zaluzec 1 instrumentation.ppt

Upload: simona-tocanie

Post on 01-Jun-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    1/97

    Introduction toIntroduction to

    Transmission/Scanning TransmissionTransmission/Scanning TransmissionElectron Microscopy and MicroanalysisElectron Microscopy and Microanalysis

    Nestor J. ZaluzecNestor J. Zaluzec

    zaluzec@[email protected]@[email protected]

    http:http://tpm//tpm..amcamc..anlanl..govgov

    Electron Microscopy CenterMaterials Science Division, Argonne National Laboratory

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    2/97

    Electron Microscopy CenterMaterials Science, Division, Argonne National Laboratory

    AcknowledgementsAcknowledgements

    Travel Support AMMSTravel Support AMMSR&D Support U.S.R&D Support U.S. DoEDoE & ANL& ANL

    People contributing toPeople contributing tothisthispresentationpresentationinclude:include:

    ANL EMC Group, Mansfield, Eades, Calderon, Jiao,Newbury, Okeefe, numerous text books, and

    apologies to all those from whom I cant remembercollecting images/figures over the years.

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    3/97

    A Few References:

    Principles and Techniques of Electron Microscopy: Biological Applications

    M.A. Hayat CRC Press 1989

    Electron Microscopy of Thin CrystalsHirsch, Howie, Nicholson, Pashley, Whelan Kreiger Press 1977

    Electron Diffraction Techniques Vols 1 & 2, IUCr Monographs

    Cowley ed., Oxford Press 1992

    Defect Analysis in Electron MicroscopyLoretto & Smallman , Halsted Press 1975

    Transmission Electron MicroscopyReimer Springer-Verlag 1989

    Transmission Electron Microscopy A textbook for Materials ScienceWilliams & Carter Plenum Press 1996

    Introduction to Analytical Electron MicroscopyHren, Goldstein, Joy Plenum Press 1979

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    4/97

    18971897 JJ Thompson - Discovery of the ElectronJJ Thompson - Discovery of the Electron19261926 H. Bush Magnetic/Electric Fields as LensesH. Bush Magnetic/Electric Fields as Lenses19291929 E.E. RuskaRuska PhD Thesis Magnetic lensesPhD Thesis Magnetic lenses19311931 Knoll andKnoll and RuskaRuska 1st EM built1st EM built19321932 DavissonDavisson andand CalbrickCalbrick - Electrostatic Lenses- Electrostatic Lenses

    19341934 Driest & Muller - EMDriest & Muller - EM surpasessurpases LMLM19391939 vonvon BorriesBorries && RuskaRuska - 1st- 1st CommericalCommerical EMEM

    ~ 10 nm resolution~ 10 nm resolution19451945 ~ 1.0 nm resolution (Multiple Organizations)~ 1.0 nm resolution (Multiple Organizations)19651965 ~ 0.2 nm resolution (Multiple Organizations)~ 0.2 nm resolution (Multiple Organizations)19681968 A. Crewe - U.of Chicago - Scanning Transmission Electron MicroscopeA. Crewe - U.of Chicago - Scanning Transmission Electron Microscope

    ~ 0.3 nm resolution probe - practical Field Emission Gun~ 0.3 nm resolution probe - practical Field Emission Gun19861986 Ruska etalRuska etal - Nobel Prize- Nobel Prize19991999< 0.1 nm resolution achieved (OM< 0.1 nm resolution achieved (OM ))2009 0.05 nm (TEAM)2009 0.05 nm (TEAM)

    A Historical Time Line inA Historical Time Line in

    Electron Optical InstrumentationElectron Optical Instrumentation

    19381938

    19991999

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    5/97

    Introductory Remarks

    Instrumentation

    Electron SourcesElectron OpticsElectron Detectors

    Electron Beam Interations ->Operating Modes

    Electron ScatteringDiffractionImagingOther Modes

    STEMHREM? Others ?

