wrinkling mechanics of compliant materials and …nonlinear wrinkling behavior of a stiff film on...

23
WRINKLING MECHANICS OF COMPLIANT MATERIALS AND FILM/SUBSTRATE SYSTEMS WITH EMPHASIS ON SUBSTRATE NONLINEARITY These slides are drawn from (20115), (20121), (20122) & (20123) & 1 paper to be published Finite amplitude creases can form

Upload: others

Post on 01-Jun-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: WRINKLING MECHANICS OF COMPLIANT MATERIALS AND …Nonlinear wrinkling behavior of a stiff film on compliant substrate in plane strain (2004‐7) 50 nm silica film on PDMS W 1 Overall

WRINKLING MECHANICS OF COMPLIANT MATERIALS AND FILM/SUBSTRATE SYSTEMSWITH EMPHASIS ON SUBSTRATE NONLINEARITY

These slides are drawn from (2011‐5), (2012‐1), (2012‐2) & (2012‐3) & 1 paper to be published

Finite amplitude creases can form

Page 2: WRINKLING MECHANICS OF COMPLIANT MATERIALS AND …Nonlinear wrinkling behavior of a stiff film on compliant substrate in plane strain (2004‐7) 50 nm silica film on PDMS W 1 Overall

Crease, or sulcus, structure on surfaceof the brain from Hohlfeld & Mahadevan (2011)

Crease on the surface on a starch‐gelfrom Hong, Zhao and Suo (2009). 

Without stiff film, wrinkles aregenerally not observed—creases form

With a stiff film, wrinkles are observedand highly stable 

Wrinkled wrinkles 50nm gold film on PDMS

Wrinkled crust of earth on the plane of Nambia (from K.S. Kim)

Page 3: WRINKLING MECHANICS OF COMPLIANT MATERIALS AND …Nonlinear wrinkling behavior of a stiff film on compliant substrate in plane strain (2004‐7) 50 nm silica film on PDMS W 1 Overall

Plane Strain Compression of neo‐Hookean Film on Neo‐Hookean Substrate‐‐stiff film wrinkling‐‐substrate wrinkling with no film‐‐substrate creasing with no film‐‐stability of bifurcation as dependent on film/substrate elastic mismatch

Nonlinear wrinkling behavior of a stiff film on compliant substrate in plane strain (2004‐7)

50 nm silica film on PDMS

1 W

Overall nominal compressive strain

Highly stable bifurcation behavior forcompressive strains 10 or 20 timesthe bifurcation strain

1/331

4S

Wf

2/32

3 /S f

h

f

S

h

cos( / ), 1W

w h x l

Buckling amplitude

Normal deflection of film:

This is an exact finite amplitude solution foran elastic film (von Karman plate) on a linearelastic substrate.  Note that the bifurcationstrain is typically on the order of 1% or lessfor stiff films.  Nonlinear substrate effectsdo not become important until overall strains areon the order of 20% when period‐doubling occurs.

A single bifurcation mode.Deformation decays exponentiallyinto substrate with length

Page 4: WRINKLING MECHANICS OF COMPLIANT MATERIALS AND …Nonlinear wrinkling behavior of a stiff film on compliant substrate in plane strain (2004‐7) 50 nm silica film on PDMS W 1 Overall

Unstable bifurcation behavior and extreme imperfection-sensitivity of wrinkling of a neo-Hookean substrate with no film (2012-1)

1

W1 2,

1 0.456W W Biot’s criticalwrinkling strain:

perfectimperfect

*

1x2x

Multiple modes:1 2

1 2

2 2

2( , ) cos for any !

( / ) 0, /

x xw x x f

f x x

1 1 2 2 1 2cos(2 / ) ( / ) cos(4 / ) (2 / ) ....w x f x x f x

Mode shape is an incipient crease.Due to nonlinear interaction among critical modes wrinkling is highly unstable and extremely imperfection-sensitive.

