www.8051projects.net wiki keil embedded c tutorial

Upload: saurabh-bhise

Post on 20-Feb-2018

267 views

Category:

Documents


2 download

TRANSCRIPT

  • 7/24/2019 Www.8051projects.net Wiki Keil Embedded C Tutorial

    1/13

    Home (/) Rikipedia(/wiki/) Keil Embedded C Tutorial/ /Keil Embedded C Tutorial From RikipediaEmbedded Wiki

    Introduction to Keil C

    The use of C language to program microcontrollers is becoming too common. And most of the time its not easy to buld an applicationin assembly which instead you can make easily in C. So Its important that you know C language for microcontroller which is commonlyknown as Embedded C. As we are going to use Keil C51 Compiler, hence we also call it Keil C.

    Keywords

    Keil C51 compiler adds few more keywords to the scope C Language:

    _at_ far sbit

    alien idata sfr

    bdata interrupt sfr16

    bit large small

    code pdata _task_

    Google Web HostingBuild Your Online Presence With Google Sites. Free 30-Day Trial!

    Discussion (/mediawiki/index.php?title=Talk:Keil_Embedded_C_Tutorial&action=edit&redlink=1)

    EditNav

    Introduction to Keil C

    Keywords

    Memory Models

    Pointers in Keil C

    Generic Pointers

    Memory-Specific Pointers

    Functions in Keil C

    Function Declaration

    Writing First C program in Keil

    Basic of a C program

    Writing Hardware specific code

    Writing C and Assembly together

    Interfacing C program to Assembler

    Segment naming

    Advanced C programming

    Function Parameters

    Fucntion Return Values

    Table of Content

    Page (/wiki/Keil_Embedded_C_Tutorial)

  • 7/24/2019 Www.8051projects.net Wiki Keil Embedded C Tutorial

    2/13

    compact _priority_ using

    data reentrant xdata

    data/idata

    Description: The variable will be stored in internal data memory of controller. example:

    1. unsigned char data x;

    2. //or

    3. unsigned char idata y;

    bdata

    Description: The variable will be stored in bit addressable memory of controller. example:

    1. unsigned char bdata x;

    2. //each bit of the variable x can be accessed as follows

    3. x ^ 1 = 1;//1st bit of variable x is set

    4. x ^ 0 = 0;//0th bit of variable x is cleared

    xdata

    Description: The variable will be stored in external RAM memory of controller. example:

    1. unsigned char xdata x;

    code

    Description: This keyword is used to store a constant variable in code memory. Lets say you have a big string which is not going tochange anywhere in program. Wasting ram for such string will be foolish thing. So instead we will make use of the keyword "code" as

    shown in example below. example:

    1. unsigned char code str="this is a constant string";

    pdata

    Description: This keyword will store the variable in paged data memory. This keyword is used occasionally. example:

    1. unsigned char pdata x;

    _at_

    Description: This keyword is used to store a variable on a defined location in ram. example:

    1. unsigned char idata x _at_ 0x30;

    2. // variable x will be stored at location 0x30

    3. // in internal data memory

    sbit

    Description: This keyword is used to define a special bit from SFR (special function register) memory. example:

    1. sbit Port0_0 = 0x80;

    2. // Special bit with name Port0_0 is defined at address 0x80

    sfr

    Description: sfr is used to define an 8-bit special function register from sfr memory. example:

  • 7/24/2019 Www.8051projects.net Wiki Keil Embedded C Tutorial

    3/13

    1. sfr Port1 = 0x90;

    2. // Special function register with name Port1 defined at addrress 0x90

    sfr16

    Description: This keyword is used to define a two sequential 8-bit registers in SFR memory. example:

    1. sfr16 DPTR = 0x82;

    2. // 16-bit special function register starting at 0x82

    3. // DPL at 0x82, DPH at 0x83

    using

    Description: This keyword is used to define register bank for a function. User can specify register bank 0 to 3. example:

    1. void function () using 2

    2. {

    3. // code

    4. }

    5. // Funtion named "function" uses register bank 2 while executing its code

    interrupt

    Description: This keyword will te lls the compiler that function described is an interrupt service routine. C51 compiler supportsinterrupt functions for 32 interrupts (0-31). Use the interrupt vector address in the following table to determine the interrupt number.

