x0112spg17 -solutions9 kinetics & equilibriumchemunlimited.com/proof key - x0112spg17 version...

18
Exam I / Chem 1412 / Spring 2017 X0112SPG17 -Solutions9 Kinetics & Equilibrium C. 2 1 i[)es;:£le:1:8tsiil:SS5:;Pl;et::£25c°o°3Lan°: :d]d°; :i`=2oct::i3'i(: 06 g/m°;:h;¥:,h.~:;at:_e b£;+:4:,:;±?th::£¥+rrf:, for ir)epa±£:lags:i£:S5S;.I:t;°#:2co3 and add 5.oo``kg oi::±2o. fyLFTZ:?€S t `r'Crfe%::i:::oi#::83:=::::=2°3::t:iftE:%naihomogeneous D) Measure 10.6 g Na2CO.i and add H20 until the final homogeneous volume of 5.00 L. E) Measure 53.0 gNa2C03 and add 5.00 L ofH20. of Na2C03 is present in 0.650 L of a 0.505 .. A) 34.8 C`) 53.5g D) 136g E) 82.3g 4 I.-.--zi`::___,--; C: --::__i` f 3.Wh #+-er/d,,ffffi .-- sELfooife,jn solution has a ''.'f:±=_rf_x.i:::fr:_ jv/ Na2C03 solution? f tf h` ¢stso = far? h if y= /'#,.r:=f Jf -^i'€rf7 ``.`. £:a F;*r@`&: I di ¢3£deky#`.i -e#pe,Pf':`>di^fJf,=;i72ffr74e(/:48#rtyzg8;Pftpffi;::;,`J 0 ? cyzs ~f iud/* 7f ;I = ;''-a`3 i ffi$ 3ff i{srf :fir#.f i iie,8%S>4fro_cf.:I:3!:j;1_. an Nal solution that c_ontains 7.3 g of Nal in 28.0 in iolarity of C) 0.0038-W D) 0.00019JW E) 0.26,L/ idf tFG7{r,; //f^rf u `} i tF;J~-= f tyRELed -/, 4. How many moles of sulfate ions are there in a 0.545-L solution of 0.489 tw A12(S04)3? D) 0.0888mol / rfu q4? //gyp:i i:S;J± ± 3£fro,ire `fey9,$3:4#Str ,,I. --+ELirrfu/d4{fu;);-#{VG==¢7So-:f7#f:PZIrff:;;gr t E) 2.69 mo1 #~„ ./?4f`==4,~',t a ,~` _;=i :+';„f&_fd,4,iap. `\= i f€i2_f¢._9~„+rfJ%£- 5. What mass of H3P04 (98.0 g/mol) is present in 36.2 L of a 0:b827 a4 solution of H3P04? ±±±, --`='.:-- -_.` A) 0.0305g 8) 0.00341g 1.:-:::-:`i-.--i_-_:=- D) 4.29x|o4g E`) 4.478 •f;-Caexp/i,f;Jif=m'y4=0^0822-3frrtyrs&:fCee3 = cgr4p` ,S fitwrf u. /£Palgr ii,N48f#£#¢pr=`2,SprybeLffifg6ee2z:ft:.`tir+i;€~;s\ e==

Upload: phunghanh

Post on 02-Oct-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

Exam I / Chem 1412 / Spring 2017

X0112SPG17 -Solutions9 Kinetics & Equilibrium

C.

2 1 i[)es;:£le:1:8tsiil:SS5:;Pl;et::£25c°o°3Lan°: :d]d°; :i`=2oct::i3'i(: 06 g/m°;:h;¥:,h.~:;at:_e b£;+:4:,:;±?th::£¥+rrf:, forir)epa±£:lags:i£:S5S;.I:t;°#:2co3 and add 5.oo``kg oi::±2o. fyLFTZ:?€S t`r'Crfe%::i:::oi#::83:=::::=2°3::t:iftE:%naihomogeneous

D) Measure 10.6 g Na2CO.i and add H20 until the final homogeneousvolume of 5.00 L.

E) Measure 53.0 gNa2C03 and add 5.00 L ofH20.

of Na2C03 is present in 0.650 L of a 0.505..

A) 34.8

C`) 53.5g

D) 136gE) 82.3g4

I.-.--zi`::___,--;

C:

€--::__i`

f

3.Wh

#+-er/d,,ffffi

.--

sELfooife,jnsolution has a

''.'f:±=_rf_x.i:::fr:_

jv/ Na2C03 solution?

f tf h` ¢stso = far? h if y= /'#,.r:=f Jf -^i'€rf7 • ``.`.£:a F;*r@`&: I di ¢3£deky#`.i-e#pe,Pf':`>di^fJf,=;i72ffr74e(/:48#rtyzg8;Pftpffi;::;,`J

0 ? cyzs~f iud/* 7f ;I = ;''-a`3 i ffi$ 3ff i{srf :fir#.f i

iie,8%S>4fro_cf.:I:3!:j;1_.

an Nal solution that c_ontains 7.3 g of Nal in 28.0 iniolarity of

C) 0.0038-WD) 0.00019JW

E) 0.26,L/

idf tFG7{r,; //f^rf u `} i tF;J~-= f tyRELed-/,4. How many moles of sulfate ions are there in a 0.545-L solution of 0.489 tw A12(S04)3?

