wigglers and undulators - illinois institute of...

74
Wigglers and Undulators Wiggler C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1/8

Upload: phungque

Post on 09-Mar-2018

218 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

Wigglers and Undulators

Wiggler

Just like bending magnet except:

• larger ~B → Ec higher

• more bends → power

Undulator

Different from bending magnet:

• shallow bends → small source

• interference effects → highlypeaked spectrum

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8

Page 2: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

Wigglers and Undulators

Wiggler

Just like bending magnet except:

• larger ~B → Ec higher

• more bends → power

Undulator

Different from bending magnet:

• shallow bends → small source

• interference effects → highlypeaked spectrum

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8

Page 3: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

Wigglers and Undulators

Wiggler

Just like bending magnet except:

• larger ~B → Ec higher

• more bends → power

Undulator

Different from bending magnet:

• shallow bends → small source

• interference effects → highlypeaked spectrum

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8

Page 4: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

Wigglers and Undulators

Wiggler

Just like bending magnet except:

• larger ~B → Ec higher

• more bends → power

Undulator

Different from bending magnet:

• shallow bends → small source

• interference effects → highlypeaked spectrum

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8

Page 5: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

Wigglers and Undulators

Wiggler

Just like bending magnet except:

• larger ~B → Ec higher

• more bends → power

Undulator

Different from bending magnet:

• shallow bends → small source

• interference effects → highlypeaked spectrum

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8

Page 6: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

Wigglers and Undulators

Wiggler

Just like bending magnet except:

• larger ~B → Ec higher

• more bends → power

Undulator

Different from bending magnet:

• shallow bends → small source

• interference effects → highlypeaked spectrum

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8

Page 7: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

Wigglers and Undulators

Wiggler

Just like bending magnet except:

• larger ~B → Ec higher

• more bends → power

Undulator

Different from bending magnet:

• shallow bends → small source

• interference effects → highlypeaked spectrum

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8

Page 8: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

Wigglers and Undulators

Wiggler

Just like bending magnet except:

• larger ~B → Ec higher

• more bends → power

Undulator

Different from bending magnet:

• shallow bends → small source

• interference effects → highlypeaked spectrum

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8

Page 9: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

Wiggler Radiation

• The electron’s trajectory through a wiggler can be considered as aseries of short circular arcs, each like a bending magnet

• If there are N poles to the wiggler, there are 2N arcs

• Each arc contributes as might a single bending magnet but the morelinear path means that the effective length, L, is much longer.

• The magnetic field varies along the length of the wiggler and is higherthan that in a bending magnet, having an average value ofBrms = Bo/

√2

• This results in a significantly higher power load on all downstreamcomponents

Power [kW] = 1.266E2e [GeV]B[T]L[m]I [A]

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 2 / 8

Page 10: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

Wiggler Radiation

• The electron’s trajectory through a wiggler can be considered as aseries of short circular arcs, each like a bending magnet

• If there are N poles to the wiggler, there are 2N arcs

• Each arc contributes as might a single bending magnet but the morelinear path means that the effective length, L, is much longer.

• The magnetic field varies along the length of the wiggler and is higherthan that in a bending magnet, having an average value ofBrms = Bo/

√2

• This results in a significantly higher power load on all downstreamcomponents

Power [kW] = 1.266E2e [GeV]B[T]L[m]I [A]

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 2 / 8

Page 11: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

Wiggler Radiation

• The electron’s trajectory through a wiggler can be considered as aseries of short circular arcs, each like a bending magnet

• If there are N poles to the wiggler, there are 2N arcs

• Each arc contributes as might a single bending magnet but the morelinear path means that the effective length, L, is much longer.

• The magnetic field varies along the length of the wiggler and is higherthan that in a bending magnet, having an average value ofBrms = Bo/

√2

• This results in a significantly higher power load on all downstreamcomponents

Power [kW] = 1.266E2e [GeV]B[T]L[m]I [A]

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 2 / 8

Page 12: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

Wiggler Radiation

• The electron’s trajectory through a wiggler can be considered as aseries of short circular arcs, each like a bending magnet

• If there are N poles to the wiggler, there are 2N arcs

• Each arc contributes as might a single bending magnet but the morelinear path means that the effective length, L, is much longer.

• The magnetic field varies along the length of the wiggler and is higherthan that in a bending magnet, having an average value ofBrms = Bo/

√2

• This results in a significantly higher power load on all downstreamcomponents

Power [kW] = 0.633E2e [GeV]B2o [T]L[m]I [A]

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 2 / 8

Page 13: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

Wiggler Radiation

• The electron’s trajectory through a wiggler can be considered as aseries of short circular arcs, each like a bending magnet

• If there are N poles to the wiggler, there are 2N arcs

• Each arc contributes as might a single bending magnet but the morelinear path means that the effective length, L, is much longer.

