white spot

26
CHAPTER 2.3.2. WHITE SPOT DISEASE 1. Case definition For the purpose of this chapter, White spot disease (WSD) is considered to be infection with white spot syndrome virus (WSSV). 2. Information for the design of surveillance programmes a) Agent factors . Aetiological agent, agent strains: the viral species White spot syndrome virus 1, as defined in Vlak et al. 2004 (66). . Stability of the agent: the agent is inactivated in <120 minutes at 50°C and <1 minute at 60°C (49); is viable for at least 30 days at 30°C in seawater under laboratory conditions (46); and is viable in ponds for at least 3-4 days (5, 29, 43, 49). . Replication cycle: in-vitro studies with primary cell culture and in-vivo studies with post-larvae show that the replication cycle is approximately 20 hours at 25°C. b) Host factors . Susceptible host species: all decapod (order Decapoda) crustaceans from marine and brackish or freshwater sources (3, 13, 17, 23, 26, 27, 35, 40-42, 57, 58, 69).

Upload: meezan-ardhanu-asagabaldan

Post on 04-Apr-2015

70 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: White Spot

CHAPTER 2.3.2.

WHITE SPOT DISEASE

 1.    Case definition

 

     For the purpose of this chapter, White spot disease (WSD) is considered to be infection with white spot syndrome virus (WSSV). 

2.    Information for the design of surveillance programmes 

     a)    Agent factors

 

           .    Aetiological agent, agent strains: the viral species White spot syndrome virus 1, as

defined in Vlak et al. 2004 (66). 

           

.    Stability of the agent: the agent is inactivated in <120 minutes at 50°C and <1 minute at 60°C (49); is viable for at least 30 days at 30°C in seawater under laboratory conditions (46); and is viable in ponds for at least 3-4 days (5, 29, 43, 49). 

           .    Replication cycle: in-vitro studies with primary cell culture and in-vivo studies

with post-larvae show that the replication cycle is approximately 20 hours at 25°C. 

     b)    Host factors

 

           .    Susceptible host species: all decapod (order Decapoda) crustaceans from marine

and brackish or freshwater sources (3, 13, 17, 23, 26, 27, 35, 40-42, 57, 58, 69). 

           .    Susceptible stages of the host: all life stages potentially susceptible, from eggs to

brood stock (37, 38, 63). 

           

.    Species or sub-population predilection (probability of detection): higher probability of detection of the virus in crabs and shrimp. Best life stages for detection are late post-larval stages, juveniles and adults. Probability of detection can be increased by exposure to stressful conditions (e.g. eye stalk ablation, spawning, changes in salinity and temperature). 

           .    Target organs and infected tissue: ectodermal and mesodermal tissues, especially

the cuticular epithelium and subcuticular connective tissues (38, 47, 68, 72). 

            .    Persistent infection with lifelong carriers: Persistent infection occurs commonly

Page 2: White Spot

and lifelong infection has been shown (61). Viral loads during persistent infection can be extremely low and potentially undetectable by any available diagnostic test. 

           

.    Vectors: rotifers (73), bivalves, polychaete worms (65) and non-decapodal crustacea including Artemia salina and the copepods; also, non-crustacean aquatic arthropods such as sea slaters (Isopoda) and Euphydradae insect larvae. All these species can accumulate high concentrations of viable WSSV, although there is no evidence of virus replication (7, 34, 40, 73). 

     c)    Disease pattern

 

           

.    Transmission mechanisms: vertical (trans-ovum), horizontal by consumption of infected tissue (e.g. cannibalism, predation, etc.), and by water-borne routes. Transmission of infection can occur from apparently healthy animals in the absence of disease. Dead and moribund animals can be a source of disease transmission (11, 37, 38). 

           .    Prevalence: highly variable, from <1% in infected wild populations to up to 100%

in captive populations (23, 40, 41, 54, 62). 

           

.    Geographical distribution: throughout East, South-East and South Asia, North, South and Central America. WSD-free zones and compartments are known within these regions (1-3, 8, 17-19, 37, 44, 50, 67, 75). 

           

.    Mortality and morbidity: all farmed penaeid shrimp species are highly susceptible to infection, often resulting in high mortality. Crabs, crayfish, freshwater prawns, spiny lobsters and clawed lobsters are susceptible to infection, but morbidity and mortality as a consequence of infection is highly variable (2, 9, 22, 24, 27, 47, 50, 56, 59, 74). High level infections are known in some decapods in the absence of clinical disease. Disease outbreaks may be induced by stressors, such as rapid changes in salinity. Water temperature has a profound effect on disease expression with average water temperatures of below ~30°C being conducive to WSD outbreaks (20, 21, 28, 64). 