D) 0.0888mol

/ rfu q4? //gyp:i i:S;J± ± 3£fro,ire `fey9,$3:4#Str ,,I.--+ELirrfu/d4{fu;);-#{VG==¢7So-:f7#f:PZIrff:;;gr

tE) 2.69 mo1 #~„ ./?4f`==4,~',t a ,~` _;=i :+';„f&_fd,4,iap. `\= i f€i2_f¢._9~„+rfJ%£-

5. What mass of H3P04 (98.0 g/mol) is present in 36.2 L of a 0:b827 a4 solution of H3P04? ±±±,--`='.:-- -_.`A) 0.0305g8) 0.00341g

1.:-:::-:`i-.--i_-_:=-

D) 4.29x|o4gE`) 4.478

•f;-Caexp/i,f;Jif=m'y4=0^0822-3frrtyrs&:fCee3

= cgr4p` ,S fitwrf u. /£Palgr

ii,N48f#£#¢pr=`2,SprybeLffifg6ee2z:ft:.`tir+i;€~;s\e==

X0112SPG17 -Solutions, Kinetics & Equilibrium

To dilute \1.00 L of a 0.600 jwto 0.100 A41. the final volume must be

:/::heoiigma|vo|umer:;;:;Jff¥=3a¢;-f¢,omj#b,_#60 L. ,3rf

#pofif#'

ID:8

ore information is needed to answer this question.imes the original volume.

What volume of 2.52 A</ Hcl is required

At 9.9[x]o2mL 4z¢„4cae=T]\ 1 <f: `, ir`2tt`T

-±--`:::-::-::-::...:---.:

E) 2.00xl02mL

to#:pare 176.5 mL of 0.449 A4 Hcl?`:.-i i- i--i\``fty,,

fff 2,f~2_rn . I"

`_---I,, a/pe.-- ~-

8. A dilute solution is prepared by transferring

A -T i--i

/ 3 63g±£ ###AtF /ii.ng- -

``J=_~:(Oiof-fif£9#de\){d?S,fffrofttr£

f ytrf i i {#ZGf `:f:i ro~rf

3`} F@f~ ife -, .``~=_.:_..i,,.£gr,Say-_f~wh

45.00 mL of a 0.5616 M stock solution tovolumetric flask and diluting to prark. What is the molarity of this dilute solution?

C) 0.04992 jly4

D) 0.01580JW

E) 0.2808A4

9. The EmEEillHriffl L

rM I V) rpE~,€a = ::fin I V;3 4i, i a:£ft

I g}FTF3f a/S ae;{ #Ef Fed

rfeEt2±

a4QQ=Qptry

` ,I: © a-#{>f{jj} i,¥ac_Ifi- #st.`££} /i, ,`, /''?:f±:i.S__,_-::f't'±sffst--:J_-6,063ianI a rhS..f de + '?:ys-:-'::;

asampleofwastewale'r`i%ig¢befa#::iinedbyusinggravimetricanalysts. To a 100.0-mL sample of the wastewater is added an excess of sodium carbonate,forming the insoluble lead (11) carbonate_ (267.2092 g/mol) according to the

The solid leadivas the concehtration9offfigiven below.

balanceis dried, and its mass is measured to b

n the original wastewater sample?

Pb2+(czq) + Na2C03(czg) + PL!£L03(5') + 2Na+(CJg)

- f l[+L+ v/©2=(07-% #:&^¢_df`SJ #

0.4078

0 . 0 1 5 2 6 A,/

C) 1.090Jly,

D) o.oo4o78jw /ordgiv#.~A`=g= ;`:3:<=~ +jE) 65.52A4

E..

if#!rl|,¢ife4-.:6J#,;Lsft.:a

i? f ty4 F{--4(,Atre

gr rf/vfl,c;&--.:----

if 1.` f lSf t#31~/ i t#r€if/ ?,-__ Ff:?A ,:di-2, ='¢

~

2_f i. 8t ¥

/fy=atof.J\

?, fry a-fe#---/,I -£ x/3_3 fu-qA--ti /ch,nf row i

= /,i-3*p,.J*-ysf .--+-#r+4-_

2 /{.-rAt:A t,<--f i

9_ !±ffofas;±#'he=: f`. ^ =*Sap:#F@ f+_.f a=ft'f f i

€-:3=-==ie-

X0112SPG17 -Solutions, Kinetics & Equilibrium

' =j-..- :-:.

ID:8

10. What minimum masi±p±` copper (11) nitrate must be added to 30±£±=±Lig+£gj!ioo§£Z__:_ng phosphatesolution in order to completely precipitate all of the phosphqte as solid copper (11) phosphate?

