wireless ip multimedia

149
Wireless IP Multimedia Henning Schulzrinne Columbia University MOBICOM Tutorial, September 2002

Upload: shana

Post on 18-Jan-2016

33 views

Category:

Documents


3 download

DESCRIPTION

Wireless IP Multimedia. Henning Schulzrinne Columbia University MOBICOM Tutorial, September 2002. Types of wireless multimedia applications streaming interactive object delivery Properties of multimedia content loss resiliency delay reordering 3G and WLAN MM-related channel properties - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Wireless IP Multimedia

Wireless IP Multimedia

Henning SchulzrinneColumbia University

MOBICOM Tutorial, September 2002

Page 2: Wireless IP Multimedia

April 21, 2023 2

Overview Types of wireless

multimedia applications– streaming– interactive– object delivery

Properties of multimedia content– loss resiliency– delay– reordering

3G and WLAN MM-related channel properties– effective bandwidth– packet loss– delay

Header and signaling compression– cRTP– ROHC– signaling compression

Packet FEC UMTS multimedia

subsystem (IMS)– QoS– Session setup

Fast handoff mechanisms

Multimodal networking

Page 3: Wireless IP Multimedia

April 21, 2023 3

Types of wireless multimedia applications

Interactive– VoIP– multimedia conferences– multiplayer games

Streaming– video/audio on demand– broadcast TV/radio– may be cached at various places, including end system

Object retrieval– peer-to-peer– user may be waiting for result

Messaging– store-and-forward (e.g., MMS)– can be batched

Page 4: Wireless IP Multimedia

April 21, 2023 4

IETF (multimedia) protocolsMedia Transport

App

lica

tion

Ker

nel

Phy

sica

lN

etw

ork

H.323 SIP RTSP RSVP RTCPRTP

TCP UDP

IPv4, IPv6, IP Multicast

PPP AAL3/4 AAL5 PPP

SONET ATM Ethernet CDMA 1XRTT/GPRS

Signaling media encap(H.261. MPEG)

ICMP IGMP

SAP

802.11b

DNSLDAP

MIP MIP-LR

CIP

SDP

MIPv6

MGCP

IDMP

DHCPP

Heterogeneous Access

Page 5: Wireless IP Multimedia

April 21, 2023 5

Common wired & wireless audio codecs

codec name standards org.

samplin

g rate (Hz)

frame size

bit rate (kb/s)

G.711 (µ/A-law) ITU 8,000 any 64

G.723.1 ITU 8,000 20 ms 5.3, 6.3

G.729 (CS-ACELP) ITU (1996)

8,000 10 ms 8

AMR(adaptive multi-rate)

ETSI 26.090(1999)

8,000 20 ms 4.75 – 12.2 (8)6.7: PDC-EFR7.4: IS 64112.2: GSM-EFR

GSM-HR GSM 06.20

8,000 20 ms 5.6

GSM-FR GSM 06.10

8,000 20 ms 13

AMR-WB (wideband)

ETSI 16,000

20 ms 6.6 – 23.85 (9)

Page 6: Wireless IP Multimedia

April 21, 2023 6

Audio codecs, cont'd.codec name standard

s org.sampli

ng rate (Hz)

frame size

bit rate (kb/s)

EVRC (RCELP) TIA/EIA (1996)

8,000 20 ms 8.55, 4, 0.8

G.726 (ADPCM) ITU 8,000 sample 16, 24, 32, 40

G.728 (LD-CELP) ITU 8,000 20 ms 16

Page 7: Wireless IP Multimedia

April 21, 2023 7

Audio codecs MP3 and AAC: delay > 300 ms unsuitable

for interactive applications GSM and AMR are speech (voiceband) codecs

3.4 kHz analog designed for circuit networks with non-zero BER

Wideband = split into two bands, code separately conferencing

AMR is not variable-rate (dependent on speech content)

receiver sends Codec Mode Request (CMR) to request different codec, piggy-backed on reverse direction

trade-off codec vs. error correction

Page 8: Wireless IP Multimedia

April 21, 2023 8

Audio codecs Typically, have algorithmic look-ahead of

about 5 ms additional delay– G.728 has 0.625 ms look-ahead

AMR complexity: 15-25 MIPS, 5.3 KB RAM

4 6 8 10 12 14 16 18 20 22 24

G.723.1

G.729

G.729A

AMR-NB

AMR-WB

original

www.voiceage.com

Page 9: Wireless IP Multimedia

April 21, 2023 9

Audio codecs - silence

Almost all audio codecs support Voice Activity Detection (VAD) + comfort noise (CN)– comfort noise: rough approximation in

energy and spectrum avoid "dead line" effect

– G.729B– AMR built-in: CN periodically in Silence

Indicator (SID) frames = discontinuous transmission (DTX) saves battery power

– or source controlled rate (SCR)

Page 10: Wireless IP Multimedia

April 21, 2023 10

Audio codecs - silence

silence periods depend on– background noise– word vs. sentence vs. alternate

speaker particularly useful for conferences

– small ratio of speakers to participants– avoid additive background noise

Page 11: Wireless IP Multimedia

April 21, 2023 11

Video codecs

MotionEstimation

&Compensation

MotionEstimation

&Compensation

Transform,Quantization, Zig-Zag Scan & Run-Length Encoding

Transform,Quantization, Zig-Zag Scan & Run-Length Encoding

SymbolEncoder

SymbolEncoder

Frames ofDigital Video

Bit Stream

common code words shorter symbolsHuffman, arithmetic coding

e.g., DCT: spatial frequency

Quantization changes representationsize for each symbol adjust rate/quality trade-off

Run-length encoding: long runs of zeros run-length symbol

predict currentframe from previous

JPEG

MPEG, H.26xcourtesyM. Khansari

Page 12: Wireless IP Multimedia

April 21, 2023 12

History of video codecs

1990 1996 20021992 1994 1998 2000

H.263LH.263L

H.263++H.263++

H.263+H.263+

H.263H.263H.261H.261

MPEG 7MPEG 7

MPEG 4MPEG 4

MPEG 2MPEG 2

MPEG 1MPEG 1

ISO

ITU

-T

courtesyM. Khansari

Page 13: Wireless IP Multimedia

April 21, 2023 13

H.263L example

64 kb/s, 15 fps

courtesy of Siemens CT

Page 14: Wireless IP Multimedia

April 21, 2023 14

Delay requirements In many cases, channel is delay constrained:

– ARQ mechanisms– FEC– low bandwidths

ITU G.114 Recommendation:– 0..150 ms one way delay: acceptable to most users– 150..400 ms: acceptable with impairments

Other limits:– telnet/ssh limit ~ 100-200 ms [Shneiderman 1984,

Long 1976]?– reaction time 1-2 s for human in loop [Miller 1968]:

• web browser response• VCR control for streaming media• ringback delay for call setup• can often be bridged by application design

Page 15: Wireless IP Multimedia

April 21, 2023 15

802.11 architecture

STASTA

STA STA

STASTASTA STA

APAP

ESS

BSS

BSSBSS

BSS

Existing Wired LAN

Infrastructure Network

Ad Hoc Network

Ad Hoc Network

Mustafa Ergen

Page 16: Wireless IP Multimedia

April 21, 2023 16

802.11b hand-offKanter, Maguire, Escudero-Pascual, 2001

Page 17: Wireless IP Multimedia

April 21, 2023 17

802.11 delay

Data ACK

(short IFS)

DIFS SIFS DIFS

idle slots

channel is busy idle

slots

time

DIFS SIFS SIFS SIFS DIFS

idle slots

idle slots

RTS CTS Data ACK

time

M. Zukerman

IFS (µs)

FHSS

DSSS OFDM

SIFS 28 10 13

PIFS 78 30 19

DIFS 128 50 25

(DCF interframe space)

Page 18: Wireless IP Multimedia

April 21, 2023 18

802.11 delay

802.11b: 192 bit PHY headers 192 µs (sent at 1 Mb/s)

802.11a: 60 µs three MAC modes:

– DCF– DCF + RTS– PCF: AP-mode only

802.11 1, 2 Mb/s DSSS

802.11b

11 Mb/s FHSS, DSSS

802.11a

2, 11, 24, 54 Mb/s

OFDM

Page 19: Wireless IP Multimedia

April 21, 2023 19

802.11 delay

Throughput

Mea

n da

ta f

ram

e de

lay

(mse

c) Payload:512 bits

2430 bits4348 bits8184 bits

Page 20: Wireless IP Multimedia

April 21, 2023 20

802.11 delay

Throughput

Mea

n m

essa

ge d

elay

(m

sec)

Hyper-geometricGeometricDual fixedFixed

Page 21: Wireless IP Multimedia

April 21, 2023 21

802.11a delay for VoIP

Page 22: Wireless IP Multimedia

April 21, 2023 22

802.11b channel access delay

Köpsel/Wolisz

• 12 mobile data nodes, 4 mobile with on/off audio• 6 Mb/s load

Page 23: Wireless IP Multimedia

April 21, 2023 23

802.11b VoIP delay Köpsel/Wolisz WoWMoM 2001: add priority and

PCF enhancement to improve voice delay

DCF

Köpsel/Wolisz

Page 24: Wireless IP Multimedia

April 21, 2023 24

802.11b – PCF+priority

Köpsel/Wolisz

poll only stations with audio data

move audio flows from PCF to DCF and back after talkspurts

• IEEE 802.11 TGe working on enhancements for MAC (PCF and DCF)• multiple priority queues

Page 25: Wireless IP Multimedia

April 21, 2023 25

802.11e = enhanced DCF

Mustafa Ergen

HC hybrid controller

TC traffic categories

AIFS arbitration IFS

TXOP transmission opportunity

Page 26: Wireless IP Multimedia

April 21, 2023 26

802.11e back-off

Page 27: Wireless IP Multimedia

April 21, 2023 27

Metric of VoIP quality

Mean Opinion Score (MOS) [ITU P.830]– Obtained via human-based listening

tests– Listening (MOS) vs. conversational

(MOSc)

Grade

Quality

5 Excellent

4 Good

3 Fair

2 Poor

1 Bad 1.5

2

2.5

3

3.5

4

0 0.03 0.06 0.09 0.12 0.15

MO

S

average loss probability

iLBC 14kb/sG.729 8kb/s

G.723.1 6.3kb/s

Page 28: Wireless IP Multimedia

April 21, 2023 28

FEC and IP header overhead

An (n,k) FEC code has (n-k)/k overhead

Typical IP/UDP/RTP header is 40 bytes

codec media pkt size (T=30ms)

rmedia rIP

iLBC(4,2) FEC

54 bytes 14.4 kb/s

25.1 kb/s

108 bytes 28.8 kb/s

39.5 kb/s

G.729(4,2) FEC

30 bytes 8 kb/s 18.7 kb/s

60 bytes 16 kb/s 26.7 kb/s

G.723.1(4,2) FEC

24 bytes 6.4 kb/s 17.1 kb/s

48 bytes 12.8 kb/s

23.5 kb/s

Page 29: Wireless IP Multimedia

April 21, 2023 29

Predicting MOS in VoIP

The E-model: an alternative to human-based MOS estimation– Do need a first-time calibration from an

existing human MOS-loss curve In VoIP, the E-model simplifies to two

main factors: loss (Ie) and delay (Id) A gross score R is computed and

translated to MOS. Loss-to-Ie mapping is codec-

dependent and calibrated

Page 30: Wireless IP Multimedia

April 21, 2023 30

Predicting MOS in VoIP, contd

Example mappings– From loss and

delay to their impairment scores and to MOS

10

15

20

25

30

35

40

45

50

0 0.03 0.06 0.09 0.12 0.15 0.18

Ie (l

oss

impa

irmen

t)

average loss probability

G.729 T=20ms random loss

0

5

10

15

20

25

30

35

0 50 100 150 200 250 300 350 400

Id (d

elay

impa

irmen

t)

delay (ms)

E-model Id

0.5

1

1.5

2

2.5

3

3.5

4

4.5

20 40 60 80 100

MO

S

R value

R to MOS mapping

Page 31: Wireless IP Multimedia

April 21, 2023 31

Predicting MOS under FEC Compute final loss probability pf after

FEC [Frossard 2001]– Bursty loss reduces FEC performance– Increasing the packet interval T makes

FEC more efficient under bursty loss [Jiang 2002]

Plug pf into the calibrated loss-to-Ie mapping

FEC delay is n*T for an (n,k) code Compute R value and translate to

MOS

Page 32: Wireless IP Multimedia

April 21, 2023 32

Quality Evaluation of FEC vs. Codec Robustness

Codecs under evaluation– iLBC: a recent loss-robust codec proposed

in IETF; frame-independent coding– G.729: a near toll quality ITU codec– G.723.1: an ITU codec with even lower bit-

rate, but also slightly lower quality.

Utilize MOS curves from IETF presentations for FEC MOS estimation

Assume some loss burstiness (conditional loss probability of 30%)

Default packet interval T = 30ms

Page 33: Wireless IP Multimedia

April 21, 2023 33

G.729+(5,3) FEC vs. iLBC Ignoring delay effect, a larger T improves

FEC efficiency and its quality When considering delay, however, using

a 60ms interval is overkill, due to higher FEC delay (5*60 = 300ms)

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

0 0.03 0.06 0.09 0.12 0.15

MO

S

average loss probability

G.729+(5,3)G.729+(5,3),T=60ms

iLBC,no FEC 2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

0 0.03 0.06 0.09 0.12 0.15

MO

S_c

average loss probability

G.729+(5,3)G.729+(5,3),T=60ms

iLBC, no FEC

Page 34: Wireless IP Multimedia

April 21, 2023 34

G.729+(5,2) vs. iLBC+(3,2)

When iLBC also uses FEC, and still keeping similar gross bit-rate– G.729 still better, except for low loss

conditions when considering delay

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

0 0.03 0.06 0.09 0.12 0.15

MO

S

average loss probability

G.729+(5,2)G.729+(5,2),T=60ms

iLBC+(3,2)2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

0 0.03 0.06 0.09 0.12 0.15

MO

S_c

average loss probability

G.729+(5,2)G.729+(5,2),T=60ms

iLBC+(3,2) FEC

Page 35: Wireless IP Multimedia

April 21, 2023 35

G.729+(7,2) vs. iLBC+(4,2)

Too much FEC redundancy (e.g., for G.729) very long FEC block and delay not always a good idea

iLBC wins in this case, when considering delay

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

0 0.03 0.06 0.09 0.12 0.15

MO

S

average loss probability

G.729+(7,2)iLBC+(4,2)

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

0 0.03 0.06 0.09 0.12 0.15

MO

S_c

average loss probability

G.729+(7,2)iLBC+(4,2)

Page 36: Wireless IP Multimedia

April 21, 2023 36

G.729+(3,1) vs. iLBC+(4,2)

Using less FEC redundancy may actually help, if the FEC block is shorter

Now G.729 performs similar to iLBC

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

0 0.03 0.06 0.09 0.12 0.15

MO

S

average loss probability

G.729+(3,1)iLBC+(4,2)

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

0 0.03 0.06 0.09 0.12 0.15

MO

S_c

average loss probability

G.729+(3,1)iLBC+(4,2)

Page 37: Wireless IP Multimedia

April 21, 2023 37

Comparison with G.723.1

MOS(G.723.1) < MOS(iLBC) at zero loss iLBC dominates more low loss areas compared

with G.729, whether delay is considered or not

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

0 0.03 0.06 0.09 0.12 0.15

MO

S

average loss probability

G.723.1+(2,1)G.723.1+(2,1),T=60ms

iLBC, no FEC

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

0 0.03 0.06 0.09 0.12 0.15

MO

S_c

average loss probability

G.723.1+(2,1)G.723.1+(2,1),T=60ms

iLBC,no FEC

Page 38: Wireless IP Multimedia

April 21, 2023 38

G.723.1+(3,1) vs. iLBC+(3,2)

iLBC is still better for low loss G.723.1 wins for higher loss

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

0 0.03 0.06 0.09 0.12 0.15

MO

S

average loss probability

G.723.1+(3,1)G.723.1+(3,1),T=60ms

iLBC+(3,2)2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

0 0.03 0.06 0.09 0.12 0.15

MO

S_c

average loss probability

G.723.1+(3,1)G.723.1+(3,1),T=60ms

iLBC+(3,2)