           .    Economic and/or production impact of the disease: value of lost production and

trade approaching 10 billion USD has been reported since 1993. 

     d)    Control and prevention

 

           .    Vaccination: no consistently effective vaccination methods have been developed.

 

           .    Chemotherapy: no scientifically confirmed reports.

             .    Immunostimulation: reports that beta-glucan, vitamin C, seaweed extracts

(fucoidan) and other immunostimulants may improve resistance to WSD (4, 10,

Page 3: White Spot

15, 32, 51, 71). 

           .    Resistance breeding: no significant improvements reported.

 

           .    Restocking with resistant species: not applicable for WSD.

 

           .    Blocking agents: not reported.

 

           

.    General husbandry practices: a number of husbandry practices have been used successfully to manage WSD, e.g. avoiding stocking in the cold season, use of specific pathogen free (SPF) or polymerase chain reaction (PCR)-negative seed stocks, and use of biosecure water and culture systems (14, 25, 48, 54, 70). 

3.    Diagnostic methods 

     a)    Field diagnostic methods

 

           

.    Gross signs: presence of white spots under the cuticle and a high degree of colour variation with a predominance of reddish or pinkish discoloured shrimp, reduction in feed intake, increasing lethargy, movement of moribund shrimp to the water surface and pond/tank edges and consequent attraction of shrimp-eating birds. 

     b)    Clinical methods

 

           .    Gross pathology: see Section 3.a above.

 

           .    Microscopic examination

 

                 .    Wet mounts: demonstration of hypertrophied nuclei in squash preparations

of the gills and/or cuticular epithelium, which may be stained or unstained. 

                 .    Demonstration of WSSV aggregates in unstained wet-mount preparations

of haemolymph by dark field microscopy. 

                       

Please Note: This is the simplest of the microscopic techniques and is recommended for people with limited expertise in WSSV. The aggregates appear as small reflective spots of 0.5 µm diameter (45). 

                 .    Fixed sections: histological demonstration of pathognomonic inclusion

bodies in target tissues. 

                 .    In situ hybridisation: use of WSSV-specific DNA probes with histological

sections to demonstrate the presence of WSSV nuclei acid in infected cells. 

                  .    Immunohistochemistry: use of WSSV-specific antibodies with histological

Page 4: White Spot

sections or wet mounts to demonstrate the presence of WSSV antigen in infected cells. 

           .    Electron microscopy: demonstration of the virus in tissue sections or in semi-

purified virus preparations (e.g. from haemolymph). 

     c)    Agent detection and identification methods

 

     .    Direct detection methods

 

     i)    Microscopic methods

 

           .    Wet mounts: see Section 3.b above.

 

           .    Fixed sections: see Section 3.b above.

 

     ii)    Agent isolation and identification

 

           .    Molecular techniques:

 

           a)    Polymerase chain reaction (PCR)

 

                 

The protocol described here is according to Lo et al. (38, 39), and is recommended for all situations where WSSV diagnosis is required. A positive result in the first step of this standard protocol implies a serious WSSV infection; when a positive result is obtained in the second amplification step only, a latent or carrier-state infection is indicated. Alternative assays have also been described (30, 31, 33, 36, 52, 55, 60), but are not recommended using unless they have first been compared with the protocol described here. 

                 DNA extraction 

                 

i)    Collect 100-200 mg shrimp tissue (pleopod of live juvenile to subadult shrimp, post-larvae 11 upwards [PL11 up] with removed heads, or whole PL10, or use 100 µl of haemolymph) in a 1.5 ml microfuge tube with 600 µl of lysis solution (100 mM NaCl, 10 mM Tris/HCl, pH 8, 25 mM EDTA [ethylene diamine tetra-acetic acid], 0.5% SLS [sodium N-laurylsarcosinate] or 2% SDS [sodium dodecyl sulfate], and 0.5 mg/ml proteinase K added just before use). 

                 ii)    Using a disposable stick, homogenise the tissue in the tube thoroughly.

 

                 iii)    After homogenisation, incubate at 65°C for 1 hour.

                   iv)    Add 5 M NaCl to a final concentration of 0.7 M. Next slowly add

Page 5: White Spot

1/10 volume of N-cetyl N,N,Ntrimethylammonium bromide (CTAB)/NaCl solution (10% CTAB in 0.7 M NaCl) and mix thoroughly. 

