xiaolan zou

26
Association Euratom-CEA TORE SUPRA EAST, China 07/01/2010 Xiaolan Zou 1 Xiaolan ZOU CEA, IRFM, F-13108 Saint-Paul-Lez-Durance, France Heat and Particle Transport Investigation in Tore Supra with SMBI

Upload: vinson

Post on 16-Jan-2016

49 views

Category:

Documents


0 download

DESCRIPTION

Heat and Particle Transport Investigation in Tore Supra with SMBI. Xiaolan ZOU. CEA, IRFM, F-13108 Saint-Paul-Lez-Durance, France. SMBI Experiments. SMBI experiments setup:  Modulation frequency: 1 Hz;  Density: n e : 1.3~3.0x10 19 m -3 - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Xiaolan  ZOU

AssociationEuratom-CEA

TORE SUPRA

EAST, China 07/01/2010 Xiaolan Zou 1

Xiaolan ZOU

CEA, IRFM, F-13108 Saint-Paul-Lez-Durance, France

Heat and Particle Transport Investigation in Tore Supra

with SMBI

Page 2: Xiaolan  ZOU

AssociationEuratom-CEA

TORE SUPRA

EAST, China 07/01/2010 Xiaolan Zou 2

R(m

)

TS#43248 2D image of Te perturbation during SMBI with ECRH

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

4 4.5 5 5.5 6 6.5 71.5

1.6

1.7

1.8

1.9

2

t(s)

ne(1

01

9m

-3)

-0.4

-0.2

0

0.2

0.4

SMBI Experiments

SMBI experiments setup: Modulation frequency: 1 Hz;

Density: ne: 1.3~3.0x1019m-3

“non-local” transport: Central heating driven by edge cooling (CHEC)

Fig.1 SMBI modulation experiment with ECRH.

Previous Observations

Gentle, TEXT, Impurity, 1995

Kissick, TFTR, Impurity, 1995

Zou, Tore Supra, Pellet 1998

Mantica, RTP, Pellet, 2000

Page 3: Xiaolan  ZOU

AssociationEuratom-CEA

TORE SUPRA

EAST, China 07/01/2010 Xiaolan Zou 3

1 1.5 2 2.5 3 3.51.5

2

2.5

3

ne

Te(k

eV)

Observation Diagram for CHEC

with CHEC

withou CHEC

Threshold in density : 2.2x1019m-3

Fig.2 Diagram for the observation of CHEC.

SMBI Experiments

Page 4: Xiaolan  ZOU

AssociationEuratom-CEA

TORE SUPRA

EAST, China 07/01/2010 Xiaolan Zou 4

0 0.2 0.4 0.6 0.8 10.5

1

1.5

2

2.5

3

3.5

4

4.5

5

r/a

Te (

ke

V)

TS43251

q=1

Te inversion

radius

(a)

t0 = 11.04 s

t = t0 + 45.6 ms

t = t0 + 178 ms

0 0.2 0.4 0.6 0.8 1-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

r/a

T

e (

ke

V)

TS43251

Te inversion

radius

q=1

(b)

t0 = 11.04 s

t = t0 +45.6 ms

t = t0 +178 ms

Temperature profile comparison between three phases

1) before injection

2) after injection and with ‘nonlocal’ effect

3) after ‘nonlocal’ phenomena disappear.

Temperature Profile

Fig. 3 Temperature profile variation and perturbation evolution with nonlocal effect.

Page 5: Xiaolan  ZOU

AssociationEuratom-CEA

TORE SUPRA

EAST, China 07/01/2010 Xiaolan Zou 5

),(1

trSbTTrVr

Tr

rrt

Teconv

ee

Diffusion Convection SourceDamping

t(s)

R(m

)

TS#43248 2D image of Te perturbation (SMBI+ECRH)

5.04 5.06 5.08 5.1 5.12

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3 -0.3

-0.2

-0.1

0

0.1

0.2

0.3

SMBI

Hot pulse

Cold pulse

Fig.4 Time-space evolution of the temperature perturbation during SMBI with CHEC.

t(s)

R(m

)

TS#43253 2D image of Te perturbation (SMBI+OH)

5.04 5.06 5.08 5.1 5.12

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3 -0.15

-0.1

-0.05

0

0.05

0.1

SMBICold pulse

Fig.5 Time-space evolution of the temperature perturbation during SMBI without CHEC.