2p043-tc79j + 3cuoro3j2t4Tcjj i cu3tpo4)2t,s'j + 6No3-tc79)

0.327 g

A) 3.20mL

c==ce --,-, eyi /2 ,--, 3.-;--: -I---}

11. The reaction of Hcl with NaoH is represented by the equation

Hcl(c}g) + NaoH(czcj) i Nac1(c7g) + H20(/)

What volume of 0.631 A4 Hcl is required to titrate 15.8 mL of 0.321 jw NaoH?a~\'

ifffi,ty7:!,fiSj£

i r i f{ 5-,E) 31.1mL

/;,i,::,=1 A /# :I deny,-

:i3}p idy*p. i pirn giv -- /I b i "f4 ifif9¢'3Bgy f a:.;)

(a. `-_3gST8hase:r4f .\::a:=.^ ..3F_i;.i:F5E:Iri a volumetric analy-sis experiment, a' s5lu'tioh of 56dium in acidic solution istitrated with a solution of potassium permanganate (KMn04) according to the following balancedchemical equation :

2KMn04(crq) + 8H2S04(C/C/) + 5NLfl2LP4(#g) + 2Mns04(czg) + 8H200 + 10C02(g)` +5Na2S04(c7g) + K2S04(cJg)

whatvolti^~`iniao.0388A4Ofsoiuii6ri7A) 1.38mL

10.3 in

D)` 2`5'.8 mLE) 20.OmL

13. A50.00-mL

jLS required to titrate 0:i34g.pf Na2C204 dissolved in 20.0 mL

f:nd -3 6

sample of a i+VETak acid is titrated with 0.0955 [WNaoH. At the endpoint, it is foundtitrant was used. What was the concentration of the weak acid?

0.0622 A4

C) 0.0955„

P.y:,:Tf a if::; _£ I;i;;f i;=:f eJSf !r "3-' -~~:P `j: i ` ' '

A -7` try- fy,,:".ap i .--- *\'.€

rM'if/)ff,FR4gs={fw'fr;ul)rfzrfgr,_`

/:// f{f{,; JF7£ Ef tyitf` I te€eer , f -Gde ¢fif f r©gr^}r#;`J

D) 5.87x|0~5A4 i;I `'?'L`

E) 0.147.fy4

/-,.--..--? cp , F -.,.a*4(:±34 'lseir _fk :\ '!=} + F. `:i

3 if 7# RE.:+£fi 0 ,oGf effl '1;--#

r7 ©b`) rpe\ a if ape_:.:`if L::;~~ ,-... a_ v4r8)

a``p¢£if -+ 3gde#wd3:£±%J - &3f ##;\rs j

=iS£\f r±` 3;ed RA-,S`if.4r pgf I S~2 #fff -¢ 'givr\7J

3Efe trr*,v.xf3&,,a, f li#A£~ = ;;i? !&3#=Prfe )j ff c3 f ipaeedck`ffi

=¥# ;;2= i:,) =>£ i ty\f ,ha''-i l#;Td #Sf i u'rty>

=frT~6`-~at 2=:i4 rf l{A;i , = 33furf ug gr`''.Ir~

0? 00//C?A--;i--rf rr;;I -fi

EEiii

_ - --__i

_=> /< hafr4% Cra~± ?<: grst©/ecg exffffofrf eir

-=>^faLeeA±cdr¢rfo9AL>cJ,cM#catgde

# ar{if t#£`j=/8 gf g3,frstE f e\`fr-1 i`-

/.i { `. - : i-

--

af_ g# f f irf%ffi EEe#3

= 0 ,pt, //c2h4at4tf`_----

£ 4fty c:-de

/ --,.-; ---```

= o=cf ro C£

giv2-

`

xc>w2f/Irl7=` . .` -.-.- `-` ..-..---.-.. `` `

/#}if:r`,f r^`3 £`!f f -##p' gr i+J* - r'>~ ;';92::=£ :-:}¢*_i,_

`:i-r\`J^J~ C),03ulof £#if; f#J,#PB*gr a=

t/I e di{fcf+€-|rf e € f yrf eFft=§±ra ff3pr.Sgr`< f27 gas or

-->.£#-,S*-i€&.-air;.--;€4--+

-ttT----`..`-. `:f:-,

E=fi`

-> *Fse-.,--.-.--I

i>- - : I .-L/a

ib *:: :::I

L`i -rffu<-

i tg), €f if#ff€f-# ® #£F-rf \\`

# = c,,c"2-`.{=.:-:=-

ae.:3fe.r`.f§±f~`_#Pg::i

zP*ap i= i ,-,`

\

?«S , ::±fif #&5Srfa: *3:::.J&3- r*I-

'' Ir r:a,f 27cj3&.f ~

##ped,#,

/i?3fufl-

X0112SPG17 -Solutions, Kinetics & Equilibrium

rJ,jc

ID:8

14. Which of the following conclusions concerning the concentration-time plot provided below is/arecorrect?

C9EE::n°s:::]tt::act::::efasci:oS:arna:::t;So::tc;e::[regss°yhe:nt±t¥:.,ZgousAgr#7`9fof:`::r€"I.-_--,------ ul-I-I_. `

3;euaf::::creat3:::°ptrnotdBuct`ofthereact[on/g/g¥'#7{gpjgf<''9;t~t`€_beAp!ngurfegrT')

Time (s) -EEiiiEiEiE

a) 2onlyC) 3onlyD) 1and2E) I,2,and3

15. For the hypothetical reaction A + 28 i 2C + D` the initial rate of disappearance QfA-js 2.0 x 10~2mol/(L . s). What is the initial rate of disappearance offi?~j

1 0-2 mol/(L . s)|0~2 mol/(L . s)

i:4 x 10--I mol/(L . s)D) 4.0 x 10+ mol/(L . s)E) 1.4x l0~2mol/(L.s)

8\f f i#rtt#It\=+I #: ::!# ts rf f2_;:;.e'`;,;;::::r^_`=gr#=#=ex,¢-g'RE=coAy.i`~A

16. For the reaction of the ammonium ion with nitrous acid. the net reaction is

NH4+(cJg) + HN02(cJg) i N2(g) + 2H20(/) + H+(c/g)

If the initial concentration of nitrous acid is ££9H44and, after 28.8 s has elapsed, the concentrationI--_-ulffrsE3=se_-i.<i

acid has fallen to 0.82 jw. what is the average rate of the reaction over this time interval?¢=\-I --L`i+I -I

0.028 J\4/s

C) -0.0063 JW/sD) -0.028 A,4/sE) 0.063A4/s

4-y;-,/-i?>f;.,S

4

-,` i. .fly:,I,¢3

r2 ;-: . i I.