                       

Please note: the CTAB extraction method described here is the only extraction method that has proved to be reliable. Commercial extraction kits are not recommended. 

                 

v)    Incubate at 65°C for 10 minutes, and then, at room temperature, add an equal volume of chloroform/isoamyl alcohol (24/1) and mix gently. Centrifuge at 13,000 g for 5 minutes and then transfer the aqueous solution (upper layer) to a fresh 1.5 ml tube and add an equal volume of phenol. 

                 vi)    Mix gently and centrifuge at 13,000 g for 5 minutes. Collect the upper

layer solution and repeat the phenol extraction process once or twice. 

                 

vii)    Transfer the final upper layer to a new tube, mix gently with two volumes of chloroform/isoamyl alcohol (24/1) and centrifuge at 13,000 g for 5 minutes. 

                 

viii)    Transfer the upper layer to a new tube and precipitate DNA by adding two volumes of 95% or absolute ethanol followed by standing at -20°C for 30 minutes or -80° C for 15 minutes. 

                 

ix)    Centrifuge at 13,000 g for 30 minutes and discard the ethanol. Wash the DNA pellet with 70% ethanol, dry and resuspend in 100 µl sterilised double-distilled water at 65°C for 15 minutes. 

                 x)    Use 1 µl of this DNA solution for one PCR reaction.

 

                 

Please note: The following nested PCR procedures are well established and provide reliable diagnostic results under the specified conditions. Care should be taken, however, to ensure that DNA samples are prepared from the recommended organs, and that the PCR temperature (particularly for annealing, the recommended temperature is 55°C) is accurately applied. To prevent the possibility of false positive results, it is important to adhere to the specified procedures, especially when they are used to test new candidate hosts such as Cherax quadricarinatus (12). For diagnosed incidences of WSSV in a new host or in a previously free zone, DNA sequencing should be used to confirm the positive results. 

                 First-step PCR reaction 

                  i)    Add 1 µl DNA template solution (containing about 0.1-0.3 µg DNA) to a PCR tube containing 100 µl of reaction mixture (10 mM Tris/HCl, pH 8.8, 50 mM KCl, 1.5 mM MgCl2, 0.1% Triton X-100, 200 µM of each dNTP,

Page 6: White Spot

100 pmol of each primer, 2 units of heat-stable DNA polymerase). 

                 

ii)    The outer primer sequences are 146F1, 5'-ACT-ACT-AAC-TTC-AGC-CTA-TCTAG-3' and 146R1, 5'-TAA-TGC-GGG-TGT-AAT-GTT-CTT-ACG-A-3'. 

                 

iii)    The PCR profile is one cycle of 94°C for 4 minutes, 55°C for 1 minute, and 72°C for 2 minutes, followed by 39 cycles of 94°C for 1 minute, 55°C for 1 minute, and 72°C for 2 minutes and a final 5-minute extension at 72°C. The WSSV-specific amplicon from this reaction is 1447 bp. The sensitivity is approximately 20,000 copies of a plasmid template. 

                 Second step of the (nested) PCR reaction: This second step is necessary for the detection of WSSV in shrimp at the carrier stage. 

                 

i)    Add 10 µl of the first-step PCR reaction product to 90 µl of a PCR cocktail with the same composition as above except that it contains the second (inner) primer pair: 146F2 (5'-GTA-ACT-GCC-CCT-TCC-ATC-TCC-A-3') and 146R2 (5'-TAC-GGC-AGC - TGC-TGC-ACC-TTG-T-3'). 

                 

ii)    Use the same PCR amplification protocol as above. The WSSV-specific amplicon from this reaction is 941 bp. The overall sensitivity of both steps is approximately 20 copies of a WSSV plasmid template. 

                 iii)    To visualise, electrophorese 10 µl of PCR reaction products on 1% agarose

gels containing ethidium bromide at a concentration of 0.5 µg/ml. 

                 

iv)    Decapod-specific primers (143F 5'-TGC-CTT-ATC-AGCTNT-CGA-TTG-TAG-3' and 145R 5'-TTC-AGN-TTT-GCA-ACC-ATA-CTT-CCC-3' yielding an 848 bp amplicon; N represents G, A, T, or C) should be used in control reactions to verify the quality of the extracted DNA and the integrity of the PCR reaction. In the penaeid shrimp Penaeus aztecus, the PCR product generated by this decapod-specific primer pair corresponds to nucleotide sequence 352-1200 of the 18s rRNA (39). The decapod 18s RNA sequence is highly conserved and produces a similar sized PCR product in almost all decapods. A positive control (WSSV DNA template) and negative controls (no template and shrimp DNA template) should be included in every assay. 

           b)    DNA sequencing of PCR products

 

                 

For confirmation of suspected new hosts of WSSV, the DNA fragment amplified from the two-step nested diagnostic PCR should be sequenced. The cloning and sequencing protocols described here are according to Claydon et al. (12). 