    X-ray Energy Dispersive SpectroscopyElectron Loss Spectroscopy

    Tutorial OutlineTutorial Outline

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    6/97

    Transmission Electron MicroscopyTransmission Electron Microscopy

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    7/97

    Experimental methodologies which employs (electron-optical )Experimental methodologies which employs (electron-optical )instrumentation to spatially characterize matter on scales which rangeinstrumentation to spatially characterize matter on scales which rangefrom tenths of a millimeter to tenths of a nanometer. The principlefrom tenths of a millimeter to tenths of a nanometer. The principlemodalities employed are:modalities employed are:

    ImagingImagingScanning Electron MicroscopyScanning Electron Microscopy

    Transmission Electron MicroscopyTransmission Electron Microscopy

    Scanning Transmission Electron MicroscopyScanning Transmission Electron Microscopy

    FocussedFocussed Ion BeamIon Beam

    DiffractionDiffractionElectron BackscatteredElectron Backscattered DifrractionDifrraction

    Selected Area Electron DiffractionSelected Area Electron Diffraction

    Convergent Beam Electron DiffractionConvergent Beam Electron DiffractionReflection High Energy Electron DiffractionReflection High Energy Electron Diffraction

    SpectroscopySpectroscopyX-ray Energy DispersiveX-ray Energy Dispersive

    Electron Energy LossElectron Energy Loss

    Auger ElectronAuger Electron

    Microscopy & MicroanalysisMicroscopy & Microanalysis

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    8/97

    SEMSEMScanning Electron MicroscopyScanning Electron Microscopy

    TEM - STEM - HREMTEM - STEM - HREMTransmission - Scanning Transmission -Transmission - Scanning Transmission -

    High Resolution Electron MicroscopyHigh Resolution Electron Microscopy

    AEMAEMAnalytical ElectronAnalytical Electron

    MicroscopyMicroscopy

    Morphology, Crystallography, Elemental , Chemical , Electronic StructureMorphology, Crystallography, Elemental , Chemical , Electronic Structure

    Role ofRole of TraditonalTraditonal Electron MicroscopyElectron Microscopy

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    9/97

    Elastic ScatteringElastic Scattering SpectroscopiesSpectroscopies

    Electron Microscopy (EM),Electron Microscopy (EM),

    Scanning Electron Microscopy (SEM),Scanning Electron Microscopy (SEM),

    SEM-based Electron Channeling Patterns (ECP),SEM-based Electron Channeling Patterns (ECP),

    Transmission Electron Microscopy (TEM),Transmission Electron Microscopy (TEM),

    Transmission Electron Diffraction (TED),Transmission Electron Diffraction (TED),

    Convergent Beam Electron Diffraction (CBED)Convergent Beam Electron Diffraction (CBED)

    Selected Area Electron Diffraction (SAED)Selected Area Electron Diffraction (SAED)

    Scanning Transmission Electron Microscopy (STEM),Scanning Transmission Electron Microscopy (STEM),

    Reflection High Energy Electron Diffraction (RHEED)Reflection High Energy Electron Diffraction (RHEED)

    Low Energy Electron DiffractionLow Energy Electron Diffraction(LEED)(LEED)

    X-ray Diffraction (XRD),X-ray Diffraction (XRD),

    Scanning Transmission X-ray Microscopy (STXM)Scanning Transmission X-ray Microscopy (STXM)

    Neutron Diffraction (ND).Neutron Diffraction (ND).

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    10/97

    Secondary Electron Imaging (SEI)Secondary Electron Imaging (SEI)

    Backscattered Electron Imaging (BEI/BSI)Backscattered Electron Imaging (BEI/BSI)

    Auger Electron Spectroscopy (AES),Auger Electron Spectroscopy (AES),

    Electron Energy Loss Spectroscopy (EELS),Electron Energy Loss Spectroscopy (EELS),

    EXtendedEXtendedEnergy Loss Fine Structure (EXELFS),Energy Loss Fine Structure (EXELFS),

    Energy Loss Near Edge Fine Structure (ELNES),Energy Loss Near Edge Fine Structure (ELNES),

    X-ray Emission Spectroscopy (XES),X-ray Emission Spectroscopy (XES),

    X-ray Energy Dispersive Spectroscopy (XEDS),X-ray Energy Dispersive Spectroscopy (XEDS),

    Wavelength DispersiveWavelength DispersiveSpectroscopy (WDS),Spectroscopy (WDS),

    CathodoluminescenceCathodoluminescence(CL(CL))

    X-ray Photoelectron Spectroscopy (XPS),X-ray Photoelectron Spectroscopy (XPS),X-ray Photoelectron Microscopy (XPM),X-ray Photoelectron Microscopy (XPM),

    Ultraviolet Photoelectron Spectroscopy (UPS),Ultraviolet Photoelectron Spectroscopy (UPS),

    X-ray Absorption Spectroscopy (XAS),X-ray Absorption Spectroscopy (XAS),

    EXtendedEXtendedX-ray Absorption Fine Structure (EXAFS),X-ray Absorption Fine Structure (EXAFS),

    X-ray Absorption Near Edge Fine Structure (XANES)X-ray Absorption Near Edge Fine Structure (XANES)

    X-Ray Fluorescence (XRF).X-Ray Fluorescence (XRF).

