year 13 mathematics ias 3

8
π f(x) 1 1 2 2 x 3 3 Contents uLake Ltd Innovative Publisher of Mathematics Texts Achievement Standard .................................................. 2 Review of Earlier Trigonometric Work ..................................... 3 Trigonometric Graphs ........ ........................................... 5 Finding a Particular Solution to a Trigonometric Equation .................... 11 General Solutions of Trigonometric Equations ............................. 16 Modelling Practical Situations using Trigonometric Functions ................. 22 Reciprocal Trigonometric Functions ..................................... 26 Compound Trigonometric Formulae ..................................... 31 Double Angle Formulae . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Trigonometric Equations Expressed as Quadratics .......................... 38 Sum and Product Formulae ............................................. 40 Applications of Trigonometry ............................................ 45 Practice Internal Assessment ............................................. 52 Formulae .............................................................. 56 Answers ............................................................... 57

Upload: others

Post on 11-Apr-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Year 13 Mathematics IAS 3

π 2π

f(x)

1

–1

2

–2

x

3

–3

Year 13Mathematics

Contents

uLake Ltdu a e tduLake LtdInnovative Publisher of Mathematics Texts

Robert Lakeland & Carl NugentTrigonometry

• AchievementStandard .................................................. 2

• ReviewofEarlierTrigonometricWork ..................................... 3

• TrigonometricGraphs................................................... 5

• FindingaParticularSolutiontoaTrigonometricEquation .................... 11

• GeneralSolutionsofTrigonometricEquations ............................. 16

• ModellingPracticalSituationsusingTrigonometricFunctions................. 22

• ReciprocalTrigonometricFunctions ..................................... 26

• CompoundTrigonometricFormulae ..................................... 31

• DoubleAngleFormulae ................................................. 36

• TrigonometricEquationsExpressedasQuadratics .......................... 38

• SumandProductFormulae ............................................. 40

• ApplicationsofTrigonometry ............................................ 45

• PracticeInternalAssessment ............................................. 52

• Formulae .............................................................. 56

• Answers............................................................... 57

IAS 3.3

Page 2: Year 13 Mathematics IAS 3

IAS 3.3 – Year 13 Mathematics and Statistics – Published by NuLake Ltd New Zealand © Robert Lakeland & Carl Nugent

2 IAS 3.3 – Trigonometry

Thisachievementstandardinvolvesapplyingtrigonometricmethodsinsolvingproblems.

◆ ThisachievementstandardisderivedfromLevel8ofTheNewZealandCurriculumandisrelatedto theachievementobjectives ❖ manipulatetrigonometricexpressions ❖ formanduseusetrigonometricequations intheMathematicsstrandoftheMathematicsandStatisticsLearningArea.

◆ Applytrigonometricmethodsinsolvingproblemsinvolves: ❖ selectingandusingmethods ❖ demonstratingknowledgeofconceptsandterms ❖ communicatingusingappropriaterepresentations.

◆ Relationalthinkinginvolvesoneormoreof: ❖ selectingandcarryingoutalogicalsequenceofsteps

❖ connectingdifferentconceptsorrepresentations ❖ demonstratingunderstandingofconcepts ❖ formingandusingamodel; andalsorelatingfindingstoacontext,orcommunicatingthinkingusingappropriatemathematical statements.

◆ Extendedabstractthinkinginvolvesoneormoreof: ❖ devisingastrategytoinvestigateorsolveaproblem

❖ identifyingrelevantconceptsincontext ❖ developingachainoflogicalreasoning,orproof ❖ formingageneralisation; andusingcorrectmathematicalstatements,orcommunicatingmathematicalinsight.

◆ Problemsaresituationsthatprovideopportunitiestoapplyknowledgeorunderstandingof mathematicalconceptsandmethods.Situationswillbesetinreal-lifeormathematicalcontexts.

◆ Methodsincludeaselectionfromthoserelatedto: ❖ trigonometricidentities ❖ reciprocaltrigonometricfunctions ❖ propertiesoftrigonometricfunctions ❖ solvingtrigonometricequations ❖ generalsolutions.

Achievement Achievement with Merit Achievement with Excellence• Applytrigonometricmethods

insolvingproblems.• Applytrigonometric

methods,usingrelationalthinking,insolvingproblems.

• Applytrigonometricmethods,usingextendedabstractthinking,insolvingproblems.