Page 7: White Spot

                 

Please note: to save time and money, it is acceptable to sequence the PCR amplicon directly. If a positive result is obtained, then go to step iv below. In the event of a negative result, then the sample should be tested again using the cloning and sequencing procedures described below. 

                 

i)    Excise the DNA fragments selected for further analysis from the agarose gels and purify them using Promega's Wizard SV Gel and PCR clean-up system according to the manufacturer's instructions. 

                 ii)    Ligate amplicons into pGEM®-T easy vector plasmid (Promega) and clone

the construct according to the manufacturer's instructions. 

                 

iii)    DNA sequencing may be carried out using M13 universal primers (Promega) and a Beckman Coulter CEQ dye terminator cycle sequencing quick start kit. 

                 

iv)    Compare the sequences so obtained to available databases using the Basic Local Alignment Search Tool (BLAST) to determine approximate phylogenetic affiliations. 

           c)    In situ hybridisation (ISH) method

 

                 The protocol described here is based on that developed by Nunan & Lightner (52), although an alternative protocol has been described by Chang et al. (6) 

                 i)    Fix moribund shrimp with Davidson's AFA fixative for 24-48 hours.

 

                 ii)    Embed the tissues in paraffin and cut into 5 µm sections. Place sections on

to Superfrost Plus positively charged microscope slides. 

                 iii)    Heat the slide on a hot plate at 65°C for 30 minutes.

 

                 

iv)    Deparaffinise, rehydrate and then treat for 2-30 minutes (depending on tissue type) with 100 µg/ml proteinase K in Tris/NaCl/EDTA (TNE) buffer at 37°C. 

                 

v)    Post-fix the slides by chilling in pre-cooled 0.4% formaldehyde for 5 minutes at 4°C and wash the slides in 2 × standard saline citrate (SSC; 1 × SSC = 150 mM NaCl, 15 mM tri-sodium citrate, pH 7.0) at room temperature. 

                 

vi)    Prehybridise the slides with prehybridisation solution (50% formamide, 0.2% Ficoll 400, 0.2% polyvinylpyrrolidone, 0.2% bovine serum albumin, 5 × SSC, 1 mM EDTA, 50 mM Tris/HCl, pH 8) for 30 minutes at 42°C. 

Page 8: White Spot

                 

vii)    Follow with hybridisation with the 1447 bp WSSV-specific PCR amplicon (see "First-step PCR reaction" above) that has been labelled with digoxigenin (DIG; Roche). It is recommended that the probe be labelled by incorporating DIG-dNTP in the PCR duplicating cycle. Optimum concentration should be determined by testing and adjusting until a high specific signal is obtained against a low background. 

                 

viii)    For hybridisation, boil the probe for 10 minutes and immediately place on ice. Dilute the probe to 30-50 ng/ml in prehybridisation solution and apply 500 µl to each slide. 

                 

ix)    Put the slide on a hotplate at 85-95°C for 6-10 minutes (make sure that it does not reach boiling point), quench slides on ice for 5 minutes and then transfer to a humid chamber for 16-20 hours at 42°C. 

                 

x)    After hybridisation, wash the slides twice for 15 minutes each time with 2 × SSC at room temperature, twice for 5 minutes with 1 × SSC at 37°C, and twice for 5 minutes with 0.5 × SSC at 37°C. 

                 xi)    For hybridisation detection, wash slides with maleic acid buffer (100 mM

maleic acid, 150 mM NaCl, pH 7.5) for 5 minutes at room temperature. 

                 xii)    Block the slides with blocking solution (2% normal goat serum and 0.3%

Triton X-100 in maleic acid buffer) for 30 minutes at 37°C. 

                 

xiii)    Add 250 µl anti-DIG alkaline phosphatase (AP)-conjugated antibody solution (1 µl/ml anti-DIG/AP-Fab fragment in maleic acid buffer containing 1% normal goat serum and 0.3% Triton X-100) to each slide, and incubate at 37°C for 30 minutes. 