    InelasticInelasticScatteringScattering SpectroscopiesSpectroscopies

    ee--!!ee--

    ee--!!""

    ""!!ee--

    ""!!""

    TypeType

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    11/97

    Source Brightness

    (particles/cm2/sR/eV)

    Elastic Mean

    Free Path

    (nm)

    Absorption

    Pathlength

    (nm)

    Attainable

    Probe Size

    (nm)

    Neutrons 1014 107 108 106

    X-rays 1026 103 105 ~ 30

    Electrons 1029 101 102 < 0.1

    Comparison Source CharacteristicsComparison Source Characteristics

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    12/97

    Reflection / Scanning MicroscopyDeals Mainly with Near Surface Region

    Transmission MicroscopyDeals Mainly with Internal Structure

    Specimen

    Modern EM's can depending upon the specimen operate in both modes

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    13/97

    What are the limits of Resolution?What are the limits of Resolution?

    Abbe (Diffraction) Limit:

    Defines the minimum resolvable distance between theimage of two point objects using a perfect lens.

    In any magnifying system a point object (i.e. zero dimension)cannot be imaged as a point but is imaged as a distribution ofintensity having a finite width.

    "= wavelength of the imaging radiation#= index of refraction of the lens!= illumination semi-angleNA = numerical aperture = #sin(!)

    "=0.6#

    $sin(%)

    Resolution of an imaging system

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    14/97

    ResolutionResolution vsvs. Magnification. Magnification

    Magnification in these images is constant ! Do not confuse the two concepts.

    "=0.6#

    $sin(%)

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    15/97

    eV=m

    0v 2

    2

    p =mv = 2m0eV

    "() =h

    p=

    h

    2m0eV #

    12.27

    V(volts)

    "=h

    p=

    h

    2m0eV 1+eV

    2m0c2

    #

    $%

    &

    '(

    ) 12.27

    V(1+ 0.978x10*6V)

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    16/97

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    17/97

    LightLight vsvsElectronsElectrons

    Light Microscope Electron Microscope

    ~

    0.5 m

    =

    h

    2moeV

    o

    = 0.068 30 kV)

    =

    1.5 glass)

    =

    1.0 Vacuum)

    $~ 70

    o

    $< 1

    o

    %&0 21

    m = 2100

    %&4 1

    "=0.6#

    $sin(%)

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    18/97

    From Ants to AtomsFrom Ants to Atoms

    Microscopy is needed nearly everywhereMicroscopy is needed nearly everywhere

    Human Eye OpticalMicroscopy

    X-ray

    Microscopy

    Electron

    Microscopy

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    19/97

    Depth of FieldDepth of Field

    The distance parallel to the optical axis of the microscope that a feature onThe distance parallel to the optical axis of the microscope that a feature onthe specimen can be displaced without loss of resolutionthe specimen can be displaced without loss of resolution

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    20/97

    Depth of FieldDepth of Field

    Varies with MagnificationVaries with Magnification

    !

    $

    D

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    21/97

    The distance parallel to the optical axis of the microscope that aThe distance parallel to the optical axis of the microscope that a

    feature on the specimen can be displaced without loss offeature on the specimen can be displaced without loss of

    resolutionresolution

    Depth of Focus/FieldDepth of Focus/Field

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    22/97

    Depth of FocusDepth of Focus

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    23/97

    Depth of Focus (Specimen Plane)Depth of Focus (Specimen Plane)

    Pre Specimen Semi-AnglesPre Specimen Semi-Angles

    !

    $

    D

    D=$

    !

    In an EM# is controlled by both Apertures & the Lens Magnification

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    24/97

    Depth of Field (Image Plane)Depth of Field (Image Plane)

    Post Specimen Semi-AnglesPost Specimen Semi-Angles

    Dim = = M2

    im

    %$ob

    !

    $im Dim

    $ob

    !