Cold Pulse Propagation

Page 6: Xiaolan  ZOU

AssociationEuratom-CEA

TORE SUPRA

EAST, China 07/01/2010 Xiaolan Zou 6

t(s)

R(m

)

TS#43248 2D image of dTe/dt

5.05 5.06 5.07 5.08 5.09 5.10 5.11 5.12

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3 -40

-20

0

20

40

5.06 5.065 5.07 5.075 5.08 5.085 5.09 0

0.05

0.1

0.15

0.2

0.25

0.3

t(s)

W(m

)

TS#43248 Width of the cold pulse

5.06 5.065 5.07 5.075 5.08 5.085 5.092.6

2.65

2.7

2.75

2.8

2.85

2.9

2.95

3

t(s)

R(m

)

TS#43248 Position of the cold pulse

V=7.3m/s

Cold Pulse Propagation

Convection Diffusion

Convection

Diffusion

Strong convection

(heat pinch)

Weak diffusion

(soliton?)

Fig.6 Time-space evolution of dTe/dt during SMBI with CHEC.

Page 7: Xiaolan  ZOU

AssociationEuratom-CEA

TORE SUPRA

EAST, China 07/01/2010 Xiaolan Zou 7

0

0.05

0.1

Am

plit

ud

e (A

.U.)

2.5 2.6 2.7 2.8 2.9 3 3.13

3.5

4

R (m)

Ph

ase

(rad

)

42348 Exp.42348 Simu.

43253 Exp43253 Simu.

2.5 2.6 2.7 2.8 2.9 3 3.10

0.2

0.4

0.6

0.8

1

1.2

0

1

2

3

4

5

6

7

R(m)

V(m

/s)

43248 V43253 V

Heat Transport with FFT Analysis

with CHEC

without CHEC

Fig.7 Amplitude and phase of the 1st harmonic of the Fourier transform of the modulated temperature by SMBI. Experimental (O) and simulation (-) results.

Fig.8 Parameters (, V) used for the simulation of Fig.6.

with CHEC

without CHEC

Phase sensitive to the diffusivity: .

Weak diffusivity in the case with CHEC.

2

Page 8: Xiaolan  ZOU

AssociationEuratom-CEA

TORE SUPRA

EAST, China 07/01/2010 Xiaolan Zou 8

Particle Transport with FFT analysis

Fig.9 FFT analysis of the density modulation.

Sharp decrease of the particle diffusivity inside of the temperature perturbation inversion region.

Particle pinch velocity observed in both cases. The pinch value in the case with CHEC is one third than that in the case without CHEC.

Barrier for particle transport found around the temperature inversion radius (grey area) for the case with CHEC.

2

4

6

8

10

12x 10

17

Am

plitu

de

1.8 1.9 2.0 2.1 2.2 2.3 2.4-0.2

0

0.2

0.4

0.6

Ph

ase (

rad

)

R (m)

FFT analysis of the density modulation

TS#41632

TS#41628

No NLT

NLT

D=1.3m2/s, V=3.5m/s

D=1.5m2/s, V=5.5m/s

D=0.4m2/s, V=0.4m/s

D=1.1m2/s, V=1.8m/s

q=1

Te inversion region

CHEC

w/o CHEC

Page 9: Xiaolan  ZOU

AssociationEuratom-CEA

TORE SUPRA

EAST, China 07/01/2010 Xiaolan Zou 9

Simulation with Analytical Transport Model

2

4

6

8

Am

plit

ud

e (A

.U.)

TS#41628, SMBI modulation

1.7 1.8 1.9 2 2.1 2.2 2.3 2.4-0.5

0

0.5

R (m)

Ph

ase

(rad

)

Simu.

Exp.

Simu.

Exp.

Fig. 10 FFT analysis and simulation for density perturbation

Fig. 11 Particle diffusivity D and pinch velocity V used for simulation in Fig.10.

1.7 1.8 1.9 2 2.1 2.2 2.3 2.40

0.5

1

1.5

2

D (

m2 /s

)

1.7 1.8 1.9 2 2.1 2.2 2.3 2.40

1

2

3

4

R (m)

V (

m/s

)

D (m2/s)

V (m/s)

Barrier

Page 10: Xiaolan  ZOU

AssociationEuratom-CEA

TORE SUPRA

EAST, China 07/01/2010 Xiaolan Zou 10

6 6.1 6.2 6.30.1

0.11

0.12

0.13

0.14

0.15

t(s)

TS#43248 Confinement time

nli

+30%

6 6.1 6.2 6.30.2

0.22

0.24

0.26

0.28

0.3

0.32

t(s)

TS#43253 Confinement time

nli

Energy Confinement

with CHECwithout CHEC

Improvement of the energy confinement in the case with CHEC: +30%

No improvement of the energy confinement in the case without CHEC.

