y - johns hopkins bloomberg school of public healthiruczins/teaching/misc/notes.bio.pdf · u s 1500...

25
jhu Biostatistics and Computational Biology Some selected examples ... and a bit of R and Bioconductor Ingo Ruczinski Department of Biostatistics Johns Hopkins Bloomberg School of Public Health December 7, 2009 Ingo Ruczinski Biostatistics and Computational Biology 1 jhu Bioinformatics and computational biology Wikipedia: Bioinformatics and computational biology involve the use of techniques including applied mathematics, informatics, statistics, computer science, artificial intelligence, chemistry, and biochemistry to solve biological problems usually on the molecular level. ··· Major research efforts in the field include sequence alignment, gene finding, genome assembly, protein structure alignment, protein structure prediction, prediction of gene expression and protein-protein interactions, and the modeling of evolution. Ingo Ruczinski Biostatistics and Computational Biology 2

Upload: others

Post on 29-Jul-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: y - Johns Hopkins Bloomberg School of Public Healthiruczins/teaching/misc/notes.bio.pdf · u s 1500 1500 1300 1200 1100 1000 900 800 700 600 500 400 300 200 100 0 1300 1200 1100 1000

jhu

Biostatistics and Computational Biology

Some selected examples . . . and a bit of R and Bioconductor

Ingo Ruczinski

Department of BiostatisticsJohns Hopkins Bloomberg School of Public Health

December 7, 2009

Ingo Ruczinski Biostatistics and Computational Biology 1

jhu

Bioinformatics and computational biology

Wikipedia:

Bioinformatics and computational biology involve the use of

techniques including applied mathematics, informatics, statistics,

computer science, artificial intelligence, chemistry, and biochemistry

to solve biological problems usually on the molecular level.

· · ·Major research efforts in the field include sequence alignment, gene

finding, genome assembly, protein structure alignment, protein

structure prediction, prediction of gene expression and protein-protein

interactions, and the modeling of evolution.

Ingo Ruczinski Biostatistics and Computational Biology 2

Page 2: y - Johns Hopkins Bloomberg School of Public Healthiruczins/teaching/misc/notes.bio.pdf · u s 1500 1500 1300 1200 1100 1000 900 800 700 600 500 400 300 200 100 0 1300 1200 1100 1000

jhu

Bioinformatics and computational biology

Wikipedia:

The terms bioinformatics and computational biology are often used

interchangeably. However bioinformatics more properly refers to the

creation and advancement of algorithms, computational and statistical

techniques, and theory to solve formal and practical problems

inspired from the management and analysis of biological data.

Computational biology, on the other hand, refers to hypothesis-driven

investigation of a specific biological problem using computers, carried

out with experimental or simulated data, with the primary goal of

discovery and the advancement of biological knowledge.

Ingo Ruczinski Biostatistics and Computational Biology 3

jhu

Bioinformatics and computational biology

NIH definition of Bioinformatics and Computational Biology:

Bioinformatics and computational biology are rooted in life sciences

as well as computer and information sciences and technologies. Both

of these interdisciplinary approaches draw from specific disciplines

such as mathematics, physics, computer science and engineering,

biology, and behavioral science.

· · ·Bioinformatics applies principles of information sciences and

technologies to make the vast, diverse, and complex life sciences

data more understandable and useful. Computational biology uses

mathematical and computational approaches to address theoretical

and experimental questions in biology. Although bioinformatics and

computational biology are distinct, there is also significant overlap

and activity at their interface.

Ingo Ruczinski Biostatistics and Computational Biology 4

Page 3: y - Johns Hopkins Bloomberg School of Public Healthiruczins/teaching/misc/notes.bio.pdf · u s 1500 1500 1300 1200 1100 1000 900 800 700 600 500 400 300 200 100 0 1300 1200 1100 1000

jhu

Bioinformatics and computational biology

NIH definition of Bioinformatics and Computational Biology:

The NIH Biomedical Information Science and Technology InitiativeConsortium agreed on the following definitions of bioinformatics and

computational biology recognizing that no definition could completelyeliminate overlap with other activities or preclude variations in

interpretation by different individuals and organizations.

Bioinformatics: Research, development, or application ofcomputational tools and approaches for expanding the use of

biological, medical, behavioral or health data, including those toacquire, store, organize, archive, analyze, or visualize such data.

