zero-odp, low gwp, non-flammable working fluid for organic ... · zero-odp, low gwp, non-flammable...

30
Zero-ODP, Low GWP, Non-Flammable Working Fluid for Organic Rankine Cycles: HFO-1336mzz-Z Kostas Kontomaris, Ph.D. DuPont Fluorochemicals Kobe, Japan November 21 st , 2014 Reduce: Primary Energy Use Environmental Impact The International Symposium on New Refrigerants and Environmental Technology

Upload: dinhnhu

Post on 05-Jul-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

Zero-ODP, Low GWP,

Non-Flammable Working Fluid for

Organic Rankine Cycles:

HFO-1336mzz-Z

Kostas Kontomaris, Ph.D.

DuPont Fluorochemicals

Kobe, Japan

November 21st, 2014

Reduce:

Primary Energy Use

Environmental Impact

The International Symposium on

New Refrigerants and

Environmental Technology

Kontomaris-2014 Kobe, Japan

APPLICATION EXAMPLES

CAPw [kw]

Thigh [oC]

1-10 10-100 100-1,000

200-250 Mobile ICE (HDV; Truck; Ship; Rail)

CHP (ICE; Biomass) Industrial

Industrial

150-200 Stationary ICE CHP

CHP (ICE; Biomass) Geothermal

Geothermal Gas Turbines

100-150 Stationary ICE CHP (ICE; Biomass) Geothermal

Geothermal

Kontomaris-2014 Kobe, Japan

APPLICATION EXAMPLES

CAPw [kw]

Thigh [oC]

1-10 10-100 100-1,000

200-250 Mobile ICE (HDV; Truck; Ship; Rail)

CHP (ICE; Biomass) Industrial

Industrial

150-200 Stationary ICE CHP

CHP (ICE; Biomass) Geothermal

Geothermal Gas Turbines

100-150 Stationary ICE CHP (ICE; Biomass) Geothermal

Geothermal

Kontomaris-2014 Kobe, Japan

APPLICATION EXAMPLES

CAPw [kw]

Thigh [oC]

1-10 10-100 100-1,000

200-250 Mobile ICE (HDV; Truck; Ship; Rail)

CHP (ICE; Biomass) Industrial

Industrial

150-200 Stationary ICE CHP

CHP (ICE; Biomass) Geothermal

Geothermal Gas Turbines

100-150 Stationary ICE CHP (ICE; Biomass) Geothermal

Geothermal

Kontomaris-2014 Kobe, Japan

APPLICATION EXAMPLES

CAPw [kw]

Thigh [oC]

1-10 10-100 100-1,000

200-250 Mobile ICE (HDV; Truck; Ship; Rail)

CHP (ICE; Biomass) Industrial

Industrial

150-200 Stationary ICE CHP

CHP (ICE; Biomass) Geothermal

Geothermal Gas Turbines

100-150 Stationary ICE CHP (ICE; Biomass) Geothermal

Geothermal

Kontomaris-2014 Kobe, Japan

APPLICATION EXAMPLES

CAPw [kw]

Thigh [oC]

1-10 10-100 100-1,000

200-250 Mobile ICE (HDV; Truck; Ship; Rail)

CHP (ICE; Biomass) Industrial

Industrial

150-200 Stationary ICE CHP

CHP (ICE; Biomass) Geothermal

Geothermal Gas Turbines

100-150 Stationary ICE CHP (ICE; Biomass) Geothermal

Geothermal

Diverse Markets: Segments, Capacities, Temps and Expander Technologies

Comprehensive Portfolio of Fluids Needed

Kontomaris-2014 Kobe, Japan

APPLICATION EXAMPLES

CAPw [kw]

Thigh [oC]

1-10 10-100 100-1,000

200-250 Mobile ICE (HDV; Truck; Ship; Rail)

CHP (ICE; Biomass) Industrial

Industrial

150-200 Stationary ICE CHP

CHP (ICE; Biomass) Geothermal

Geothermal Gas Turbines

100-150 Stationary ICE CHP (ICE; Biomass) Geothermal

Geothermal

Focus Today:

DR-2 for High Temp Apps?

Kontomaris-2014 Kobe, Japan

Developmental Fluid: DR-2

DR-2 Chemical Formula HFO-

1336mzz(Z)

H H

F

F FF

F

F

CF3CH=CHCF3(Z)

Kontomaris-2014 Kobe, Japan

Developmental Fluid: DR-2

DR-2 Chemical Formula HFO-

1336mzz(Z)

AEL [ppm] 500

Flammabilty Non-Flam

ODP None

GWP100 2

Tcr [oC] 171.3

Pcr [MPa] 2.90

Tb [oC] 33.4

H H

F

F FF

F

F

CF3CH=CHCF3(Z)

Kontomaris-2014 Kobe, Japan

Developmental Fluid: DR-2

DR-2 Chemical Formula HFO-

1336mzz(Z)