= ,3,,#,;)££di;ff;

X0112SPG17 -Solutions, Kinetics & Equilibrium

£P~17.Whichofthefollowingstatementsistrueconcerningthereactiongivenbelow?

•.-'';+:,::-

J4+

`-.'::..`.

I-.. •f ted \

ID:8

2H2S(g) + 02(g) + 2S(,S`) + 21120(g) `

A) The rate law is Rate = #[H2S|2[o2]. #,`4:'t ¢ A,#„ {,A`~4 ¢,4#t'j ,j ,i,, /,,;`,c, ,A,,i.`; a , a , A /p,~j #+i:" ~

8) The reaction is second-order in H2S(g) and first-order in 02(g). /g ¢`'r©~ a_44jftfa-adr J¢D `C) The reaction is firstLorder in 112S(g) and second-order in 02(g). 4£A 'C2,rfu`.,` 4€z'4;forg #adeF CSrfu

PLThe rate law is Rate = fr[H2S][02]. #:,f:4;B ` q`==€¥-==.~;fe,~i gj=jpchga-€#-rfe_ _.he rate law may be determined only by experiment

18. Consider the reaction

c7A + 6B JLi cD + eE C = catalyst

The rate law is

Rate = k[A]ey[B]'-[C]i``

h of the following statemenQ±s±j=The exponents g and r are always equal to the coefficients cz and ZJ,

) The overall reaction order is g + 7. + 5T.C) The exponent s must be determined experimentally.D) The symbol k represents the rate constant.E) The exponents q. J', and 5` are often integers.

y . / nffyq``.._.. .Fs r- r r Fc:` _c+^

affsep:#pRE`:tgr',£Ir---##r-i

f yatFs¥31,I ` /_ // ; ,

)`'f ffufl -~`} jSca-£-~`aj~t,a ``'~I£`Al '.a

I-`T±~

19. For a certain first-order reaction with the general form c/A + products, the rate is 0.32 A4.s-I whenthe concentration of the reactant is 0.29 jw. What is the rate constant for this&---

D) 3.1s-I

E) 3.8s-I

:-X:i -- ifff r± g4 I £ rs.±=,frA-

~ e9 F,p&, RAAofI-,Ll= //Jrc¥

20. The following data were obtained for the hypothetical reaction 2A + 8 + products.

[A]o (JW) [8]() (A4) Initial Rate (jly4/s)

0.21 0.1 4)

=`---::-`0.2 0.2-`1. 0.6 0.1

What is the overall order of this reaction?A)38) 1/2

Q=-3`~,` 3 ^€ul teapfuR.EL*ys *t*=~ ts

``. -froatgivJ£`flst y,.se¢^, \ ,;€- {A+

:ffed, type-'f '2 I #:£9&

:`j¢.+.-Af ,giv.i.:£ f lE'{p;tyr`F, E`-- -:;-pe.f ,t ,...E`raE=

tta]LTEaemaEi=#

...

X0112SPG17 -So]utions. Kinetics & Equilibrium

..-.':I,-

ID:8

21. If a reaction is zero-order in a reactant, when the concentration of the reactant is decreased by afactor of 2, the reaction rate willA) quadruple.`I I I I 11

(.I--r`|.in;lil`,|.,`,`iiTuiTt\_BrtH- I I 4E) double.

ake - (``r-e(? .-;I .:`,(--,.,..,,A +,--'i

eiw}`-ure'r'``+:§`^4

` ®c,`t„ 4a,\z¥i#| c-x¢ r=----i

22. The following data were obtained in a kinetics study of the hypothetical reaction A + 8 + C +

products. "

[A]oj44 [B]oJ44} [£]oJ44l I_a_itial_ Rate (1P-3j!4[s}0.40.2

0.6 i,`;y "

0.2-0.2

0.4 0.20.4 0.40.1, 0.2.-rl

0.1 -- 0.2 ,

0.2 0.4

23.

160

80I 5 I+x`

520

p\`.. ::: A /f€:FcldrT3P~;: f t` `!

method. what is the order of the reaction with respect to A?

C) thii.d-orderD) second-orderE) impossible to tell from the data given

Nitrosyl chloride is produced from the reaction of nitrogen monoxide and chlorine:

2NO(g) + C12(g) i 2NOcl(g)

The following initial rates at a given temperature were obtained for the concentrations listed below.

Expel.iment Initial Rate (mol.L-I.h~[) [NO]o (mol.L-1) [C12]o (mol.L[)

-.`+`L_ ]2;:8]9E9#6.63

From the data, what is the experimental rate law?A) Rate=4[C12]

8) Rate=k[NO]

en.25 -.