Page 39: Wireless IP Multimedia

April 21, 2023 39

G.723.1+(4,1) vs. iLBC+(4,2)

iLBC dominates in this case whether delay is considered or not,– (4,2) code already suffices for iLBC– (4,1) code’s performance essentially “saturates”

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

0 0.03 0.06 0.09 0.12 0.15

MO

S

average loss probability

G.723.1+(4,1)G.723.1+(4,1),T=60ms

iLBC+(4,2)2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

0 0.03 0.06 0.09 0.12 0.15

MO

S_c

average loss probability

G.723.1+(4,1)G.723.1+(4,1),T=60ms

iLBC+(4,2)

Page 40: Wireless IP Multimedia

April 21, 2023 40

The best of both worlds Observations, when considering delay:

– iLBC is usually preferred in low loss conditions– G.729 or G.723.1 + FEC better for high loss

Example: max bandwidth 14 kb/s– Consider delay impairment (use MOSc)

G.729+(5,3)

G.723.1+(2,1),T=60ms

iLBC

33.23.43.63.8

4

0 0.03 0.06 0.09 0.12 0.15

MO

S_c

average loss probability

Max BW: 14 kb/s

2.82.62.42.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

0 0.03 0.06 0.09 0.12 0.15

MO

S_c

average loss probability

iLBC,no FECG.729+(5,3)

G.723.1+(2,1),T=60ms

Page 41: Wireless IP Multimedia

April 21, 2023 41

Max Bandwidth: 21-28 kb/siLBC

G.729+(5,2)

2.83

3.23.43.63.8

4

0 0.03 0.06 0.09 0.12 0.15

MO

S_c

average loss probability

Max BW: 21 kb/s

2.62.4

G.729+(3,1)G.729+(5,2)

iLBC

33.23.43.63.8

4

0 0.03 0.06 0.09 0.12 0.15

MO

S_c

average loss probability

Max BW: 28 kb/s

2.82.62.42.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

0 0.03 0.06 0.09 0.12 0.15

MO

S_c

average loss probability

iLBC, no FECG.729+(3,1)G.729+(5,2)

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

0 0.03 0.06 0.09 0.12 0.15

MO

S_c

average loss probability

iLBC, no FECG.729+(5,2)

Page 42: Wireless IP Multimedia

April 21, 2023 42

Effect of max bandwidth on achievable quality

14 to 21 kb/s: significant improvement in MOSc

From 21 to 28 kb/s: marginal change due to increasing delay impairment by FEC

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

0 0.03 0.06 0.09 0.12 0.15

MO

S_c

average loss probability

Max BW: 14 kb/sMax BW: 21 kb/sMax BW: 28 kb/s

Page 43: Wireless IP Multimedia

April 21, 2023 43

UMTS and 3G wireless Staged roll-out with "vintages" releases:

– Release 3 ("1999") GPRS data services• Multimedia messaging service (MMS) = SMS successor

~ MIME email• RAN via evolved CDMA

– Release 4: March 2001– Release 5: March-June 2002– Release 6: June 2003 all-IP network

Main future new features (affecting packet services): – All-IP transport in the Radio Access and Core Networks– Enhancements of services and service management– High-speed Downlink Packet Access (HSDPA)

• Introduces additional downlink channels:– High-Speed Downlink Shared Channel (HS-DSCH)– Shared Control Channels for HS-DSCH

Page 44: Wireless IP Multimedia

April 21, 2023 44

UMTS

Follow-on to GSM, but WCDMA physical layer

new ($$$) spectrum around 2 GHz radio transmission modes:

– frequency division duplex (FDD): 2 x 60 MHz– time division duplex (TDD): 15 + 20 MHz

Chip rate 3.84 Mcps channel bandwidth 4.4 – 5 MHz

macrocell

2 km 144 kb/s

microcell

1 km 384 kb/s

picocell 60 m 2 Mb/s

Page 45: Wireless IP Multimedia

April 21, 2023 45

1G-3G air interface3G/ IMT-2000 Capable

Existing Spectrum New Spectrum

IS-95-A/cdmaOne

IS-95-A/cdmaOne

IS-95-B/cdmaOne

IS-95-B/cdmaOne

IS-136TDMA

IS-136TDMA

136 HSEDGE

136 HSEDGE

GSMGSM

GSM GPRSGSM GPRS EDGEEDGE

WCDMAWCDMA

cdma2000 1X (1.25 MHz)

cdma2000 3X (5 MHz)

HSCSDHSCSD

1XEV DO: HDR (1.25 MHz)1XEV DO: HDR (1.25 MHz)

2G “2.5G”1G

AnalogAMPS

AnalogAMPS

TACSTACS

Ramjee

Page 46: Wireless IP Multimedia

April 21, 2023 46

The mysterious 4G

Fixes everything that's wrong with 3G Convergence to IP model: treat radio

access as link layer that carries IP(v6) packets– not necessarily new radio channel

• no new spectrum available

all-IP radio access network (RAN) common mobility management

– AAA and roaming– user identifiers– roaming across wired networks

Page 47: Wireless IP Multimedia

April 21, 2023 47

UMTS – 3GPP and 3GGP2

Divided regionally/historically:– both from ITU IMT-2000 initiative– GSM 3GPP (ETSI) = WCDMA– US (CDMA) 3gpp2 (TIA) =

CDMA2000 3GPP2: different PHY, but similar

applications (not completely specified)– cdma2000

Page 48: Wireless IP Multimedia

April 21, 2023 48

UMTS

Node B

UE Applic.

PDCP

PHY

Iu Uu

GTP-U UDP

AAL5/ ATM

IP

RNC IP

TCP GGSN

GTP-U

SGSN

IP IP routing

UDP/ TCP

Gn/Gp

IP IP

IP TCP

IP server

IP

Gi

GTP-U

UDP

AAL5/ ATM

IP

GTP-U

UDP/ TCP

IP

GPRS IP backbone

Gn

Application

RLC MAC

Iu UP Iu UP

IP

PDCP RLC MAC

Iub

PHY AAL2/ ATM

PHY

AAL2/ ATM

FP FP

Radio Bearers

Logical channels

Transport channels

UTRAN Packet switched Core Network

Physical channels

Radio Access Bearers

W. Granzow

Page 49: Wireless IP Multimedia

April 21, 2023 49

3GPP network architecture

DOCUMENTTYPE

TypeUnitOrDepartmentHereTypeYourNameHere TypeDateHere

Radio Access Network Core Network

IuUu

End userterminal

AS

Jalava

Page 50: Wireless IP Multimedia

April 21, 2023 50

3GPP network architecture - gateways

Legacy MobileSignaling Networks

Roaming Signaling Gateway (R-SGW)

MsMh

HSS

PSTN/Legacy/External

MultimediaIP Networks

Gi

Gi

CSCF

MRF

CxMr

Gi

Mm

Media Gateway (MGW)

Media Gateway Control Function

(MGCF)

Transport Switching Gateway (T-SGW)

Mc (= H.248)

Gi

Mg

GGSN

Media Gateway (MGW)

SGSN

Alves

Page 51: Wireless IP Multimedia

April 21, 2023 51

3GPP networks – call control

Gi

Call State Control Function (CSCF)

Multimedia Resource Function (MRF)

Cx

Mr

Gi

VHE / OSA

Application I/F

Gr

Home Subscriber

Server (HSS)

(=HLR + +)

Gc

CAP

SGSN GGSN

access

EIR

Gn

Gf

Iu

to other networks

Applications & Services

-View on CALL CONTROL -

Alves

Page 52: Wireless IP Multimedia

April 21, 2023 52

UMTS network architecture

Node B

Radio networkSystem (RNS)

MSC/GSN

MSC Mobile Services Switching CenterGSN GPRS Support Node

Node B

Node B

RNC

Node BNode B

Node B

RNC

Node B

RNC Radio Network controllerNode B Base Node

W. Granzow

Page 53: Wireless IP Multimedia

April 21, 2023 53

Aside: some 3G/UMTS terminology

CS circuit-switched

GERAN GSM/EDGE Radio Access Network

GGSN Gateway GPRS Support Node. A router between the GPRS network and an external network (i.e., the Internet).

