is supported.

27. Supports EGPRS and GPRS channel scheduling.

Take GPRS mobile phone as an example. First, GPRS preferential channels areassigned to the phone. When EGPRS channels are free andGPRS channels is heavilyloadded, EGPRS channels can be assigned to the phone. Contrarily, when EGPRSchannels have a heavy load and GPRS channels are free, GPRS phones can switchto GPRS channels.

28. Supports the Dual-Transmission Mode (DTM).

ZXUR 9000 GSM supports DTM. Under A/Gb mode, ZXUR 9000 GSM can processCS and PS services at the same time.

29. Supports subscriber signaling tracing.

ZXUR 9000 GSM implements subscriber signaling tracing based on IMSI, TMSI orTLLI.

30. Supports PS paging coordination.

ZXUR 9000 GSM supports PS paging coordination. In packet transmission mode,ZXUR 9000 GSM enables the MSs to intercept circuit paging messages.

31. Supports FLEX A.

When FLEX A is used, a BSC can connect to multiple MSCs, which constitute an MSCPOOL.

FLEX A provides flexible networking. Compared with the traditional single-MSCstructure, the MSC pool has the following advantages:

l Expands the service area of one MSC, and reduces the frequency and traffic ofinter-MSC handover, location area update, and HLR update.

l Improves the efficiency of network equipment. In one MSC Pool, the homingVLR/MSC can be fixed. In this way, the load of an MSC does not increase whenthe traffic in hot spot goes up in a short time.

l Improves the overall disaster recovery capability of the network. When a MSC inthe MSC Pool is faulty, its traffic can be taken over by another MSC in the MSCPool.

The networking method of FLEX A is transparent to the MS, which means that the MSis not involved when networking changes. This guarantees the compatibility of MS inthe network.

2-5

SJ-20101019110320-002|2011–04–25(R1.0) ZTE Proprietary and Confidential

Page 18: ZXUR 9000 GSM (V6.50.00) Product Description

ZXUR 9000 GSM Product Description

32. Supports FLEX Gb.

FLEX Gb means one BSC can connect multiple SGSNs that form SGSN pools.

FLEX Gb provides flexible networking modes. Compared with the traditionalsingle-SGSN structure, the SGSN pool provides the following advantages:

l Expands the service area of one SGSN, and reduces the frequency and traffic ofinter-SGSN PS handover, routing area update and HLR update.

l Improves the efficiency of network equipment. In an SGSN POOL, the homingVLR/SGSN can be fixed. In this way, the load of an SGSN does not increasewhen the traffic of a hot spot goes up suddenly.

l Improves the overall disaster recovery capability of the network. When a SGSNin the SGSN Pool is faulty, its traffic can be taken over by another SGSN in theSGSN Pool.

For MS, the networking mode of FLEX Gb is transparent, that is, the MS is not involvedin the modification of networking mode. This guarantees the network compatibility withthe MS.

33. Supports preemption and queuing for packet services.

The preemption of packet services considers all dynamic and static packet channelsin assigning packet radio resources according to subscriber QoS requirements. If thefree radio resources on a channel cannot meet QoS requirements or the maximumnumber of subscribers is reached in the channel, and the current subscriber has theright of preemption, the BSC will attempt to forcibly release the radio resources of oneor more low-priority subscribers for the use of the current subscriber.

When the BSC cannot allocate sufficient packet radio resources according tosubscriber QoS requirements, the queuing of packet services allows the BSC to admitservices as many as possible, and then queue them up to wait for radio resourcesthat meet subscriber QoS requirements.

When the BSC supports both preemption and queuing, the preemption of packetservices precedes queuing in priority. Queuing is activated when preemption fails.

34. Supports re-selection of the external network assisted cell.

re-selection of assisted cell in external network accelerates the access speed of theMSduring re-selection of an external cell, shortens the cell re-selection time during datatransmission, increases data transmission rate, thus providing better user experience.

35. Supports network controlled cell re-selection.

Network controlled cell re-selection is a procedure in which the BSC receives themeasurement report from the MS, and then performs storage and weighted averageprocessing of the measured level values of the service cell and the adjacent cells. Thecalculation result is analyzed together with network service load conditions to makecell re-selection decisions.

By fully utilizing available information and making reasonable decisions, the networkcontrolled cell re-selection optimizes network services. The function also reduces

2-6

SJ-20101019110320-002|2011–04–25(R1.0) ZTE Proprietary and Confidential

Page 19: ZXUR 9000 GSM (V6.50.00) Product Description

Chapter 2 Service Functions and Technical Specifications

MS autonomous re-selection of useless cells, thus increasing TBF data transmissionefficiency and providing the best service quality to end users.

36. Supports uplink incremental redundancy.

Incremental redundancy is a method to control the link quality for EDGE. With thismethod, when the BTS successfully decodes the RLC head but fails to decode adata chunk, the BTS stores this data chunk and informs the MS. The MS then usesanother perforation method to encode and retransmit the data chunk so that the BTScan decode the resent data chunk. If decoding fails, the stored data chunk on BTS canbe used together to perform joint decoding. Data chunks using different perforationmethods have different redundant information. Therefore, joint decoding has a highersuccess rate because more redundancy information can be utilized.

37. Supports Multiple PLMN IDs.

ZXUR 9000 GSM supports the radio network sharing among different operators.Operators can configure their own cells on the same site to provide common accessfor subscribers with different operators.

38. Supports noise suppression (only for E1 A interface) and level control.

Noise suppression can increase the voice SNR, enhance voice quality, and provide amore comfortable communication environment.

Level control helps to optimize signal levels, thus improving communication quality.

TFO is exclusive with noise suppression and level control. If the TFO is established,noise suppression and level control are not necessary.

39. Supports higher-order multiple timeslots for PS services.

ZXUR 9000 GSM supports higher-order multiple timeslots for PS services. Thedownlink can have up to five timeslots at the same time, which increases the downlinkrate to 296 Kbps. The increased transmission rate can significantly improve userexperience for FTP transmission and email services.

40. Supports IP transmission for the A interface.

With the evolution of network technology, it is easier to get IP-based transmissionresources. Compared with the traditional circuit network, IP network has a higherutilization rate and more flexible networking modes.

ZXUR 9000 GSM supports IP-based bearing at the A interface, which helps thenetwork evolve to an all-IP network. With this feature, the GSM can be easilyintegrated with the transmission network in the future.

2.1.2 Mobility ManagementZXUR 9000 GSM provides the following mobility management functions:

l Cell Reselection

Supports inter-BSC and intra-BSC cell reselection.

l Cell Handover

2-7

SJ-20101019110320-002|2011–04–25(R1.0) ZTE Proprietary and Confidential

Page 20: ZXUR 9000 GSM (V6.50.00) Product Description

ZXUR 9000 GSM Product Description

Supports inter-BSC and intra-BSC cell handover.