                 

xiv)    Wash the slides twice with maleic acid buffer for 10 minutes each and once with detection buffer (100 mM Tris/HCl, 100 mM NaCl, pH 9.5) at room temperature. 

                 

xv)    Add 500 µl development solution (prepare immediately before use by adding 45 µl NBT salt solution [75 mg/ml in 70% dimethyformamide], 35 µl 5-bromo-4-chloro-3-indoyl phosphate, toluidinum salt [X-phosphate] solution [50 mg/ml in dimethylformamide] and 1 ml 10% PVA to 9 ml of detection buffer) to each slide and incubate in the dark in a humid chamber for 1-3 hours. 

                  xvi)    Stop the reaction by washing the slides in TE buffer (10 mM Tri-HCl, 1 mM EDTA, pH 8.0) for 15 minutes at room temperature. Wash the slides in distilled water for ten dips, counterstain the slides in 0.5% aqueous Bismarck Brown Y for 30-90 seconds and then rinse with water. Wet

Page 9: White Spot

mount using aqueous mounting media for observation immediately or dehydrate the slides and mount with Permount mounting media for long-term preservation. 

                 

xvii)    Mount the slides with cover-slips and examine with a bright field microscope. Positive hybridisation appears as a dark blue to black precipitate against the yellow to brown counterstain. 

           d)    Bioassay method:

 

                 If SPF shrimp are available, the following bioassay method is based on Nunan et al. (53) and Durand et al. (16), is suitable for WSSV diagnosis. 

                 

i)    For bioassay, remove the pleopods from shrimp suspected of WSSV infection and homogenise in TN buffer (0.02 M Tris/HCl, 0.4 M NaCl, pH 7.4). 

                 ii)    Following centrifugation at 1000 g for 10 minutes, dilute the supernatant

fluid 1/10 with 2% NaCl and filter (0.2 µm filter). 

                 

iii)    Inject 0.2 ml of inoculum into the dorso-lateral aspect of the fourth abdominal segment of indicator shrimp (e.g. SPF Litopenaeus vannamei at the juvenile stage), injecting between the tergal plates into the muscle of the third abdominal segment. 

                 

iv)    Examine moribund shrimp grossly or by using the methods described above. If at 3-5 days after inoculation there are still no moribund shrimp and all test results are negative, then it is safe to conclude that the bioassay results are negative. 

4.    Rating of tests against purpose of use 

     

The methods currently available for surveillance, detection, and diagnosis of WSSV are listed in Table 1. The designations used in the Table indicate: A = the method is the recommended method for reasons of availability, utility, and diagnostic specificity and sensitivity; B = the method is a standard method with good diagnostic sensitivity and specificity; C = the method has application in some situations, but cost, accuracy, or other factors severely limits its application; and D = the method is presently not recommended for this purpose. These are somewhat subjective as suitability involves issues of reliability, sensitivity, specificity and utility. Although not all of the tests listed as category A or B have undergone formal standardisation and validation (see Chapter 1.1.2), their routine nature and the fact that they have been used widely without dubious results, makes them acceptable. 

Page 10: White Spot

Table 1. WSV surveillance, detection and diagnostic methods

Method 

Surveillance 

Presumptive 

Confirmatory 

  

Larvae 

PLs 

Juveniles 

Adults 

  

  

Gross signs   D   D   C C C  D  

Bioassay  D  D  D  D  C B  

Direct LM  D  D  C  C  C C  

Histopathology  

D  C  C  C  A A  

Transmission EM 

D  A

Antibody-based assays 

D  

A  B  

DNA Probes in situ 

A  A  

PCR 

D  

A  A  

Sequence 

A

PLs = postlarvae; LM = light microscopy; EM = electron microscopy; PCR = polymerase chain reaction.

5.    Corroborative diagnostic criteria 

     a)    Definition of suspect case

             For juvenile and adult shrimp: gross signs of WSD (see Section 3.a above). For shrimp

at any life stage (larva to adult): mortality. For shrimp and crab at ay life stage (larva to adult): hypertrophied nuclei in squash preparations of gill and/or cuticular epithelium; unusual aggregates in haemolymph by dark-field microscopy; inclusion bodies in histological sections in target tissues.

Page 11: White Spot

 

     b)    Definition of confirmed case

 

           

Suspect cases should first be checked by PCR. If in a previously WSSV-free country/zone/ compartment, PCR results are positive, they should be confirmed by sequencing. 

6.    Diagnostic/detection methods to declare freedom 

     

Two-step PCR and sequencing are the prescribed methods for declaring freedom. Two-step PCR negative results are required. Where a two-step PCR positive result cannot be confirmed by sequencing, this also counts as a negative result. 