Fig.12 Confinement time during SMBI for the case with CHEC.

Fig.13 Confinement time during SMBI for the case without CHEC.

Page 11: Xiaolan  ZOU

AssociationEuratom-CEA

TORE SUPRA

EAST, China 07/01/2010 Xiaolan Zou 11

Fig.14 Confinement time ratio before and during SMBI as function of the density.

Improvement of the energy

confinement for low density

(ne<2x1019m-3).

No improvement of the energy

confinement for high density.

Better improvement with ECRH.

Energy Confinement

0.8

0.9

1

1.1

1.2

1.3

1.4

1 1.5 2 2.5 3ne

t ET/t

ES

OH, w/o CHEC

OH, with CHEC

ECRH, with CHEC

Page 12: Xiaolan  ZOU

AssociationEuratom-CEA

TORE SUPRA

EAST, China 07/01/2010 Xiaolan Zou 12

Rotation Velocity

Fig. 15 Poloidal rotation velocity measured by Doppler reflectometry. High density case withou CHEC.

Fig. 16 Poloidal rotation velocity measured by Doppler reflectometry. Low density case with CHEC.

without CHEC with CHEC

Page 13: Xiaolan  ZOU

AssociationEuratom-CEA

TORE SUPRA

EAST, China 07/01/2010 Xiaolan Zou 13

Alternative Approach

Cold source propagation Strong convection Weak diffusion

),(1

trSbTTrVr

Tr

rrt

Teconv

ee

Diffusion Convection SourceDamping

Alternative Approach Source effect negligible No convection Diffusivity variation effect

Turbulence propagation

Page 14: Xiaolan  ZOU

AssociationEuratom-CEA

TORE SUPRA

EAST, China 07/01/2010 Xiaolan Zou 14

Turbulence Soliton and Zonal Flow

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0

0.2

0.4

0.6

0.8

-0.2

0

0.2

e [m2/s]

r [m]

t [s]

t (s)

r (m

)

e (m2/s)

0.48 0.5 0.52 0.54 0.56 0.58 0.6 0.62

0

0.2

0.4

0.6

0.8

-0.1

-0.05

0

0.05

0.1

Drift-Wave-Zonal-Flow Turbulence Soliton (Z. Gao, L. Chen, F. Zonca, Phy. Rev. Lett., 103 (2009))

Non-linear Schrödinger equation Linear dispersion Non-linear self-trapping by scalar potential well created by zonal flow

Page 15: Xiaolan  ZOU

AssociationEuratom-CEA

TORE SUPRA

EAST, China 07/01/2010 Xiaolan Zou 15

t (s)

r (m

)

Te

0.48 0.5 0.52 0.54 0.56 0.58 0.6 0.62

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

t (s)

r (m

)

Te/t

0.48 0.5 0.52 0.54 0.56 0.58 0.6 0.62

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 -20

-15

-10

-5

0

5

10

Simulation with Turbulence Soliton

Page 16: Xiaolan  ZOU

AssociationEuratom-CEA

TORE SUPRA

EAST, China 07/01/2010 Xiaolan Zou 16

Mechanism Zonal Flow

Is Zonal Flow the mechanism for CHEC and soliton-like

propagation of the cold pulse?

SMBI

Cold Pulse

Drift- Wave

Turbulence

Turbulence Solitons

Hot Pulse

Zonal Flow

Positive

Negative

Page 17: Xiaolan  ZOU

AssociationEuratom-CEA

TORE SUPRA

EAST, China 07/01/2010 Xiaolan Zou 17

Conclusions

CHEC effect observed with SMBI for low density. Similar threshold in density as pellet.

Improvement of the energy confinement by SMBI for low density. Better improvement with ECRH.

Plasma rotation change observed during SMBI for low density.

Weak diffusion and strong convection (pinch) for the cold pulse propagation in the case with CHEC or

Soliton like propagation of the turbulence governed by zonal flow

Simulation qualitatively with turbulence soliton.

Page 18: Xiaolan  ZOU

AssociationEuratom-CEA

TORE SUPRA

EAST, China 07/01/2010 Xiaolan Zou 18

Open Issues

Heat soliton or Turbulence soliton ?

Mechanism for the improvement of the energy confinement by SMBI.

Correlation between CHEC and this improvement.

Coupling between the heat and particle transport.