11 1

2( ) cos xx

Initial imperfection: an initial sinusoidal undulationof the surface in the shape of mode 1 in the unloadedstate:

Asymptotic result for the max compressive strain at wrinkling instability:

0

0.05

0.1

0.15

0 0.005 0.01

*W

1*11.37W

An undulation amplitude of1% of its wavelength reducesthe wrinkling strain by 1/3.

of nonlinear interaction among modes:Koiter analysis

Page 5: WRINKLING MECHANICS OF COMPLIANT MATERIALS AND …Nonlinear wrinkling behavior of a stiff film on compliant substrate in plane strain (2004‐7) 50 nm silica film on PDMS W 1 Overall

Crease instabilities (Non-bifurcation modes):Finite strain modes that can exist below the Biot bifurcation strain

0.35CREASE

Recall Biot’s wrinkling bifurcation strain

0.456W

Finite strain amplitude crease (sulcus) modes exist at compressive strainsabove 

Like the Biot wrinkle, the crease size is indeterminant—it can be arbitrarilysmall.

Hohlfeld (2008),  Hong, Zhao & Suo (2009),  Hohlfeld & Mahavaden (2011)

Page 6: WRINKLING MECHANICS OF COMPLIANT MATERIALS AND …Nonlinear wrinkling behavior of a stiff film on compliant substrate in plane strain (2004‐7) 50 nm silica film on PDMS W 1 Overall

Results from Y. Cao’s numerical analysis of periodic solutions (2012-1):Strains at the onset of wrinkling instability with sinusoidal imperfection

Wrinkle become unstablewhen local strain at A reaches wrinkling strain:

0.456WRINKLE

And a creaseabruptly formsas described onnext slide.

11 1

2( ) cos xx

imperfection

Page 7: WRINKLING MECHANICS OF COMPLIANT MATERIALS AND …Nonlinear wrinkling behavior of a stiff film on compliant substrate in plane strain (2004‐7) 50 nm silica film on PDMS W 1 Overall

Transition from stable to unstable bifurcation for thin film on substrate (neo‐Hookean materials)An exact Koiter analysis (Hutch, paper to be published)

cos( / )w h x lNormal deflection of film:

Initial post‐bifurcation expansion:2/ 1C b

Pre‐stretch of substrate:0 0 0 02 0

2 1 1 3/ 1/Sr

No pre‐stretch of substrate:

0

0.1

0.2

0.3

0.4

0.5

1 10 100 1000f

S

W

CREASE

0b

0b

0b Stable wrinkle bifur.

Page 8: WRINKLING MECHANICS OF COMPLIANT MATERIALS AND …Nonlinear wrinkling behavior of a stiff film on compliant substrate in plane strain (2004‐7) 50 nm silica film on PDMS W 1 Overall

Digression—Fundamental issues in bifurcation and stability (Koiter, 1945)

0 2 3 4( ) , , , , , ....L P L P L P L P L u u u u u u u Pre-buckling solution Potential energy functional

Additional displacement Load parameter

2 , is the quadratic bifurcation functional giving &C CP L Lu u

Buckling load (eigenvalue)

Buckling mode (eigenmode)

2 , 0 , 0 for all <True for all discrete (finite dimensional) systems and, for example,

for continuum plate & shell theories BUT, this is not true for

. nonlinea

P L P L Stability condition : u u u

r elastic solids (e.g., for a neo-Hookean solid)

f

S

Wrinkling bifurcation (Biot, 1963)

2 , 0 0.45C C WrinkleP L u

Crease instability (Holfeld & Mahavaden, 2011)

2 , 0, 0.35butCrease Crease CreaseP L uNeo-Hookean substratesubject to plane strain compression

The wavelength of the wrinkle and the scale ofthe crease are arbitrary.

There is no length scalein the problem

Page 9: WRINKLING MECHANICS OF COMPLIANT MATERIALS AND …Nonlinear wrinkling behavior of a stiff film on compliant substrate in plane strain (2004‐7) 50 nm silica film on PDMS W 1 Overall

Continuing digression: Why does classical buckling (bifurcation)theory break down for nonlinear continuum elasticity?