2.1.3 Channel ManagementZXUR 9000 GSM supports the following channel management functions:

1. Service channel managementl channel assignmentl link monitoringl channel releasel channel blocking/unblockingl channel conversionl function control

2. Supported Control Channelsl FCCHl SCHl BCCHl PCHl AGCHl RACHl SDCCHl SACCHl FACCHl PACCHl PAGCHl PBCCHl PCCCHl PPCHl PRACHl PTCCH

2.1.4 External InterfaceZXUR 9000 GSM supports the following external interfaces:

l Abis Interface

The interface connects the BSC with the BTS. To connect the BTS for configurationand management, the BSC provides the E1/T1 interface, CSTM-1 interface, EthernetFE(electrical port)/GE(optical or electrical port) interface.

l A Interface

The interface connects the BSC with the CN, that is, MSC/MGW. To connect theCN, the BSC provides the E1/T1 interface, CSTM-1 interface, Ethernet FE(electricalport)/GE(optical or electrical port) interface.

l Gb Interface

2-8

SJ-20101019110320-002|2011–04–25(R1.0) ZTE Proprietary and Confidential

Page 21: ZXUR 9000 GSM (V6.50.00) Product Description

Chapter 2 Service Functions and Technical Specifications

The interface connects the BSC with the SGSN. To connect to the SGSN, the BSCprovides the E1/T1 interface, CSTM-1 interface, Ethernet FE(electrical)/GE(optical orelectric) interface.

l OMC Interface

Operations can be performed on the OMC client to control and maintain the BSC andthe BTS.

2.1.5 Radio Resource ManagementThe BSC provides the following radio resource management functions:l System Access Control

System access of a subscriber is initiated at the subscriber side (e.g., mobile caller) orthe network side (e.g., mobile called party). The access of a subscriber is to acquireGSM services through GERAN. GERAN controls the access according to subscribercapability and resources utilization.

l Access Control

The system decides whether to accept user's access request based on such aspectsas current resource utilization, load level, general interference level of the cell, totaltransmission power, and the bandwidth resource of the Abis interface.

l Load Control

When multiple subscribers access to the system, the BSC monitors the system load,determine whether the system is overloaded and, if yes, the overload level. After that,the BSC takes measures according to preset rules to ensure system stability.

l Power Control

Given that the signal quality is ensured, the transmit power is kept at a low level toimprove system capacity.

In the uplink, open loop and closed loop power control are adopted. When theuplink is not established, the open loop power control regulates the transmit powerin the Physical Random Access Channel (PRACH). Closed loop power control isused after the link is established. Closed loop power control includes outer loop andinner loop power control. Outer loop power control adjusts the bit error rate (BER)or frame error rate (FER), while inner loop power control targets adjusts the targetsignal-to-interference rate (SIR).

In the downlink, only closed loop power control is used.

l System Message Broadcast

This function broadcasts the information of the access layer and non-access layer tothe MS for access to the GSM services.

l Radio Environment Measurement

This function measures the present public channels and dedicated channelsaccording to radio resource management requirements.

2-9

SJ-20101019110320-002|2011–04–25(R1.0) ZTE Proprietary and Confidential

Page 22: ZXUR 9000 GSM (V6.50.00) Product Description

ZXUR 9000 GSM Product Description

l Dynamic Channel Allocation

Dynamic channel allocation includes low-speed channel allocation and high-speedchannel allocation. High-speed channel allocation conforms to the principles specifiedin access control. Low-speed channel allocation allocates radio resources to differentcells according to their service load.

2.1.6 Network Management Functionalityl Configuration Management

Configuration of BSC physical and logical resource, radio parameter configuration,data import/export.

l Security Management

Network security control and operation log management.

l Fault Management

Displays and saves alarm data that reflects equipment faults and threshold-crossingcases.

l Signaling Tracing

Tracing signaling according to specified BTSs, cells, and MSs for fault analysis.

l Performance Statistics

Performs statistics on services and data transmission.

l Diagnosis Testing

Diagnoses system faults.

2.2 Technical Specifications

2.2.1 Physical Specificationsl Dimensions

à Cabinet size: 2200 mm×600 mm×800 mm (height×width×depth)

à Cabinet color: dark blue

à Cabinet structure: three-layer subracks, with 14 slots on both front panel andbackplane

l Cabinet Weight

Maximum weight of a single cabinet: 430 kg

2.2.2 Power SpecificationsThe power specifications of ZXUR 9000 GSM are shown in Table 2-1.

2-10

SJ-20101019110320-002|2011–04–25(R1.0) ZTE Proprietary and Confidential

Page 23: ZXUR 9000 GSM (V6.50.00) Product Description

Chapter 2 Service Functions and Technical Specifications

Table 2-1 Power Specifications

Parameter Specification

Power supply -48 V DC

Allowed power range -40 V DC to -57 V DC

Maximum power consumption 9000 W

2.2.3 Backup ConfigurationAs a measure to improve reliability, ZXUR 9000 GSM provides backup protection for majorboards.

l 1+1 backup for interface boards.l Load sharing for switch boards.l 1+1 backup for control plane processing boards.l Load sharing for user plane processing boards.l The interface boards using the optical fiber and peer-end connection are protected

by inter-board APS to ensure the reliability of high-speed lines, particularly opticalinterface transmission.

2.2.4 Environment Requirements

2.2.4.1 Grounding RequirementZXUR 9000 GSM includes the -48V ground, work ground and protection ground.

l The -48V and -48 VRTN three-channel power supplies enter the cabinet from the top.The -48 VRTN and GND converges outside the cabinet. The protection earth (PE)connects to the earth.

l The rack provides both top grounding and bottom grounding.l Rack bonding resistance ranges from 0.1 to 0.3 ohms, while the ground resistance

should be less than 1 ohm in the equipment room.

2.2.4.2 Temperature and Humidity Requirementsl Temperature and humidity range for stable operation:

à Temperature range

Long-term operation: 0 ℃ to 45 ℃

Short-term operation: -5 ℃ to 50 ℃

à Humidity range

Long-term operation: 5 % to 85 %

Short-term operation: 5 % to 90 %

2-11

SJ-20101019110320-002|2011–04–25(R1.0) ZTE Proprietary and Confidential

Page 24: ZXUR 9000 GSM (V6.50.00) Product Description

ZXUR 9000 GSM Product Description

Note:

The short-term operation means that the continuous operating period does not exceed96 hours and the accumulative total period within a year does not exceed 15 days.