Page 19: Xiaolan  ZOU

AssociationEuratom-CEA

TORE SUPRA

EAST, China 07/01/2010 Xiaolan Zou 19

Page 20: Xiaolan  ZOU

AssociationEuratom-CEA

TORE SUPRA

EAST, China 07/01/2010 Xiaolan Zou 20

0 0.2 0.4 0.6 0.8 1-2

0

2

4

6

V

b

Page 21: Xiaolan  ZOU

AssociationEuratom-CEA

TORE SUPRA

EAST, China 07/01/2010 Xiaolan Zou 21

SMBI in OH for low density

Fig. 2 Zoom of the temperature perturbation during and after SMBI.

V=4m/st / s

R (m

)TS43251 Te fluctuation and linearized density

9.9 10 10.1 10.2 10.3

2.4

2.6

2.8

3 -0.4

-0.2

0

0.2

0.4

0.6

0.8

9.9 10 10.1 10.2 10.3

1.3

1.4

1.5

1.6

nel (

x10

19/m

3)

t (s)

Cold pulse

Injection

Hot pulse

Te inversion

V=3m/s

Page 22: Xiaolan  ZOU

AssociationEuratom-CEA

TORE SUPRA

EAST, China 07/01/2010 Xiaolan Zou 22

Pellet in OH for low density

R (

m)

TS#43251 2D image Te perturbation during pellet

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

17 17.02 17.04 17.06 17.08 17.1 17.12 17.14 17.16 17.18 17.2

1.4

1.6

1.8

t (s)

ne (

10

19m

-3)

-0.4

-0.2

0

0.2

0.4

0.6

Cold pulse

Pellet

Hot pulse

Fig.4 2D image of Te perturbation with pellet.

V=4m/s

Page 23: Xiaolan  ZOU

AssociationEuratom-CEA

TORE SUPRA

EAST, China 07/01/2010 Xiaolan Zou 23

t (s)

R (

m)

TS#43251 2D image of Te perturbation during SMBI with ECRH

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

5 5.05 5.1 5.15 5.21.5

1.6

1.7

1.8

t (s)

ne (

10

19m

-3)

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

SMBI during ECRH for low density

ECRH

SMBI

Hot pulse

Cold pulse

Fig.5 2D image of Te perturbation with SMBI during ECRH.

V=5m/s

Page 24: Xiaolan  ZOU

AssociationEuratom-CEA

TORE SUPRA

EAST, China 07/01/2010 Xiaolan Zou 24

R (

m)

TS#43253 2D image of the temperature perturbation during SMBI in OH 2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

10 10.02 10.04 10.06 10.08 10.1 10.12 10.14 10.16 10.18 10.22.8

2.85

2.9

2.95

3

3.05

t (s)

ne (

101

9m

-3)

-0.2

-0.1

0

0.1

0.2

SMBI in OH for high density

SMBI Cold pulse

Fig.6 2D image of Te perturbation with SMBI in OH for high density.

V=7m/s

Page 25: Xiaolan  ZOU

AssociationEuratom-CEA

TORE SUPRA

EAST, China 07/01/2010 Xiaolan Zou 25

t / s

R (

m)

TS#43253 2D image of Te perturbation with pellet

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

15 15.02 15.04 15.06 15.08 15.1 15.12 15.14 15.16 15.18 15.22.85

2.9

2.95

3

3.05

3.1

t (s)

ne (

10

19m

-3)

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Pellet in OH for high density

Cold pulse

Pellet

Fig.7 2D image of Te perturbation with pellet in OH for high density.

V=8m/s

Page 26: Xiaolan  ZOU

AssociationEuratom-CEA

TORE SUPRA

EAST, China 07/01/2010 Xiaolan Zou 26

Heat Transport with FFT Analysis

Fig. 8 FFT analysis of the temperature perturbation.

Simulation results show sharp decrease of heat diffusivity.

Heat pinch velocity observed in both cases. The pinch value in the NLT case is half than that in the no NLT case.

Barrier found at the temperature inversion radius(grey area) for NLT case. 0

0.05

0.1

Am

pli

tud

e

FFT analysis of the temperature modulation

2.4 2.5 2.6 2.7 2.8 2.9 3.02.5

3

3.5

4

4.5

Ph

as

e

R (m)

FFT analysis of the temperature modulation

TS#41632

TS#41628

No NLT

NLT

=0.15m2/s, V=1.4m/s

=0.85m2/s, V=2.7m/s

q=1

Te inversion region

Vph=1.4m/s

Vph=3.3m/s