Computational Biology: The development and application of

data-analytical and theoretical methods, mathematical modeling and

computational simulation techniques to the study of biological,

behavioral, and social systems.

Ingo Ruczinski Biostatistics and Computational Biology 5

jhu

2D gel electrophoresis

Ingo Ruczinski Biostatistics and Computational Biology 6

Page 4: y - Johns Hopkins Bloomberg School of Public Healthiruczins/teaching/misc/notes.bio.pdf · u s 1500 1500 1300 1200 1100 1000 900 800 700 600 500 400 300 200 100 0 1300 1200 1100 1000

jhu

2D gel electrophoresis

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

1300

1200

1100

1000

900

800

700

600

500

400

300

200

100

0

1300

1200

1100

1000

900

800

700

600

500

400

300

200

100

0

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

1300

1200

1100

1000

900

800

700

600

500

400

300

200

100

0

1300

1200

1100

1000

900

800

700

600

500

400

300

200

100

0

Ingo Ruczinski Biostatistics and Computational Biology 7

jhu

2D gel electrophoresis

A:1 A:2 A:3 A:4 A:5 A:6 A:7 A:8 A:9 A:10 A:11 A:12 B:1 B:2 B:3 B:4 B:5 B:6 B:7 B:8 B:9 B:10 B:11 B:12

A B

Ingo Ruczinski Biostatistics and Computational Biology 8

Page 5: y - Johns Hopkins Bloomberg School of Public Healthiruczins/teaching/misc/notes.bio.pdf · u s 1500 1500 1300 1200 1100 1000 900 800 700 600 500 400 300 200 100 0 1300 1200 1100 1000

jhu

2D gel electrophoresis

A:1 A:2 A:3 A:4 B:1 B:2 B:3 B:4

A B

Ingo Ruczinski Biostatistics and Computational Biology 9

jhu

2D gel electrophoresis

!20

0

20

40

60

% r

eduction o

f concentr

ation a

s c

om

pare

d to b

ackgro

und 1

st Trimester

3rd

Trimester

Folate Placebo

Ingo Ruczinski Biostatistics and Computational Biology 10

Page 6: y - Johns Hopkins Bloomberg School of Public Healthiruczins/teaching/misc/notes.bio.pdf · u s 1500 1500 1300 1200 1100 1000 900 800 700 600 500 400 300 200 100 0 1300 1200 1100 1000

jhu

2D gel electrophoresis

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

1300

1200

1100

1000

900

800

700

600

500

400

300

200

100

0

1300

1200

1100

1000

900

800

700

600

500

400

300

200

100

0

Ingo Ruczinski Biostatistics and Computational Biology 11

jhu

2D gel electrophoresis

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

1300

1200

1100

1000

900

800

700

600

500

400

300

200

100

0

1300

1200

1100

1000

900

800

700

600

500

400

300

200

100

0

790

1056

853

662

1458

948

1026

770

586

768

797

332

248

Ingo Ruczinski Biostatistics and Computational Biology 12

Page 7: y - Johns Hopkins Bloomberg School of Public Healthiruczins/teaching/misc/notes.bio.pdf · u s 1500 1500 1300 1200 1100 1000 900 800 700 600 500 400 300 200 100 0 1300 1200 1100 1000

jhu

Karyotypes

Ingo Ruczinski Biostatistics and Computational Biology 13

jhu

Trisomy

Ingo Ruczinski Biostatistics and Computational Biology 14

Page 8: y - Johns Hopkins Bloomberg School of Public Healthiruczins/teaching/misc/notes.bio.pdf · u s 1500 1500 1300 1200 1100 1000 900 800 700 600 500 400 300 200 100 0 1300 1200 1100 1000

jhu

Karyotypes

General Cytogenetics Information http://members.aol.com/chrominfo/

Ingo Ruczinski Biostatistics and Computational Biology 15

jhu

FISH

Courtesy of the Pevsner Laboratory

Ingo Ruczinski Biostatistics and Computational Biology 16

Page 9: y - Johns Hopkins Bloomberg School of Public Healthiruczins/teaching/misc/notes.bio.pdf · u s 1500 1500 1300 1200 1100 1000 900 800 700 600 500 400 300 200 100 0 1300 1200 1100 1000