2.2.4.3 Cleanliness RequirementsThe equipment room must meet the following cleanliness requirements:

l No explosive, conductive, magnetic or corrosive dust.l The thickness of dust particles with larger than 5 um in diameter should be less than

or equal to 3*104 particles/m3.l No corrosive metals or gases that are harmful to insulation.l The equipment room has the capacity to shield some outside electromagnetic

interference.l The rack should be with earthquake-resistance consolidation.l It is permitted that the storage and transportation are with no air-conditioning.

When some of the above requirements cannot be met, the basic requirement is that theequipment room environment resembles the general indoor conditions of different regionsin China.

2.2.4.4 Atmospheric Pressure RequirementsThe atmospheric pressure range for storage: 70 kPa to 106 kPa

The atmospheric pressure range for normal operation: 86 kPa to 106 kPa

2.2.4.5 Electro-Magnetic CompatibilityZXUR 9000 GSM is resistant to electromagnetic interference, conforming torequirements specified in GB/T17618-1998 Information technology equipment–Immunitycharacteristics–Limits and methods of measurement.

ZXUR 9000 GSMThe self-produced electromagnetic interference of the product conformsto requirements of GB9254-1998.

ZXUR 9000 GSMThe EMC specifications of the product conforms to requirementsspecified in EN 300 386 V1.4.1:2008EN 60950–1/A11:2009.

The product has passed the FCC Part 15 certification.

The product has passed the UL certification.

2.2.4.6 Transportation RequirementsThe storage conforms to requirements of GB/T 4798.1. The storage duration should beless than 12 months. Otherwise, the equipment should be tested before operation.

l Temperature requirement for storage: -40 ℃ to +60 ℃

2-12

SJ-20101019110320-002|2011–04–25(R1.0) ZTE Proprietary and Confidential

Page 25: ZXUR 9000 GSM (V6.50.00) Product Description

Chapter 2 Service Functions and Technical Specifications

l Humidity requirement for storage: 10 % to 95 %

With regular packing, the product can endure the shaking and bumping.

2.2.5 Security Specificationsl Optical protection

The optical interface conforms to the requirements of BS EN 60825-2-2000.

l Rack stability

The general symmetry ensures that the rack will not fall down at a tilt table of at least10 degrees. The outer cases of the cabinet and subracks are fixed and can enduregeneral hit.

l Rack security protection

Security protection level should be IP20.

l Electrical leakage

The leak electrical current of this product is less than or equal to 3.5 mA.

l Safety signs

The product has clear enduring safety signs. All indicators, switches, or buttons of theequipment have clear application meanings for different colors.

l Heat resistance and fireproofing

The outer case of the produce is heat-resistant and fireproofing.

l Earthquake resistance

The equipment is safe against 8 magnitude earthquakes.

2.2.6 Interface SpecificationsThe interface boards of ZXUR 9000 GSM are all rear boards. Up to 30 slots are providedfor rear boards. The maximum numbers of supported ports for one slot are listed in Table2-2.

Table 2-2 Maximum Supported Interface Number of One Slot

Interface Type Maximum Number of Ports

CSTM-1 4

E1/T1 32

FE/GE 4

2-13

SJ-20101019110320-002|2011–04–25(R1.0) ZTE Proprietary and Confidential

Page 26: ZXUR 9000 GSM (V6.50.00) Product Description

ZXUR 9000 GSM Product Description

2.2.7 Capacity SpecificationsThe typical single rack configuration involves the following capacity specifications, asshown in Table 2-3.

Table 2-3 Capacity Specifications

Parameter Specification (TDM A interface withbuilt-in TC)

Specification (IP A interface)

Number of racks 1 1

Number of TRX 5600 12250

Number of

Sites/Cells

2800 6125

Erl 33600 73500

BHCA(K) 8400 16800

Maximum Data

Throughput

(Number of

Channels)

19600 MCS9 PDCH 42875 MCS9 PDCH

2.2.8 Clock Specificationsl Clock level: Level 3 Class Al Minimum clock accuracy: ±4.6×10-6l Pull-in range: ±4.6×10-6l Maximum frequency deviation: 2×10 -8 Hz/Dayl Maximum initial frequency deviation: 1×10-8 Hzl Clock working mode: Capture, trace, keep, freel Clock synchronization mode: External clock synchronization, or extracting from the

circuit clockl Clock synchronization interface: 2MBITS(2 MHz, 2 Mbps), GPS, Line Clock

Reference (E1/T1, CSTM-1, Synchronous Ethernet), 1588 V2

2.2.9 Reliability SpecificationsZXUR 9000 GSM has the following reliability specifications shown in Table 2-4.

Table 2-4 Reliability Specifications

Item Specification

MTBF More than 650000 hours

MTTR 30 minutes

Availability 99.99992 %

2-14

SJ-20101019110320-002|2011–04–25(R1.0) ZTE Proprietary and Confidential

Page 27: ZXUR 9000 GSM (V6.50.00) Product Description

Chapter 2 Service Functions and Technical Specifications

Item Specification

System downtime Less than 1 minutes per year for whole system

downtime

Redundancy configuration Board 1+1 backup or load sharing

2-15

SJ-20101019110320-002|2011–04–25(R1.0) ZTE Proprietary and Confidential

Page 28: ZXUR 9000 GSM (V6.50.00) Product Description

ZXUR 9000 GSM Product Description

This page intentionally left blank.

2-16

SJ-20101019110320-002|2011–04–25(R1.0) ZTE Proprietary and Confidential

Page 29: ZXUR 9000 GSM (V6.50.00) Product Description

Chapter 3Product StructureTable of Contents

Logic Structure ...........................................................................................................3-1Hardware ...................................................................................................................3-3Software.....................................................................................................................3-9

3.1 Logic Structure

3.1.1 System Logical StructureZXUR 9000 GSM has the following logical structure, as shown in Figure 3-1.

Figure 3-1 Logical Structure

• BTS: Base TransceiverStation

• MSC: Mobile SwitchingCenter

• SGSN: Service GPRSSupporting Node

• AU: Access Unit• SU: Switching Unit

• O & M Unit: Operation andMaintenance Unit

• PMU: Peripheral MonitoringUnit

3.1.2 System Logical UnitsZXUR 9000 GSM involves five logical units with different functions. The functions of thefive units and the boards involved are illustrated in Table 3-1.

3-1

SJ-20101019110320-002|2011–04–25(R1.0) ZTE Proprietary and Confidential

Page 30: ZXUR 9000 GSM (V6.50.00) Product Description

ZXUR 9000 GSM Product Description

Table 3-1 Five Logical Units

Logical Unit Function Boards Involved

Operation and Maintenance

Unit

The unit handles the global

process and the O&M control

at system-level. It also isolates

internal and external network

segments and provides the

global clock.

UMP, ECDM

Access Unit This unit concerns external

interfaces, including Abis, A,

and Gb (E1/T1, CSTM-1, IP). It

implements part of the link layer

processing.