    %

    Lens

    5 m50kX10 mR2 nm

    5 km500kX10 mR0.2 nm

    DimM ! $ob

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    25/97

    Illumination SourceIllumination Source

    Illumination LensIllumination Lens

    SpecimenSpecimen

    Magnifying LensMagnifying Lens

    Detector/ViewerDetector/Viewer

    Basic Components of All MicroscopesBasic Components of All Microscopes

    That Use LensesThat Use Lenses

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    26/97

    Transmission Electron MicroscopeTransmission Electron Microscope

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    27/97

    Transmission Electron Microscope

    Basic Components of anBasic Components of anElectron MicroscopeElectron Microscope

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    28/97

    Illumination SourceIllumination Source

    Illumination LensIllumination Lens

    SpecimenSpecimen

    Magnifying LensMagnifying Lens

    Detector/ViewerDetector/Viewer

    Basic Components of All MicroscopesBasic Components of All Microscopes

    That Use LensesThat Use Lenses

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    29/97

    Sources for Electron MicroscopySources for Electron Microscopy

    ThermionicThermionic,, Thermally Assisted,Thermally Assisted,

    andandField EmissionField Emission

    Conductionelectrons mustovercome the workfunction &if theyare to be emittedfrom the cathodeinto the vacuum.

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    30/97

    jc =ATC2exp("#/ kTC)

    Thermionic sources

    Richardson law gives the current density :

    k is Boltzmanns constant, TCis the cathode temperature and Aand &are a constants depending on material. Note that jc'T.

    W has TCof 2500-3000 K (melting point 3650 K)LaB6has a TCof 1400-2000 K

    Heating usually produced by running acurrent through the material!

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    31/97

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    32/97

    Field emission and Schottky sources

    The width b of the potential barrier at the metal-vacuum boundarydecreases with increasing electric field E.

    For |E|>107V/cm the width b < 10 nm and electrons can penetratethe potential barrier by the wave mechanical tunneling effect.

    The current density of field emission can be estimated from theFowler-Nordheim formula:

    j =k1 E

    "exp(

    k2"3 / 2

    E

    #

    $%%

    &

    '((

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    33/97

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    34/97

    Comparison of Electron Sources

    Type Br ightness

    /Vo

    A / c m

    2

    /sr/eV

    Source

    S i z e

    m )

    Energy

    Spread

    e V )

    Temporal

    Coherence

    m )

    Shot

    No i se

    Current

    S tab i l i ty

    Spat ia l

    Coherence

    Vacuum

    Torr)

    T he rm on ic H ai r pi n

    Pointed

    1

    5

    5 0

    1 0

    2 - 3 0 . 4

    Low

    Good

    F a i r

    Low

    Moderate

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    35/97

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    36/97

    J

    Probe Current Related ParametersProbe Current Related Parameters

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    37/97

    Why do we need a lens?Why do we need a lens?

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    38/97

    Why do we need a lens?Why do we need a lens?

    Because all electron sources generally produce a diverging beam ofelectrons. This beam must be "focussed" onto the specimen, to increasethe intensity and thus to making the probe "smaller".

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    39/97

    Illumination SourceIllumination Source

    Illumination LensIllumination Lens

    SpecimenSpecimen

    Magnifying LensMagnifying Lens

    Detector/ViewerDetector/Viewer

    Basic Components of All MicroscopesBasic Components of All Microscopes

    That Use LensesThat Use Lenses

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    40/97

    What is a Lens?What is a Lens?

    It is a device which focuses radiation.It is a device which focuses radiation.

    f = focal length of the lensf = focal length of the lens

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    41/97

    How Does a Converging Lens Work as a Magnifier?How Does a Converging Lens Work as a Magnifier?

    1

    f=

    1

    a+

    1

    b

    M=h

    h'= "

    b

    a

    In a TEM the function of lens are to eitherIn a TEM the function of lens are to either demagnifydemagnify the probe from the sourcethe probe from the source

    point to the sample. This means that b < a resulting in a smaller electron probe.point to the sample. This means that b < a resulting in a smaller electron probe.