NCEA 3 Internal Achievement Standard 3.3 – Trigonometry

Page 3: Year 13 Mathematics IAS 3

IAS 3.3 – Year 13 Mathematics and Statistics – Published by NuLake Ltd New Zealand © Robert Lakeland & Carl Nugent

8 IAS 3.3 – Trigonometry

Thegraphy=cosxstartsat(0,1)sowedrawour

graphstartingat π2,1

⎛⎝⎜

⎞⎠⎟.

Example

Graphf(x)=cos x – π2

⎛⎝⎜

⎞⎠⎟from0to2π.

Wedrawf(x)=cosxfromthetranslated

originatπ2,0

⎛⎝⎜

⎞⎠⎟ .

Note:Thefinalgraphoff(x)=cos x – π2

⎛⎝⎜

⎞⎠⎟isthe

graphy=sinx.

Example

Graphy=sin x –π6

⎛⎝⎜

⎞⎠⎟ +1from0to2π.

Thishastwotranslations,across π6and

up1.

Wedrawy=sinxfromthetranslatedoriginatπ6,1

⎛⎝⎜

⎞⎠⎟ .

ExampleGraphf(x)=3cos(x–π)from0to2π.

Wedrawf(x)=cosxfromthetranslatedoriginat(π,0)thenextenditback.Thistranslatedgraphisthenstretchedthreetimesvertically.Justgotothekeypointsandmovethemthreetimesasfarfromthecentreline.

ExampleGraphy=2sin3xfrom0to2π.

Wedrawy=sinxbutwitha 13horizontalscale.

Wherewenormallywouldhaveamaximumatπ2,1

⎛⎝⎜

⎞⎠⎟wenowhaveamaximumat

π6,2⎛

⎝⎜⎞⎠⎟ .

Wecontinuethisgraphuntil2πcheckingtomakesurewehavethreecompletecycles.Nowwestretcheachpointverticallytwotimes.

π 2π

f(x)1

–1

x

f(x)=cos x – π2

⎛⎝⎜

⎞⎠⎟

π 2π

f(x)

1

–1

x

y=sin x –π6

⎛⎝⎜

⎞⎠⎟ +1

π6,1

⎛⎝⎜

⎞⎠⎟

π2,1

⎛⎝⎜

⎞⎠⎟

2

Afterthesinecurveisdrawnfrom( π6,1),the

graphisextendedback.

f(x)=3cos(x–π)

π 2π

f(x)

1

–1

x

2

–2

y=cos(x–π)

y=2sin3x

π 2π

y

1

–1

x

2

–2

y=sin3x

©uLake LtduLake Ltd Innovative Publisher of Mathematics Texts

Page 4: Year 13 Mathematics IAS 3

IAS 3.3 – Year 13 Mathematics and Statistics – Published by NuLake Ltd New Zealand © Robert Lakeland & Carl Nugent

12 IAS 3.3 – Trigonometry

Example Findonesolutiontotheequation4sin x2

⎛⎝⎜

⎞⎠⎟=–1.234

Manipulationoftheequation.

4sin x2

⎛⎝⎜

⎞⎠⎟=–1.234

sin x2

⎛⎝⎜

⎞⎠⎟=–0.3085

x2=sin–1(–0.3085)

x=–0.31362 x 2 =–0.6272(4sf)

Example Findonesolutiontotheequation20–25cos x + π2

⎛⎝⎜

⎞⎠⎟=40

–25cos x + π2

⎛⎝⎜

⎞⎠⎟=20

cos x + π2

⎛⎝⎜

⎞⎠⎟=–0.8

x+ π2=cos–1(–0.8)

x=2.4981– π2

x=0.9273(4sf)

ThegraphicalapproachontheCasio9750GII.Drawthegraphofy=4sin x

2⎛⎝⎜

⎞⎠⎟andy=–1.234from

Thecalculatorwillfindthesolutionx=–0.6272.

0to2π.Wecanseefromthegraphthatthesedonotintersectfrom0to2πsointheviewwindowwechangethedomainto–πtoπthenselectandgraphsolve(G-Solv)andthenintersection(ISCT).

SHIFT F3 (-)VWindow Xmin

EXEmax

SHIFTSHIFT EXPπ

SHIFT F5G-Solv

F5ISCT

F6DRAW

ThegraphicalapproachontheTI-84Plus.Drawthegraphsof

y=40andy=20–25cos x + π2

⎛⎝⎜

⎞⎠⎟

fromx=0tox=2πandadjusttheyvaluestogofrom–50to50asthisgraphhasalargeamplitude.