AEL [ppm] 500

Flammabilty Non-Flam

ODP None

GWP100 2

Tcr [oC] 171.3

Pcr [MPa] 2.90

Tb [oC] 33.4

H H

F

F FF

F

F

CF3CH=CHCF3(Z)

Very Low GWP

And

Non-Flammable

Kontomaris-2014 Kobe, Japan

Developmental Fluid: DR-2

DR-2 Chemical Formula HFO-

1336mzz(Z)

H H

F

F FF

F

F

CF3CH=CHCF3(Z)

No Chlorine: -Zero ODP

-Dramatically Increased Chemical Stability(*) at High Temps

(*) See Paper 2550 in Proceedings of 2014 Purdue Conference

Kontomaris-2014 Kobe, Japan

DR-2: Pressure-Enthalpy Diagram

200 250 300 350 400 450 500 550 600 650

0.1

1

10200 250 300 350 400 450 500 550 600 650

0.1

1

10275

o C

DR-2

250

225

50

25

Pre

ss

ure

(M

Pa

)

Enthalpy (kJ/kg)

0

100

75

125

200

150

175

Kontomaris-2014 Kobe, Japan

DR-2: Pressure-Enthalpy Diagram

200 250 300 350 400 450 500 550 600 650

0.1

1

10200 250 300 350 400 450 500 550 600 650

0.1

1

10275

o C

DR-2

250

225

50

25

Pre

ss

ure

(M

Pa

)

Enthalpy (kJ/kg)

0

100

75

125

200

150

175

Slope of

Isentropic

Lines

Subcritical Cycles:

No superheat required

to ensure dry expansion

Kontomaris-2014 Kobe, Japan

Heat Source Temp>Tcr

200 250 300 350 400 450 500 550 600 650

0.1

1

10200 250 300 350 400 450 500 550 600 650

0.1

1

10275

o C

DR-2

250

225

50

25

Pre

ss

ure

(M

Pa

)

Enthalpy (kJ/kg)

0

100

75

125

200

150

175

Expander

Inlet:

Thigh=225 C

Kontomaris-2014 Kobe, Japan

Representative Cycle Conditions

200 250 300 350 400 450 500 550 600 650

0.1

1

10200 250 300 350 400 450 500 550 600 650

0.1

1

10275

o C

DR-2

250

225

50

25

Pre

ss

ure

(M

Pa

)

Enthalpy (kJ/kg)

0

100

75

125

200

150

175

Expander

Inlet:

Thigh=225 C

Condenser:

Tcond=75 C

Subcooling:

DTsubc=5 K

Kontomaris-2014 Kobe, Japan

200 250 300 350 400 450 500 550 600 650

0.1

1

10200 250 300 350 400 450 500 550 600 650

0.1

1

10275

o C

DR-2

250

225

50

25

Pre

ss

ure

(M

Pa

)

Enthalpy (kJ/kg)

0

100

75

125

200

150

175

Expander

Inlet:

Thigh=225 C

hexp=0.75

hpump=0.50

Condenser:

Tcond=75 C

Subcooling:

DTsubc=5 K

Representative Cycle Conditions

Kontomaris-2014 Kobe, Japan

Optimization of High-Side Pressure

200 250 300 350 400 450 500 550 600 650

0.1

1

10200 250 300 350 400 450 500 550 600 650

0.1

1

10275

o C

DR-2

250

225

50

25

Pre

ss

ure

(M

Pa

)

Enthalpy (kJ/kg)

0

100

75

125

200

150

175

Expander

Inlet:

Thigh=225 C

hexp=0.75

hpump=0.50

Condenser:

Tcond=75 C

Subcooling:

DTsubc=5 K

Phigh< Pcr

Kontomaris-2014 Kobe, Japan

200 250 300 350 400 450 500 550 600 650

0.1

1

10200 250 300 350 400 450 500 550 600 650

0.1

1

10275

o C

DR-2

250

225

50

25

Pre

ss

ure

(M

Pa

)

Enthalpy (kJ/kg)

0

100

75

125

200

150

175

Expander

Inlet:

Thigh=225 C

hexp=0.75

hpump=0.50

Condenser:

Tcond=75 C

Subcooling:

DTsubc=5 K

High-Side Pressure: Upper Limit

For Phigh>~10 MPa:

Wet Expansion

Phigh> Pcr

Kontomaris-2014 Kobe, Japan

15

20

25

30

35

0 1 2 3 4 5 6 7 8 9 10

Po

we

r [k

J/kg

]

Phigh [MPa]

Expander Power

Net Power

Net Cycle Power

Net Power Exhibits Maximum

Kontomaris-2014 Kobe, Japan

Maximization of Thermal Efficiency

5

6

7

8

9

10

11

0 1 2 3 4 5 6 7 8 9 10

Ne

t C

ycle

Th

erm

al E

ffic

ien

cy

Phigh [MPa]

Net Cycle Efficiency Exhibits Maximum

Kontomaris-2014 Kobe, Japan

5

6

7

8

9

10

11

0 1 2 3 4 5 6 7 8 9 10

Ne

t C

ycle

Th

erm

al E

ffic

ien

cy

Phigh [MPa]