PDP Packet Data Protocol

PDP context

A PDP connection between the UE and the GGSN.

PS packet-switched

SGSN Serving GPRS Support Node

UTRAN Universal Terrestrial Radio Access Network

See RFC 3114 for brief introduction.

Page 54: Wireless IP Multimedia

April 21, 2023 54

UTRA transport channels categories

Common channels– Multiplexed users (user ID in the MAC header)

• Forward Access Channel (FACH)• Random Access Channel (RACH)• Common Packet Channel (CPCH)

Dedicated channels (DCH)– Assigned to a single user (identified by the spreading

code)

Shared channels – „Sharing“ of code resource by several users by fast

re-assignment scheduling• Downlink Shared Channel (DSCH)

Page 55: Wireless IP Multimedia

April 21, 2023 55

1 radio frame (10 ms), 15*2560 chips (3.84 Mcps)

Slot iSlot 1 Slot 2 Slot 15time

frequency

5 MHz 5 MHz 5 MHz 5 MHz

Macrocell layersMicrocell

layer

Duplex distance, e.g. 190 MHz

Uplink Downlink

Transmission Format UTRA FDD

Page 56: Wireless IP Multimedia

April 21, 2023 56

UMTS/3G QoS classes

conversational

voice, video conferencing

low delay, strict ordering

streaming video streaming modest delay, strict ordering

interactive web browsing, games

modest delay

background email download no delay guarantees

Page 57: Wireless IP Multimedia

April 21, 2023 57

QoS class requirements

Excerpt from 3GPP TS 23.107:Traffic class Conversationa

lStreaming Interactive Background

Residual BER 5*10-2, 10-2, 5*10-3, 10-3, 10-4, 10-6

5*10-2, 10-2, 5*10-3, 10-3,

10-4, 10-5, 10-6

4*10-3, 10-5, 6*10-8

4*10-3, 10-5, 6*10-8

SDU error rate 10-2, 7*10-3, 10-3, 10-4, 10-5

10-1, 10-2, 7*10-3, 10-3,

10-4, 10-5

10-3, 10-4, 10-6 10-3, 10-4,

10-6

Transfer delay 100 ms 250 msGuaranteed bit rate

2,048 kb/s 2,048 kb/s

Traffic handling priority

1,2,3

Allocation/retention priority

1,2,3 1,2,3 1,2,3 1,2,3

Page 58: Wireless IP Multimedia

April 21, 2023 58

GPRS delayGurtov, PWC 2001

Page 59: Wireless IP Multimedia

April 21, 2023 59

UMTS transport

UUTTRRAANN UUMMTTSS//GGPPRRSSBBaacckkbboonnee

((IIPPvv44))

SGSN

GGSN

L1

RLC

PDCP

IP

TCP/UDP

Appl

RBS RNC

MAC

L1

RLC

MAC

PDCP GTP-U

Relay

L2/L1

UDP

IP

GTP-U GTP-U

Relay

L2/L1

UDP

IP

L2/L1

UDP

IP

L1

L2

L2/L1

UDP

IP

L1

IP

TCP/UDP

Appl

GTP-U

IP IP

L2

Gn/Gp GiIu-PSUuUE UTRAN SGSN GGSN Host

UE

EExxtteerrnnaallPPLLMMNNGp

GnHost

IIPPNNeettwwoorrkk

User level IP

Transport level IP

Iub

Page 60: Wireless IP Multimedia

April 21, 2023 60

UMTS Release 4/5 Architecture

Kulkarni

Page 61: Wireless IP Multimedia

April 21, 2023 61

QoS in UMTS Short term: signaling tell network elements about

QoS requirements– RSVP (IntServ)– DiffServ with DSCPs– PDP context

Longer term: provisioning allocate resources to QoS classes– low network utilization (overprovisioning)– DiffServ– IntServ (possibly for DiffServ classes, RFC xxxx)– MPLS

Mechanisms can be heterogeneous– DSCP translation– localized RSVP

Page 62: Wireless IP Multimedia

April 21, 2023 62

QoS signaling in UMTS UMTS R5: two end-to-end QoS signaling scenarios QoS provisioning left vague RSVP currently not in standard

– additional scenario featuring RSVP may be added to a later release of the standard

QoS connected to application layer signaling (SIP)SIP - Session Initiation Protocol– necessary for IP telephony, not streaming or data– SIP allows applications to agree on address, port,

codec, ...– standardized by IETF– but UMTS-specific SIP dialect

• additional functionality compared to IETF SIP

Page 63: Wireless IP Multimedia

April 21, 2023 63

Session setup: SIP

[email protected]: 128.59.16.1

INVITE

REGISTER

BYE

INVITE sip:[email protected] SIP/2.0Via: SIP/2.0/UDP pc33.atlanta.com ;branch=z9Max-Forwards: 70To: Bob <sip:[email protected]>From: Alice <sip:[email protected]> ;tag=1928301774Call-ID: [email protected]: 314159 INVITEContact: <sip:[email protected]>Content-Type: application/sdpContent-Length: 142

Page 64: Wireless IP Multimedia

April 21, 2023 64

Session setup: SIP Creates, modifies,

terminates sessions sessions = audio, video,

text messages, … IETF RFC 3261-3266 UTF-8 text, similar to HTTP

– request line– headers– body (= session description

~ SDP), not touched by proxies

URLs for addresses– sip:[email protected]– tel:+1-212-555-1234

Client 2Client 1

INVITEINVITE

100 Trying

180 Ringing

180 Ringing

200 OK

200 OK

ACK

ACK

Media streams

BYE

BYE

200 OK

200 OK

Jalava

Page 65: Wireless IP Multimedia

April 21, 2023 65

SIP request routing SIP proxies route all SIP requests don't care about method (INVITE, REGISTER, DESTROY,

…) use location server based on registrations

– e.g., sip:[email protected] sip:[email protected] route to one or more destinations

– parallel forking– sequential forking

use Via header to track proxies visited loop prevention normally, only during first request in dialog

– but proxy can request visits on subsequent requests via Record-Route

– user agent copies into Route header– also used for service routing preloaded routes

Page 66: Wireless IP Multimedia

April 21, 2023 66

3GGP Internet Multimedia Subsystem

services (call filtering, follow-me, …) provided in home network, via Home Subscriber Server (HSS)

may use CAMEL for providing services, but also– Call Processing Language (CPL)– SIP Common Gateway Interface (sip-cgi, RFC 3050)– SIP Servlets (JAIN)– VoiceXML for voice interaction (IVR)

use ENUM (DNS) to map E.164 numbers to SIP URIs– +46-8-9761234 becomes 4.3.2.1.6.7.9.8.6.4.e164.arpa

mechanisms and roles:– proxy servers call routing, forking– user agents (UA) voice mail, conferencing, IM– back-to-back UA (B2BUA) 3rd party call control

Page 67: Wireless IP Multimedia

April 21, 2023 67

UMTS IP multimedia

Page 68: Wireless IP Multimedia

April 21, 2023 68

IMS session overview

P-CSCF

I-CSCF

UA2’s visited network

UA1

UA2

UA1’s home network

S-CSCF

I-CSCF

P-CSCF

S-CSCF

I-CSCF

I-CSCF

(optional)

UA2’s home network

UA1's visited network

Jalava

Page 69: Wireless IP Multimedia

April 21, 2023 69

3GPP Internet Multimedia Subsystem

UA P-CSCF I-CSCF S-CSCF

Gm Mw Mw

SLF

Dx Cx

HSS AS

Cx

SIP SIPSIP

SIPDiameter

Sh

VisitedDomain

HomeDomain

ISC

HomeSubscriber

Server

ApplicationServerSubscription

Location Function

Diameter

Call State Control Function (CSCF)

Proxy-CSCF

• Accesspoint to domain

• Hides topology and configuration

Interrogating-CSCF

• Session control services

• Registration, AS usage, charging, etc

Serving-CSCF

(User Agent)

Jalava

UE

Page 70: Wireless IP Multimedia

April 21, 2023 70

Locating the P-CSCF DNS server

1. PDP Context Activation

DHCP server GGSN UE

3. DNS-Query/Response

2. DHCP-Query/Response 2. DHCP-Relay

GGSN SGSN UE

1. Activate PDP Context Request

3. Activate PDP Context Accept

1. Create PDP Context Request

3. Create PDP Context Response

2. Get IP address(es) of P-CSCF(s)

2 mechanisms:

Page 71: Wireless IP Multimedia

April 21, 2023 71

3GPP SIP registration

P-CSCF HSSI-CSCF

1. Register2. Register

3. Cx-Query

UE

Visited Network Home Network

4. Cx-Query Resp

5. Cx-Select-pull

6. Cx-Select-pull Resp

10. Cx-Pull

11. Cx-Pull Resp

7. Register

13. 200 OK

14. 200 OK15. 200 OK

8. Cx-put

9. Cx-put Resp

S-CSCF

12. Service Control

TS 23.228/5.1

sip:[email protected]

Page 72: Wireless IP Multimedia

April 21, 2023 72

3GPP IMS call setupUE(A)

GGSN(A)

GGSN(B)

UE(B)

P-CSCF(A)

P-CSCF(A)

Other x-CSCFs

1. Session Initiation

2. Pre-alerting

3. Pre-alerting indication

4. User interaction

6. Session Progress / Session Offering

7. Initial UMTS bearer creation

8. Ringing

9. Alerting indication

10. User interaction 11. UMTS bearer modification

12. Session Acknowledgement

5. UE(B) generates accepted SDP

Page 73: Wireless IP Multimedia

April 21, 2023 73

IMS call setup with QoS

1. INVITE

27. 180 Ringing

3. INVITE

UE#1 P-CSCF S-CSCF

8. 183 Session Progress

11. 183 Session Progress

12. PRACK

16. 200 OK

25. 180 Ringing

28. PRACK

31. 200 OK

35. 200 OK

37. 200 OK

19. UPDATE

22. 200 OK

38. ACK

6. INVITE

26. 180 Ringing

9.183 Session Progress

34. 200 OK

13. ResourceReservation

5. Evaluation of InitialFilter Criterias

2. 100 Trying

4. 100 Trying

7. 100 Trying

14. PRACK 15. PRACK

17. 200 OK18. 200 OK

20. UPDATE21. UPDATE

23. 200 OK24. 200 OK

29. PRACK 30. PRACK

32. 200 OK33. 200 OK

39. ACK40. ACK

Visited Network Home Network

10. Authorize QoS resources

36. Approval of QoS commit

Page 74: Wireless IP Multimedia

April 21, 2023 74

SIP for mobility Terminal mobility

– same device, different attachment point• nomadic/roaming user: change between sessions• mid-session mobility

Personal mobility– same person, multiple devices– identified by SIP address-of-record

Service mobility– configuration information– address book, speed dial, caller preferences, …

Session mobility– hand-over active session to different device

• e.g., cell phone to office PC

Page 75: Wireless IP Multimedia

April 21, 2023 75

SIP for terminal mobility

For most UDP applications, no need to keep constant source IP address at CH– e.g., RTP uses SSRC to identify session– others typically single request-response (DNS)

TCP: see Dutta et al. (NATs, proxies) or Snoeren/Balakrishnan TCP migration

[email protected]: 128.59.16.1

CH

registrar

re-INVITEIP2

INVITE

REGISTER IP1

REGISTER IP2

Page 76: Wireless IP Multimedia

April 21, 2023 76

SIP mobility vs. mobile IP Mobility at different layers:

– permanent identifier– rendezvous point identified by that identifier– forwarding of messages

mobile IP SIP

permanent identifier

IP address SIP AOR

temporary address

care-of-address Contact header

rendezvous point home agent ( permanent address)

registrar ( host part of AOR)

HA/FA discovery ICMP not needed (name)

binding update UDP message REGISTER

in visited network foreign agent (FA) none/outbound proxy

Page 77: Wireless IP Multimedia

April 21, 2023 77

SIP hierarchical registration

Contact: alice@CAFrom: alice@NY

Contact: 193.1.1.1From: alice@NY

NY

REGISTERINVITE

Los Angeles

San Francisco

Contact: 192.1.2.3From: alice@NY

CA

1

3

2

4

registrarproxy

Page 78: Wireless IP Multimedia

April 21, 2023 78

SIP personal mobility

Page 79: Wireless IP Multimedia

April 21, 2023 79

3GPP – IETF SIP differences

SIP terminal + authentication = 3GPP terminal

signaling as covert channel? death of SMS?

CSCFs are not quite proxies, not quite B2BUAs– modify or strip headers– initiate commands (de-registration, BYE)– edit SDP violate end-to-end encryption– modify To/From headers

Page 80: Wireless IP Multimedia

April 21, 2023 80

NSIS = Next Steps in Signaling

IETF WG to explore alternatives (or profiles?) of RSVP– currently, mostly requirements and frameworks

RSVP complexity multicast support– forwarding state– killer reservations– receiver orientation not always helpful

better support for mobility– pre-reserve– tear down old reservations

layered model (Braden/Lindell, CASP)– signaling base layer, possibly on reliable transport (CASP)– applications/clients, e.g., for resources, firewall, active

networks proposals:

– trim RSVP– CASP (Cross-Application Signaling Protocol) Columbia/Siemens

Page 81: Wireless IP Multimedia

April 21, 2023 81

Header compression

Wireless access networks =– high latency: 100-200ms– bit errors: 10-3, sometimes 10-2

– non-trivial residual BER– low bandwidth

IP high overhead compared with specialized circuit-switched applications:– speech frame of 15-20 octets– IPv4+UDP+RTP = 40 bytes of header, 60 with

IPv6– SIP session setup ~ 1000 bytes

Page 82: Wireless IP Multimedia

April 21, 2023 82

Header compression

3GPP architecture

3GPP Architecture for all IP networks

Page 83: Wireless IP Multimedia

April 21, 2023 83

Header compression

Pure use of dictionary-based compression (LZ, gzip) not sufficient

Similar to video/audio coding remove "spatial" and "temporal" redundancy

Usually, within some kind of "session" Access network (one IP hop) only Layering violation: view IP, UDP, RTP as whole see also A Unified Header Compression

Framework for Low-Bandwidth Links, Lilley/Yang/Balakrishnan/Seshan, Mobicom 2000

Page 84: Wireless IP Multimedia

April 21, 2023 84

Compressed RTP (CRTP) VJ header compression for TCP uses TCP-level

retransmissions to updated decompressor RFC 2508: First attempt at RTP header

compression– 2 octets without UDP checksum, 4 with– explicit signaling messages (CONTEXT_STATE)– out-of-sync during round trip time packet loss due to

wrong/unknown headers

Improvement: TWICE– if packet loss decompressor state out of sync– use counter in CRTP to guess based on last known

packet + verify using UDP checksum– only works with UDP checksum at least 4 octets

Page 85: Wireless IP Multimedia

April 21, 2023 85

Robust header compression (ROHC)

Avoid use of UDP checksums– most speech codecs tolerate bit errors– not very strong

• payload errors cause spurious header prediction failures• may accept wrong header

Loss before compression point may make compressed RTP header behavior less regular

100 ms of loss exceeds loss compensation ability ROHC: primarily for RTP streams

– header field = f(RTP seq. no)– communicate RTP seq. no reliably– if prediction incorrect, send additional information

Page 86: Wireless IP Multimedia

April 21, 2023 86

ROHC

Channel assumptions:– does not reorder (but may before

compressor)– does not duplicate packets

Negotiated via PPP ROHC profiles: uncompressed,

main (RTP), UDP only, ESP onlyInitializationand Refresh

First Order Second Order

Page 87: Wireless IP Multimedia

April 21, 2023 87

Header classification

inferred can be deduced from other values (e.g., length of frame)

not transmitted

static constant through lifetime of packet stream

communicate once

static-def values define packet stream

like static

static-known well-known values not transmitted

changing randomly or within range

compress by 1st/2nd order "differentiation"