Youwillbeaskedtoselectthecurvesthataretointersectandtoenteraguessneareachpointofintersection(orusethecursorkeystomovethepointclosetotheintersection).Thesolutionisx=0.9273.

(–) 05 ENTERWINDOW

05 ENTER GRAPH 2ND TRACECALC

5intersect

EXEEXPπ

EXE

UsingthesolverontheCasio9750GII.Checkyourcalculatorissettoradiansthenentertheequation4sin x

2⎛⎝⎜

⎞⎠⎟=–1.234.

Gettingasoln.x=–0.6272.

MENU 4 sin8EQUA

(

2

X ÷

( – )) SHIFT .=

21 .

3 4 EXE

TousethesolverontheTI-84calculatortheequationmustbeintheform0=equation.

0=20+25cos x + π2

⎛⎝⎜

⎞⎠⎟

For these Examples, three different approaches are presented for finding a particular solution. Students should concentrate on the approach they find easiest to understand. Approach 1 (in blue) is manipulation of the equation, approach 2 (in pink) is by graphing the problem and approach 3 (in yellow) is using the solver built into the graphics calculator.

Manipulationoftheequation.

F3

F6

MATH CLEAR

+X ^ ÷2NDπ

)2 ENTER Enteraguess(e.g.0)and

togetx=0.9273.

Solver 2 +

2 5

0

COS

ALPHA ENTERSOLVE

ENTER

©uLake LtduLake Ltd Innovative Publisher of Mathematics Texts

Page 5: Year 13 Mathematics IAS 3

IAS 3.3 – Year 13 Mathematics and Statistics – Published by NuLake Ltd New Zealand © Robert Lakeland & Carl Nugent

22 IAS 3.3 – Trigonometry

Modelling Practical Situations using Trigonometric Functions

Modelling Practical Situations using Trigonometric Functions

Ifyouhaveinformationaboutaproblemthatisbestmodelledbyatrigonometricfunction,thenwecanuseourunderstandingofamplitude,frequencyandperiodtowriteanequationandsubsequentlysolvethisequation.Aperiodicfunctionthatfollowsasinecurvewillhaveanequationf(x)=AsinB(x+C)+D.TheconstantsA,B,CandDweredefinedpreviously.Whenwearemodellingapracticalsituationwearelikelytoknowthemaximum,minimumvaluesalongwiththeperiodandhorizontalshift.WeusethesedatavaluestofindtheconstantsA,B,CandD.TheamplitudeAisgivenby

A=(maximum–minimum)2

ThehorizontalstretchBisgivenby

period=2πB

B=2π

period

wheretheperiodisthexvalue(oftentime)beforethegraphstartstorepeatitself.

Thehorizontaltranslationorshift–Cisthedistancealongthexaxisfromx=0(ort=0)untilthesinecurvestarts.Alternativelyitisthetimetothemaximumpointminusaquarteroftheperiod.

C=–shift

=–(timetomaximum– 14period)

OR =–timetomaximum+ 14period

TheverticaltranslationDisdefinedastheaverageheight.

D =(maximum+minimum)2

Ifwestudythegraphshownherewecanseethestandardsinecurvestartsatthepoint(4,3).Ithasamaximumvalueof5andaminimumvalueof1withaperiodof6.Theshiftfromthestartis+4.

ThereforewecanfindtheequationbyfindingeachconstantA,B,CandD.

A =(maximum–minimum)2

= 5 –12

=2

B =2π

period

= 2π6

π3

⎛⎝⎜

⎞⎠⎟

C =–shift

=–(timetomaximum– 14period)

OR =–timetomaximum+ 14period

=–4

D =(maximum+minimum)2

=(5+1)2

=3Theequationisthereforey=2sin 2π

6(x – 4) +3

1

2

3

4

5

x

2 4 6 8 10 12

shiftStartofsinegraph

A

Period

yshift=timeuntilmax– 1

4period

Summary: If T = period then A = max -min2

B = 2!T

C = –time to max + 14

period OR –time to max + T4

D = max+min2

©uLake LtduLake Ltd Innovative Publisher of Mathematics Texts

Page 6: Year 13 Mathematics IAS 3

IAS 3.3 – Year 13 Mathematics and Statistics – Published by NuLake Ltd New Zealand © Robert Lakeland & Carl Nugent

46 IAS 3.3 – Trigonometry

0.1140.185

600 mTown Centre

Acommunicationtowerisontopofanislandinariver.Onflatgroundyounotethetopofthetowerisatanangleofelevationof0.114radians.