• The magnetic field varies along the length of the wiggler and is higherthan that in a bending magnet, having an average value ofBrms = Bo/

√2

• This results in a significantly higher power load on all downstreamcomponents

Power [kW] = 0.633E2e [GeV]B2o [T]L[m]I [A]

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 2 / 8

Page 14: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

Undulator Characterization

αmax

A

λu

z

x

Undulator radiation is characterizedby three parameters:

• The energy of the electrons, γ

• The wavelength, λu, of it’smagnetic field

• The maximum angulardeviaton of the electron, αmax

We can, therefore write:

x = A sin (kuz)

αmax =dx

dz

∣∣∣z=0

= Aku cos (kuz)∣∣∣z=0

= Aku

Define a dimensionless quantity, K which scales αmax to the naturalopening angle of the radiation, 1/γ

K = αmaxγ

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 3 / 8

Page 15: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

Undulator Characterization

αmax

A

λu

z

x

Undulator radiation is characterizedby three parameters:

• The energy of the electrons, γ

• The wavelength, λu, of it’smagnetic field

• The maximum angulardeviaton of the electron, αmax

We can, therefore write:

x = A sin (kuz)

αmax =dx

dz

∣∣∣z=0

= Aku cos (kuz)∣∣∣z=0

= Aku

Define a dimensionless quantity, K which scales αmax to the naturalopening angle of the radiation, 1/γ

K = αmaxγ

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 3 / 8

Page 16: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

Undulator Characterization

αmax

A

λu

z

x

Undulator radiation is characterizedby three parameters:

• The energy of the electrons, γ

• The wavelength, λu, of it’smagnetic field

• The maximum angulardeviaton of the electron, αmax

We can, therefore write:

x = A sin (kuz)

αmax =dx

dz

∣∣∣z=0

= Aku cos (kuz)∣∣∣z=0

= Aku

Define a dimensionless quantity, K which scales αmax to the naturalopening angle of the radiation, 1/γ

K = αmaxγ

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 3 / 8

Page 17: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

Undulator Characterization

αmax

A

λu

z

x

Undulator radiation is characterizedby three parameters:

• The energy of the electrons, γ

• The wavelength, λu, of it’smagnetic field

• The maximum angulardeviaton of the electron, αmax

We can, therefore write:

x = A sin (kuz)

αmax =dx

dz

∣∣∣z=0

= Aku cos (kuz)∣∣∣z=0

= Aku

Define a dimensionless quantity, K which scales αmax to the naturalopening angle of the radiation, 1/γ

K = αmaxγ

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 3 / 8

Page 18: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

Undulator Characterization

αmax

A

λu

z

x

Undulator radiation is characterizedby three parameters:

• The energy of the electrons, γ

• The wavelength, λu, of it’smagnetic field

• The maximum angulardeviaton of the electron, αmax

We can, therefore write:

x = A sin (kuz)

αmax =dx

dz

∣∣∣z=0

= Aku cos (kuz)∣∣∣z=0

= Aku

Define a dimensionless quantity, K which scales αmax to the naturalopening angle of the radiation, 1/γ

K = αmaxγ

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 3 / 8

Page 19: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

Undulator Characterization

αmax

A

λu

z

x

Undulator radiation is characterizedby three parameters:

• The energy of the electrons, γ

• The wavelength, λu, of it’smagnetic field

• The maximum angulardeviaton of the electron, αmax

We can, therefore write:

x = A sin (kuz)

αmax =dx

dz

∣∣∣z=0

= Aku cos (kuz)∣∣∣z=0

= Aku

Define a dimensionless quantity, K which scales αmax to the naturalopening angle of the radiation, 1/γ

K = αmaxγ

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 3 / 8

Page 20: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

Undulator Characterization

αmax

A

λu

z

x

Undulator radiation is characterizedby three parameters:

• The energy of the electrons, γ

• The wavelength, λu, of it’smagnetic field

• The maximum angulardeviaton of the electron, αmax

We can, therefore write:

x = A sin (kuz)

αmax

=dx

dz

∣∣∣z=0

= Aku cos (kuz)∣∣∣z=0

= Aku

Define a dimensionless quantity, K which scales αmax to the naturalopening angle of the radiation, 1/γ

K = αmaxγ

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 3 / 8

Page 21: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

Undulator Characterization

αmax

A

λu

z

x

Undulator radiation is characterizedby three parameters:

• The energy of the electrons, γ

• The wavelength, λu, of it’smagnetic field

• The maximum angulardeviaton of the electron, αmax

We can, therefore write:

x = A sin (kuz)

αmax =dx

dz

∣∣∣z=0

= Aku cos (kuz)∣∣∣z=0

= Aku

Define a dimensionless quantity, K which scales αmax to the naturalopening angle of the radiation, 1/γ

K = αmaxγ

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 3 / 8

Page 22: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

Undulator Characterization

αmax

A

λu

z

x

Undulator radiation is characterizedby three parameters:

• The energy of the electrons, γ

• The wavelength, λu, of it’smagnetic field

• The maximum angulardeviaton of the electron, αmax

We can, therefore write:

x = A sin (kuz)

αmax =dx

dz

∣∣∣z=0

= Aku cos (kuz)∣∣∣z=0

= Aku

Define a dimensionless quantity, K which scales αmax to the naturalopening angle of the radiation, 1/γ

K = αmaxγ

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 3 / 8

Page 23: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

Undulator Characterization

αmax

A

λu

z

x

Undulator radiation is characterizedby three parameters:

• The energy of the electrons, γ

• The wavelength, λu, of it’smagnetic field

• The maximum angulardeviaton of the electron, αmax

We can, therefore write:

x = A sin (kuz)

αmax =dx

dz

∣∣∣z=0

= Aku cos (kuz)∣∣∣z=0

= Aku

Define a dimensionless quantity, K which scales αmax to the naturalopening angle of the radiation, 1/γ