Page 88: Wireless IP Multimedia

April 21, 2023 88

Example: IPv6Field Size

(bits)type

Version 4 static

Traffic Class 8 changing

Flow Label 20 static-def

Payload Length 16 inferred

Next Header 8 static

Hop Limit 8 changing

Src/Dest address

2x128 static-def

inferred 2

static 1.5

static-def

34.5

changing

2

Page 89: Wireless IP Multimedia

April 21, 2023 89

Example: RTP

Field Size (bits)

type

Version 2 static-known

Padding 1 static

Extension 1 static

CSRC Counter, Marker, PT

12 changing

Sequence Number 16 changing

Timestamp 32 changing

SSRC 32 static-def

CSRC 0(-480) changing

inferred 2 bits

static-def 4

static-known 2 bits

changing 7.5 (-67.5)

Page 90: Wireless IP Multimedia

April 21, 2023 90

Behavior of changing fields

static additional assumptions for multimedia

semi-static occasionally changes, then reverts

rarely changing (RC)

change, then stay the same

alternating small number of values

irregular no pattern

Page 91: Wireless IP Multimedia

April 21, 2023 91

Classification of changing fields

Field Value/Delta Class Knowledge

IP TOS/Traffic Class value RC unknown

IP TTL / Hop Limit value alternating limited

UDP checksum value irregular unknown

RTP CSRC, no mix value static known

RTP CSRC, mix value RC limited

RTP marker value semi-static known

RTP PT value RC unknown

RTP sequence number

delta static known

RTP timestamp delta RC limited

Page 92: Wireless IP Multimedia

April 21, 2023 92

ROHC modes

Unidirectional (U)– compressor decompressor only– periodic timeouts only– starting state for all modes

Bidirectional Optimistic (O)– feedback channel for error recovery requests– optional acknowledgements of significant

context updates Bidirectional Reliable (R)

– more intensive usage of feedback channel– feedback for all context updates

Page 93: Wireless IP Multimedia

April 21, 2023 93

ROHC encoding methods

Least significant bits (LSB)– header fields with small changes– k least significant bits– interpretation interval– f(vref,k) = [vref – p, vref + (2k –1) – p]– p picked depending on bias of header

field window-based LSB (W-LSB)

– compressor maintains candidates for decompressor reference value

Page 94: Wireless IP Multimedia

April 21, 2023 94

ROHC encoding methods, cont'd

Scaled RTP timestamp encoding– RTP increases by multiple of TS_STRIDE– e.g., 20 ms frames TS_STRIDE=160– downscale by TS_STRIDE, then W-LSB

Timer-based compression of RTP timestamp– local clock can provide estimate of TS– if jitter is bounded– works well after talkspurts

Offset IP-ID encoding– compress (IP-ID – RTP SN)

Self-describing variable length encoding– prefix coding: 0 + 1o, 10 + 2o, 110 + 3o, 1110 + 4o

Page 95: Wireless IP Multimedia

April 21, 2023 95

ROHC

duplicate,reorder, losepackets

ACKNACK

compressorde-

compressor

• typically, multiple streams for each channel• identified by channel identifier (CID)• protected by 3-8 bit CRC

Page 96: Wireless IP Multimedia

April 21, 2023 96

ROHC CRC Qiao: add one-bit correction CRC helps with BER of 4-5%

Full header

CRC

Compressed header

CRC

Decompressed header

CRC

Validate

Qiao

Page 97: Wireless IP Multimedia

April 21, 2023 97

Signaling compression (SigComp)

Textual signaling protocols like SIP, RTSP and maybe HTTP– long signaling messages ( kB)– signaling delays call setup delays (56 ms/1 kB @ 144

kb/s)

– less of an issue: total overhead– long packets header overhead not a major issue

unlike ROHC, assume reliable transport

SIPproxy

SigComp

ROHC

Page 98: Wireless IP Multimedia

April 21, 2023 98

Signaling compression

compressor1

compressor2

statehandler

state 1

state 2

de-compressor(UDVM)

compressordispatcher

decompressordispatcher

transport layer (TCP, UDP, SCTP)

SigCompmessage SigComp

message

application message& compartment id

decompressedmessage

SigComplayer

compartmentidentifier

Page 99: Wireless IP Multimedia

April 21, 2023 99

SigComp

Messages marked with special invalid UTF-8 bit sequence (11111xxx)

State saved across messages in compartment– memory size is limited (> 2 KB)– CPU expenditure is limited, measured in cycles

per bit

Universal Decompressor Virtual Machine (UDVM):– compressor can choose any algorithm to

compress– upload byte code as state

Page 100: Wireless IP Multimedia

April 21, 2023 100

SigComp UDVM bytecode

virtual machine with registers and stack single byte opcode + literal, reference,

multitype and address

UDVM

decompressordispatcher

request compressed data

provide compressed dataoutput decompressed data

indicate end of message

provide compartment identifier

statehandler

request state information

provide state information

make state creation request

forward feedback information

Page 101: Wireless IP Multimedia

April 21, 2023 101

SigComp virtual machine

arithmetic: and, or, not, left/right shift, integer add/subtract/multiply/divide, remainder on 16-bit words

sort 16-bit words ascending/descending SHA-1, CRC load, multiload, copy, memset, push, pop jump, call, return, switch input, output state create and free

Page 102: Wireless IP Multimedia

April 21, 2023 102

Example: SIP compression

SIP compression most likely will use a static dictionary– e.g., "sip:", "INVITE ", "[CRLF]Via: SIP/2.0/UDP "

referenced as state works best with default-formatted messages

(e.g., single space between : and header field) permanently defined used with a variety of algorithms, such as

DEFLATE, LZ78, … Capability indicated using NAPTR records and

REGISTER parameter;; order pref flags service regexp replacement IN NAPTR 100 100 "s" "SIP+D2T" "" _sip._tcp.school.eduIN NAPTR 100 100 "s" "SIP+D2U" "" _sip._udp.example.com

IN NAPTR 100 100 "s" "SIP+D2CU" "" comp-udp.example.com

Page 103: Wireless IP Multimedia

April 21, 2023 103

RTP unequal error protection Provide generic protection of RTP headers

and payload against packet loss– may also handle uncorrected bit errors

RFC 2733: XOR across packets FEC packet

ULP (uneven level protection): higher protection for bits at beginning of packet– higher protection = smaller group sizes– common for most codecs: closer to sync marker– H.263: video macroblock header, motion vectors– modern audio codecs– stretching of existing audio codecs

Page 104: Wireless IP Multimedia

April 21, 2023 104

RTP unequal error protection

separate FEC packets or piggy-backed multiple FEC in one packet ULP header adds protection length and

mask recovery bytes are XOR(packet headers) negotiated via SDP

RTP seq. number base

RTP timestamp recovery

bit mask (packets after SN base)

length recovery

PT recoveryE

Page 105: Wireless IP Multimedia

April 21, 2023 105

Unequal erasure protection (UXP)

Alternative to ULP, with different properties uses interleaving + Reed-Solomon codes

(GF(28)) to recover from packet loss (erasure)

allows unequal protection of different parts of payload

allows arbitrary packet size optimize for channel

interleaving adds delay ULP only incurs delay after packet loss (but

this may introduce gaps)

Page 106: Wireless IP Multimedia

April 21, 2023 106

UDPLite

Proposal by Larzon&Degermark partial checksum coverage

– at least UDP header bytes

source port destination port

checksum coverage UDP checksum

data bytes

Page 107: Wireless IP Multimedia

April 21, 2023 107

Fast handoff – hand-off latency

Allow only a few lost packets < 100 ms hand-off delay

detect new network from AP MAC address– maybe use other packets listened to?– scan different frequencies

• may need to scan both 2.4 and 5 GHz regions (802.11a, b, g)

– passive scanning: wait for AP beacon• 802.11 beacon interval = 100 kµs ~ 100 ms

– active scanning: Probe Request Frame + Probe Response

associate with new network– 802.11i authentication– IETF PANA WG – L2-independent access control

Page 108: Wireless IP Multimedia

April 21, 2023 108

Handoff latency

duplicate address detection (DAD) – DHCP

• DHCPDISCOVER, DHCPOFFER, DHCPREQUEST, DHCPACK multiple RTT, plus possible retransmissions

– IPv6 stateless autoconfiguration (RFC 2461, 2462)• delay first Neighbor Solicitation in

[0,MAX_RTR_SOLICITATION_DELAY], where MAX_RTR_SOLICITATION_DELAY = 1s

• wait for RetransTimer (1s) for answer

AAA (authentication, authorization, accounting)– usually, RADIUS or (future) DIAMETER– server may be far away