jhu

DNA changes

Ingo Ruczinski Biostatistics and Computational Biology 17

jhu

Single nucleotide polymorphisms

Ingo Ruczinski Biostatistics and Computational Biology 18

Page 10: y - Johns Hopkins Bloomberg School of Public Healthiruczins/teaching/misc/notes.bio.pdf · u s 1500 1500 1300 1200 1100 1000 900 800 700 600 500 400 300 200 100 0 1300 1200 1100 1000

jhu

SNP chip data

Ingo Ruczinski Biostatistics and Computational Biology 19

jhu

Deletion

0.5

1

22

3

44

5

66

88

0 20 40 60 80 100 120

Chr 11

0 20 40 60 80 100 120

Chr 12

co

py n

um

be

r

Mb

AA

AB

BB

Ingo Ruczinski Biostatistics and Computational Biology 20

Page 11: y - Johns Hopkins Bloomberg School of Public Healthiruczins/teaching/misc/notes.bio.pdf · u s 1500 1500 1300 1200 1100 1000 900 800 700 600 500 400 300 200 100 0 1300 1200 1100 1000

jhu

Amplification

1

22

3

44

6

8

10

0 50 100 150

Chr 7

co

py n

um

be

r

Mb

AA

AB

BB

Ingo Ruczinski Biostatistics and Computational Biology 21

jhu

Uniparental isodisomy

11

22

33

44

55

0 50 100 150 200 250

Chr 1

0 50 100 150 200 250

Chr 2

co

py n

um

be

r

Mb

AA

AB

BB

Ingo Ruczinski Biostatistics and Computational Biology 22

Page 12: y - Johns Hopkins Bloomberg School of Public Healthiruczins/teaching/misc/notes.bio.pdf · u s 1500 1500 1300 1200 1100 1000 900 800 700 600 500 400 300 200 100 0 1300 1200 1100 1000

jhu

A versus B plots

7 8 9 10 11 12 13

7

8

9

10

11

12

13

SNP_A!4251622

log2(A)

log

2(B)

plate 1

plate 2

20

21

22

23

SNP_A!4251622

log

2(A)+

log

2(B)

pla

te2

pla

te1

plates ordered by median date

Ingo Ruczinski Biostatistics and Computational Biology 23

jhu

A versus B plots

7 8 9 10 11 12 13

7

8

9

10

11

12

13

SNP_A!8348190

A

B

3 copies

2 copies

Ingo Ruczinski Biostatistics and Computational Biology 24

Page 13: y - Johns Hopkins Bloomberg School of Public Healthiruczins/teaching/misc/notes.bio.pdf · u s 1500 1500 1300 1200 1100 1000 900 800 700 600 500 400 300 200 100 0 1300 1200 1100 1000

jhu

Trisomy 21

0

1

2

3

4

5

6

Chr 21co

py n

um

be

r

samples

Samples from Aravinda Chakravarti and Betty Doan

Ingo Ruczinski Biostatistics and Computational Biology 25

jhu

Trisomy 21

0

1

2

3

4

5

6

Chr 21

co

py n

um

be

r

samples

Samples from Aravinda Chakravarti and Betty Doan

Ingo Ruczinski Biostatistics and Computational Biology 26

Page 14: y - Johns Hopkins Bloomberg School of Public Healthiruczins/teaching/misc/notes.bio.pdf · u s 1500 1500 1300 1200 1100 1000 900 800 700 600 500 400 300 200 100 0 1300 1200 1100 1000