21 2 02 , ,2

2 2 2 22 1,1 2,2 1,2 2,1 1,1 2,2 1,2 2,1

1,1 2,2

Plates: ( , )

Neo-Hookean ( , )2

elasticity: ( 0)

S

S

P w L D w L N w w dS

P u L u u u u L u u u u dS

Lu u

0 2 3 4( ) , , , , , ....L P L P L P L P L u u u u u u u

33 1,1 ( , ) ....

SP u L u dS

For the crease

Classical buckling problems (e.g., plates & shells) have a definite wavelength.

The wavelength of wrinkles & creases can be arbitrarily small.

The crease is a finite strain mode (not a bifurcation mode) for which it is possible to have

2 3, , as 0P L P L u u u as the size of the crease goes to zero End of digression

Page 10: WRINKLING MECHANICS OF COMPLIANT MATERIALS AND …Nonlinear wrinkling behavior of a stiff film on compliant substrate in plane strain (2004‐7) 50 nm silica film on PDMS W 1 Overall

Y. Cao’s simulations for plane strain compression of neo-Hookean filmbonded to an infinitely deep neo-Hookean substrate (no pre-stretch) (2012-2)

/ 1000, 0.2f S

After the onset of period-doubling

/ 6, 0.15f S

/ 15, 0.2f S

For / <6,

a fold forms prior to period-doubling.

f S

Period-doublingFold formation

Bifurcation intosinusoidal mode

This is a form of localization

Page 11: WRINKLING MECHANICS OF COMPLIANT MATERIALS AND …Nonlinear wrinkling behavior of a stiff film on compliant substrate in plane strain (2004‐7) 50 nm silica film on PDMS W 1 Overall

Period-Doubling:Sun, Xia, Moon, Hwan & Kim (2012)

66 nm gold film on pre-stretched PDMS substrate

0

.005

.07

.4

Period-Doubling:Brau, Vandepaire, Sabbah, Poulard, Boudaoud & Damman (2011)

10-20 micron stiff filmon PDMS

Page 12: WRINKLING MECHANICS OF COMPLIANT MATERIALS AND …Nonlinear wrinkling behavior of a stiff film on compliant substrate in plane strain (2004‐7) 50 nm silica film on PDMS W 1 Overall

Advanced Post-bifurcation Modes in Plane Strain Compression

Schematic of substrate pre-stretch used to produce compression in filmwhen the substrate pre-stretch is released.

Un-stretched substrate Stretched substrate Film attached tostretched substrate

Stretch in substrateis relaxed to producecompression in film

Role of Substrate Pre-stretch on Advanced Wrinkling Instabilities for Stiff Films on Compliant Substrates

Page 13: WRINKLING MECHANICS OF COMPLIANT MATERIALS AND …Nonlinear wrinkling behavior of a stiff film on compliant substrate in plane strain (2004‐7) 50 nm silica film on PDMS W 1 Overall

The Role of Substrate Pre-stretch on Advanced Modes (2012-2) & (2012-3)LOCALIZATION in Neo-Hookean substrate with thin stiff film attached

Localization

0Pre-stretch: 2

Mountain ridges form (a new localization phenomenon!!)Ridge mode is observed for pre-stretchesgreater than 1.4 for both neo-Hookeanand Arruda-Boyce elastomeric materials

Page 14: WRINKLING MECHANICS OF COMPLIANT MATERIALS AND …Nonlinear wrinkling behavior of a stiff film on compliant substrate in plane strain (2004‐7) 50 nm silica film on PDMS W 1 Overall

Experimental Observations of Localization in Pre-stretched film/substrate systemsJianfeng Zang & Xuanhe Zhao (Duke U) (2012-3)

Typical sinusoidal modewith no localization

Localization, butnot isolated ridges

Mode reverts tosinusoidal mode withfurther compression

Pre-stretch

0 1.5

Ebata, Croll & Crosby (2012) have observed ridges.