Afterwalking600moverlevelgrounddirectlytowardsthetowertheangleofelevationisincreasedto0.185radians.

Whatistheverticalheighttothetopofthetower?

Example

Redrawthediagramlettingtheheightbehandthedistancetothebase(notrequired)bex.

Usingthesineruleweusetheanglepropertiesofatriangletofindtheangleatthetopandthencalculatelengthc.

angleattop=0.185–0.114

=0.071

Externalangleofatriangle=sum2oppositeinternalangles.

asinA

= csinC

600sin0.071

= csin0.114

c=600 x sin0.114sin0.071

c=962.103

Nowwiththesmalltrianglewecancalculateh.

sin0.185=opphyp

sin0.185= h962.103

h=962.103sin0.185

h=177m(3sf)

Thetwoapproachesexplainedherearetousetangentsortousethesinerule(bothwork).

0.114 0.185

600 m

h

x

c

0.071Usingtangents tanθ=opp

adj tan0.114= height

horizontal distanceSubstituteheight=handhorizontaldist=600+x

= hx + 600

Similarlywiththesmalltriangle

tan0.185= heighthorizontal distance

Substituteheight=handhorizontaldist=x

tan0.185=hx

Aswedonotwantxwerearrangeoneequationsoxbecomesthesubjectandsubstituteitintotheother.

xtan0.185=h

x= htan0.185

Substituteinthefirstequationandsolve

tan0.114=h

htan0.185

+ 600

h=( htan0.185

+600)tan0.114

8.734h=5.344h+600 h=177m(3sf)

©uLake LtduLake Ltd Innovative Publisher of Mathematics Texts

Page 7: Year 13 Mathematics IAS 3

51IAS 3.3 – Trigonometry

IAS 3.3 – Year 13 Mathematics and Statistics – Published by NuLake Ltd New Zealand © Robert Lakeland & Carl Nugent

143. AplaneissightedatpointAfromaradarstationatO.Theplaneisatanangleofelevationof44˚andataheightof6800metres.SometimelaterthesameplaneissightedatpointBfromtheradarstationatanangleofelevationof27˚andataheightof4900metres.CandDarepointsonthegroundverticallybelowpointsAandBandangleCODis48˚.

a) Drawadiagramtorepresentthesituationdescribedabove.

Remembertolabelallapplicablepoints,anglesandlengths.

b) CalculatethedistancebetweenthepointsCandDtothreesignificantfigures.

Drawatwo-dimensionaldiagramhere.

144. Alargetreestandsattheendofaroad.Fromoneparticularpointontheroad,thetopofthetreeisatangleAdegrees.Afterwalkingdirectlytowardsthetreealongalevelroadfor23metrestheangleofelevationisincreasedtoBdegrees.

a) Showthath,theheightofthetreecan berepresentedbyh=

23cotA – cotB

b) IfangleAis27°andangleBis85° findtheheightofthetreetothe nearestmetre.

Drawatwo-dimensionaldiagramhere.

©uLake LtduLake Ltd Innovative Publisher of Mathematics Texts

Page 8: Year 13 Mathematics IAS 3

IAS 3.3 – Year 13 Mathematics and Statistics – Published by NuLake Ltd New Zealand © Robert Lakeland & Carl Nugent

60 IAS 3.3 – Trigonometry

Page 37 cont...

103. RHS= 2cos2xsin 2x

= 2(cos2 x – sin2 x)

2sinxcosx

= cos2 x – sin2 xsinxcosx

= cosxsinx

– sinxcosx

=cotx–tanx

=LHS

104. sin3A=sin(A+2A) =sinAcos2A+cosAsin2A =sinA(1–2sin2A)+2sinAcos2A =sinA–2sin3A+2sinA(1–sin2A) =3sinA–4sin3A

105. cos3A=cos(A+2A) =cosAcos2A–sinAsin2A =cos3A–cosAsin2A–2sin2AcosA =cos3A–3cosAsin2A =4cos3A–3cosA