jhu

Prediction regions for copy number

1

2

1

3

1 1

1

1

1

1

1

1

1

1

2

11

1

111

1

1

11

1

2

2

2

1

1

11

1

1

1

11

11

1 1

2

1

2

1

11

11

1

3

1

1

11

1

2

1

1

11

2

1

1

1

2

1

1

1

2

1

1

1

1

2

1

11

11

1

11

1 1

1

1

1

11

11

1

1

1

11

1

1

2

11

1

1

1

1

11

1 1

1

11

1

1

1

2

2

1

2

1

1

1

2

1

1

11

1

2

2

1

3

1

1 11

1

1

1 1

11

3

1

2

1

2

11

1

1

1

1

11

1

1

1

2

2

1

1

1

1

1

1

2

1

111

1

1

11

11

1

2

1

1

1

1

1

1

11

22

1

1

111

11

2

11 1

11

1

3

11

2

22

1

1 11

1

11

1

2

11

1

22

1

1

1

2

1

1

1

2

1

1

11

1

11

1

11

1

2

2

1

11

111

1

2

1

1

11

2

1

11

1

2

1 11

1

11

111

22

1

1

1

2

1

1

1

11

1

1

1

1

1

1

2

1

1

11

1

11

1

1

1

2

1

1

1

1

11

11

1

1

2

1

1

2

2

111

1

1

2

2

2

2

1

11

1

2

11

111

1

1

1

1

1

3

1

1

1

1

2

1

2

1

1

11

1

1

2

1

111

1

2

111

1

1

1

2

1

1

1

1

1

1

1

1

1

1

11

1

1

11

111

1

2

1

1

2

1

2

2

2

11

1

11

3

1

2

1

2

1

2

3

1

2

1

11

1

2

1

1

11

1

2

2

11

1 1

1

11

1

1

1

11

1

1

11

11

1

11

1

1

1

2

1

1

1

1

1

1

1

1

2

1111

1

1

11

1

1

1

1

1 1

1

1

1

11

1

1

11

1

1

1

11

1

11

1

1

2

2

11

2

1

1

1

1

11

1

1

11

1

11

2

1

2

1

1

1

1

11

1

1

1

2

1

11

11

1

11

1

1

1

11

2

1 1

1

1

2

2

1

1

1

2

1

1

11

1

2

1

1

1

1

1

2

1

11

1

2

11

1

1

11

11

1

1

1

1

11 1

1

1

1

2

1

1

1

2

1

2

1

11

1

1

1

11

1

1

1

1

3

1

1

1

1

1

1

1

1

11

2

11

1

1

1

1

11

111

2

1

1

1111

1

1

2

1 1

1

1

1

1

1

1 1

2

11

111

1

1

11

1

1

1

1

3

11

1

1

1

1

1

11

11

2

1

11

1

1

11 1

2

1

11 1

1

1

1

2

1

1

1

2

1

2

11

11

1

1

2

1

1

1

1

1

1

1

111

2

1

2

111

1

1

1

111 1

1

1

2

1

1

11

1

11 1

2

1

1

1

1

1 1

1

11

1

1

1

11

11

2

2

1

2

1

11

11

1

1

1

1

1

1

1

1

1

2

1

1

11

2

1

1 1

1

1 11

1

2

1

1 1

1

11 111 11

1

2

1

1

1

2

2

11

1

1

2

1

1 1

2

11

1

2

111

1

1

1

11

2

1

1

1

1

1

1 111

1

1

1

1

1

1

1

1

1

2

1

1

1

1

1

1

1

11

1

2

1

1

1

1

1

1

1

1

1

1

1

1 1

1

11 1

1

1

2

1 1

1

1

22

111

1 11

1

2

1

1

2

1

1

1

1

1

1

11

1

1

1

2

1 11

1

1

2

1

11

2

1

11

1 1

1

11

1

1

1

1

2

1

1

1

1

1

11

11

2

11

11

11

1

1

111

1

1

1

12

1

1

2

1

2

2

1

1

2

1

2

11

1

1

11

2

2

1

11

1111

1

1

1 1

1

1

2

1

1

1

1

1

11

1

1 1

2

111

1

11

1

2

2

2

11

3

1

2

1

1

2

11

2

111

1

1

1

1

2

1

1

11

11

1

1

1 1

1

11

1

2

1

1

11

2

1

11

1

2

2

1

1

1

1

1

22

1

1

2

1

1

1

1 11 1

1

11

1

1

1

22

1

2 2

11

1

1

1

2

1

11 1

11

SNP_A!8496017

A

B

Ingo Ruczinski Biostatistics and Computational Biology 27

jhu

De novo deletion

Ingo Ruczinski Biostatistics and Computational Biology 28

Page 15: y - Johns Hopkins Bloomberg School of Public Healthiruczins/teaching/misc/notes.bio.pdf · u s 1500 1500 1300 1200 1100 1000 900 800 700 600 500 400 300 200 100 0 1300 1200 1100 1000

jhu

De novo deletion

80.9

1

MI!S

MI!D

UPI!M

UPI!P

BPI

HMM

child

co

py n

um

be

r

!2!1.5!1

!0.50

0.51

mother

co

py n

um

be

r

!2!1.5!1

!0.50

0.51

father

co

py n

um

be

r

!2!1.5!1

!0.50

0.51

15 20 25 30 35 40 45 49

Ingo Ruczinski Biostatistics and Computational Biology 29

jhu

The statistical environment R

R is an environment for data analysis and visualization.