REFERENCES

1.    Azad I.S., Shekhar M.S., Mishra S.S., Santiago T.C. & Rao L.H. (2002). Detection of WSV specificity to different tissues of tiger shrimp (Penaeus monodon), from the east coast of India, by polymerase chain reaction and histopathology. J. Aquaculture Tropics, 17, 75-184. 

2.    Cai S., Huang J., Wang C., Song X., Sun X., Yu J., Zhang Y. & Yang C. (1995). Epidemiological studies on the explosive epidemic disease of prawn in 1993-1994. J. Fish. China, 19, 112-117. 

3.    Chakraborty A., Otta S.K., Joseph B., Kumar S., Hossain M.S., Karunasagar I., Venugopal M.N. & Karunasagar I. (2002). Prevalence of white spot syndrome virus in wild crustaceans along the coast of India. Current Science (Bangalore), 82, 1392-1397. 

4.    Chang C.F., Su M.S., Chen H.Y. & Liao I.C. (2003). Dietary beta-1,3-glucan effectively improves immunity and survival of Penaeus monodon challenged with white spot syndrome virus. Fish Shellfish Immunol., 15 (4), 297-310. 

5.    Chang P.S, Chen L.J. & Wang Y.C (1998). The effect of ultraviolet irradiation, heat, pH, ozone, salinity and chemical disinfectants on the infectivity of white spot syndrome baculovirus. Aquaculture, 166 (1-2), 1-17. 

6.    Chang P.S., Lo C.F., Wang Y.C. & Kou G.H. (1996). Identification of white spot syndrome associated baculovirus (WSBV) target organs in the shrimp Penaeus monodon by in-situ hydridization. Dis. Aquat. Org., 27, 131-139. 

7.    Chang Y.S., Lo C.F., Peng S.E., Liu K.F., Wang C.H. & Kou G.H. (2002). White spot syndrome virus (WSSV) PCR-positive Artemia cysts yield PCR-negative nauplii that fail to transmit WSSV when fed to shrimp postlarvae. Dis. Aquat. Org., 49 (1), 1-10. 

Page 12: White Spot

8.    Chang Y.S., Peng S.E., Wang H.C., Hsu H.C., Ho C.H., Wang C.H., Wang S.Ya., Lo C.F. & Kou G.H (2001). Sequencing and Amplified Restriction Fragment Length Polymorphism Analysis of Ribonucleotide Reductase Large Subunit Gene of the White Spot Syndrome Virus in Blue Crab (Callinectes sapidus) from American Coastal Waters. Mar. Biotechnol., 3, 163-171. 

9.    Chen L.L., Lo C.F., Chiu Y.L., Chang C.F. & Kou G.H. (2000). Natural and experimental infection of white spot syndrome virus (WSSV) in benthic larvae of mud crab Scylla serrata. Dis. Aquat. Org., 40, 157-161. 

10.    Chotigeat W., Tongsupa S., Supamataya K. & Phongdara A. (2004). Effect of fucoidan on disease resistance of black tiger shrimp. Aquaculture, 233 (1-4), 23-30. 

11.    Chou H.Y., Huang C.Y., Lo C.F. & Kou G.H. (1998). Studies on transmission of white spot syndrome associated baculovirus (WSBV) in Penaeus monodon and P. japonicus via waterborne contact and oral ingestion. Aquaculture, 164, 263-276. 

12.    Claydon K., Cullen B. & Owens L. (2004). OIE white spot syndrome virus PCR gives false-positive results in Cherax quadricarinatus. Dis Aquat Org., 62 (3), 265-268. 

13.    Corbel V., Zuprizal, Shi Z., Huang C., Sumartono, Arcier J.M. & Bonami J.R. (2001). Experimental infection of European crustaceans with white spot syndrome virus (WSSV). J. Fish Dis., 24 (7), 377-382. 

14.    Corsin F., Thakur P.C., Padiyar P.A., Madhusudhan M., Turnbull J.F., Mohan C.V., Hao N.V. & Morgan K.L. (2003). Relationship between white spot syndrome virus and indicators of quality in Penaeus monodon postlarvae in Karnataka, India. Dis. Aquat. Org., 54 (2), 97-104. 

15.    Dupuy J.W., Bonami J.R. & Roch P. (2004). A synthetic antibacterial peptide from Mytilus galloprovincialis reduces mortality due to white spot syndrome virus in palaemonid shrimp. J. Fish Dis., 27 (1), 57-64. 