K = αmaxγ

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 3 / 8

Page 24: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

Undulator Characterization

αmax

A

λu

z

x

Undulator radiation is characterizedby three parameters:

• The energy of the electrons, γ

• The wavelength, λu, of it’smagnetic field

• The maximum angulardeviaton of the electron, αmax

We can, therefore write:

x = A sin (kuz)

αmax =dx

dz

∣∣∣z=0

= Aku cos (kuz)∣∣∣z=0

= Aku

Define a dimensionless quantity, K which scales αmax to the naturalopening angle of the radiation, 1/γ

K = αmaxγ

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 3 / 8

Page 25: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

Undulator Characterization

αmax

A

λu

z

x

Undulator radiation is characterizedby three parameters:

• The energy of the electrons, γ

• The wavelength, λu, of it’smagnetic field

• The maximum angulardeviaton of the electron, αmax

We can, therefore write:

x = A sin (kuz)

αmax =dx

dz

∣∣∣z=0

= Aku cos (kuz)∣∣∣z=0

= Aku

Define a dimensionless quantity, K which scales αmax to the naturalopening angle of the radiation, 1/γ

K = αmaxγ

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 3 / 8

Page 26: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

Circular Path Approximation

λu

z

x

Consider the trajectory of the electron along one period of the undulator.

Since the curvature is small, the path can be approximated by an arc or acircle of radius ρ whose origin lies at x = −(ρ− A) and z = 0.The equation of the circle which approximates the arc is:

ρ2 = [x + (ρ− A)]2 + z2

x + (ρ− A) =√ρ2 − z2

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 4 / 8

Page 27: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

Circular Path Approximation

λu

z

x

Consider the trajectory of the electron along one period of the undulator.Since the curvature is small, the path can be approximated by an arc or acircle of radius ρ whose origin lies at x = −(ρ− A) and z = 0.

The equation of the circle which approximates the arc is:

ρ2 = [x + (ρ− A)]2 + z2

x + (ρ− A) =√ρ2 − z2

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 4 / 8

Page 28: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

Circular Path Approximation

λu

z

x

Consider the trajectory of the electron along one period of the undulator.Since the curvature is small, the path can be approximated by an arc or acircle of radius ρ whose origin lies at x = −(ρ− A) and z = 0.The equation of the circle which approximates the arc is:

ρ2 = [x + (ρ− A)]2 + z2

x + (ρ− A) =√ρ2 − z2

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 4 / 8

Page 29: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

Circular Path Approximation

λu

z

x

Consider the trajectory of the electron along one period of the undulator.Since the curvature is small, the path can be approximated by an arc or acircle of radius ρ whose origin lies at x = −(ρ− A) and z = 0.The equation of the circle which approximates the arc is:

ρ2 = [x + (ρ− A)]2 + z2

x + (ρ− A) =√ρ2 − z2

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 4 / 8

Page 30: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

Circular Path Approximation

λu

z

x

Consider the trajectory of the electron along one period of the undulator.Since the curvature is small, the path can be approximated by an arc or acircle of radius ρ whose origin lies at x = −(ρ− A) and z = 0.The equation of the circle which approximates the arc is:

ρ2 = [x + (ρ− A)]2 + z2

x + (ρ− A) =√ρ2 − z2

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 4 / 8

Page 31: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

Radius of Curvature

From the equation for a circle:

x = A− ρ+√ρ2 − z2

= A− ρ+ ρ

√1− z2

ρ2

≈ A− ρ+ ρ

(1− 1

2

z2

ρ2

)≈ A− z2

For the undulating path:

x = A cos (kuz)

≈ A

(1− k2uz

2

2

)≈ A− Ak2uz

2

2

Combining, we have

1

ρ= Ak2u −→ ρ =

1

Ak2u

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 5 / 8

Page 32: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

Radius of Curvature

From the equation for a circle:

x = A− ρ+√ρ2 − z2

= A− ρ+ ρ

√1− z2

ρ2

≈ A− ρ+ ρ

(1− 1

2

z2

ρ2

)≈ A− z2

For the undulating path:

x = A cos (kuz)

≈ A

(1− k2uz

2

2

)≈ A− Ak2uz

2

2

Combining, we have

1

ρ= Ak2u −→ ρ =

1

Ak2u

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 5 / 8

Page 33: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

Radius of Curvature

From the equation for a circle:

x = A− ρ+√ρ2 − z2

= A− ρ+ ρ

√1− z2

ρ2

≈ A− ρ+ ρ

(1− 1

2

z2

ρ2

)

≈ A− z2

For the undulating path:

x = A cos (kuz)

≈ A

(1− k2uz

2

2

)≈ A− Ak2uz

2

2

Combining, we have

1

ρ= Ak2u −→ ρ =

1

Ak2u

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 5 / 8

Page 34: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

Radius of Curvature

From the equation for a circle:

x = A− ρ+√ρ2 − z2

= A− ρ+ ρ

√1− z2

ρ2

≈ A− ρ+ ρ

(1− 1

2

z2

ρ2

)≈ A− z2

For the undulating path:

x = A cos (kuz)

≈ A

(1− k2uz

2

2

)≈ A− Ak2uz

2

2

Combining, we have

1

ρ= Ak2u −→ ρ =

1

Ak2u

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 5 / 8

Page 35: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

Radius of Curvature

From the equation for a circle:

x = A− ρ+√ρ2 − z2

= A− ρ+ ρ

√1− z2

ρ2

≈ A− ρ+ ρ

(1− 1

2

z2

ρ2

)≈ A− z2

For the undulating path:

x = A cos (kuz)