EDTT, ESDTT, ESDTG, ESDTI,

EDTI, EGPB

Processing Unit This unit processes the radio

control-plane and user-plane

protocols and part of the data

bearer protocols related to

transmission.

USP, ETCB

Switching Unit This unit performs intra-shelf

and inter-shelf Layer-2

switching, providing user-plane

and control-plane as switching

planes.

EGBS, EGFS

Peripheral Monitoring Unit This unit belongs to O&M

module and is responsible

for collecting peripheral

information and environment

board information within the

cabinet, including the status

of power distributor and fan,

the environment alarms that

reflect changes in temperature,

humidity, smog, water, and

infrared. The unit raises

system alarms of different

levels according to system

fault grades, thus facilitating

timely handling by equipment

management personnel.

PDUM, PDUB, PDUC, EPCB,

EFMB, NFCM, NFSD, ALB

3-2

SJ-20101019110320-002|2011–04–25(R1.0) ZTE Proprietary and Confidential

Page 31: ZXUR 9000 GSM (V6.50.00) Product Description

Chapter 3 Product Structure

3.2 Hardware

3.2.1 Cabinet StructureThe cabinet is made up of the following components:l Cabinet door and rack

à Four doors: Front/rear doors and left-right doors

à Rack: supports the whole cabinet.

l Subracks

à Power Distribution Unit (PDU) (3 U): Located at the top of the cabinet, the PDUprovides power to subracks. The unit can automatically switch between two3-channel outer power sources, with power indicator and environment monitorfunctions.

à ETCA subrack (11 U): The cabinet can admit up to three such subracks.

à Ventilation subrack (5 U): Shared space between subracks. Independent of othersubracks, this subrack changes the air duct from a vertical one to a horizontal one.

l Wind trap component (2 U): traps and converges wind.l Ventilation panel: Dust-proof decoration. One or two such panels for a cabinet.The cabinet structure of ZXUR 9000 GSM is shown in Figure 3-2.

3-3

SJ-20101019110320-002|2011–04–25(R1.0) ZTE Proprietary and Confidential

Page 32: ZXUR 9000 GSM (V6.50.00) Product Description

ZXUR 9000 GSM Product Description

Figure 3-2 Cabinet Structure

1. Front door2. Side door 13. Rear door4. Side door 25. Rack

6. Power distribution unitPDU7. Ventilation panel1 U8. ETCA subrack11 U9. Wind trap component2 U10. ETCA subrack11 U

11. Ventilation subrack5 U12. ETCA subrack11 U13. Ventilation panel3 U

3.2.2 Subrack StructureThe ETCA subrack includesl Fan unit: Two fan units are located at the front of the cabinet, while one fan unit at the

back.l Service subrack: one subrack component on the front, one on the back of the cabinet,

separated by the backplane.l Power supply unit (Power Distribution Box): two PDUs at the back of the subrack,

supporting four power inputs.l Enhanced Chassis Data Module (ECDA): two modules located on the back of the

subrack, used to manage subrack slots information.

3-4

SJ-20101019110320-002|2011–04–25(R1.0) ZTE Proprietary and Confidential

Page 33: ZXUR 9000 GSM (V6.50.00) Product Description

Chapter 3 Product Structure

The ETCA subrack structure is illustrated in Figure 3-3 and Figure 3-4.

Figure 3-3 ETCA Subrack - Front View

1. Fan unit 1 2. Fan unit 2 3. Service subrack

3-5

SJ-20101019110320-002|2011–04–25(R1.0) ZTE Proprietary and Confidential

Page 34: ZXUR 9000 GSM (V6.50.00) Product Description

ZXUR 9000 GSM Product Description

Figure 3-4 ETCA Subrack - Rear View

1. Fan unit2. Service subrack

3. Power supply unit 14. Power supply unit 2

5. ECDM 16. ECDM 2

3.2.3 Front BoardsThe front boards of ZXUR 9000 GSM processes services, as illustrated in Table 3-2.

Table 3-2 Front Board Functions

FunctionBoard

PhysicalBoard

Function

UMP SBCJ OMM: operation and maintenance of NEs. provides the GE interface

for connecting the EMS.

OMP: Processes the global process and controls the operation and

maintenance of the whole system. It connects the OMM through

the internal media plane. As the processing core of operation and

maintenance, the OMP board directly or indirectly monitors and

manages all boards in the system. It provides an Ethernet interface for

the configuration management of boards and other components.

USP SBCJ CMP: Protocol processing on the control plane at the interfaces Abis,

A, and Gb.

RUP: Protocol processing on the user plane.

3-6

SJ-20101019110320-002|2011–04–25(R1.0) ZTE Proprietary and Confidential

Page 35: ZXUR 9000 GSM (V6.50.00) Product Description

Chapter 3 Product Structure

FunctionBoard

PhysicalBoard

Function

ETCB ETCB When the A interface adopts TDM, TC processing is implemented.

The interfaces of boards are illustrated in Table 3-3.

Table 3-3 Board Interfaces

FunctionBoard

Interface Remarks

UMP 2×1G, connects 2 EGBS boards on the back plane,

control plane

2×1G, connects 2 EGFS boards on the back plane,

media plane

1+1 backup

USP 2×1G, connects 2 EGBS boards on the back plane,

control plane

2×1G, connects 2 EGFS boards on the back plane,

media plane

CMP: 1+1 backup

RUP: load sharing

ETCB 2×1G, connects 2 EGBS boards on the back plane,

control plane

2×1G, connects 2 EGFS boards on the back plane,

media plane

load sharing

3.2.4 Rear BoardsZXUR 9000 GSM is configured with the boards illustrated in Table 3-4.

Table 3-4 Rear Boards

Board Function Interface Remarks

EDTT TDM Over E1/T1 at the

interfaces A, Abis, and Ater

2×1G, the back plane connects 2

EGBS boards, control plane

4×1G, the back plane connects 2

EGFS boards, media plane

32×E1/T1

No backup or 1+1

backup

EDTI IP Over E1/T1 at the

interface Abis

TDM Over E1/T1 at the

interface Gb

2×1G, the back plane connects 2

EGBS boards, control plane

4×1G, the back plane connects 2

EGFS boards, media plane

32×E1/T1

No backup or 1+1

backup

3-7

SJ-20101019110320-002|2011–04–25(R1.0) ZTE Proprietary and Confidential

Page 36: ZXUR 9000 GSM (V6.50.00) Product Description

ZXUR 9000 GSM Product Description

Board Function Interface Remarks

EGPB IP processing at the

GE interface (optical or

electrical)

