xiaosong wang department of chemistry, waterloo … and synthesis of polymer supramolecular...

9
Design and Synthesis of Polymer Supramolecular Functional Nanomaterial Xiaosong Wang Department of Chemistry, Waterloo Institute of Nanotechnology (WIN) University of Waterloo, Waterloo, N2L 3G1 Supramolecular chemistry has emerged as a promising approach for functional nanomaterials. The challenge of the area is how to synthesize self-assembled objects in a designed fashion in terms of particles shapes, chemical compositions and architectures, etc. We are trying to address this challenge using polymers, especially block copolymers, as self- assembly building blocks. As a result, a number of nanomaterials with designed chemical compositions have been prepared. Particularly, we have developed new concepts to incorporate metal elements into polymer nanoparticles in an attempt to develop nanomaterials possessing magnetic, conductive, optical, catalytic properties for potential applications. This talk will briefly summarize our efforts in this area. IPR 2012

Upload: dangdang

Post on 30-Apr-2018

218 views

Category:

Documents


4 download

TRANSCRIPT

Design and Synthesis of Polymer Supramolecular Functional Nanomaterial

Xiaosong Wang 

Department of Chemistry, Waterloo Institute of Nanotechnology (WIN)

University of Waterloo, Waterloo, N2L 3G1

Supramolecular chemistry has emerged as a promising approach for functional

nanomaterials. The challenge of the area is how to synthesize self-assembled objects in a

designed fashion in terms of particles shapes, chemical compositions and architectures, etc.

We are trying to address this challenge using polymers, especially block copolymers, as self-

assembly building blocks. As a result, a number of nanomaterials with designed chemical

compositions have been prepared. Particularly, we have developed new concepts to

incorporate metal elements into polymer nanoparticles in an attempt to develop nanomaterials

possessing magnetic, conductive, optical, catalytic properties for potential applications. This

talk will briefly summarize our efforts in this area.

IPR 20

12

5/10/2012

1

Synthesis and Self-Assembly of Metal-Containing Polymer for Supramolecular

Functional Nanomaterials

Xiaosong WangXiaosong Wang

Department of Chemistry

Waterloo Institute of Nanotechnology

University of Waterloo

Canada N2L 3G1

[email protected]

Outline

I. Research interests

II. Polymer supramolecular chemistry

III. Metal-containing polymer and supramolecular chemistry

IV. Metal coordination polymer nanoparticles

1. designed synthesis

2. functions and properties

IV. Summary

V. Acknowledgement

Polymer Supramolecular Functional Nanomaterials

Polymer synthesis

Supramolecular chemistry

1) Living free radical polymerization2) Organometallic and metal

coordination chemistry

1) Defined synthesis2) Multicomponent systems

Functions and material applications

1) metal elements, e.g. electronic, optical, catalytic, etc.

2) polymers, e.g. stimulus, solubility, mechanical properties, etc.

3) nanostructures and synergetic effects of nanodomains, e.g. porous network, charge transfer, smart materials, etc.

Polymer Solution Self-Assembly

Block selective solvent

nm

Oil/water

nm

Oilwater

Polymer Supramolecular Chemistry Defined Synthesis of C60 Colloids

In IPA

micellization

Dialysis

Wang, X. S.; Metanawin, T.; Zheng, X. Y.; Wang, P. Y.; Ali, M.; Vernon, D., Langmuir 2008, 24, 9230-9232.

0.1 1 10 100 1000 10000

Diameters / nm 0.1 1 10 100 1000 10000Diameters / nm

Micelles in alcohol

C60 suprastructures in water

In water

Polymer Supramolecular Chemistry Structure vs Functions

Red light 550‐750nm 1O2Light power 50 mW

TEM

0 7 14 21 28 350.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

C60

/micelles [C60] =

0.085 mg ml-1

0.03 mg ml-1

0.015 mg ml-1

0.0084 mg ml-1

Ab

sorb

anc

e at

411

nm

Dose (J cm-2)

Blank

Micelles

C60 only

[C60] = 0.030 mg ml-1

Fluorescence images

0 0.0037 0.0065 0.014 0.028 0.0470

20

40

60

80

100

120

Control

Concentration of C60

(mg/ml)

% C

ells

Light Dark

Photosensitivity Phototoxicity

Tanapak Metanawin, Tian Tang, Rongjun Chen, David Vernon and Xiaosong Wang Nanotechnology 2011

IPR 20

12

5/10/2012

2

Polymer Supramolecular Chemistry Adjusting Nucleation Rate

Pd PP

P

P

+ Pd

Polymer Supramolecular Chemistry for Novel Morphology

PBLG‐b‐PEG homo‐PBLG+ PBLG: poly(-benzyl L-glutamate)

8Cai, C. H.; Lin, J. P.; Chen, T.; Wang, X. S.; Lin S. L. Chem. Commun. 2009 2709-2711.