≈ A

(1− k2uz

2

2

)≈ A− Ak2uz

2

2

Combining, we have

1

ρ= Ak2u −→ ρ =

1

Ak2u

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 5 / 8

Page 36: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

Radius of Curvature

From the equation for a circle:

x = A− ρ+√ρ2 − z2

= A− ρ+ ρ

√1− z2

ρ2

≈ A− ρ+ ρ

(1− 1

2

z2

ρ2

)≈ A− z2

For the undulating path:

x = A cos (kuz)

≈ A

(1− k2uz

2

2

)≈ A− Ak2uz

2

2

Combining, we have

1

ρ= Ak2u −→ ρ =

1

Ak2u

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 5 / 8

Page 37: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

Radius of Curvature

From the equation for a circle:

x = A− ρ+√ρ2 − z2

= A− ρ+ ρ

√1− z2

ρ2

≈ A− ρ+ ρ

(1− 1

2

z2

ρ2

)≈ A− z2

For the undulating path:

x = A cos (kuz)

≈ A

(1− k2uz

2

2

)

≈ A− Ak2uz2

2

Combining, we have

1

ρ= Ak2u −→ ρ =

1

Ak2u

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 5 / 8

Page 38: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

Radius of Curvature

From the equation for a circle:

x = A− ρ+√ρ2 − z2

= A− ρ+ ρ

√1− z2

ρ2

≈ A− ρ+ ρ

(1− 1

2

z2

ρ2

)≈ A− z2

For the undulating path:

x = A cos (kuz)

≈ A

(1− k2uz

2

2

)≈ A− Ak2uz

2

2

Combining, we have

1

ρ= Ak2u −→ ρ =

1

Ak2u

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 5 / 8

Page 39: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

Radius of Curvature

From the equation for a circle:

x = A− ρ+√ρ2 − z2

= A− ρ+ ρ

√1− z2

ρ2

≈ A− ρ+ ρ

(1− 1

2

z2

ρ2

)≈ A− z2

For the undulating path:

x = A cos (kuz)

≈ A

(1− k2uz

2

2

)≈ A− Ak2uz

2

2

Combining, we have

1

ρ= Ak2u

−→ ρ =1

Ak2u

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 5 / 8

Page 40: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

Radius of Curvature

From the equation for a circle:

x = A− ρ+√ρ2 − z2

= A− ρ+ ρ

√1− z2

ρ2

≈ A− ρ+ ρ

(1− 1

2

z2

ρ2

)≈ A− z2

For the undulating path:

x = A cos (kuz)

≈ A

(1− k2uz

2

2

)≈ A− Ak2uz

2

2

Combining, we have

1

ρ= Ak2u −→ ρ =

1

Ak2u

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 5 / 8

Page 41: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

Electron Path Length

The displacement ds of the elec-tron can be expressed in terms ofthe two coordinates, x and z as:

ds =√

(dx)2 + (dz)2

=

√1 +

(dx

dz

)2

dz

dsdx

dz

dx

dz=

d

dz

(A− Ak2uz

2

2

)= −Ak2uz

Now calculate the length of the path traveled by the electron over oneperiod of the undulator

Sλu =

∫ λu

0

√1 +

(dx

dz

)2

dz =

∫ λu

0

√1 + A2k4uz

2 dz

≈∫ λu

0

(1 +

1

2A2k4uz

2

)dz =

[z +

1

6A2k4uz

3

∣∣∣∣λu

0

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 6 / 8

Page 42: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

Electron Path Length

The displacement ds of the elec-tron can be expressed in terms ofthe two coordinates, x and z as:

ds =√

(dx)2 + (dz)2

=

√1 +

(dx

dz

)2

dz

dsdx

dz

dx

dz=

d

dz

(A− Ak2uz

2

2

)= −Ak2uz

Now calculate the length of the path traveled by the electron over oneperiod of the undulator

Sλu =

∫ λu

0

√1 +

(dx

dz

)2

dz =

∫ λu

0

√1 + A2k4uz

2 dz

≈∫ λu

0

(1 +

1

2A2k4uz

2

)dz =

[z +

1

6A2k4uz

3

∣∣∣∣λu

0

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 6 / 8

Page 43: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

Electron Path Length

The displacement ds of the elec-tron can be expressed in terms ofthe two coordinates, x and z as:

ds =√

(dx)2 + (dz)2

=

√1 +

(dx

dz

)2

dz

dsdx

dz

dx

dz=

d

dz

(A− Ak2uz

2

2

)= −Ak2uz

Now calculate the length of the path traveled by the electron over oneperiod of the undulator

Sλu =

∫ λu

0

√1 +

(dx

dz

)2

dz =

∫ λu

0

√1 + A2k4uz

2 dz

≈∫ λu

0

(1 +

1

2A2k4uz

2

)dz =

[z +

1

6A2k4uz

3

∣∣∣∣λu

0

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 6 / 8

Page 44: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

Electron Path Length

The displacement ds of the elec-tron can be expressed in terms ofthe two coordinates, x and z as:

ds =√

(dx)2 + (dz)2

=

√1 +

(dx

dz

)2

dz

dsdx

dz

dx

dz=

d

dz

(A− Ak2uz

2

2

)