    Vector Address Locations

    example:

    1. void External_Int0() interrupt 0

    2. {

    3. //code

    4. }

    Memory Models

    There are three kind of memory models available for the user:

    Small

    All variables in internal data memory.

    Compact

  • 7/24/2019 Www.8051projects.net Wiki Keil Embedded C Tutorial

    4/13

    Variables in one page, maximum 256 variables (limited due to addressing scheme, memory accessed indirectly using r0 and r1

    registers);

    large

    All variables in external ram. variables are accessed using DPTR.

    Depending on our hardware configuration we can specify the momory models as shown below:

    1. //For Small Memory model

    2. #pragma small

    3. //For Compact memory model

    4. #pragma compact

    5. //For large memory model

    6. #pragma large

    Pointers in Keil C

    Pointers in keil C is are similar to that of standard C and can perform all the operations that are available in standard C. In addition,keil C extends the operatability of pointers to match with the 8051 Controller architecture. Keil C provides two different types ofpointers:

    Generic Pointers

    Memory-Specific Pointers

    Generic Pointers

    Generic Pointers are declared same as standard C Pointers as shown below:

    1. char *ptr; //Character Pointer

    2. int *num; //Integer Pointer

    Generic pointers are always stored using three bytes. The first byte is the memory type, the second byte is the high-order byte of theoffset, and the third byte is the low-order byte of the offset. Generic pointers maybe used to access any variable regardless of itslocation.

    Memory-Specific Pointers

    Memory specific pointers are defined along with memory type to which the pointer refers to, for example:

    1. char data *c;

    2. //Pointer to character stored in Data memory

    3.

    4. char xdata *c1;

    5. //Pointer to character stored in External Data Memory.

    6.

    7. char code *c2;

    8. //Pointer to character stored in Code memory

    As Memory-Specific pointers are defined with a memory type at compile time, so memory type byte as required for generic pointers isnot needed. Memory-Specific pointers can be stored using 1 byte (for idata, data, bdata and pdata pointers) or 2 bytes (for code andxdata pointers).

    The Code generated by keil C compiler for memory-specific pointer executes mroe quickly than the equivalent code generated for ageneric pointer. This is because the memory area accessed by the pointer is known at the compile time rather at run-time. Thecompiler can use this information to optimize memory access. So If execution speed is your priority then it is recommended to usememory-specific pointers. Generic pointers and Memory-Specific pointers can be declared with memory area in which they are to bestored. For example:

  • 7/24/2019 Www.8051projects.net Wiki Keil Embedded C Tutorial

    5/13

    1. //Generic Pointer

    2. char * idata ptr;

    3. //character pointer stored in data memory

    4. int * xdata ptr1;

    5. //Integer pointer stored in external data memory

    6.

    7. //Memory Specific pointer

    8. char idata * xdata ptr2;

    9. //Pointer to character stored in Internal Data memory

    10. //and pointer is going to be stored in External data memory

    11. int xdata * data ptr3;

    12. //Pointer to character stored in External Data memory

    13. //and pointer is going to be stored in data memory

    Functions in Keil C

    Keil C compiler provides number of extensions for standarad C function declerations. These extensions allows you to:

    Specify a function as an interrupt procedure

    Choose the register bank used

    Select memory model

    Function Declaration

    [Return_type] Fucntion_name ( [Arguments] ) [Memory_model] [reentrant] [interrupt n] [using n]

    Return_type

    The type of value returned from the function. If return type of a function is not specified, int is assumed by default.