    ItIts 2nd role as a post specimen lens iss 2nd role as a post specimen lens is magnify an image hence b > amagnify an image hence b > a

    ThinLensFormulae

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    42/97

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    43/97

    Thin LensFormulae

    1

    f=

    1

    do

    +1

    di

    M =!di

    do

    LensesLensesandand

    MagnificationMagnification

    Focus achievedusing Lorentz Force

    Focus achievedusing Refraction

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    44/97

    Electron Lenses

    Electrons are charged particles and are influenced by Electromagnetic Fields.Lenses in an TEM/STEM utilize either or combinations of Magnetic andElectrostatic Fields to direct the beams as desired.

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    45/97

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    46/97

    Types of Electron LensesTypes of Electron Lenses

    Condenser Lenses ~ Type A, Objective Lenses ~ Type A B or C, Stigmators Type D

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    47/97

    How Does a Lens Work as a Magnifier?How Does a Lens Work as a Magnifier?

    1

    f=

    1

    a+

    1

    b

    M=h

    h'= "

    b

    a

    In a TEM the function of lens are to eitherIn a TEM the function of lens are to either demagnifydemagnify the probethe probe

    from the source point to the sample. This means that b < afrom the source point to the sample. This means that b < a

    resulting in a smaller electron probe. Or to Magnify an Image b > aresulting in a smaller electron probe. Or to Magnify an Image b > a

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    48/97

    Magnification is achieved by

    Stacking Lenses

    M= M1* M2* M3

    How Accurate is M ?

    What are the limiting Factors?

    1

    f=

    1

    a+

    1

    b

    M=h

    h'= "

    b

    a

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    49/97

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    50/97

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    51/97

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    52/97

    Alignment/Deflection Coils also use Lorentz Fieldsbut they are not axially symmetric

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    53/97

    Tilting the Beam Translating the Beam

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    54/97

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    55/97

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    56/97

    Probe Astigmatism

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    57/97

    Image Astigmatism

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    58/97

    Note the locationsof the various

    Apertures.

    Optimum aperturesizes are neededfor variousimaging functions.

    Most TEM/STEMhave 7-8 Lenses

    1 Gun Lens2 Condensers1 Objective1-2 Intermediate1-2 Projectors

    Most instrumentshave onlyElectromagneticRound Lenses

    Gun Lens

    Helps form probe

    Condenser Lens

    Mainly controls:Spot Sizehence total beamcurrent

    Objective Lens

    Mainly controlsFocus, 1st Magnification

    Diffraction/Intermediate

    Lens

    Controls Mode

    Projector Lens

    Magnification

    Roles of the LensesRoles of the Lenses

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    59/97

    Transmission Electron MicroscopyTransmission Electron Microscopy

    ConventionalConventional

    ImagingImaging

    HighHigh

    ResolutionResolution

    ImagingImaging

    DiffractionDiffraction

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    60/97

    Note the locationsof the various

    Apertures.

    Optimum aperturesizes are neededfor variousimaging functions.

    Most TEM/STEMhave 7-8 Lenses

    2 Condensers1 Objective1-2 Intermediate2 Projectors

    Most instrumentshave onlyElectromagneticRound Lenses

    Gun Lens

    Helps form probe

    Condenser Lens

    Mainly controls:Spot Sizehence total beamcurrent

    Roles of the LensesRoles of the Lenses

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    61/97

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    62/97

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    63/97

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    64/97

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    65/97

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    66/97

    With Modern InstrumentsWith Modern InstrumentsSpectroscopy can be done at the Sub-Nanometer ScaleSpectroscopy can be done at the Sub-Nanometer Scale

    Selection of Probe Forming Source is ImportantSelection of Probe Forming Source is Important

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    67/97

    Note the locationsof the various

    Apertures.

    Optimum aperturesizes are neededfor variousimaging functions.

    Most TEM/STEMhave 7-8 Lenses

    2 Condensers1 Objective1-2 Intermediate2 Projectors

    Most instrumentshave onlyElectromagneticRound Lenses

    Objective Lens

    Mainly controlprobe focus

    Diffraction/IntermediateLens

    Controls Mode

    Projector Lens

    Magnification

    Roles of the LensesRoles of the Lenses

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    68/97

    ImagingImaging vsvs Diffraction:Diffraction:Post Specimen Lenses determine the modePost Specimen Lenses determine the mode

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    69/97

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    70/97

    When isthe Imagein Focus?