Page 15: WRINKLING MECHANICS OF COMPLIANT MATERIALS AND …Nonlinear wrinkling behavior of a stiff film on compliant substrate in plane strain (2004‐7) 50 nm silica film on PDMS W 1 Overall

2

1 20, 4 exp xu u ll

1.13UU

0 0.6

Why Folds not Ridges with pre-compression? Why Ridges not Folds with pre-stretch ?(2012-2)

U U Impose a ridge or fold displacement onto thesurface of a pre-compressed or pre-stretchedneo-Hookean substrate:

0 0 0.4

For a pre-compression:

0.92UU

0 2 For a pre-stretch:

energy to form fold

energy to form ridge

energy to form fold

energy to form ridge

For pre-compression, it takes lessenergy to form a fold than a ridge

For pre-stretch, it takes lessenergy to form a ridge than a fold

These are nonlinear finite deformation effectsinducing anisotropy in the substrate

Page 16: WRINKLING MECHANICS OF COMPLIANT MATERIALS AND …Nonlinear wrinkling behavior of a stiff film on compliant substrate in plane strain (2004‐7) 50 nm silica film on PDMS W 1 Overall

One slide on the role of pre‐stretch on nonlinearity of neo‐Hookean substrate (Hutch, unpublished)

(1) 2 (2)1 1 1 1 1

(1) 2 (2)2 2 1 2 1

An exact perturbation expansion (to second order) for sinusoidal surface tractions or displacements:

ˆ ˆ( / 2 ) sin(2 / ) sin(4 / )

ˆ ˆ( / 2 ) cos(2 / ) cos(4 / )

U u x u x

U u x u x

(1) (1)1 2

(1) 2 (2)1 3 1 1 1 1

(1) 2 (2)2 3 2 1 2 1

ˆ ˆ / 2

ˆ ˆ( / ) sin(2 / ) sin(4 / )

ˆ ˆ( / ) cos(2 / ) cos(4 / )

S

S

u u

T t x t x

T t x t x

(1) (1) (2) (2) (1) (1)ˆ ˆˆ ˆ ˆ ˆ( ) , 2 ( ) ( )t C r u t C r u C r u u

22

1 1 3

1r

1 0T

1x

2x

2 1 2 12

2

22 3 22 3

For: ( ) (0)cos(2 / )

(0) (0) (0)2 / ( ) 2 / ( )S S

T x T x

U T TKD D

Pre‐stretch ratio:

Page 17: WRINKLING MECHANICS OF COMPLIANT MATERIALS AND …Nonlinear wrinkling behavior of a stiff film on compliant substrate in plane strain (2004‐7) 50 nm silica film on PDMS W 1 Overall

Conclusions, Analogies and Speculations The only buckling problems with comparable instability and imperfection‐sensitivity (known

to me) are the cylindrical shell under axial compression and the spherical shell underexternal pressure.  Both have many modes associated with the critical stress. For both of these problems, the critical modes are never observed experimentally(except possibly by high speed camera).

The wrinkling mode is so unstable and so imperfection‐sensitive that is seemslikely imperfections will always be present leading to dynamic wrinkling instability andevolving into a crease at strains below the Biot wrinkling strain.  It is highly unlikely thatthe wrinkling mode can be observed except possibly if captured by a high speed camera. 

Wrinkling and creasing are different from cylindrical and sphere shell buckling in onevery important respect—They can have any length scale.  In principle, a perfectly flatsurface should reach the Biot wrinkling strain before becoming unstable, but in practice is seems reasonable to expect that imperfections will always be present atsome scale to trigger creases at the creasing strain.

An open question:  What is the length scale at which some material effect (e.g., strain gradient effects, surface oxidation, etc.) comes into play to set a minimum size for wrinklesand creases?  See PRL paper by Chen, Cai, Suo & Hayward (2012) for one answer  (surface tension).

There is more!