= −Ak2uz

Now calculate the length of the path traveled by the electron over oneperiod of the undulator

Sλu =

∫ λu

0

√1 +

(dx

dz

)2

dz =

∫ λu

0

√1 + A2k4uz

2 dz

≈∫ λu

0

(1 +

1

2A2k4uz

2

)dz =

[z +

1

6A2k4uz

3

∣∣∣∣λu

0

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 6 / 8

Page 45: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

Electron Path Length

The displacement ds of the elec-tron can be expressed in terms ofthe two coordinates, x and z as:

ds =√

(dx)2 + (dz)2

=

√1 +

(dx

dz

)2

dz

dsdx

dz

dx

dz=

d

dz

(A− Ak2uz

2

2

)= −Ak2uz

Now calculate the length of the path traveled by the electron over oneperiod of the undulator

Sλu =

∫ λu

0

√1 +

(dx

dz

)2

dz =

∫ λu

0

√1 + A2k4uz

2 dz

≈∫ λu

0

(1 +

1

2A2k4uz

2

)dz =

[z +

1

6A2k4uz

3

∣∣∣∣λu

0

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 6 / 8

Page 46: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

Electron Path Length

The displacement ds of the elec-tron can be expressed in terms ofthe two coordinates, x and z as:

ds =√

(dx)2 + (dz)2

=

√1 +

(dx

dz

)2

dz

dsdx

dz

dx

dz=

d

dz

(A− Ak2uz

2

2

)= −Ak2uz

Now calculate the length of the path traveled by the electron over oneperiod of the undulator

Sλu =

∫ λu

0

√1 +

(dx

dz

)2

dz =

∫ λu

0

√1 + A2k4uz

2 dz

≈∫ λu

0

(1 +

1

2A2k4uz

2

)dz =

[z +

1

6A2k4uz

3

∣∣∣∣λu

0

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 6 / 8

Page 47: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

Electron Path Length

The displacement ds of the elec-tron can be expressed in terms ofthe two coordinates, x and z as:

ds =√

(dx)2 + (dz)2

=

√1 +

(dx

dz

)2

dz

dsdx

dz

dx

dz=

d

dz

(A− Ak2uz

2

2

)= −Ak2uz

Now calculate the length of the path traveled by the electron over oneperiod of the undulator

Sλu =

∫ λu

0

√1 +

(dx

dz

)2

dz

=

∫ λu

0

√1 + A2k4uz

2 dz

≈∫ λu

0

(1 +

1

2A2k4uz

2

)dz =

[z +

1

6A2k4uz

3

∣∣∣∣λu

0

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 6 / 8

Page 48: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

Electron Path Length

The displacement ds of the elec-tron can be expressed in terms ofthe two coordinates, x and z as:

ds =√

(dx)2 + (dz)2

=

√1 +

(dx

dz

)2

dz

dsdx

dz

dx

dz=

d

dz

(A− Ak2uz

2

2

)= −Ak2uz

Now calculate the length of the path traveled by the electron over oneperiod of the undulator

Sλu =

∫ λu

0

√1 +

(dx

dz

)2

dz =

∫ λu

0

√1 + A2k4uz

2 dz

≈∫ λu

0

(1 +

1

2A2k4uz

2

)dz =

[z +

1

6A2k4uz

3

∣∣∣∣λu

0

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 6 / 8

Page 49: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

Electron Path Length

The displacement ds of the elec-tron can be expressed in terms ofthe two coordinates, x and z as:

ds =√

(dx)2 + (dz)2

=

√1 +

(dx

dz

)2

dz

dsdx

dz

dx

dz=

d

dz

(A− Ak2uz

2

2

)= −Ak2uz

Now calculate the length of the path traveled by the electron over oneperiod of the undulator

Sλu =

∫ λu

0

√1 +

(dx

dz

)2

dz =

∫ λu

0

√1 + A2k4uz

2 dz

≈∫ λu

0

(1 +

1

2A2k4uz

2

)dz

=

[z +

1

6A2k4uz

3

∣∣∣∣λu

0

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 6 / 8

Page 50: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

Electron Path Length

The displacement ds of the elec-tron can be expressed in terms ofthe two coordinates, x and z as:

ds =√

(dx)2 + (dz)2

=

√1 +

(dx

dz

)2

dz

dsdx

dz

dx

dz=

d

dz

(A− Ak2uz

2

2

)= −Ak2uz

Now calculate the length of the path traveled by the electron over oneperiod of the undulator

Sλu =

∫ λu

0

√1 +

(dx

dz

)2

dz =

∫ λu

0

√1 + A2k4uz

2 dz

≈∫ λu

0

(1 +

1

2A2k4uz

2

)dz =

[z +

1

6A2k4uz

3

∣∣∣∣λu

0

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 6 / 8

Page 51: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

Electron Path Length

Sλu ≈[z +

1

6A2k4uz

3

∣∣∣∣λu

0

≈(λu +

1

6A2k4uλ

3u

)≈ λu

(1 +

1

6A2k4uλ

2u

)≈ λu

(1 +

1

6A2k4u

(2π

ku

)2)

≈ λu(

1 +2π2

3A2k2u

)

The textbook presents a differentconstant factor for the second termand we will proceed using that factorfor simplicity

Sλu ≈(

1 +1

4A2k2u

)