    Function_name

    Name of function

    Arguments

    Arguments passed to function

    Optional Stuff

    These are options that you can specify along with function declaration. Memory_model: explicit memory model (Large, Compact,Small) for the function. Example:

    1. int add_number (int a, int b) Large

    reentrant

    To indicate if the function is reentrant or recursive. This option is explained later in the tutorial.

    interrupt

    Indicates that function is an interrupt service routine. This option is explained later in the tutorial.

    using

    Specify register bank to be used during function execution. We have three register banks in 8051 architecture. These register banksare specified using number 0 for Bank 0 to 3 for Bank 3 as shown in example

    1. void function_name () using 2

    2. {

    3. //function uses Bank 2

    4. //function code

    5. }

    Interrupt Service Routines

    A function can be specified as an interrupt service routine using the keyword interrupt and interrupt number. The interrupt number

    indicates the interrupt for which the function is declared as service routine.

    Following table describes the default interrupts:

  • 7/24/2019 Www.8051projects.net Wiki Keil Embedded C Tutorial

    6/13

    8051 Interrupt vector

    As 8051 vendors create new parts, more interrupts are added. Keil C51 compiler supports interrupt functions for 32 interrupts (0-31).Use the interrupt vector address in the following table to determine the interrupt number.

    Interrupt vector

    The interrupt function can be declared as follows:

    1. void isr_name (void) interrupt 2

    2. {

    3. // Interrupt routine code

    4. }

    Please make sure that interrupt service routines should not have any arguments or return type except void.

    Reentrant Functions

    In ANSI C we have recursive function, to meet the same requirement in embedded C, we have reentrant function. These functions canbe called recursively and can be called simultaneously by two or more processes. Now you might be thinking, why special definitionfor recursive functions?

    Well you must know how these functions work when they are called recursively. when a function is running there is some runtime

    data associated with it, like local variables associated with it etc. when the same function called recursively or two process calls samefunction, CPU has to maintain the state of function along with its local variables. Reentrant functions can be defined as follows:

    1. void function_name (int argument) reentrant

    2. {

    3. //function code

    4. }

    Each reentrant function has reentrant stack associated with it, which is defined by startup.A51 file. Reentrant stack area is simulatedinternal or external memory depending upon the memory model used:

    Small model reentrant functions simulate reentrant stack in idata memory.

    Compant model reentrant functions simulate reentrant stack in pdata memory.

    Large model reentrant functions simulate reentrant stack in xdata memory.

    Real-time Function Tasks

  • 7/24/2019 Www.8051projects.net Wiki Keil Embedded C Tutorial

    7/13

    Keil or C51 provides support for real-time operating system (RTOS) RTX51 Full and RTX51 Tiny. Real-time function task are declaredusing _task_ and _priority_ keywords. The _task_ defines a function as real-time task. The _priority_ keyword specify the priority of task.

    Fucntions are declared as follows:

    1. void func (void) _task_ Number _priority_ Priority

    2. {

    3. //code

    4. }

    where:

    Number

    is task ID from 0 to 255 for RTX51 Full and 0 to 15 for RTX51 Tiny.

    Priority

    is priority of task.

    Real-time task functions must be declared with void return type and void argument list (say no arguments passed to task function).

    Writing First C program in Keil

    Basic of a C program

    As we already discussed, Keil C is not much different from a normal C program. If you know assembly, writing a C program is not aproblem, only thing you have to keep in mind is forget your controller has general purpose registers, accumulators or whatever. Butdo not forget about Ports and other on chip peripherals and related registers to them.

    In basic C, all programs have atleast one function which is entry point for your application that function is named as \"main\" function.Similarly in keil, we will have a main function, in which all your application specific work will be defined. Lets move further deep intothe working of applications and programs.

    When you run your C programs in your PC or computer, you run them as a child program or process to your Operating System sowhen you exit your programs (exits main function of program) you come back to operating system. Whereas in case of embedded C,you do not have any operating system running in there. So you have to make sure that your program or main file should never exit.This can be done with the help of simple while(1) or for(;;) loop as they are going to run infinitely. Following layout provides a skeletonof Basic C program.