Examples of Metal Containing Polymers

Nature Material 2011 176

From organometallic and polymer chemistry to processible materials

Metal Containing Polymers Materials

Acc. Chem. Res., 2010, 43 (9),1246–1256

ACS Macro Lett., 2012, 1 (1), pp 204–208

Solar cell Stimulated gel

M ti ti l

Angewandte Chemie International Edition2008, 47, 1255–1259.

Magnetic particles

J Am Chem Soc. 2012, 134, 4493

Anion exchange membranes

Drug delivery

J. Am. Chem. Soc., 2010, 132 (51), pp 18273–18280

P t i I bili ti Anticancer treatmentJ. Am. Chem. Soc., 2010, 132 (51), pp 18273–18280

J. Am. Chem. Soc., 2011, 133 (43), pp 17307–17314

Protein Immobilisation

Angewandte Chemie International Edition2012 early view

Anticancer treatment

Shape memory

Optical healing

J Am Chem Soc. 2011 Aug17;133(32):12866-74.

Nature 472, 334–337http://www.nature.com/nature/journal/v472/n7343/extref/nature09963-s2.mpg

IPR 20

12

5/10/2012

3

Emission by Cu‐Cu interaction

UUV light

Blue + Yellow

Blue + weak red

The photographs were taken at room temperature: a, under room light.b–d, on exposure to a 254-nm ultraviolet light. Procedures: (i) Printing with a thermal facsimile-type

printer. (ii) Heating at 100 °C for blacking out. (iii) Aging at 45 °C for initialization.

Nature Mater. 4, 546–549 (2005).Security ink

Anionic Living Polymerization for Metal-Containing Polymer Synthesis

Metal Containing Polymer Architecture Design

PFP-b-PFS-b-PDMS

PFS(PI)3PFS-b-PDMAEMA

Si

MeMeHFe

CH2CH2CH2OCH2

CMe C O

OCH2CH2N

Me

Me

H

nm FeSi

Bu

MeMeSi

m

= Polyisoprene

PI-b-PFS

PFS-b-PMVSFe

PBu

PhFe

Si

MeMe

Si O

MeMe

Si

Me

Me

Men m l

FeSi

Bu

MeMe

SiO

SiMe3

Mem

n

SiMe Me

Fe H

Y

Bu0.6x 0.1x 0.3x

Living Self-Assembly for Block Comicelles

HexaneFeSi

Bu

MeMe

Si

m

OSiMe3

Me Men

PI‐b‐PFS micelles in decane

+

THF solution of PFS‐b‐PDMS

Block co‐micelles of PI‐b‐PFS and PFS‐b‐PDMS

Wang, X. S; Guerin, G.; Wang, H.; Wang, Y. S.; Manners, I.; Winnik, M. A. Science 2007, 317, 644-647.

Nanomaterials From PFS Micelles

J. Am. Chem. Soc. 2005, 127, 8924 and 2008, 130, 12921–12930. J. Am. Chem. Soc., 2007, 129 (17), 5630–5639. and 2003, 125, 12686−12687

Supramolecular Chemistry for Processible Metal-Coordination Polymers and Nanoparticles

?

Rich functionalities associated with metal ions, organic ligands and porous structuresBut lack of techniques for designed synthesis, …

Metal Coordination Nanocapsules

IPR 20

12

5/10/2012

4

Sequential Self-assembly of Block Copolymers and Metal Ions for Designed Synthesis of Metal Coordination

NanoShells

TolueneHexadecane

MEPP

In water

Sonication

EPE‐Fe

G. Liang, J. Xu and X. Wang, J. Am. Chem. Soc. 2009, 131, 5378–5379

• Rational structure design, e.g. size, shape, chemical composition • Efficient encapsulation, • Functional hybrid nanoshells

19

Prussian Blue and Its Analogues

Radiogardase® For Oral Administrationvery high affinity for radioactive and non‐radioactive cesium and thallium.

Magnetic properties of PB analogues: e. g. light‐induced magnetic switch 

Oxidase‐enzyme‐based biosensors. 

Microscopy Characterization of PB Nanoshells

100 nm

TEM SEM

100 nm

AFM

21

PB Nanosells with Varied Size

0.5 % surfactants, 5% toluene                     0.5% surfactants, 20% toluene

22

Amorphous Nature of the PB NanoShells

ns

ity

(a.u

.)

EPE/PB composite

10 20 30 40 50

Nanoshells

Inte

n

2 (deg)

EPE/PB composite

23

Nanoshells with Crystalline Structures

Surfactants: 4 wt%, containing 60 % of –DMAP‐Fe end groups

Oil (toluene) content: 5 wt%. 