2×1G, the back plane connects 2

EGBS boards, control plane

4×1G, the back plane connects 2

EGFS boards, media plane

4×1G, external single-mode

Load sharing

1+1 backup

ESDTT TDM Over CSTM–1 at the

interface A

2×1G, the back plane connects 2

EGBS boards, control plane

4×1G, the back plane connects 2

EGFS boards, media plane

1+1 backup

ESDTI IP Over CSTM-1 at the

interfaces Abis

TDM Over CSTM-1 at the

interface Gb

2×1G, the back plane connects 2

EGBS boards, control plane

4×1G, the back plane connects 2

EGFS boards, media plane

1+1 backup

ESDTG TDM Over CSTM-1 at the

interfaces Abis and Ater

2×1G, the back plane connects 2

EGBS boards, control plane

4×1G, the back plane connects 2

EGFS boards, media plane

1+1 backup

EGBS Control plane switching of

the service subrack

Management functions of

the system subrack

Switching:

l 26×1G, the back plane

connects 24 service slots

and the EGFS board, control

plane

l 4×1G, inter-subrack

connection at the control

plane

l 2×10G, peer boards stack

l 1×GE, connecting to the

CMM of the peer board

l 1×GE, connecting to the

clock module of the peer

board

CMM:

l 1×FE, connecting to the

CMM of the peer board

l 1×FE, connecting to the peer

board HUB

l 27×I2C, connecting 26

service slots, the power

supply, fan, and the peer

board

1+1 backup

3-8

SJ-20101019110320-002|2011–04–25(R1.0) ZTE Proprietary and Confidential

Page 37: ZXUR 9000 GSM (V6.50.00) Product Description

Chapter 3 Product Structure

Board Function Interface Remarks

EGFS Media plane switching

Clock

Media plane switching:

l 34×1G, the back plane

connects 24 service slots,

14 front interfaces, 20 rear

interfaces, media plane

l 2×1G, connecting to the

control plane of EGBS

l 2×10G, inter-subrack

connection at the media

plane

l 2×10G, active-standby

interconnection

Clock

l 1× antenna port, connecting

to the GPS antenna via cable

l 2× clock input, connecting to

the BITS reference via cable

l 3× clock output, connecting

to other subracks

1+1 backup

PDUM Measuring the temperature

and humidity

Testing power supply

1×485, connecting to the UMP

(OMP) via cable

One board per rack

3.3 Software

3.3.1 NE Software and the EMSThe software architecture includes the NE software and operation and maintenancemodule (OMM) client (or OMC).

1. NE Software

The software runs on the cabinet of ZXUR 9000 GSM, responsible for serviceprocessing.

2. OMM Client

This software is the client of the operation and maintenance module. The clientprovides functions to manage the NEs of the BSS, such as fault management,performance management, and configuration management.

The communication between the ZXUR 9000 GSM equipment and the OMM clientconforms to the TCP/IP protocol.

The software architecture of ZXUR 9000 GSM is shown in Figure 3-5.

3-9

SJ-20101019110320-002|2011–04–25(R1.0) ZTE Proprietary and Confidential

Page 38: ZXUR 9000 GSM (V6.50.00) Product Description

ZXUR 9000 GSM Product Description

Figure 3-5 Software Architecture

3.3.2 Classification of NE SoftwareThe system software can be divided into two categories.

l Version Software

Version software can be managed on the EMS client. It that can be dynamicallyupdated.

l Firmware

Firmware is a software program written on the hardware chips and cannot be updatedon the EMS client.

3-10

SJ-20101019110320-002|2011–04–25(R1.0) ZTE Proprietary and Confidential

Page 39: ZXUR 9000 GSM (V6.50.00) Product Description

Chapter 4NetworkingTable of Contents

Networking via the Abis Interface ...............................................................................4-1Networking via the A/Gb Interface ..............................................................................4-3

4.1 Networking via the Abis InterfaceZXUR 9000 GSM supports several ways of networking.

According to the network topology, ZXUR 9000 GSM supports the star networking,chain networking, ring networking (requires supported transmission network), and hybridnetworking.

The Abis interface supports following transmission modes: CSTM-1, E1/T1, EthernetGE/FE (optical or electrical).

4.1.1 Star NetworkingThe star networking involving ZXUR 9000 GSM is shown in Figure 4-1.

Figure 4-1 Star Networking

In star networking, ZXUR 9000 GSM connects with BTS directly. This networking issimple, and the maintenance and engineering are very convenient too. Since the signalsare transmitted through fewer intermediate links, the reliability of transmission is higher.Generally, this networking is adopted in densely-populated urban areas.

4.1.2 Chain NetworkingThe chain networking involving ZXUR 9000 GSM is shown in Figure 4-2.

4-1

SJ-20101019110320-002|2011–04–25(R1.0) ZTE Proprietary and Confidential

Page 40: ZXUR 9000 GSM (V6.50.00) Product Description

ZXUR 9000 GSM Product Description

Figure 4-2 Chain Networking

Chain Networking has relatively more intermediate links, so that the reliability is poorer.Chain networking is usually applied in strip-shaped areas with sparse population, and alarge amount of transmission equipment can be saved.

The chain networking can also be applied in the case of one site having multiple BTSs.

In actual engineering networking, the transmission equipment is generally added betweenZXUR 9000 GSM and BTSs, different from the basic networking, because the sites areoften scattered. The common transmission media include: microwave, fiber cable, HDSLcable, and coaxial cable.

4.1.3 Ring NetworkingThe ring networking involving ZXUR 9000 GSM is shown in Figure 4-3.

Figure 4-3 Ring Networking

The ring networking involves two sets of links running in the active/standby relation. Everynode on the ring has two upper-level nodes, thus improving the link reliability. Therefore,if a site is damaged or a link fails, the subordinate nodes can select another link as theactive one.

4.1.4 Star-Chain Hybrid NetworkingThe star-chain hybrid networking involving ZXUR 9000 GSM is shown in Figure 4-4.

4-2

SJ-20101019110320-002|2011–04–25(R1.0) ZTE Proprietary and Confidential

Page 41: ZXUR 9000 GSM (V6.50.00) Product Description

Chapter 4 Networking

Figure 4-4 Star-Chain Hybrid Networking

The advantages of hybrid networking are:

l Easily adaptable to the current transmission mode of the operator. In earlyestablishment of the network, hybrid networking makes the most of the establishedtransmission network, thus saving the network cost and speeding the networkestablishment for the operator.

l Easier networking on complex terrain. Hybrid networking supports multiple topology,thus making network establishment flexible and simple.

l Easy configuration of abundant transmission paths, thus enhancing the networkrobustness.

4.2 Networking via the A/Gb InterfaceThe A interface connects the BSC with the MSC/MGW.

The Gb interface connects the BSC with the SGSN.