R is both open source and open development.

You can look at the source code and propose changes.

R is not in the public domain.

You are given a license to run the software (currently GPL).

Ingo Ruczinski Biostatistics and Computational Biology 30

Page 16: y - Johns Hopkins Bloomberg School of Public Healthiruczins/teaching/misc/notes.bio.pdf · u s 1500 1500 1300 1200 1100 1000 900 800 700 600 500 400 300 200 100 0 1300 1200 1100 1000

jhu

The R software

R is mainly written in C.

R is available for many platforms:

Unix of many flavors, including Linux, Solaris, FreeBSD.

Windows 95 and later.

MacOS X.

Binaries and source code are available from

www.r-project.org.

R “talks” to data bases, programming languages, and other

statistical packages.

R should be source code compatible with most of the

Splus code written.

Ingo Ruczinski Biostatistics and Computational Biology 31

jhu

CRAN

Ingo Ruczinski Biostatistics and Computational Biology 32

Page 17: y - Johns Hopkins Bloomberg School of Public Healthiruczins/teaching/misc/notes.bio.pdf · u s 1500 1500 1300 1200 1100 1000 900 800 700 600 500 400 300 200 100 0 1300 1200 1100 1000

jhu

The R package system

Packages are self-contained units of code with

documentation.

The packages are simple to obtain and to understand, and

can easily be updated.

You can write your own packages!

All functions must have examples to run.

There are automatic testing features built in.

Ingo Ruczinski Biostatistics and Computational Biology 33

jhu

CRAN packages

Ingo Ruczinski Biostatistics and Computational Biology 34

Page 18: y - Johns Hopkins Bloomberg School of Public Healthiruczins/teaching/misc/notes.bio.pdf · u s 1500 1500 1300 1200 1100 1000 900 800 700 600 500 400 300 200 100 0 1300 1200 1100 1000

jhu

Pros and cons

Advantages

Free

Available for all major platforms

Comprehensive

Powerful graphics

Well-designed programming language

Unlimited extensibility

Widely used by statisticians

Increasingly used for genomic analyses (Bioconductor)

Disadvantages

No dedicated support

Complex syntax

Not point-and-click

Some simple tasks are rather hard

Ingo Ruczinski Biostatistics and Computational Biology 35

jhu

Bioconductor

Ingo Ruczinski Biostatistics and Computational Biology 36

Page 19: y - Johns Hopkins Bloomberg School of Public Healthiruczins/teaching/misc/notes.bio.pdf · u s 1500 1500 1300 1200 1100 1000 900 800 700 600 500 400 300 200 100 0 1300 1200 1100 1000

jhu

Bioconductor

Ingo Ruczinski Biostatistics and Computational Biology 37

jhu

JHSPH Biostatistics classes

3 140.615 Biostatistics for Laboratory Scientists I

MWF 10:30 – 11.20 (Ingo Ruczinski)

140.644 Practical Machine Learning

MW 1:30 – 2.50 (Rafael Irizarry)

4 140.616 Biostatistics for Laboratory Scientists II

MWF 10:30 – 11.20 (Ingo Ruczinski)

140.688 Statistics for Genomics

MW 10:30 – 11.50 (Jeff Leek)

Ingo Ruczinski Biostatistics and Computational Biology 38

Page 20: y - Johns Hopkins Bloomberg School of Public Healthiruczins/teaching/misc/notes.bio.pdf · u s 1500 1500 1300 1200 1100 1000 900 800 700 600 500 400 300 200 100 0 1300 1200 1100 1000

jhu

Statistics and probability

What is statistics?

Data exploration and analysis.

Quantification of evidence and uncertainty.

Inductive inference with probability.

What is probability?

A branch of mathematics concerning the study of random

processes.

Ingo Ruczinski Biostatistics and Computational Biology 39

jhu

Diagnostics

!