Page 109: Wireless IP Multimedia

April 21, 2023 109

MIPv6 delays

Site1

Internet

CH

HA2

3

CoA

Site1

Internet

1

2BU=HA, CoA

BU=HA, CoA

1

Castelluccia/Bellier

Page 110: Wireless IP Multimedia

April 21, 2023 110

Micro-mobility Separate local (intra-domain, frequent)

movement from inter-domain movement (rare) 3 mobility protocol layers: L2 (e.g., 802.11, 3G

RAN), micro, macro– also offer paging (usefulness with chatty UEs?)– assumption may not be correct

Examples:– hierarchical foreign agents (Nokia, 1996)– Cellular IP (Columbia/Ericsson, 1998)– Hierarchical IPv6 (INRIA, 1998)– HAWAII (Lucent, 1999)– THEMA (Lucent/Nokia, 1999)– TeleMIP (Telcordia, IBM, 2001)

ISP1

ISP2

100'

Page 111: Wireless IP Multimedia

April 21, 2023 111

Micro-mobility design goals Scalability

– process updates locally Limit disruption

– forward packets if necessary Efficiency

– avoid tunneling where possible Quality of Service (QoS) support

– local restoration of reservations Reliability

– leverage fault detection mechanisms in routing protocols

Transparency– minimal impact at the mobile host

Ramjee

Page 112: Wireless IP Multimedia

April 21, 2023 112

Micro-mobility Methods based on re-addressing

– "keep routes, change address"– typically, tunnels within domain– hierarchical FAs– MIP with CoA to world at large– e.g.,

• regional registration, region-aware foreign agents, Dynamics, hierarchical MIPv6, …

Routing-based– "keep address, change routes"– no tunnels within domain– host-based (mobile-specific) routes– e.g.,

• Cellular IP, HAWAII

Hartenstein et al.

Page 113: Wireless IP Multimedia

April 21, 2023 113

Cellular IP

Page 114: Wireless IP Multimedia

April 21, 2023 114

Cellular IP base station routes

IP routes cellular IP routing

gateway support MIP macro mobility– provides CoA

inside micro mobility domain, packets identified by H@– no tunneling, no

address conversion

MH data packets establish location and routing "soft state"

no explicit signaling– empty IP packets– discarded at border

symmetric paths uplink establishes

shortest path to MH per-host routes, hop-

by-hopGomez/Campbell

Page 115: Wireless IP Multimedia

April 21, 2023 115

Cellular IP: Hard handoff

Internet w/ Mobile IP

foreign agent

home agent

C

A

B

E

D

F

G

R

RR

host

Gomez/Campbell

Page 116: Wireless IP Multimedia

April 21, 2023 116

Cellular IP: downlink HO loss

Page 117: Wireless IP Multimedia

April 21, 2023 117

Distributed control: Reliability and scalability– host-based routing entries in routers on path to mobile

Localized mobility management: Fast handoffs– updates only reach routers affected by movement

Minimized or Eliminated Tunneling: Efficient routing– dynamic, public address assignment to mobile devices

DomainRouter

RR

R R R R

DomainRouter

RR

R R R R

Local mobility Local mobilityMobile IP

Internet

MD

HAWAII: Enhanced Mobile IP

Ramjee

Page 118: Wireless IP Multimedia

April 21, 2023 118

HAWAII

Mobile IP

Internet

1.1.1.100->port 4, 239.0.0.1

1.1.1.100-> port 3, 239.0.0.1

1.1.1.100->wireless, 239.0.0.1

R

23

1

R1

23 4

5

MY IP: 1.1.1.100BS IP:1.1.1.5

1

R2 3

4 R1

23 4

5

R 2 3

14 4

DomainRootRouter 2

DomainRootRouter 1

5

BS1

2

34

5

BS2 BS3 BS4

1

Power-up

Ramjee

Page 119: Wireless IP Multimedia

April 21, 2023 119

Host-based routing entries maintained as soft-state

Base-stations and mobile hosts periodically refresh the soft-state

HAWAII leverages routing protocol failure detection and recovery mechanisms to recover from failures

Recovery from link/router failures

Soft-State

Ramjee

Page 120: Wireless IP Multimedia

April 21, 2023 120

HAWAII

Mobile IP

Failure Recovery

Internet

1.1.1.100->port 3, 239.0.0.1

1.1.1.100-> port 4, 239.0.0.1

1.1.1.100->wireless, 239.0.0.1

R

23

1

R1

23 4

5

MY IP: 1.1.1.100BS IP:1.1.1.5

1

R2 3

4 R1

23 4

5

R 2 3

14 4

DomainRootRouter 2

DomainRootRouter 1

5

BS1

2

3

BS2 BS3 BS4

1

Ramjee

Page 121: Wireless IP Multimedia

April 21, 2023 121

Host-based routing within the domain

Path setup schemes selectively update local routers as users move

Path setup schemes customized based on user, application, or wireless network characteristics

Micro-mobility handled locally with limited disruption to user traffic

Path Setup Schemes

Ramjee

Page 122: Wireless IP Multimedia

April 21, 2023 122

HAWAII

Mobile IP

Internet

1.1.1.100->port 3 (4), 239.0.0.1

1.1.1.100-> port 3, 239.0.0.1

R

23

1

R1

23 4

5

MY IP: 1.1.1.100BS IP:1.1.1.2

R2 3

4 R1

23 4

5

R 2 3

14 4

DomainRootRouter 2

DomainRootRouter 1

5

BS1

2 34

1.1.1.100->wireless, 239.0.0.1 1 5

BS2 BS3 BS4

1.1.1.100->port 1(wireless), 239.0.0.1

1

Micro-Mobility

Ramjee

Page 123: Wireless IP Multimedia

April 21, 2023 123

MY IP: 1.1.1.100BS IP:1.1.2.1COA IP:1.1.2.200

Internet

1.1.2.200->port 2, 239.0.0.1

1.1.2.200-> port 3, 239.0.0.1

1.1.2.200->wireless, 239.0.0.2

HAWAII

Mobile IP

R

23

1

R1

23 4

5

1

R2 3

4 R1

23 4

5

R 2 3

14 4

DomainRootRouter 2

DomainRootRouter 1

5

BS1

2

34

5

BS2 BS3 BS4

1

Mobile IP Home Agent:1.1.1.100-> 1.1.2.200

6

7

Macro-Mobility

Ramjee

Page 124: Wireless IP Multimedia

April 21, 2023 124

Simulation Topology

Ramjee

Page 125: Wireless IP Multimedia

April 21, 2023 125

Performance: Audio and Video

Ramjee

Page 126: Wireless IP Multimedia

April 21, 2023 126

TORA O'Neill/Corson/Tsirtsis "make before break" hierarchical

CR CR CR

IR

ER

MH

ER

IR IR

ER

MH

(0,0,0,3,i)

(0,0,0,4,i)

(0,0,0,5,i)

CR

IR

ER

(0,0,0,4,i)(0,0,0,4,i) (0,0,0,5,i)

(-2,0,0,5,i)

(-2,0,0,4,i)

(-2,0,0,3,i)

(-2,0,0,2,i)

(-2,0,0,1,i)

(-2,0,0,0,i)

(0,0,0,5,i)

(0,0,0,6,i)

(0,0,0,6,i)

(0,0,0,7,i)

(0,0,0,8,i)(-1,0,0,5,i)

(-1,0,0,3,i)

(-2,0,0,6,i)

(-2,0,0,7,i)(0,0,0,1,i)

(0,0,0,2,i)

(0,0,0,3,i)

(0,0,0,4,i)

(0,0,0,5,i) ARAR AR AR

(-1,0,0,4,i)

core

interior

edge

access

Page 127: Wireless IP Multimedia

April 21, 2023 127

Hierarchical Mobility Agents

Home Agent

GMA

LMA

Localize signaling to visited domain Regional Registration/Regional Binding Update uses IP tunnels (encapsulation) only, only one level of hierarchy

RMA

Perkins

Page 128: Wireless IP Multimedia

April 21, 2023 128

Example: hierarchical FA(Dynamics, HUT)