4.2.1 Networking via the Gb InterfaceThe networking via the Gb interface is shown in Figure 4-5.

4-3

SJ-20101019110320-002|2011–04–25(R1.0) ZTE Proprietary and Confidential

Page 42: ZXUR 9000 GSM (V6.50.00) Product Description

ZXUR 9000 GSM Product Description

Figure 4-5 Networking via the Gb Interface

The Gb interface supports following transmission modes: CSTM-1, E1/T1, and EthernetGE/FE (optical or electrical ports).

4.2.2 Networking via the A InterfaceThe networking with the A interface is shown in Figure 4-6.

Figure 4-6 Networking via the A Interface

The A interface supports following transmission modes: CSTM-1, E1/T1, and EthernetGE/FE (optical or electrical ports).

4-4

SJ-20101019110320-002|2011–04–25(R1.0) ZTE Proprietary and Confidential

Page 43: ZXUR 9000 GSM (V6.50.00) Product Description

Chapter 5System ConfigurationTable of Contents

Configuration Description ...........................................................................................5-1Board Configuration ...................................................................................................5-2Subrack Configuration................................................................................................5-3Cabling Configuration.................................................................................................5-5Configuration of Network Management Software........................................................5-6

5.1 Configuration DescriptionZXUR 9000GSM has three typical application scenarios: single subrack, double subracks,and tri-subrack configuration.

l Single subrack

This configuration means that the BSC is configured with one service subrack.

l Double subracks

The BSC is configured with two service subracks.

l Triple subracks

The BSC is configured with three subracks.

The hardware of this product can be divided into interface resources, system processingresources, and switching resources.

The general system configuration is related to these resources.

Refer to the following list for the configuration:

l Interface board: EGPB, EDTT, ESDTT, ESDTG, EDTI, ESDTIl Control boards: UMP (OMM, OMP)l Processing boards: USP (CMP, RUP), ETCBl Switching boards: EGBS, EGFS

The traffic model contains the following indexes:

l The number of sites/cellsl Traffic volumel Equivalent BHCAl The number of PDCH

The system performance indexes can be calculated from the assuming parameters of thetraffic model and necessary input parameters (for example, the number of cells and thenumber of interfaces). The number of important boards can thus be obtained.

5-1

SJ-20101019110320-002|2011–04–25(R1.0) ZTE Proprietary and Confidential

Page 44: ZXUR 9000 GSM (V6.50.00) Product Description

ZXUR 9000 GSM Product Description

The number of interface boards is dependent on total traffic of each interface and thenumber of external equipment.

The processing resources on the user plane are the key factor for system configuration.The requirement of processing resources on the user plane can be obtained by collectingtotal system voice traffic and the user-plane board traffic. And then the control-planeprocessing resources can be calculated by data matching based on the user-plane data.

The required amount of system control resources and switch platform resources can becalculated from the amount of the above resources.

5.2 Board ConfigurationThe configuration of front boards is illustrated in Table 5-1.

Table 5-1 Board Configuration List

Board Number of Boards forSingle Subrack

Number of Boards forDouble Subracks

Number of Boards forTriple Subracks

UMP (OMM) 2 2 2

UMP (OMP) 2 2 2

USP (CMP)

USP(RUP)

ETCB

Depending on the

system requirement

and the processing

capacity of the board

Depending on the

system requirement

and the processing

capacity of the board

Depending on the

system requirement

and the processing

capacity of the board

The configuration of rear boards for single-subrack, double-subrack, and triple-subrackscenarios is illustrated in Table 5-2.

Table 5-2 Rear Board Configuration List

Board Number of Boards forSingle Rack

Number of Boards forDouble Racks

Number of Boards forTriple Racks

EGFS 2 4 6

EGBS 2 4 6

Interface board Depending on the

processing capacity of

the interface and the

board, and the backup

configuration

Depending on the

processing capacity of

the interface and the

board, and the backup

configuration

Depending on the

processing capacity of

the interface and the

board, and the backup

configuration

5-2

SJ-20101019110320-002|2011–04–25(R1.0) ZTE Proprietary and Confidential

Page 45: ZXUR 9000 GSM (V6.50.00) Product Description

Chapter 5 System Configuration

5.3 Subrack Configuration

5.3.1 Typical Configuration for Single Service SubrackFigure 5-1 lists the typical board configuration for a single-subrack scenario. The type ofthe interface board is decided by the actual networking.

Figure 5-1 Typical Configuration for Single Subrack

5.3.2 Typical Configuration for Double Service SubracksIn the double-subrack scenario, the two subracks are configured as master-subordinatepeers. Figure 5-2 lists the typical board configuration for a double-subrack scenario. Thetype of the interface board is decided by the actual networking.

5-3

SJ-20101019110320-002|2011–04–25(R1.0) ZTE Proprietary and Confidential

Page 46: ZXUR 9000 GSM (V6.50.00) Product Description

ZXUR 9000 GSM Product Description

Figure 5-2 Typical Configuration for Double Subracks

5.3.3 Typical Configuration for Triple Service SubracksIn the triple-subrack scenario, the three subracks are configured as one master, twosubordinate subracks. Figure 5-3 lists the typical board configuration for a triple-subrackscenario. The type of the interface board is decided by the actual networking.

5-4

SJ-20101019110320-002|2011–04–25(R1.0) ZTE Proprietary and Confidential

Page 47: ZXUR 9000 GSM (V6.50.00) Product Description

Chapter 5 System Configuration

Figure 5-3 Typical Configuration for Triple Subracks

5.4 Cabling ConfigurationThe cables inside the rack (single-subrack configuration does not include internal cables)are configured as follows:

l The 10GE optical fiber connects the EGFS board in the master subrack with the sameboard in the subordinate subrack on the media plane.

l The Gigabyte Ethernet (GE) optical fiber connects the EGBS board in the mastersubrack with the same board in the subordinate subrack on the control plane.

5-5

SJ-20101019110320-002|2011–04–25(R1.0) ZTE Proprietary and Confidential

Page 48: ZXUR 9000 GSM (V6.50.00) Product Description

ZXUR 9000 GSM Product Description

l The clock reference cable connects the clock output on the EFGS board in the mastersubrack to the clock input on the EFGS board in the subordinate subrack.

The cabling outside the rack includes:

l The EGFS board in the master subrack is connected to the BITS clock reference viacable.

l The types of interface boards connect to the external network via the Ethernet cable,optical fiber, or E1 cable.

5.5 Configuration of Network Management SoftwareThe operation and maintenance (O & M) server is installed on the USP (OMM) board,while the client is installed on the PC. The client PC requires the following configurationsillustrated in Table 5-3.