Maximization of Thermal Efficiency

Pcr

Maximum Efficiency at Phigh>Pcr 10-15% Higher Than Subcritical Cycle Efficiency

Kontomaris-2014 Kobe, Japan

5

6

7

8

9

10

11

0 1 2 3 4 5 6 7 8 9 10

Ne

t C

ycle

Th

erm

al E

ffic

ien

cy

Phigh [MPa]

Maximization of Thermal Efficiency

Pcr

Phigh [MPa] 4 5

PR 10.7 13.3

Kontomaris-2014 Kobe, Japan

5

6

7

8

9

10

11

0 1 2 3 4 5 6 7 8 9 10

Ne

t C

ycle

Th

erm

al E

ffic

ien

cy

Phigh [MPa]

Maximization of Thermal Efficiency

Pcr

Additional Considerations: (+) Heat Extraction from Source of Declining Temp

(-) Equipment Component Costs?

Transcritical

DR-2 ORC

with Phigh=4-5 MPa

Optimum?

Kontomaris-2014 Kobe, Japan

Recuperator Increases DR-2 Energy Efficiency

EXEMPLARY SUBCRITICAL CYCLE

Subcooling K 0.00

EFFCexpn 0.85

EFFICpump 0.65

Superheat K 50.00

Tcond C 25.00

Tevap C 160.00

Texpn_inlet C 210.00

Recuperator No Yes %

Cycle Thermal Effic % 17.32 25.10 44.9

Heat to Evaporator kJ/kg 327.5 225.97 -31.0

Kontomaris-2014 Kobe, Japan

HFC-245fa DR-2 Chemical Formula CF3CH2CHF2 HFO-1336mzz(Z)

OEL/AEL [ppm] 300 500

Flammabilty Non-Flam Non-Flam

ASHRAE Std 34

Safety Class

B1 A1

(expected)

ODP None None

GWP100 858 2

ALT [yrs] 7.7 0.060274 (22 days)

Tcr [oC] 154 171.3

Pcr [MPa] 3.65 2.90

Tb [oC] 15.1 33.4

DR-2 vs. HFC-245fa

Reference Fluid: HFC-245fa

Kontomaris-2014 Kobe, Japan

HFC-245fa DR-2 Chemical Formula CF3CH2CHF2 HFO-1336mzz(Z)

OEL/AEL [ppm] 300 500

Flammabilty Non-Flam Non-Flam

ASHRAE Std 34

Safety Class

B1 A1

(expected)

ODP None None

GWP100 858 2

ALT [yrs] 7.7 0.060274 (22 days)

Tcr [oC] 154 171.3

Pcr [MPa] 3.65 2.90

Tb [oC] 15.1 33.4

Tfreez [oC] -107 -90.5

DR-2 vs. HFC-245fa

Reference Fluid: HFC-245fa

Kontomaris-2014 Kobe, Japan

5

6

7

8

9

10

11

0 1 2 3 4 5 6 7 8 9 10

Ne

t C

ycle

Th

erm

al E

ffic

ien

cy

Phigh [MPa]

DR-2

HFC-245fa

DR-2 vs. HFC-245fa: Cycle Efficiency

Basic ORC (No Recuperator)

Thigh C 225

Tcond C 75

DTsubc K 5

hexp 0.75

hpump 0.50

Kontomaris-2014 Kobe, Japan

5

6

7

8

9

10

11

0 1 2 3 4 5 6 7 8 9 10

Ne

t C

ycle

Th

erm

al E

ffic

ien

cy

Phigh [MPa]

DR-2

HFC-245fa

+16.5%

DR-2 vs. HFC-245fa: Cycle Efficiency

DR-2: 99.8% Lower GWP and 16.5% Higher Efficiency!

Kontomaris-2014 Kobe, Japan

Summary Efforts to increase energy efficiency and growing awareness of the

environmental impacts from the use of fossil fuels will encourage

wider adoption of ORCs for power generation from low temp heat

DR-2 exhibits remarkable chemical stability at high temperatures

despite its unsaturated chemical nature; high stability to stereo-

isomerization despite thermodynamic driving force for

isomerization to trans

DR-2 offers a unique combination of properties attractive for ORC

applications:

• Attractive Safety, Health and Environmental Properties

• High Thermal and Stereo-Isomerization Stability

• Favorable Thermodynamics

A transcritical DR-2 ORC may be suitable for high temperature heat

sources; a recuperator increases efficiency of DR-2 ORCs

Thank you!

Email:

[email protected]

Disclaimer: The information set forth herein is furnished free of charge and based on technical data that DuPont believes to be reliable. It is intended for use by persons having technical skill, at their own risk. Since conditions of use are outside our control, we make no warranties, expressed or implied and assume no liability in connection with any use of this

information. Nothing herein is to be taken as a license to operate under, or a recommendation to infringe any patents or patent applications.