16.    Durand S.V., Tang K.F.J. & Lightner D.V. (2000). Frozen commodity shrimp: potential avenue for introduction of white spot syndrome virus and yellow head virus. J. Aquat. Anim. Health, 12, 128-135. 

17.    Flegel T.W. (1997). Special topic review: Major viral diseases of the black tiger prawn (Penaeus monodon) in Thailand. World J. Microbiol. Biotech., 13, 433-442. 

18.    Global Aquaculture Alliance. (1999a). Shrimp white spot virus confirmed in Central America. GAA Newsletter, vol. 2 issue 2. 

19.    Global Aquaculture Alliance. (1999b). Shrimp white spot disease in Latin America - an update. GAA Newsletter, vol. 2 issue 3.

Page 13: White Spot

 20.    Granja C.B., Aranguren L.F., Vidal O.M., Aragon L. & Salazar M. (2003). Does

hyperthermia increase apoptosis in white spot syndrome virus (WSSV)-infected Litopenaeus vannamei? Dis. Aquat. Org., 54 (1), 73-78. 

21.    Guan Y., Yu Z. & Li C. (2003). The effects of temperature on white spot syndrome infections in Marsupenaeus japonicus. J. Invertebr. Pathol., 83 (3), 257-260. 

22.    Hameed A.S. Sahul, Charles M.X. & Anilkumar M. (2000). Tolerance of Macrobrachium rosenbergii to white spot syndrome virus. Aquaculture, 183 (3-4), 207-213. 

23.    Hossain M.S, Chakraborty A., Joseph B., Otta S.K., Karunasagar I. & Karunasagar I. (2001). Detection of new hosts for white spot syndrome virus of shrimp using nested polymerase chain reaction. Aquaculture, 198, 1-11. 

24.    Hossain M.D. Shahadat, Otta S.K., Chakraborty A., Kumar H.S., Karunasagar I. & Karunasagar I. (2004). Detection of WSSV in cultured shrimps, captured brooders, shrimp postlarvae and water samples in Bangladesh by PCR using different primers. Aquaculture, 237 (1-4), 59-71. 

25.    Hsu H.C., Lo C.F., Lin S.C., Liu K.F., Peng S.E., Chang Y.S., Chen L.L., Liu W.J. & Kou G.H. (1999). Studies on effective PCR screening strategies for white spot syndrome virus (WSSV) detection in Penaeus monodon brooders. Dis. Aquat. Org., 39 (1), 13-19. 

26.    Huang C.H., Zhang L.R., Zhang J.H., Xiao L.C., Wu Q,J., Chen D.H. & Li J. K.K. (2001). Purification and characterization of White Spot Syndrome Virus (WSSV) produced in an alternate host: Crayfish, Cambarus clarkia. Virus Res., 76 (2), 115-125. 

27.    Jiravanichpaisal P., Bangyeekhun E., Soderhall K. & Soderhall I. (2001). Experimental infection of white spot syndrome virus in freshwater crayfish Pacifastacus leniusculus. Dis. Aquat. Org., 47 (2), 151-157. 

28.    Jiravanichpaisal P., Soderhall K. & Soderhall I. (2004). Effect of water temperature on the immune response and infectivity pattern of white spot syndrome virus (WSSV) in freshwater crayfish. Fish Shellfish Immunol., 17 (3), 265-275. 

29.    Jory D.E. & Dixon H.M. (1999). Shrimp whitespot in the western hemisphere. Aquaculture Magazine, 25 (3), 83-91. 

30.    Kasornchandra J., Boonyaratpalin S. & Itami T. (1998). Detection of white-spot syndrome in cultured penaeid shrimp in Asia: Microscopic observation and polymerase chain reaction. Aquaculture, 164, 243- 251. 

31.    Kim C.K., Kim P.K., Sohn S.G., Sim D.S., Park M.A., Heo M.S., Lee T.H., Lee J.D., Jun H.K. & Jang K.L. (1998). Development of a polymerase chain reaction (PCR) procedure

Page 14: White Spot

for the detection of baculovirus associated with white spot syndrome (WSBV) in penaeid shrimp. J. Fish Dis., 21, 11-17. 

32.    Kima D.K., Jangb I.K., Seob H.C., Shinc S.O., Yangc S.Y. & Kima J.W. (2004). Shrimp protected from WSSV disease by treatment with egg yolk antibodies (IgY) against a truncated fusion protein derived from WSSV. Aquaculture, 237, 21-30. 