::;i" ,*Ll;;

7±" ;f a qal 4rcft i air;P cftarsrfffl

/, j~£ ffiFrf u~ i r± tt. 2~~

:. `f a =fA¢ Fwl-;nf&pedrff ~

6

X0112SPG17 -Solutions, Kinetics & Equilibrium

LZ=i-,,,..:--i`.

4..

ID:8

24. At a given temperature, a first-order reaction has a rate constant of 3.5 x 10-3 s-t. How long will itesTz=ie-i-*=:`rf=`=T=th-g:I:+r7`-.

--=7/; p#// /:,A-ceytrfty;`-,prf`-/

take for the reaction to be 24% complete`?A) 410s8) 1200sC) 910s

`'

€3;,`¢H -,,-,,, +--/4-,,-3-;f4 <gr--;i- ` ` --. r-`fr} I--- Jj

eeEj-zak-,,<t if z-_i i ;\,I

-----i --- ®:.f# .:-7f:i.--``,I

25.tfec}±]ne±=i:ac[orLeca:lit::tit;1:tot:x#¥:a;§8±is7¥aisfs°tbhseerc`;endc:°nt±:y±:::i;Ca°ftnes:aTn8t6°:?2j2qife-"fE-F3,=te;;i/4.---i/,©pe``je_:Ez.I:¢-®6{9,#£{j:±`,j3

- ri/ , o „ .j,(c&' rJ,7~`,)`==- ©/{£/7 f tip

1#_>=`

_::-i_

? `/i

PJ-`__OJ.-91_,7,`,i,/

D) 0.59Jly4

E) 0.98-,ly4

26. The nuclide %Nb decays by a first-order process with a rate constantwill it take for 82.0%~Of the initial amount of 96Nb to be consumed?

33.8 h

•T C) 27.7hD) 6.70hE) 6.08h

27. FortheofAi

i::;; FS--,a-Pr~-,(-3,-/3 9 `--:4Ay-_,--i, -/ #gSU

!`

_`- r-`c.5,?`i -. ^'_--'=.\ I-¢?<4A ~`3 £®.y#fi?,4_¥+y-€`

first-order reaction A iow long would it take for A to b

:;\ --\i':i ---- i.:-`-c,.``€) --1iT9 s

D) 18.6s

E) 4.88s

€;f!efflftoftr`.a.D

_

Jt,'ji£\L__.ci=i-.,

al-@c"-G6`?

J\`=- {S'gffi*fe ; €prT€

of 2.96 x 10-2 |r[. How

ht£ -I aprf de-3

.0839 sl

long

<-Er--ng->'

If the initial concentration

fj7oF=±±77dczali.--=--!9 f a-g.i

The half-life of a reaction isA) twice as long for a second-order reaction as it is for a first-order reaction.8`) one-half of the time the reaction will take to go to completion.C) how long the reaction can run before stopping.D) the time it takes for the amount of product formed to equal half the initial amount

of reactant.e time it takes for the reactant concentration to decrease to one-half of its initial

#+gjEL_=__.I_.,a_,___.___±___rf.i___.xpr_I+~~_.,_.f___`___==.__~,.I__._.i._`_~`...`_

7

X0112SPG17 -Solutions, Kinetics & Equilibrium

ulD

ID:8

29. A first-order chemical reaction is observed to have a rate constant of 25 min-I . What is thet=--_I----L------

ng half-life for the reaction?

C) 36minD) 2.4sE) 35.8s

~J i ::j± ,'.a

:-ul-i-g €¢,¢- <:---I ff '!+ :;,£^F.€} RQirS``,-^

i ,as? F:.,a 4r - :A)•i-

(.-̀,----_____--30. In a first-order reaction, the half-life is 137 minutes. What is the rate constant?

1.22 x 10-i s-I

5790 s--1

0.304 s-'5.06 x

8.43 x

e

.... Jf.. -

. ,,ij---

a , /3 C} 3

_, V 4,r /376ck`I 0-5 s-I

=f±..:` = C}r /gif Jfff i f ro¢`f-i

E6~rfe'a8h't¥aii`6n5` of< trie reactants are increased. the rate of the reacti6n inbest explained byA) an increase in the fraction of molecules that have enough energy to react.8) an increase in the rate constant.#yngz -7-;f;`,,#f,:

reases.

_/•f-inrfrf£This is

~£)_rdELi!±£reasfjnJba£±re±ag±r29±£±±±ia!t-£-sii_p``.tiean Increase in inetic energy o f the molecules. ;

-32. For the formation of 1 mol of nitrosyl chloride at a given temperat

H

NO(g) + lz'2 C12(g) i NOcl(6')

The activation energy for this reaction isreaction`?A) 59kJ/mol

E) ~103kJ/mol

33. For the first-order reaction

1/2 N20i(g) i N02(g); Afz = 28.6 kJ

the activation energyA) 15.2kJ/mol8) 82.3 kJ/molC) -53.7kJ/mol

kJ/mo

ear/rft}`-i---A,,tfu-3A

€,;±f;:,;;:;;::S€rf-,

gf g r'.red'{-bj-tfe`j .s~-

e. AH -A4rpr,.1=...-.f=

59 kJ/mol. What is the activation

r¥rty + q 6`J `. ,6-a-F:, = ,?03`£+j -L-` -

energy for the reverse

What is the activation energy for the reverse reaction?

se eJ 8 }=i-%=A.-„\ , pe

X0112SPG17 -Solutions, Kinetics & Equilibrium

C=

ID:8

34. The rate constants for the first-order decomposition of a compound are 6.19 x 104 s~[ at 43°C and

2.71 x 10-3 s-I at 65°C. What is the value of the activation energy for this reaction?