HACN

HFA

FA2

FA3

FA13

FA29 FA14

FA32

FA15

FA1

Location update latencies for some transitions

FA11 FA12

FA13

FA31

OLD FA

NEW FA

Average in ms

FA11 FA12 19,1FA13 FA14 30,4FA31 FA32 41,4

Forsberg et al

Page 129: Wireless IP Multimedia

April 21, 2023 129

Hierarchical FA with soft hand-off

HACN

HFA

FA12

FA3

FA31

FA29 FA14

FA32

FA15

FA11

FA3FA3FA13 Data stream CN --> MN

OLD FA

NEW FA

Lost packets/ update

FA11 FA31 0.00FA31 FA29 0.00FA29 FA32 0.00FA31 FA13 0.00FA12 FA15 0.00FA15 FA31 0.03FA32 FA11 0.07FA13 FA12 0.10

OLD FA

NEW FA

Lost packets/ update

FA11 FA31 0.27FA31 FA29 0.27FA29 FA32 0.00FA31 FA13 0.15FA12 FA15 0.14FA15 FA31 0.00FA32 FA11 0.00FA13 FA12 0.00

Data stream MN --> CN

Data stream: 100kB/s, 1kB

packets (100 packets/s)

HUT Dynamics802.11

Page 130: Wireless IP Multimedia

April 21, 2023 130

INRIA HMIPv6 inter-site (global,

macro) vs. intra-site (local, micro)

CH only aware of inter-site mobility

MIPv6 used to manage macro and micro mobility

define MN as LAN connected to border router, with >= 1 MS

use site-local IPv6 addresses?

Site1

Internet

MN

MSBR

Castelluccia/Bellier

Page 131: Wireless IP Multimedia

April 21, 2023 131

INRIA HMIPv6 MH gets 2 CoA:

– VCoA in the MN stays constant within site

– PCoA (private CoA) changes with each micromove

MH registers– (H@,VCoA) external

CH– (H@,PCoA) local CHs– (VCoA, PCoA) MS

MH obtains MS address and MN prefix via router advertisements

Internet

PCoA

VCoA

(VCoA,PCoA)

(H@,PCoA)

(H@,VCoA)

Page 132: Wireless IP Multimedia

April 21, 2023 132

INRIA HMIPv6 – packet delivery

External CH sends to VCoA– MS in MN

intercepts and routes to MH

Local CH sends to PCoA

MS

Site1

Internet

MN

Page 133: Wireless IP Multimedia

April 21, 2023 133

INRIA HMIPv6 – micro mobility registration

MH moves and gets new PCoA (PCoA1)

sends BU (VCoA, PCoA1) to its MS

sends BU (H@, PCoA1) to local CHs

MS

Internet

(VCoA,PCoA)

(HA,PCoA)

(H@,PCoA1)

PCoA1

Page 134: Wireless IP Multimedia

April 21, 2023 134

Other approaches to latency reduction

IP-based soft handoff buffering of in-flight data in old FA

– forward to new CoA or new BS multicast to multiple base stations

– unicast multicast unicast– often, down some hierarchy– multicast address assignment?

UMTS / 802.11 "vertical" hand-off– UMTS as "background radiation"

Domain1 Domain2

MA

1 23

4

Hartenstein et al.

Page 135: Wireless IP Multimedia

April 21, 2023 135

Comparison of CIP, HAWAII, HMIP

Cellular IP HAWAII HMIP

OSI layer L3 L3 "L3.5"

Nodes all CIP nodes all routers FAs

Mobile host ID home address

care-of-address

home address

Intermediate nodes L2 switches L2 switches L3 routers

Means of update data packet signaling msg. signaling msg.

Paging implicit explicit explicit

Tunneling no no yes

L2 triggered hand-off

optional optional no

MIP messaging no yes yes

Campbell/Gomez-Castellanos

Page 136: Wireless IP Multimedia

April 21, 2023 136

Network-assisted hand-off Network makes hand-off decision, rather than

UE network sets up resources (QoS) to new FA/BS simultaneous bindings kept and destroyed by

network allows seamless handoff IP nodes may need to report PHY measurements

(like GSM) e.g., Hartenstein et al., Calhoun/Kempf (FA-

assisted hand-off) may need to be able to predict next access

point

Page 137: Wireless IP Multimedia

April 21, 2023 137

Cost of networking

Modality mode

speed $/MB (= 1 minute of 64 kb/s videoconferencing or 1/3 MP3)

OC-3 P 155 Mb/s $0.0013

Australian DSL(512/128 kb/s)

P 512/128 kb/s

$0.018

GSM voice C 8 kb/s $0.66-$1.70

HSCSD C 20 kb/s $2.06

GPRS P 25 kb/s $4-$10

Iridium C 10 kb/s $20

SMS (160 chars/message) P ? $62.50

Motient (BlackBerry) P 8 kb/s $133

Page 138: Wireless IP Multimedia

April 21, 2023 138

Spectrum cost for 3G

Location what costUK 3G $590/person

Germany 3G $558/person

Italy 3G $200/person

New York Verizon(20MHz)

$220/customer

Generally, license limited to 10-15 years

Page 139: Wireless IP Multimedia

April 21, 2023 139

Multimodal networking = use multiple types of networks, with

transparent movement of information technical integration (IP) access/business

integration (roaming) variables: ubiquity, access speed, cost/bit,

… 2G/3G: rely on value of ubiquity immediacy

– but: demise of Iridium and other satellite efforts similar to early wired Internet or some

international locations– e.g., Australia

Page 140: Wireless IP Multimedia

April 21, 2023 140

Multimodal networking

expand reach by leveraging mobility locality of data references

– mobile Internet not for general research– Zipf distribution for multimedia content

• short movies, MP3s, news, …

– newspapers– local information (maps, schedules, traffic

radio, weather, tourist information)

Page 141: Wireless IP Multimedia

April 21, 2023 141

Multimedia data access modalities

high low

high 7DS 802.11hotspots

low satelliteSMS?

voice (2G, 2.5G)

band

wid

th(p

eak)

delay

Page 142: Wireless IP Multimedia

April 21, 2023 142

A family of access points

Infostation

2G/3G

access sharing

7DS

hotspot + cache

WLAN

Page 143: Wireless IP Multimedia

April 21, 2023 143

7DS options

Many degrees of cooperation server to client

– only server shares data– no cooperation among clients– fixed and mobile information servers

peer-to-peer– data sharing and query forwarding

among peers

Page 144: Wireless IP Multimedia

April 21, 2023 144

7DS options

Query Forwarding

Host A Host B

query

FWquery

Host C

time

Querying

active (periodic)

passive

Power conservation

on

off time

communication enabled

Page 145: Wireless IP Multimedia

April 21, 2023 145

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25

Density of hosts (#hosts/km )

Da

tah

old

ers

(%

) P2P data sharing(power cons.)

P2P data sharing

P2P data sharing & FW(power cons.)

Fixed Info Server

Mobile Info Server

Dataholders (%) after 25 minhigh transmission power

2

Fixed Info Server

Mobile Info Server

P2P

Page 146: Wireless IP Multimedia

April 21, 2023 146

Message relaying with 7DS

Host B

Messagerelaying

Host A

messages

Gateway

WAN

Host AWLAN

WLAN

Page 147: Wireless IP Multimedia

April 21, 2023 147

Conclusion and outlook

First packet-based wireless multimedia networks going into production

encumbered by legacy technology and business model ("minutes")

what is 4G? store-and-forward beats interactive

– SMS, email vs. phone calls

cost and complexity remain the major challenges– interworking across generations, from 1876

role of multimedia in ad-hoc networks?– ad hoc access (small hop count) + backbone

Page 148: Wireless IP Multimedia

April 21, 2023 148

Credits Figures and results

(with permission) from– Emmanuel Coelho

Alves– Andrew Campbell– Ashutosh Dutta– Mustafa Ergen– Javier Gomez– Wolfgang Granzow– Teemu Jalava– Wenyu Jiang– Andreas Koepsel– Maria Papadopouli– Charles Perkins– Zizhi Qiao

– Ramachandran Ramjee

– Henning Sanneck– Adam Wolisz– Moshe Zukerman– Kanter, Maguire,

Escudero-Pascual– and others

Page 149: Wireless IP Multimedia

April 21, 2023 149

UMTS IP multimedia