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    71/97

    Fresnel Fringes - Diffraction (Interference) from an Edge

    I="(r,z)"*(r,z)

    "(r,z) = "i(r,z)#

    "2#(r)+

    8$2me

    h2 [E+V(r)]#(r) = 0

    "1(r,z) =exp(2#ikr)

    r

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    72/97

    White Fresnel Fringe = Under Focus

    Black Fresnel Fringe =Over Focus

    B O W U

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    73/97

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    74/97

    Magnification = CRT Display Size / Area Swept by Beam on Sample

    The scanning process is the mechanism whichThe scanning process is the mechanism whichallows us to use small probes to form images of large areas.allows us to use small probes to form images of large areas.

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    75/97

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    76/97

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    77/97

    Abbe (Diffraction) Limit:

    Defines the minimum resolvable distance between theimage of two point objects using a perfect lens.

    In any magnifying system a point object (i.e. zero dimension)cannot be imaged as a point but is imaged as a distribution ofintensity having a finite width.

    R esolution of an imaging system= =0.61

    sin ( )

    "= wavelength of the imaging radiation#= index of refraction of the lens!= illumination semi-angle

    What Limits Resolution?What Limits Resolution?

    This ASSUMES a Perfect LensEx: 100 kV electrons !~ 100 mR =>(= 0.23

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    78/97

    What limits our ability to perfectly focus?What limits our ability to perfectly focus?

    Lens Aberrations

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    79/97

    Prespecimen Aberrations

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    80/97

    Aberrations and Probe Size Related ParametersAberrations and Probe Size Related Parameters

    Aberration Correction also increases usable probe current

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    81/97

    Aberration Correction also increases usableprobe current

    Can we see aberrations ? Yes if you look for them

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    82/97

    Can we see aberrations ? Yes if you look for them.

    150 !m 70 !m 30 !m

    70 !m Clean 100 !m Dirty 100 !m Dirty

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    83/97

    60 nm

    12 nm

    6 nm

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    84/97

    PostSpecimen

    Aberrations

    i h S i l l i i

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    85/97

    TEM-High Spatial Resolution ImagingTEM-High Spatial Resolution Imaging

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    86/97

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    87/97

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    88/97

    Aberrations and Image ResolutionAberrations and Image Resolution

    B.B. KabiusKabius - ANL- ANL

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    89/97

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    90/97

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    91/97

    Light Microscope

    Electron

    Microscope

    Resolution

    ()

    0.1

    1

    10

    100

    1000

    104

    105

    1800 1840 1880 1920 1960 2000 2040

    Aberration-corrected EM

    d ()

    point res.

    uncorrected

    Cscorrected

    TEAM Project Phase 1 :TEAM Project Phase 1 : Ultra High Resolution ImagingUltra High Resolution Imaging

    Requirements:Requirements:

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    92/97

    )f = -257 nm; R= 1.4 nm )f = -68 nm; R = 4.4 nm )f = -12 nm; R = 0.1 nm

    SiSi

    CoSiCoSi22CoSiCoSi

    22

    SiSi

    2 nm2 nm

    Uncorrected : CUncorrected : Css= 1.2 mm= 1.2 mm

    CoSiCoSi22

    1 nm1 nm

    SiSi

    Corrected :Corrected :

    CCss= 0.05 mm= 0.05 mm

    B. Kabius, S. MantlArgonne, Juelich: ~1997CM200

    focus of least confusion Scherzer defocus Scherzer defocus (AFI)

    Aberration Free ImagingAberration Free ImagingInfluence of Contrast DelocalizationInfluence of Contrast Delocalization

    Delocalization : R = | CDelocalization : R = | C55""55gg55+ C+ C

    33""33gg33 ++ ""CC

    11g |g |

    maxmax

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    93/97

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    94/97

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    95/97

    TEAM 0.5

    Examples of Environmental Artifacts

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    96/97

    Aperiodic - Vibrational

    Periodic - EM Fields User-Acoustic

    User-Mechanical

    p

  • 8/9/2019 Zaluzec 1 Instrumentation.ppt

    97/97

    Sub-ngstrom Microscopy and Microanalysis LaboratorySub-ngstrom Microscopy and Microanalysis Laboratory

    Temp:Temp: ++0.1 F0.1 F

    EMF: < 0.01mGEMF: < 0.01mG

    Acoustics: < 40 dBAcoustics: < 40 dB

    Air Flow: < 1 cm/minAir Flow: < 1 cm/min

    Vibrations: < 0.25 !m PkVibrations: < 0.25 !m Pk

    Best -> Worse

    Environmental Conditions