(ji -8.31 J/(mol . K))A) 0.677kJ/mol8) 25.9kJ/molC) 0.558kJ/mol

9.6 kJ/mol

-,-i,.-.I-.,`--..I;--:.-I,.EEEFEEE

E) 1.56kJ;''mol

35. For the first-order reaction

1 /2 N204(g) i N02(g); Aft = 28.6 kJ

the rate constant is k = 9.29 x 104 s-I at -20°C, and the activation energy is 53.7 kJ/mol. What isthe rate constant at 21 °C?

A) 1.08xl05s-I

8) 9.29xl04sJ

C) 1.74x|05s~1

3.27 x |o6

E) 4.94 x 10J s-1

1 f lrfeff~ f eif

36. Which of the following statements is true in a reaction system at equilibrium?The equilibrium constant is zero.The number of collisions per unit time between reactants is equal to the number of

per unit time between produets.are rea6t`ing to form Products at

ollisions

:::traenat:t:;?ts:ea8fn:Ltjofig#d::`foml gr*:rate,asproductsarereactingtoD) Reactants and products are7present in equimolar anounts.E) The product of the concentrations of the products divided by the product of the

concentrations of the reactants is always a constant.

=rheese°n:tewoaf]`da:ra::[eyssstca:nh::#Stea:pneTr°a:iar:Hat:ens:t:i;t:=£::og±rye:::£Coti°:e?:i::i:X£¥t::[[`;thecharged with 3.90 mol NH3(g) and 4.90 mol 02(g). sealed` and-he';'ted at a fixed high temperature.When equilibrium is establisheNJ2LgJ. What is the quantity€

4NH3(g) + 502(g) =

1.00 mol NH3(g)

8) 6.80mol NH3(g)

C) 3.90molNH3(g)

D) 1.28 molNH3(£r)

E) 2.00molNH3(g)

n mixture is analvzed and found to contain 2.90 molequilibrium reaction mixture?

4NO(g) + 6H20(g)-;JAVH?i+P<f~@ar_±f3(#A/#_ds^=fp<

--pe, 3jSofRAtl+4 ¢,,f f i¢uegS far

-6F-(.,: .-i_ _i-,

r,? 3z'cS-ff,~(`-i; -3-frfL=7`+``__ ______-9I _:::~p i ty alcj^f f is /i i£E = F3 ,S ` 4fi f f tl

ife-rfE5jediiE=*?F-fi[^44`

Srfu4£ AV/S @ F3# _3 .-:y ;ff i8i# =±

~_-\T;er `-F; F:al

a \ ffiae be^ b3fi

g /=.;-S. ==J

`,-}..`

cef /-?I, ,?

/`§if._g=.-4.9=``AP~S:=`U,it2;I:ul

.:;_:~ :.` ' 4.aft., ;--{ a L, -_ j/ r3giv`)

=~ ff¥9!f § Yr,::J =--I

.`.`

®ke Lf ^=

TP` :' ` ::-=£ GJif e f= P=ct£!f:j= a:a, A fa !al .3= erg:7fkif ,I,-) i

ir= #pg !i£ i ' ,,... a; ,i_I 4,a,fj[:i; pz;fs..

-f-a `=`!-:Atl3E5a~

EEEil- gdiif-pup;;;i;~4,_i -::.I;i"nyL

/ tif #' = dg:thfpt®#.5#3

edogh=::if e`] £ ¢3*.` =--.£..-----.---,`_-

A,-7,z'x,a5

i'~r?,j}

4=E.nfi,#ff#,c

firfu{4rffi.rt~.4f£3Sr%,

rf#as fct4i= A

>fp;

`:3 -3> £ = i_ fff-? L&``\\

asr£££j fax I

` ra -2. ci gr i .= a ¢gas3 k=:;i

r3£ +2_/8{e 'F:e-~ A3#ifE)

I 0 .cz::3if #g7'gr

€rq(r%)=,fa+ff#`±-#

T£~ - i.-,FEE-">gr`` ., 'Trf ir I. ' i,

i a wli= Map?7 f 3,r6 = /:I/I- ,,rf.fu-I__i::a

fi2=giv--r=:--,::--"./

J-

¢~6ca:I?.74f:

I--\`\t\=.A.ff9,ptyiff{:f=~„£L?de#;rfnd

94=±_rB`)I-.==`-`` z` -..-.-

T>

X0112SPG17 -Solutions, Kinetics & Equilibrium

•.'''..----;

-"-=`J/,& ID:B-JJ, -r3 L-

. i -1 ti!`J,,3 -

€-38. The folloVlingreaction is investlgated (assume an ideal gas mlxture) c,,,?; = Z S`

2N20(8) +N2H4(g) = 3N2(g) + 2H20(g) u'~ '£ = ,#. f.`</''7

Initially there are 0.100 mol of N2_O and 0.2L5._|¥~p±,_9f_N2H4, in a 10+Q±cLgEt`ainer. If there are

0.06?_pg|g_±`N}Oat=a=iTi"b.rijm.howmany-niore-§-iEfBepresentatequilibrium?A:) -i:i;-+I I-2' A a /ja':3 #, hi-+:g /£t~± rf=gff:::`c5==` xp:.4iJ{S= + E±quf i5Ag3:.al

e` ,,:j;`fdy*"fi 9a;A;:ra ir= zgE!EEEEEE

-i`-`

*--ee:f i v;a 9-ty -.i L-i,;`i` +2JC`'i `.`,#)A }F.2 i,,\i ' '' i -~ELi`, tes`.j¢=

v|,ng:oorie¢c6t|#c=i:¥::~e_i:-,-i-:_r?u::i;:prn¥=7fi-eE) noneofthese ,,¥ .`t`,#^ c .: i,,) =c,,Q&zrdl -`)/

39. Which of the following correctly describes

:......-- :,` --

nil

between H2 and 02 ,to form gaseous H20?