    1. void main()

    2. {

    3. //Your one time initialization code will come here

    4. while (1) {

    5. //while 1 loop

    6. //This loop will have all your application code

    7. //which will run infinitely

    8. }

    9. }

    When we are working on controller specific code, then we need to add header file for that controller. I am considering you havealready gone through "Keil Microvision" tutorial. After project is created, add the C file to project. Now first thing you have to do isadding the header file. All you have to do is right click in editor window, it will show you correct header file for your project.

    Figure below shows the windows context for adding header file to your c file.

  • 7/24/2019 Www.8051projects.net Wiki Keil Embedded C Tutorial

    8/13

    Include Header file in Keil

    Writing Hardware specific code

    In harware specific code, we use hardware peripherals like ports, timers and uart etc. Do not forget to add header file for controlleryou are using, otherwise you will not be able to access registers related to peripherals. Lets write a simple code to Blink LED on Port1,Pin1.

    1. #include

    2. //header file for 89C51

    3. void main()

    4. {

    5. //main function starts

    6. unsigned int i;

    7.

    8. //Initializing Port1 pin1

    9. P1_1 = 0;//Make Pin1 o/p

    10.

    11. while (1) {

    12. //Infinite loop main application

    13. //comes here

    14. for(i=0;i

  • 7/24/2019 Www.8051projects.net Wiki Keil Embedded C Tutorial

    9/13

    Segment naming

    C51 compiler generates objects for every program like program code, program data and constant data. These objects are stored insegments which are units of code or data memory. Segment naming is standard for C51 compiler, so every assembly program need tofollow this convention.

    Segment names include module_name which is the name of the source file in which the object is declared. Each segment has a prefixthat corresponds to memory type used for the segment. Prefix is enclosed in question marks (?). The following is the list of thestandard segment name prefixes:

    C51 module prefix

    Data Objects

    Data objects are the variables and constants you declare in your C programs. The C51 compiler generates a saperate segment for eachmemory type for which variable is declared. The following table lists the segment names generated for different variable data objects.Data objects segment prefix

    Data Segment Prefix

    Program Objects

    Program onjects includes code generated for C programs functions by C51 compiler. Each function in a source module is assigned aseparate code segment using the ?PR?function_name?module_name naming convention. For example, for a function namesend_char in file name uart.c will have a segment name of ?PR?SEND_CHAR?UART.

    C51 compiler creates saperate segments for local variables that are declared within the body of a function. Segment namingconventions for different memory models are given in following tables:

    Small model segment naming convention

  • 7/24/2019 Www.8051projects.net Wiki Keil Embedded C Tutorial

    10/13

    Compact model segment naming convention

    Large model segment naming convention

    Function names are modified slightly depending on type of function (functions without arguments, functions with arguments andreentrant functions). Following tables explains the segment names:

    function segment naming convention

    Advanced C programming

    Function Parameters

    C51 make use of registers and memory locations for passing parameters. By default C function pass up to three parameters inregisters and further parameters are passed in fixed memory locations. You can disable parameter passing in register usingNOREGPARMS keyword. Parameters are passed in fixed memory location if parameter passing in register is disabled or if there are toomany parameters to fit in registers.

    Parameter passing in registers

    C functions may pass parameter in registers and fixed memory locations. Following table gives an idea how registers are user forparameter passing.

    parameter passing to functions

    Following example explains a little more clearly the parameter passing technique:

  • 7/24/2019 Www.8051projects.net Wiki Keil Embedded C Tutorial

    11/13

    example parameter passing to functions

    Parameter passing in Fixed Memory Locations

    Parameters passed to assembly routines in fixed memory lcoation use segments named

    ?function_name?BYTE

    All except bit parameters are defined in this segment.

    ?function_name?BIT

    Bit parameters are defined in this segment.