Page 18: WRINKLING MECHANICS OF COMPLIANT MATERIALS AND …Nonlinear wrinkling behavior of a stiff film on compliant substrate in plane strain (2004‐7) 50 nm silica film on PDMS W 1 Overall

Other Systems with Buckling Phenomena In Common with Wrinkling Instabilities

Spherical shell buckling arrested by internal mandrel: Without mandrelthis mode would not be observed— Likenon-observability of wrinkles on a homogeneous substrate.

Experimental buckling loads of elastic cylindrical shells under axial compression normalized by bifurcation load of perfect shell— Like wrinklingof homogeneous substrate, bifurcation strain is effectively unreachable.

Bifurcation load perfect shell

Railroad track buckling due to compressioninduced by heating in the sun– Note thelocalization, analogous to ridgeformation in thin film wrinkling.

Page 19: WRINKLING MECHANICS OF COMPLIANT MATERIALS AND …Nonlinear wrinkling behavior of a stiff film on compliant substrate in plane strain (2004‐7) 50 nm silica film on PDMS W 1 Overall

An example from M.‐Y. Moon of wrinkling on a prolate spheroid substrate  (Diamond‐like carbon (DLC) on PDMS)

10 , 50wavelength 2

DLC PDMSt nm R mm

Page 20: WRINKLING MECHANICS OF COMPLIANT MATERIALS AND …Nonlinear wrinkling behavior of a stiff film on compliant substrate in plane strain (2004‐7) 50 nm silica film on PDMS W 1 Overall

a)

c)

b)

d)

Observations of various patterns of a silica‐like film on a PDMS substrateformed by ultraviolet‐ozone oxidation.  Compressive stress induced bymismatch in film/substrate swelling due to ethanol vapor absorption.

UMass system (Breid & Crosby)  (2011‐5)

1D modeplane straincompression

Hexagonal modeEqui‐biaxial compression

Square checkerboardmode(different system)Equi‐biaxial compression

HerringbonemodeEqui‐biaxial compression

Films thickness in range from 100 to 200 nm.

Page 21: WRINKLING MECHANICS OF COMPLIANT MATERIALS AND …Nonlinear wrinkling behavior of a stiff film on compliant substrate in plane strain (2004‐7) 50 nm silica film on PDMS W 1 Overall

Critical periodic modes plus the herringbone mode  (2011‐5)

11D: cos( )w kx1 2

Square checkerboard:

cos( / 2)cos( / 2)w kx kx 1 1 2

Hexagonal:

cos( ) 2cos( / 2)cos( 3 / 2)w kx kx kx

1 1 2

Triangular:

sin( ) 2sin( / 2)cos( 3 / 2)w kx kx kx 1 1 1 2 1 1 2 2

Herringbone ( ):cos( ) sin( )cos( )w kx kx kx

not critical

All modes satisfying:   1/32 2 1 *1 2 3 /Sk k k t E E 1 1 2 2

1 1 2 2

sin( ) sin( )cos( ) cos( )

k x k xw

k x k x

with

2/3*3 / / 4C f S fE E E

Page 22: WRINKLING MECHANICS OF COMPLIANT MATERIALS AND …Nonlinear wrinkling behavior of a stiff film on compliant substrate in plane strain (2004‐7) 50 nm silica film on PDMS W 1 Overall

Energy in buckled state for all the modes  (linear substrate)   (2011‐5)

Page 23: WRINKLING MECHANICS OF COMPLIANT MATERIALS AND …Nonlinear wrinkling behavior of a stiff film on compliant substrate in plane strain (2004‐7) 50 nm silica film on PDMS W 1 Overall

Mode transitions under increasing overstress: Observed & Predicted  (2011‐5)

0

2/3

equi-biaxial stress in unbuckled film

3 / / 4 Critical equi-biaxial stress at onset of buckling C f S fE E E

2/ (1 )E E

0 / C

Transition from hexagonal pattern to herringbone pattern by coalescence of neighboring hexagonal cells 

0 / C In region of low over stress, the hexagonal mode is always observed in the UMass system.

Predicted transitions based on min. energy for flat systems:  unbuckled, square, herringbone

Observed  transitions for UMass system::  unbuckled, hexagonal, herringbone