+

!+

TEST

DISEASE

FN TN

TP FP

Ingo Ruczinski Biostatistics and Computational Biology 40

Page 21: y - Johns Hopkins Bloomberg School of Public Healthiruczins/teaching/misc/notes.bio.pdf · u s 1500 1500 1300 1200 1100 1000 900 800 700 600 500 400 300 200 100 0 1300 1200 1100 1000

jhu

Diagnostics

!

+

!+

TEST

DISEASE

FN TN

TP FP

Sensitivity ! Pr ( positive test | disease )

Specificity ! Pr ( negative test | no disease )

Positive Predictive Value ! Pr ( disease | positive test )

Negative Predictive Value ! Pr ( no disease | negative test )

Accuracy ! Pr ( correct outcome )

Ingo Ruczinski Biostatistics and Computational Biology 41

jhu

Diagnostics

Assume that some disease has a 0.1% prevalence in the

population. Assume we have a test kit for that disease that

works with 99% sensitivity and 99% specificity. What is the

probability of a person having the disease, given the test result

is positive, if we randomly select a subject from the general

population?

Ingo Ruczinski Biostatistics and Computational Biology 42

Page 22: y - Johns Hopkins Bloomberg School of Public Healthiruczins/teaching/misc/notes.bio.pdf · u s 1500 1500 1300 1200 1100 1000 900 800 700 600 500 400 300 200 100 0 1300 1200 1100 1000

jhu

Diagnostics

!

+

!+

TEST

DISEASE

1 98901

99 999

Ingo Ruczinski Biostatistics and Computational Biology 43

jhu

Diagnostics

!

+

!+

TEST

DISEASE

1 98901

99 999

Sensitivity ! 99 / (99+1) = 99%

Specificity ! 98901 / (999+98901) = 99%

Positive Predictive Value ! 99 / (99+999) " 9%

Negative Predictive Value ! 98901 / (1+98901) > 99.9%

Accuracy ! (99+98901) / 100000 = 99%

Ingo Ruczinski Biostatistics and Computational Biology 44

Page 23: y - Johns Hopkins Bloomberg School of Public Healthiruczins/teaching/misc/notes.bio.pdf · u s 1500 1500 1300 1200 1100 1000 900 800 700 600 500 400 300 200 100 0 1300 1200 1100 1000

jhu

Calibration

Goal: Determine, by fluoresence, the concentration of quinine

in a sample of tonic water.

1 Obtain a stock solution with known concentration of quinine.

2 Create several dilutions of the stock.

3 Measure fluoresence intensity of each such standard.

4 Measure fluoresence intensity of the unknown.

5 Fit a line to the results for the standards.

6 Use line to estimate quinine concentration in the unknown.

Question: How precise is the resulting estimate?

Ingo Ruczinski Biostatistics and Computational Biology 45

jhu

Calibration

0 5 10 15 20 25 30 35

0

20

40

60

80

Quinine conc (ppb)

Flu

ore

scence inte

nsity

Ingo Ruczinski Biostatistics and Computational Biology 46

Page 24: y - Johns Hopkins Bloomberg School of Public Healthiruczins/teaching/misc/notes.bio.pdf · u s 1500 1500 1300 1200 1100 1000 900 800 700 600 500 400 300 200 100 0 1300 1200 1100 1000

jhu

Summarizing data

0

2

4

6

8

10

12

14

A B0

2

4

6

8

10

12

14

A B

Ingo Ruczinski Biostatistics and Computational Biology 47

jhu

Summarizing data

0

2

4

6

8

10

12

14

A B0

2

4

6

8

10

12

14

A B

Ingo Ruczinski Biostatistics and Computational Biology 48

Page 25: y - Johns Hopkins Bloomberg School of Public Healthiruczins/teaching/misc/notes.bio.pdf · u s 1500 1500 1300 1200 1100 1000 900 800 700 600 500 400 300 200 100 0 1300 1200 1100 1000

jhu

Summarizing data

0

2

4

6

8

10

12

14

A B0

2

4

6

8

10

12

14

A B

Ingo Ruczinski Biostatistics and Computational Biology 49

jhu

http: //biostat.jhsph.edu/#iruczins/

[email protected]

Ingo Ruczinski Biostatistics and Computational Biology 50