24

IPR 20

12

5/10/2012

5

TEM and SEM Images of the Nanoboxes

a b

c

R. McHale, N. Ghasdian, Y. b. Liu, M. B. Ward, N. S. Hondow, H. H. Wang, Y. Q. Miao,c R. Brydsonb, X. S. Wang, Chem. Commun., 2010, Hot Article! 25

Crystallinity of the Nanoboxes

21

FFT3

FFT143

FFT4

FFT2

26

Dual Lanthanide Role in the Designed Synthesis of Prussian Blue Analogue Nanocages

In H2O

Miniemulsion Crosslinked    Organo‐nanoshell

Surfactant Detachment  Nanocage (mesoporous)

MeOHLn3+

Sonication

Toluene

Hexadecane

= pentacyanoferrate terminated triblock copolymer (see Scheme 2 for structure)

nanoshell (mesoporous)

Makoto Komiyama et al JOURNAL OF PHYSICAL ORGANIC CHEMISTRY, VOL. 11, 41–46 (1998)

27

MetalloSurfactant Design for the Synthesis of Nanocages

NoemÍ D. Lis de Katz a and Néstor E. Katz Monatshefte für Chemic 113,745‐‐750 (1982)

28

SEM and TEM of PB analogue Nanocages

Er@PB Gd@PB

1 µm

100 nm100 nm

29

Synthesis of Silica Nanocapsules

Carbon element mapping

TEM analysis:(Contrast was provided by selectively staining encapsulated dyes using OsO4 )

IPR 20

12

5/10/2012

6

Block Copolymer Assisted PB Nanoparticle Synthesis

bipyridinium‐functionalized bl k i (BI)block ionomer (BI)

31

X. Roy, J. K.‐H. Hui, M. Rabnawaz, G. Liu and M. J. MacLachlan, J. Am. Chem. Soc., 2011, 133, 8420–8423.; Angew. Chem. Int. Ed. 2011, 50, 1597 –1602

Pentacyanoferrate-Coordinated Block Copolymers

10 9 8 7 6 5: ppm

0 h

0.75 h

1.75 h

3.75 h

6.5 h

(b)

300 400 500 6000.0

0.5

1.0

1.5

2.0

Ab

sorp

tio

n

Wavelength (nm)

0.75 h 1.75 h 3.75 h 6.5 h

(a)

UV                                                                        NMR

Micellization of Pentacyanoferrate-Coordinated Block Copolymers

EtOH

33

PDMA P4VP Fe(CN)5

P(4VPFe-co-4VP)-b-PDMAin water

Electron Microscope Images

a b

c d

PB nanoparticles: uniform morphology and size, soluble in water and organic solvents

Thermal Properties of the PB NanoShells

4 0

6 0

8 0

1 0 0

igh

t (%

)

1 0 0 2 0 0 3 0 0 4 0 0 5 0 0

0

2 0

Wei

T em p era tu re (oC )

Higher thermostability of PB nanoshells; The organo‐nanoshells comprise >90 wt% organic surfactant in their interior.  35

Thermal Behaviour of the Nanocages

40

60

80

100

ht

loss

(%

)

Gd@PB

0 100 200 300 400 500 600 700 800

0

20

40

We

igh

Temp °C

Er@PB 

Gd@PB

The nanocages consist of pure metal coordination polymers

36

IPR 20

12

5/10/2012

7

Nanocages with Mesoporous Walls

8

9

0.020

N2 gas adsorption (black) /desorption (red) isotherm (left) for Er@PB nanocages and the concomitant pore size distribution curve (right).

0.0 0.2 0.4 0.6 0.8 1.00

1

2

3

4

5

6

7

8

Qu

an

tity

ad

sorb

ed

(m

mo

l/g

)

Relative pressure (P/P0)

1 10 100

0.000

0.005

0.010

0.015

Po

re v

olu

me

(cm

3 /g.n

m)

Pore width (nm)

37

Synthesis of Core/Shell PB Nanoparticles

38

PPy/PB Core/Shell Nanoparticles

39

Photoluminesence of PB Nanoshells and PPy/PB Core‐Shell Nanoparticles 

PPy/PB

40

PB nanoshells

PPy

Photoluminescence of PPy/PB Core/ShellNanoparticles inside Cells

41

Electronic Properties of PPy/PB Core-Shell Nanoparticles

The specific capacitance of the electrode is calculated to be 187.5 Fg‐1

IPR 20

12

5/10/2012

8

Summary

I) Explored the potential of polymer supramolecular chemistry.

II) Polymer chemistry combined with metal coordination and organometallic chemistry is a promising approach for processible functional materials

We strive to develop functional materials via supermolecular, polymer and organometallic chemistry

43

III) Designed synthesis of metal coordination polymer nanoparticles hasbeen developed and offers a new route for functional nanomaterials.

+

Acknowledgments

• Dr. Guodong Liang, Dr Ronan McHale, Ms YiBo Liu, Ms Sunjie Ye, Ms Negar Ghasdian, Mr Tanapak Metanawin, Dr. Tian Tang.

• Dr. David Vernon and Dr Rongjun Chen at Leeds for cell studies.

• Dr. Patrick McGowan at Leeds for Pd self‐assembly studies.

• Dr. Jiaping Lin at ECUST for peptide block copolymer self‐assembly

• Dr YunLu at Nanjing University for conducting polymer/PN core/shellDr. YunLu at Nanjing University for conducting polymer/PN core/shell nanoparticles

• EPSRC, NESRC and University of Waterloo for financial support.

44

IPR 20

12