Table 5-3 OMM Client Configuration

Part Suggested Configuration

CPU 2.4Gb, 8-core

Memory 12Gb or more

Hard Disk SAS

CD-ROM Driver Not equipped

Network Port 2*1Gb electrical port

Video adapter Default video adapter

5-6

SJ-20101019110320-002|2011–04–25(R1.0) ZTE Proprietary and Confidential

Page 49: ZXUR 9000 GSM (V6.50.00) Product Description

Chapter 6Signal Processing FlowThe signals in ZXUR 9000 GSM include the clock signal, signaling, the operation andmaintenance signal, and the user plane data. This chapter analyzes the signal processingflows involved. As examples, the Abis interface adopts the IP port, the A interface adoptsthe TDM over CSTM–1, the Gb interface adopts the IP port.

Table of Contents

Circuit-Switched User Plane Data ..............................................................................6-1Packet-Switched User Plane Data .............................................................................6-2Control Plane Signaling .............................................................................................6-2BTS Operation and Maintenance Data .......................................................................6-3

6.1 Circuit-Switched User Plane DataThe CS data flow at the Abis interface starts from the interface board EGPB, and thenflows to the ETCB for transcoding (TC). After that, the data is sent to the A interface boardthrough the IP switching network on the user plane. Through the A interface on the ESDTTboard, the data undergoes the IP-to-TDM conversion, and is sent to the MGW.

The uplink CS data flow on the user plane is illustrated in Figure 6-1 as an example. Thedownlink data flow goes in the opposite direction.

Figure 6-1 CS User Plane Data Flow

6-1

SJ-20101019110320-002|2011–04–25(R1.0) ZTE Proprietary and Confidential

Page 50: ZXUR 9000 GSM (V6.50.00) Product Description

ZXUR 9000 GSM Product Description

6.2 Packet-Switched User Plane DataThe PS data at the Abis interface starts from the interface on the EGPB, and flows to theRUP board for PS processing according to relevant protocols. After that, the data is sentto the Gb interface on the EGPB before it is sent to the SGSN.

The uplink PS data flow on the user plane is illustrated in Figure 6-2 as an example. Thedownlink data flow goes the opposite way.

Figure 6-2 PS User Plane Data Flow

6.3 Control Plane SignalingControl Plane Signaling at the Abis Interface

The EGPB (Abis interface board) transmits the control plane protocol messages at theAbis interface through the control plane switching network to CMP for protocol processing.

The uplink signaling flow at the Abis interface is illustrated in Figure 6-3 as an example. Thefigure shows the signaling flow between the master subrack and the subordinate subrack.The signaling in the downlink goes in the opposite direction.

6-2

SJ-20101019110320-002|2011–04–25(R1.0) ZTE Proprietary and Confidential

Page 51: ZXUR 9000 GSM (V6.50.00) Product Description

Chapter 6 Signal Processing Flow

Figure 6-3 Signaling Flow at the Abis Interface

Control Plane Signaling at the A InterfaceThe MTP2 protocol at the A interface is processed on the ESDTT board, while the MTP3and higher protocols are sent to be processed on the CMP via the Ethernet.

The downlink signaling flow at the A interface is illustrated in Figure 6-4 as an example. Thefigure shows the signaling flow between the master subrack and the subordinate subrack.The signaling flow in the uplink goes in the opposite direction.

Figure 6-4 Signaling Flow at the A Interface

6.4 BTS Operation and Maintenance DataThe operation and maintenance data of the BTS is sent from the Abis interface to theinterface board EGPB in the access unit for the physical layer processing. After that, thedata is sent to the EGPB in the master subrack via the switching unit, before it is sent tothe OMM board via the OMM VLAN of the EGPB.

The operation and maintenance data flow of the BTS is illustrated in Figure 6-5.

6-3

SJ-20101019110320-002|2011–04–25(R1.0) ZTE Proprietary and Confidential

Page 52: ZXUR 9000 GSM (V6.50.00) Product Description

ZXUR 9000 GSM Product Description

Figure 6-5 Flow of the BTS Operation and Maintenance Data

6-4

SJ-20101019110320-002|2011–04–25(R1.0) ZTE Proprietary and Confidential

Page 53: ZXUR 9000 GSM (V6.50.00) Product Description

Chapter 7ReliabilityTable of Contents

Hardware Reliability Design........................................................................................7-1Software Reliability Design.........................................................................................7-2Heat Dissipation Design .............................................................................................7-3

7.1 Hardware Reliability DesignThe rack and service subracks all adopt dual power supplies, so that at leastdouble-channel cables are used inside the rack. The control plane boards adopt theactive/standby working mode, while the user plane boards adopt the load sharing workingmode. The interface boards adopt either the active/standby or the load sharing workingmode. Therefore, the faults of any individual hardware do not affect the normal operationof the system.

7.1.1 Types of Board BackupThe boards in ZXUR 9000 GSM adopt one of the three backup modes: No backup, 1+1backup, and load sharing.

l No Backup

The board has no backup configuration.

l 1+1 Backup

1+1 backup is also called the active/standby backup. Of the two boards asactive-standby peers, only the active board is in operation at a certain time.

If any fault occurs to the active board, the system switches the standby/active relation.The standby board is switched as active, while the active board is switched as standby.

l Load Sharing

Load sharing backs up the service data on the board.

When a service is running, related services are distributed on multiple boards. If anindividual board fails, the service on the failed board can be shared by other boardsto ensure the full operation of the service.

7.1.2 Supported Backup Mode for Different BoardsAt present, the boards equipped with ZXUR 9000 GSM have different backup modes, aslisted in Table 7-1.

7-1

SJ-20101019110320-002|2011–04–25(R1.0) ZTE Proprietary and Confidential

Page 54: ZXUR 9000 GSM (V6.50.00) Product Description

ZXUR 9000 GSM Product Description

Table 7-1 Board Backup Mode Details

Function Board Supported Backup Mode Description

UMP(OMP/OMM) 1+1 backup The OMP must adopt the 1+1

backup, because this board

performs centralized control

over the whole system.

ETCB Load Sharing -

EDTT No backup, 1+1 backup -

EDTI No backup, 1+1 backup -

ESDTT 1+1 backup -

ESDTI 1+1 backup -

ESDTG 1+1 backup -

EGPB Load sharing, 1+1 backup -

EGBS Load Sharing Provides load sharing upon

occurrence of a fault

EGFS Load Sharing Provides load sharing upon

occurrence of a fault

USP (CMP) 1+1 backup -

USP(RUP) Load Sharing -

Note:

The two boards as active-standby peers may not use two neighboring slots. The slotdistribution is decided by the cabling on the back plane.

7.2 Software Reliability DesignThe system software adopts reliable design. All the system, except the external operationandmaintenance interfaces, has an internal communication network completely separatedfrom the outer network. Besides, the system is equipped with a built-in firewall to protectthe external O & M interfaces against attacks. At the same time, the O & M subsystemsupports high-security authentication design, which enables the authorization of differentlevels of operations to users.