    All parameters are assigned in this space even if they are passed using registers. Parameters are stored in the order in which they aredeclared in each respective segment.

    The fixed memory locations used for parameters passing may be in internal data memory or external data memory depending uponthe memory model used. The SMALL memory model is the most efficient and uses internal data memory for parameter segment. TheCOMPACT and LARGE models use external data memory for the parameter passing segments.

    Fucntion Return Values

    Function return values are always passed using CPU registers. The following table lists the possible return types and the registers usedfor each.

    function return values

    Example

    Following example shows how these segment and function decleration is done in assembler.

  • 7/24/2019 Www.8051projects.net Wiki Keil Embedded C Tutorial

    12/13

    1. ;Assembly program example which is compatible

    2. ;and called from any C program

    3. ;lets say asm_test.asm is file name

    4. name asm_test

    5.

    6. ;We are going to write a function

    7. ;add which can be used in c programs as

    8. ; unsigned long add(unsigned long, unsigned long);

    9. ; as we are passing arguments to function

    10. ;so function name is prefixed with '_' (underscore)

    11.

    12. ;code segment for function "add"

    13. ?PR?_add?asm_test segment code

    14. ;data segment for function "add"

    15. ?DT?_add?asm_test segment data

    16.

    17. ;let other function use this data space for passing variables

    18. public ?_add?BYTE

    19. ;make function public or accessible to everyone

    20. public _add

    21.

    22. ;define the data segment for function add

    23. rseg ?DT?_add?asm_test

    24. ?_add?BYTE:

    25. parm1: DS 4 ;First Parameter

    26. parm2: ds 4 ;Second Parameter

    27.

    28. ;either you can use parm1 for reading passed value as shown below

    29. ;or directly use registers used to pass the value.

    30. rseg ?PR?_add?asm_test

    31. _add:

    32. ;reading first argument

    33. mov parm1+3,r7

    34. mov parm1+2,r6

    35. mov parm1+1,r5

    36. mov parm1,r4

    37. ;param2 is stored in fixed location given by param2

    38.

    39. ;now adding two variables

    40. mov a,parm2+3

    41. add a,parm1+3

    42. ;after addition of LSB, move it to r7(LSB return register for Long)

    43. mov r7,a

    44. mov a,parm2+2

    45. addc a,parm1+2

    46. ;store second LSB

    47. mov r6,a

    48. mov a,parm2+1

    49. addc a,parm1+1

    50. ;store second MSB

    51. mov r5,a

    52. mov a,parm2

    53. addc a,parm1

    54. ;store MSB of result and return

    55.

    56. ;keil will automatically store it to

    57. ;varable reading the resturn value

    58. mov r4,a

    59. ret

    60.

    61. end

    Now calling this above function from a C program is very simple. We make function call as normal function as shown below:

  • 7/24/2019 Www.8051projects.net Wiki Keil Embedded C Tutorial

    13/13

    (//www.mediawiki.org/)

    1. extern unsigned long add(unsigned long, unsigned long);

    2.

    3. void main()

    4. {

    5. unsigned long a;

    6. a = add(10,30);

    7. //a will have 40 after execution

    8. while(1);

    9. }

    Retrieved from "http://www.8051projects.net/mediawiki/index.php?title=Keil_Embedded_C_Tutorial&oldid=193

    (http://www.8051projects.net/mediawiki/index.php?title=Keil_Embedded_C_Tutorial&oldid=193)"

    Category (/wiki/Special:Categories): How TOs (/wiki/Category:How_TOs)

    This page has been accessed 55,337 times.

    This page was last modified on 6 April 2015, at 14:54.

    (http://creativecommons.org/licenses/by-nc-sa/3.0/)Content is available under Creative Commons Attribution

    Non-Commercial Share Alike (http://creativecommons.org/licenses/by-nc-sa/3.0/) unless otherwise noted.

    Post A Question Share A Project

    Rickey's World 2014