Page 39

106. x =2nπ±2.0944 or x =nπ+(–1)n0.3398 x = 0.3398,2.0944,2.8018,4.1888

107. x =nπ+(–1)n0.5236 or x =nπ–(–1)n0.7297 x = 0.5236,2.6180,3.8713,5.5535

108. x =2nπ±0.8411 or x =2nπ±2.4189

x = 0.8411,2.4189,3.8643,5.4421

109. x =nπ+1.2490 or x =nπ–1.1071

x = 1.2490,2.0344,4.3906,5.1760

110. (2sinx–1)(sinx+2)=0 x=nπ+(–1)n0.5236only

x = 0.5236,2.6180

111. x=2nπ±0.8411 or x=2nπ±3.1416 x = 0.8411,3.1416,5.4421

112. tanx=0 x = 0,π,2π

113. x=nπ+(–1)n0.3398 or x=nπ–(–1)n0.2526 x = 0.3398,2.8018,3.3943,6.0305

Page 41

114. P=4sin9θ+4sinθ

115. Q = 12(cos4A+cos(2A+2B))

116. R=5cos10θ+5cos2θ

117. S=2(cos(3A+2B)–cos5A)

118. T=3(cos2x–cos4x)

119. U=cos 2x + π2

⎛⎝⎜

⎞⎠⎟+cosπ

2

=cos 2x + π2

⎛⎝⎜

⎞⎠⎟

120. V=sin4x+sinπ2

=sin4x+1121. W=0.5cosπ–0.5cos2x = –0.5–0.5cos2x122. X=3(cos2π+cos2x) =3+3cos2x

123.Y=5(cos–2x–cosπ4+ π4

⎛⎝⎜

⎞⎠⎟ )

=5cos2x

Page 42

124. 4 cos π3

⎛⎝⎜

⎞⎠⎟– cos(2x)⎛

⎝⎜⎞⎠⎟ = 4

2x=2nπ±2.0944 x=nπ±1.0472 x=1.0472,2.0944,4.1888,5.2359

or x = π3, 2π3, 4π3, 5π3

125.cos2x=1 2x=2nπ x=nπ x=0,π,2π

126. sin(2x–0.5)+sin(0.5)=2 x 0.4567 2x=nπ+(–1)n0.4489+0.5 x=0.5nπ+(–1)n0.2244+0.25 x=0.4744,1.596,3.616,4.738

127. 2x=nπ+(–1)n0.4058–0.5 x=0.5nπ+(–1)n0.2029–0.25 x=1.118,3.095,4.259,6.236

128. 2(cos(4x+π)+cosπ))=–3 4x+π=2nπ±2.0944 x=0.5nπ±0.5236–0.7854 x = 0.2618,1.3090,1.8326,2.8798,

3.4034,4.4506,4.9742,6.0214

129. (2x–0.5267)=2nπ±1.8140 x=nπ±0.9070+0.2634 x=1.1703,2.4980,4.3120,5.6396

Page 35 cont...97. LHS=sin(x+y).sin(x–y) =(sinxcosy+sinycosx)(sinxcosy–sinycosx) =sin2x.cos2y–sin2y.cos2 x = sin2x.(1–sin2y)–sin2y.(1–sin2 x) = sin2x–sin2x.sin2y–sin2y+sin2y.sin2 x =sin2x–sin2y =RHS

98. LHS=tan A– π4

⎛⎝⎜

⎞⎠⎟tan A + π

4⎛⎝⎜

⎞⎠⎟

= tanA − tan π

4⎛⎝⎜

⎞⎠⎟tanA + tan π

4⎛⎝⎜

⎞⎠⎟

1+ tanAtan π4

⎛⎝⎜

⎞⎠⎟1− tanAtan π

4⎛⎝⎜

⎞⎠⎟

= tanA −1( ) tanA +1( )1+ tanA( ) 1− tanA( )

= − 1− tanA( )1− tanA( )

= –1 =RHS

99. LHS=cot(A+B)

= 1tan A + B( )

= 1− tanAtanBtanA + tanB

Dividetopandbottomby tanA.tanB

= 1

tanAtanB– tanAtanBtanAtanB

tanAtanAtanB

+ tanBtanAtanB

= cotAcotB−1cotB+ cotA

=RHS

Page 37

100. cos24x–0.5=0.5(2cos2 4x – 1) =0.5cos(8x)

101. sin x2

⎛⎝⎜

⎞⎠⎟cos x

2⎛⎝⎜

⎞⎠⎟=0.5sinx

102. LHS=(sinA–cosA)2 =sin2A–2sinAcosA+cos2A =1–2sinAcosA =1–sin2A =RHS

©uLake LtduLake Ltd Innovative Publisher of Mathematics Texts