The product has powerful fault tolerance, which can be illustrated by the following aspects:

l Automatic testing for user-defined configurations. Illegal or improper configuration willbe rejected, and the user will be prompted to make proper settings.

7-2

SJ-20101019110320-002|2011–04–25(R1.0) ZTE Proprietary and Confidential

Page 55: ZXUR 9000 GSM (V6.50.00) Product Description

Chapter 7 Reliability

l Supports the backup of the key version or major data as the basis for rollback in thecase of failed loading of a version or relevant data.

l The Watchdog function can restart a board to resume operation when an error occursduring the software operation. Meanwhile, the black box records the runtime errorsfor further analysis.

l During the backup of hardware, the software can automatically test the faults occurringat ports, links, and other faults. If any fault is tested, the software automatically startor activate the standby unit to ensure proper system operation.

7.3 Heat Dissipation Design

7.3.1 Introduction to Heat DissipationThe upper and lower air duct for heat dissipation is formed with the combination of therack with other subracks, including the fan subrack, ventilation subrack, wind trap subrack,and ventilation pannel. The fan-drived ventilation can meet the ventilation and coolingrequirement inside the subracks. The air inlet can be installed with the dustproof screen.

7.3.2 Air Duct for Heat DissipationThe air duct for heat dissipation of ZXUR 9000 GSM is shown in Figure 7-1.

Figure 7-1 Ventilation Subrack Air Flow

7-3

SJ-20101019110320-002|2011–04–25(R1.0) ZTE Proprietary and Confidential

Page 56: ZXUR 9000 GSM (V6.50.00) Product Description

ZXUR 9000 GSM Product Description

The figure above illustrates the air outlet at the top of the cabinet. The air enters the cabinetfrom under the service subrack horizontally, and turns vertical after flowing through theventilation subrack, bringing heats from inside the cabinet to the outlet above the servicesubrack. This is an efficient way of heat dissipation.

With full configuration, the cabinet has the following air flow for heat dissipation, as shownin Figure 7-2. The air flow of each subrack is explained as follows:

l Power supply unit: bottom-upl Upper service subrack: bottom-upl Middle service subrack: bottom-upl Bottom service subrack: front-to-back

Figure 7-2 Air Flow in the Whole Cabinet

7-4

SJ-20101019110320-002|2011–04–25(R1.0) ZTE Proprietary and Confidential

Page 57: ZXUR 9000 GSM (V6.50.00) Product Description

FiguresFigure 1-1 The Context of BSC................................................................................. 1-1

Figure 1-2 ZXUR 9000 GSM Cabinet........................................................................ 1-2

Figure 3-1 Logical Structure...................................................................................... 3-1

Figure 3-2 Cabinet Structure..................................................................................... 3-4

Figure 3-3 ETCA Subrack - Front View ..................................................................... 3-5

Figure 3-4 ETCA Subrack - Rear View...................................................................... 3-6

Figure 3-5 Software Architecture............................................................................. 3-10

Figure 4-1 Star Networking ....................................................................................... 4-1

Figure 4-2 Chain Networking .................................................................................... 4-2

Figure 4-3 Ring Networking ...................................................................................... 4-2

Figure 4-4 Star-Chain Hybrid Networking.................................................................. 4-3

Figure 4-5 Networking via the Gb Interface ............................................................... 4-4

Figure 4-6 Networking via the A Interface ................................................................. 4-4

Figure 5-1 Typical Configuration for Single Subrack.................................................. 5-3

Figure 5-2 Typical Configuration for Double Subracks............................................... 5-4

Figure 5-3 Typical Configuration for Triple Subracks ................................................. 5-5

Figure 6-1 CS User Plane Data Flow ........................................................................ 6-1

Figure 6-2 PS User Plane Data Flow ........................................................................ 6-2

Figure 6-3 Signaling Flow at the Abis Interface ......................................................... 6-3

Figure 6-4 Signaling Flow at the A Interface.............................................................. 6-3

Figure 6-5 Flow of the BTS Operation and Maintenance Data................................... 6-4

Figure 7-1 Ventilation Subrack Air Flow .................................................................... 7-3

Figure 7-2 Air Flow in the Whole Cabinet .................................................................. 7-4

I

Page 58: ZXUR 9000 GSM (V6.50.00) Product Description

Figures

This page intentionally left blank.

Page 59: ZXUR 9000 GSM (V6.50.00) Product Description

TablesTable 1-1 The External System and Interfaces .......................................................... 1-1

Table 2-1 Power Specifications ............................................................................... 2-11

Table 2-2 Maximum Supported Interface Number of One Slot................................. 2-13

Table 2-3 Capacity Specifications ........................................................................... 2-14

Table 2-4 Reliability Specifications .......................................................................... 2-14

Table 3-1 Five Logical Units ...................................................................................... 3-2

Table 3-2 Front Board Functions ............................................................................... 3-6

Table 3-3 Board Interfaces ........................................................................................ 3-7

Table 3-4 Rear Boards .............................................................................................. 3-7

Table 5-1 Board Configuration List ............................................................................ 5-2

Table 5-2 Rear Board Configuration List ................................................................... 5-2

Table 5-3 OMM Client Configuration ......................................................................... 5-6

Table 7-1 Board Backup Mode Details ...................................................................... 7-2

III

Page 60: ZXUR 9000 GSM (V6.50.00) Product Description

Tables

This page intentionally left blank.

Page 61: ZXUR 9000 GSM (V6.50.00) Product Description

Glossary3GPP- 3rd Generation Partnership Project

AMR- Adaptive Multiple Rate

APS- Automatic Protection Switching

ATCA- Advanced Telecommunications Computing Architecture

Abis- Abis Interface between BSC and BTS

BSC- Base Station Controller

BSS- Base Station Subsystem

BTS- Base Transceiver Station

CN- Core Network

CS- Circuit Switched

EDGE- Enhanced Data rates for GSM Evolution

EFR- Enhanced Full Rate

EMC- Electromagnetic Compatibility

FE- Fast Ethernet

FR- Full Rate

GE- Gigabit Ethernet

GERAN- GSM/EDGE Radio Access Network

V

Page 62: ZXUR 9000 GSM (V6.50.00) Product Description

ZXUR 9000 GSM Product Description

GSM- Global System for Mobile Communication

HR- Half Rate

IMSI- International Mobile Subscriber Identity

IP- Internet Protocol

MGW- Media GateWay

MS- Mobile Station

MSC- Mobile Switching Center

PS- Packet Switched

QoS- Quality of Service

SGSN- Service GPRS Supporting Node

TBF- Temporary Block Flow

TDM- Time Division Multiplexing

TFO- Tandem Free Operation

VI