AL) K,

8) A,cl

[H2 ][CJ2 ]

[H2rJ]

[H2t=']

[H2][CJ2]

a--ftft ) +

==-£pr¢::#::€::*;ffseff

c£*/,--2/Z/C)&9

40. For the reaction Br2(g) + C12(g) = 2Brcl equilibrium. found that the concentrations

and Brcl are 0.398 .Jly4, 0.351.Iy4. and 2.05 x 10-3 A4, respectively. What is the value of

..-: --`i---`::`.`:I.= .-..- ` -

C) 1.47x|o~2

D) 6.81 x 10'

E) 3.32x]04

focffiiSpdr~ f €r~#Q2`_~ =±+~;:- L-¢ €`'Tg~ ''¥~#

`.,---:-I

i:J:;'-5'i3w^ @135}ife

€ a;-i

I:T3if-.(=fi€f/

±' -ir=3.3-:sf5Ir::-.7.

f:{, t ap#<::£

10

i jf+i,1 rf~ ± JT-~'~-ny--~~-=rng`

=faas=\~~€`£=~3:a,Bx4;,`-.A.-_ I

X0112SPG17 -Solutions, Kinetics & Equilibrium

2-`,`. -i. i,

{

41. A 4.50-mol sample of HI is placed in

4-.,-

`grr#.,

a 1.00-I, vessel at 460°C. and the reactionto come to equilibrium. The HI partially

:]oyn:teacS¥ffis{hf:rfi:lil::0.343 mol H

ID:8

system is allowed2 and 0.343 mol 12 at

following I.eaction at 460°C?equilibrium. What is the equilibrium

1/2 H2(g) + 1/212(g) i: I-11(8)

A) 1.23x|o2

8) 8.10x|o-3

C) 3.09x |o-2D) 11.1

E) 5.69

i-I_Aj.Sfr#r\f

42. A sample of ammonia gas was allowed to come to equilibrium at 400 K.

2NH3(g) = N2(g) + 3H2(g)

At equilibrium, it was found that the concentration of H2 was 0.0367 M, the concentration of N2was 0.0122 jly'/. and the concentration of NH3 was 0.170 £ly'/. W=H::i;a-s the initial concentration of

j` =^r "E.fe`=:ac-au~-<P A/gammonia?

£) ::I::# i#rC) 0.218A,7

0.194

Sc '',. -36-¥£

43. Forwhich of thefo0 I J7 0yh

llowing equilibria d

-gE`JN-H+ H20(g) = C02(

:..¥

+K:Eii

o, 8 I 2t2.fro4

Kc-K17

C) CO(g) + 3H2(g) = CH4(g) + H20(g)D) Cao(5') + C02(g) = Cac03(S')E) HBr(g) = 1/2H2(g)+ 1/2Br2(D

JL 3 ,4!tr

t\:#F- 3,rf

o I C,gc?h^.

;fj/3i >:; -? .4- =- @ ,a , ? 7S

¢5.fylf3:=£;ft_ckaeS.ap{S

=e=ed,,frfc/,f}/22)+{J,/7(£

I .-, ;.;.--; .---. `.--=``: ``

ed:/pe,i , `= :=_ A Vf f i i .) -S±b ke~= i --pe ---

lf A'ct = 0.145 for A2 + 28 = 2AB, what is the value of Kc for the reaction

4AB = 2A2 + 48?

A) 0.145

E) 3.45

r:A#=;-fsrbfi±A..A#ap,a:2#~€f28#k=s'/crf~=giife

ft,A,,far-,ALfftifj-c-

; ,#7-::; ;giv

11

-r€==i=--xae--.---~-``(,i•E

:ffiof:de~-(#rfaldr+;:::._ce>4€`"-?ife4g:j##

i i ,fa,I-3`f4_a_-

(,,,#8,`--,-i

/,#Ir -z2-- q- - r--_?

=dr/-I 2__ ck i^,I;:±F.

- /g€ftJ)

--k,

•,::I,.-.--I-

i-/f±-J':9-i:I:.-i:=I?a ;f i-3=

E±rl

•__

-= kc=

#--:: =`-&`-<f i, rf=:gr_ -

a7F'-aJir st?. 5#

a-fr

a ' 3 if -2 ©-

(/i-2j.,-£-r&apJ`; fi@pe-:•Jt_ - ,giv

i.?=£,7#zp4y¥;`^=``118~--

> /a /O L14Jf r%,jso_f i

i(6,7¢})'ysdrrotBifp,)'f2,-,

?