Using the definition for the undulatorparameter K = γAku, we have

Sλu ≈(

1 +1

4

K 2

γ2

)

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 7 / 8

Page 52: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

Electron Path Length

Sλu ≈[z +

1

6A2k4uz

3

∣∣∣∣λu

0

≈(λu +

1

6A2k4uλ

3u

)

≈ λu(

1 +1

6A2k4uλ

2u

)≈ λu

(1 +

1

6A2k4u

(2π

ku

)2)

≈ λu(

1 +2π2

3A2k2u

)

The textbook presents a differentconstant factor for the second termand we will proceed using that factorfor simplicity

Sλu ≈(

1 +1

4A2k2u

)

Using the definition for the undulatorparameter K = γAku, we have

Sλu ≈(

1 +1

4

K 2

γ2

)

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 7 / 8

Page 53: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

Electron Path Length

Sλu ≈[z +

1

6A2k4uz

3

∣∣∣∣λu

0

≈(λu +

1

6A2k4uλ

3u

)≈ λu

(1 +

1

6A2k4uλ

2u

)

≈ λu

(1 +

1

6A2k4u

(2π

ku

)2)

≈ λu(

1 +2π2

3A2k2u

)

The textbook presents a differentconstant factor for the second termand we will proceed using that factorfor simplicity

Sλu ≈(

1 +1

4A2k2u

)

Using the definition for the undulatorparameter K = γAku, we have

Sλu ≈(

1 +1

4

K 2

γ2

)

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 7 / 8

Page 54: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

Electron Path Length

Sλu ≈[z +

1

6A2k4uz

3

∣∣∣∣λu

0

≈(λu +

1

6A2k4uλ

3u

)≈ λu

(1 +

1

6A2k4uλ

2u

)≈ λu

(1 +

1

6A2k4u

(2π

ku

)2)

≈ λu(

1 +2π2

3A2k2u

)

The textbook presents a differentconstant factor for the second termand we will proceed using that factorfor simplicity

Sλu ≈(

1 +1

4A2k2u

)

Using the definition for the undulatorparameter K = γAku, we have

Sλu ≈(

1 +1

4

K 2

γ2

)

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 7 / 8

Page 55: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

Electron Path Length

Sλu ≈[z +

1

6A2k4uz

3

∣∣∣∣λu

0

≈(λu +

1

6A2k4uλ

3u

)≈ λu

(1 +

1

6A2k4uλ

2u

)≈ λu

(1 +

1

6A2k4u

(2π

ku

)2)

≈ λu(

1 +2π2

3A2k2u

)

The textbook presents a differentconstant factor for the second termand we will proceed using that factorfor simplicity

Sλu ≈(

1 +1

4A2k2u

)

Using the definition for the undulatorparameter K = γAku, we have

Sλu ≈(

1 +1

4

K 2

γ2

)

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 7 / 8

Page 56: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

Electron Path Length

Sλu ≈[z +

1

6A2k4uz

3

∣∣∣∣λu

0

≈(λu +

1

6A2k4uλ

3u

)≈ λu

(1 +

1

6A2k4uλ

2u

)≈ λu

(1 +

1

6A2k4u

(2π

ku

)2)

≈ λu(

1 +2π2

3A2k2u

)

The textbook presents a differentconstant factor for the second termand we will proceed using that factorfor simplicity

Sλu ≈(

1 +1

4A2k2u

)

Using the definition for the undulatorparameter K = γAku, we have

Sλu ≈(

1 +1

4

K 2

γ2

)

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 7 / 8

Page 57: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

Electron Path Length

Sλu ≈[z +

1

6A2k4uz

3

∣∣∣∣λu

0

≈(λu +

1

6A2k4uλ

3u

)≈ λu

(1 +

1

6A2k4uλ

2u

)≈ λu

(1 +

1

6A2k4u

(2π

ku

)2)

≈ λu(

1 +2π2

3A2k2u

)

The textbook presents a differentconstant factor for the second termand we will proceed using that factorfor simplicity

Sλu ≈(

1 +1

4A2k2u

)

Using the definition for the undulatorparameter K = γAku, we have

Sλu ≈(

1 +1

4

K 2

γ2

)

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 7 / 8

Page 58: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

Electron Path Length

Sλu ≈[z +

1

6A2k4uz

3

∣∣∣∣λu

0

≈(λu +

1

6A2k4uλ

3u

)≈ λu

(1 +

1

6A2k4uλ

2u

)≈ λu

(1 +

1

6A2k4u

(2π

ku

)2)

≈ λu(

1 +2π2

3A2k2u

)

The textbook presents a differentconstant factor for the second termand we will proceed using that factorfor simplicity

Sλu ≈(

1 +1

4A2k2u

)

Using the definition for the undulatorparameter K = γAku, we have

Sλu ≈(

1 +1

4

K 2

γ2

)

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 7 / 8

Page 59: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

Electron Path Length

Sλu ≈[z +

1

6A2k4uz

3

∣∣∣∣λu

0

≈(λu +

1

6A2k4uλ

3u

)≈ λu

(1 +

1

6A2k4uλ

2u

)≈ λu

(1 +

1

6A2k4u

(2π

ku

)2)

≈ λu(

1 +2π2

3A2k2u

)

The textbook presents a differentconstant factor for the second termand we will proceed using that factorfor simplicity

Sλu ≈(

1 +1

4A2k2u

)

Using the definition for the undulatorparameter K = γAku, we have

Sλu ≈(

1 +1

4

K 2

γ2

)

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 7 / 8

Page 60: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

The K Parameter

Given the definition K = γAku, we can rewrite the radius of curvature ofthe electron’s path in the undulator as

ρ =1

Ak2u−→ ρ =

γ

Kku

Recalling that the radius of curvature is related to the electron momentumby the Lorentz force, we have

p = γmv ≈ γmc = ρeBo −→ γmc ≈ γ

KkueBo

Combining the above expressions yields

K =eBo

mcku=

eBo

2πmcλu = 0.934λu[cm]Bo [T]

For APS Undulator A, λu = 3.3cm and Bo = 0.6T at closed gap, so

K = 0.934 · 3.3[cm] · 0.6[T] = 1.85

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 8 / 8

Page 61: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

The K Parameter

Given the definition K = γAku, we can rewrite the radius of curvature ofthe electron’s path in the undulator as

ρ =1

Ak2u

−→ ρ =γ

Kku

Recalling that the radius of curvature is related to the electron momentumby the Lorentz force, we have

p = γmv ≈ γmc = ρeBo −→ γmc ≈ γ

KkueBo

Combining the above expressions yields

K =eBo

mcku=

eBo

2πmcλu = 0.934λu[cm]Bo [T]

For APS Undulator A, λu = 3.3cm and Bo = 0.6T at closed gap, so

K = 0.934 · 3.3[cm] · 0.6[T] = 1.85

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 8 / 8

Page 62: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

The K Parameter

Given the definition K = γAku, we can rewrite the radius of curvature ofthe electron’s path in the undulator as

ρ =1

Ak2u−→ ρ =

γ

Kku

Recalling that the radius of curvature is related to the electron momentumby the Lorentz force, we have

p = γmv ≈ γmc = ρeBo −→ γmc ≈ γ

KkueBo

Combining the above expressions yields

K =eBo

mcku=

eBo

2πmcλu = 0.934λu[cm]Bo [T]

For APS Undulator A, λu = 3.3cm and Bo = 0.6T at closed gap, so

K = 0.934 · 3.3[cm] · 0.6[T] = 1.85

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 8 / 8

Page 63: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

The K Parameter

Given the definition K = γAku, we can rewrite the radius of curvature ofthe electron’s path in the undulator as

ρ =1

Ak2u−→ ρ =

γ

Kku

Recalling that the radius of curvature is related to the electron momentumby the Lorentz force, we have

p = γmv ≈ γmc = ρeBo −→ γmc ≈ γ

KkueBo

Combining the above expressions yields

K =eBo

mcku=

eBo

2πmcλu = 0.934λu[cm]Bo [T]

For APS Undulator A, λu = 3.3cm and Bo = 0.6T at closed gap, so

K = 0.934 · 3.3[cm] · 0.6[T] = 1.85

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 8 / 8

Page 64: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

The K Parameter

Given the definition K = γAku, we can rewrite the radius of curvature ofthe electron’s path in the undulator as

ρ =1

Ak2u−→ ρ =

γ

Kku

Recalling that the radius of curvature is related to the electron momentumby the Lorentz force, we have

p = γmv

≈ γmc = ρeBo −→ γmc ≈ γ

KkueBo

Combining the above expressions yields

K =eBo

mcku=

eBo

2πmcλu = 0.934λu[cm]Bo [T]

For APS Undulator A, λu = 3.3cm and Bo = 0.6T at closed gap, so

K = 0.934 · 3.3[cm] · 0.6[T] = 1.85

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 8 / 8

Page 65: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

The K Parameter

Given the definition K = γAku, we can rewrite the radius of curvature ofthe electron’s path in the undulator as

ρ =1

Ak2u−→ ρ =

γ

Kku

Recalling that the radius of curvature is related to the electron momentumby the Lorentz force, we have

p = γmv ≈ γmc

= ρeBo −→ γmc ≈ γ

KkueBo

Combining the above expressions yields

K =eBo

mcku=

eBo

2πmcλu = 0.934λu[cm]Bo [T]

For APS Undulator A, λu = 3.3cm and Bo = 0.6T at closed gap, so

K = 0.934 · 3.3[cm] · 0.6[T] = 1.85

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 8 / 8

Page 66: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

The K Parameter

Given the definition K = γAku, we can rewrite the radius of curvature ofthe electron’s path in the undulator as

ρ =1

Ak2u−→ ρ =

γ

Kku

Recalling that the radius of curvature is related to the electron momentumby the Lorentz force, we have

p = γmv ≈ γmc = ρeBo

−→ γmc ≈ γ

KkueBo

Combining the above expressions yields

K =eBo

mcku=

eBo

2πmcλu = 0.934λu[cm]Bo [T]

For APS Undulator A, λu = 3.3cm and Bo = 0.6T at closed gap, so

K = 0.934 · 3.3[cm] · 0.6[T] = 1.85

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 8 / 8

Page 67: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

The K Parameter

Given the definition K = γAku, we can rewrite the radius of curvature ofthe electron’s path in the undulator as

ρ =1

Ak2u−→ ρ =

γ

Kku

Recalling that the radius of curvature is related to the electron momentumby the Lorentz force, we have

p = γmv ≈ γmc = ρeBo −→ γmc ≈ γ

KkueBo

Combining the above expressions yields

K =eBo

mcku=

eBo

2πmcλu = 0.934λu[cm]Bo [T]