_ap-_i

<

+F= O.?if $2L

g = 3`r{it,ptii jf f i -- a . #Of f6

--f:%;\)=©,ago

X0112SPG17 -Solutions, Kinetics & Equilibrium ID:8

45. At 298 K, the value of Kc for the reaction I-12(g) + Br2(g) = 2HBr(g) is 2.0 x 10[9. What is Kc

:/I:. :`--.

-:----:--:``,:

-

for HBr(g) =A) 4.Oxlo-38

8) 5.Oxl0--20

C`) 1.Oxl0]9

D)

I /2H2(g) + 1 /2Br2(g)?

/i £.i i rf I:=~ 2/f`4r ~-:±'' A€`;jfffr#3f.*---

•4--;;!f--4fyff:`)1`

/-:,£):;i!p4grif-fi--i=--ff#r-=;gr/fr+'~p!?rgiv=»4

rwhibh of the following reactions will the reactant experience the !±=gfs±±±egreedecomposition upon reaching equilibrium at 500 K?A) 2N02F(g) = 2N02(g) + F2(`g); K/7 = 6.6 x 10-22

8) 2S03(g) = 2S02(`g) + 02(g); K/, = 1.3 x 10-5C j 2N9~F,ts+rf=.L=2N®®++±`2{gj;.±=fty

-,=_,.

Pj>T 2NOC]tgj = 2Notg, + CL2tg,; Kp = I .7 X iEh2RifeSE+=€:2rs¢ng}riQ®±#=:5,..9x±_.Q`=i[`_M_,.ff.,.j.

_=rfeftluJq

of-=z\zx~d°

(Ofgrgiv-¥££-,ut`

7. CS2(g) + 3C12(g) = CC14(g) + S2C12(g`)At a given temperature. the reaction above is at equilibi.ium when [CS2] = 0.050 jw. [C12] = 0.25 fly4,

[CC14] = 0.15 jw, and [S2C12] = 0.35 .W. What will be the direction of the reaction when the. reactants and products have the following concentrations: CS2 = 0.15 A`/. C12 = 0.21 jw, CC14 = 0.29

£Jly'/. and Sic17 = 0.34 +ly`Z?

to the leftto the rightno change

L` A/rfeifi-feff 12:Qa.;

cannot predict unless we know the temperaturecannot predict unless we know whether the reaction is endothermic or exothermic

8. Consider the following equilibrium:

Eiil

PC13(6') + C12(g) = PC15(g); Zlf7= -92 kJ

The concentration of Pi£±_at equilibrium may be increased byA) decreasing the temperature. V a

:gis:us|a2i::Othtih:¥t=e=ig#OFf€:Ir6reusing-the-Lpressure.

addingacatalyst.ffE5g=8fa__I..+^j`r€

`8)-

E)

--jF-.-,

FJal..^rfe-SA

\

:pr_fi;kr£=±¢Prf~FT3\if?Lf:/

_ ._ ,p , -F[ i=€=i lfeiri-A

`q~_S.fa =j T2Q gu \en_ i,?f€ ErA a+an d`fr p#=±t

•hi3

9grf u:.+ `fb

3 Ht to +\j `~TA `gr~~:.+ r TL r# L=ut12

-=#h,.::¢riirfro:^ft]ff'`:==`frif~|;fi:,r£F{fifrrd;

3,--i,?:,hJ.i•:S,:==`..--t`

±= g7aegr tr ri~ELae&

c?rc}Ifrm C)trzffim

S ? , `r#rf

--:-i.i-

I'``

C'A 2/#

HEiEj=EEE-E

.:.i.: i,,i;--` :.-i,¢2, ,faJA

7*`t--i

-(-cfl,;J{f2-€^-±11

whr_ -d 1=

(.€s)(en:i`aecrfl-=a.cen>-i.r<.»>..

4 \Q .8

c,,/firm

#fudf i D agf i f i

Gc,',r*ffi@S= -ir:¢,&E)if#f a?..------

g)€9ffrty

0 ,3# ap

-, 67,=

_fr6,7±9jt'.a+Frifi

8# ed st f

4.c=Z©?,=«se=.`.-..:-;--..

`39--`--ap

EE-ORE

-tr7C),9

X0112SPG17 -Solutions. Kinetics & Equilibrium

49. Which of the following equilibria would flQ± be affected by pressure changes at constant

A) C02(g) + H2(g) = CO(g) + H2

8) cO(g)+i~02(g) = C02(8)

C) 2Hgo+02(g) = 2Hgo(5')D) 2H2(g) + 02(g) = 2H200E) Cac03(j') ± Cao(A.1) + C02(g)

ID:8

_----_'rfu.=-Le==iif;SR , =±j-;\f ,f`gr: A 1;, Qf i ch

Which of the following equilibria would be affected by volume changes at constant temperatuie?A),,Hcl_(cJg)_.+.`Nap.H~(.q.a)_=~H.2G9_o+Nac`l(¢g)

`` >.,J3}`..`+C2H4.(g).+_H2(g) = C2HTffgi¥---`--`:- -I-ih i, :; , -;-at:i-`

C)2I +C

D) S03(g) + NO(g) = N02(g) + S02(g)E) 2HF(g) = H2(g) + F2(g)

]3

.`:̀

f<,, ,+^`\ ,--- i;; i-.=f =f-

` ---ex(

4',I-.-*

/,I #,iI,,.A f ,-:---:-c,i