For APS Undulator A, λu = 3.3cm and Bo = 0.6T at closed gap, so

K = 0.934 · 3.3[cm] · 0.6[T] = 1.85

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 8 / 8

Page 68: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

The K Parameter

Given the definition K = γAku, we can rewrite the radius of curvature ofthe electron’s path in the undulator as

ρ =1

Ak2u−→ ρ =

γ

Kku

Recalling that the radius of curvature is related to the electron momentumby the Lorentz force, we have

p = γmv ≈ γmc = ρeBo −→ γmc ≈ γ

KkueBo

Combining the above expressions yields

K =eBo

mcku=

eBo

2πmcλu = 0.934λu[cm]Bo [T]

For APS Undulator A, λu = 3.3cm and Bo = 0.6T at closed gap, so

K = 0.934 · 3.3[cm] · 0.6[T] = 1.85

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 8 / 8

Page 69: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

The K Parameter

Given the definition K = γAku, we can rewrite the radius of curvature ofthe electron’s path in the undulator as

ρ =1

Ak2u−→ ρ =

γ

Kku

Recalling that the radius of curvature is related to the electron momentumby the Lorentz force, we have

p = γmv ≈ γmc = ρeBo −→ γmc ≈ γ

KkueBo

Combining the above expressions yields

K =eBo

mcku

=eBo

2πmcλu = 0.934λu[cm]Bo [T]

For APS Undulator A, λu = 3.3cm and Bo = 0.6T at closed gap, so

K = 0.934 · 3.3[cm] · 0.6[T] = 1.85

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 8 / 8

Page 70: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

The K Parameter

Given the definition K = γAku, we can rewrite the radius of curvature ofthe electron’s path in the undulator as

ρ =1

Ak2u−→ ρ =

γ

Kku

Recalling that the radius of curvature is related to the electron momentumby the Lorentz force, we have

p = γmv ≈ γmc = ρeBo −→ γmc ≈ γ

KkueBo

Combining the above expressions yields

K =eBo

mcku=

eBo

2πmcλu

= 0.934λu[cm]Bo [T]

For APS Undulator A, λu = 3.3cm and Bo = 0.6T at closed gap, so

K = 0.934 · 3.3[cm] · 0.6[T] = 1.85

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 8 / 8

Page 71: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

The K Parameter

Given the definition K = γAku, we can rewrite the radius of curvature ofthe electron’s path in the undulator as

ρ =1

Ak2u−→ ρ =

γ

Kku

Recalling that the radius of curvature is related to the electron momentumby the Lorentz force, we have

p = γmv ≈ γmc = ρeBo −→ γmc ≈ γ

KkueBo

Combining the above expressions yields

K =eBo

mcku=

eBo

2πmcλu = 0.934λu[cm]Bo [T]

For APS Undulator A, λu = 3.3cm and Bo = 0.6T at closed gap, so

K = 0.934 · 3.3[cm] · 0.6[T] = 1.85

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 8 / 8

Page 72: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

The K Parameter

Given the definition K = γAku, we can rewrite the radius of curvature ofthe electron’s path in the undulator as

ρ =1

Ak2u−→ ρ =

γ

Kku

Recalling that the radius of curvature is related to the electron momentumby the Lorentz force, we have

p = γmv ≈ γmc = ρeBo −→ γmc ≈ γ

KkueBo

Combining the above expressions yields

K =eBo

mcku=

eBo

2πmcλu = 0.934λu[cm]Bo [T]

For APS Undulator A, λu = 3.3cm and Bo = 0.6T at closed gap, so

K = 0.934 · 3.3[cm] · 0.6[T] = 1.85

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 8 / 8

Page 73: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

The K Parameter

Given the definition K = γAku, we can rewrite the radius of curvature ofthe electron’s path in the undulator as

ρ =1

Ak2u−→ ρ =

γ

Kku

Recalling that the radius of curvature is related to the electron momentumby the Lorentz force, we have

p = γmv ≈ γmc = ρeBo −→ γmc ≈ γ

KkueBo

Combining the above expressions yields

K =eBo

mcku=

eBo

2πmcλu = 0.934λu[cm]Bo [T]

For APS Undulator A, λu = 3.3cm and Bo = 0.6T at closed gap, so

K = 0.934 · 3.3[cm] · 0.6[T]

= 1.85

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 8 / 8

Page 74: Wigglers and Undulators - Illinois Institute of Technologycsrri.iit.edu/~segre/phys570/10F/lecture_06.pdfC. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 1 / 8 Wigglers and Undulators

The K Parameter

Given the definition K = γAku, we can rewrite the radius of curvature ofthe electron’s path in the undulator as

ρ =1

Ak2u−→ ρ =

γ

Kku

Recalling that the radius of curvature is related to the electron momentumby the Lorentz force, we have

p = γmv ≈ γmc = ρeBo −→ γmc ≈ γ

KkueBo

Combining the above expressions yields

K =eBo

mcku=

eBo

2πmcλu = 0.934λu[cm]Bo [T]

For APS Undulator A, λu = 3.3cm and Bo = 0.6T at closed gap, so

K = 0.934 · 3.3[cm] · 0.6[T] = 1.85

C. Segre (IIT) PHYS 570 - Fall 2010 September 09, 2010 8 / 8