33.    Kimura T., Yamano K., Nakano H., Momoyama K., Hiraoka M. & Inouye K. (1996). Detection of penaeid rod-shaped DNA virus (PRDV) by PCR. Fish Pathol., 31, 93-98. 

34.    Li Q., Zhang J., Chen Y. & Yang F. (2003). White spot syndrome virus (WSSV) infectivity for Artemia at different developmental stages. Dis. Aquat. Org., 57 (3), 261-264. 

35.    Lightner D.V. (1996). A handbook of pathology and diagnostic procedures for diseases of penaeid shrimp. World Aquaculture Society, Baton Rouge, Louisiana, USA. 

36.    Liu W., Wang Y.T., Tian D.S., Yin Z.C. & Kwang J. (2002). Detection of white spot syndrome virus (WSSV) of shrimp by means of monoclonal antibodies (MAbs) specific to an envelope protein (28 kDa). Dis. Aquat. Org., 49 (1), 11-18. 

37.    Lo C.F. & Kou G.H. (1998). Virus-associated white spot syndrome of shrimp in Taiwan: a review. Fish Pathol., 33, 365-371. 

38.    Lo C.F., Ho C.H., Chen C.H., Liu K.F., Chiu Y.L., Yeh P.Y., Peng S.E., Hsu H.C., Liu H.C., Chang C.F., Su M.S., Wang C.H. & Kou G.H. (1997). Detection and tissue tropism of white spot syndrome baculovirus (WSBV) in captured brooders of Penaeus monodon with a special emphasis on reproductive organs. Dis. Aquat. Org., 30, 53-72. 

39.    Lo C.F., Leu J.H., Ho C.H., Chen C.H., Peng S.E., Chen Y.T., Chou C.M., Yeh P.Y., Huang C.J., Chou H.Y., Wang C.H. & Kou G.H. (1996a). Detection of baculovirus associated with white spot syndrome (WSBV) in penaeid shrimps using polymerase chain reaction. Dis. Aquat. Org., 25, 133-141. 

40.    Lo C.F., Ho C.H., Peng S.E., Chen C.H., Hsu H.C., Chiu Y.L., Chang C.F., Liu K.F., Su M.S., Wang C.H. & Kou G.H. (1996b). White spot syndrome baculovirus (WSBV) detected in cultured and captured shrimp, crabs and other arthropods. Dis. Aquat. Org., 27, 215-225. 

41.    Maeda M., Itami T., Furumoto A., Hennig O., Imamura T., Kondo M., Hirono I., Takashi A. & Takahashi Y. (1998a). Detection of penaeid rod-shaped DNA virus (PRDV) in wild-caught shrimp and other crustaceans. Fish Pathol., 33, 373-380. 

42.    Maeda M., Itami T., Mizuki E., Tanaka R., Yoshizu Y., Doi K., Yasunaga-Aoki C., Takahashi Y. & Kawarabata T. (2000). Red swamp crawfish (Procambarus clarkii): An

Page 15: White Spot

alternative experimental host in the study of white spot syndrome virus. Acta Virol., 44 (6), 371-374. 

43.    Maeda M., Kasornchandra J., Itami T., Suzuki N., Hennig O., Kondo M., Albaladejo J.D. & Takahashi Y. (1998b). Effect of various treatments on white spot syndrome virus (WSSV) from Penaeus japonicus (Japan) and P. monodon (Thailand). Fish Pathol., 33 (4), 381-387. 

44.    Mohan C.V., Shankar K.M., Kulkarni S. & Sudha P.M. (1998). Histopathology of cultured shrimp showing gross signs of yellow head syndrome and white spot syndrome during 1994 Indian epizootics. Dis. Aquat. Org.., 34 (1), 9-12. 

45.    Momoyama K., Hiraoka M., Inouye K., Kimura T. & Nakano H. (1995). Diagnostic techniques of the rod-shaped nuclear virus infection in the kuruma shrimp, Penaeus japonicus. Fish Pathol., 30 (4), 263-269. 

46.    .Momoyama K., Hiraoka M., Nakano H. & Sameshima M. (1998). Cryopreservation of penaeid rod-shaped DNA virus (PRDV) and its survival in sea water at different temperatures. Fish Pathol., 33 (2), 95-96. 

47.    Momoyama K., Hiraoka M., Nakano H., Koube H., Inouye K. & Oseko N. (1994). Mass mortalities of cultured kuruma shrimp, Penaeus japonicus, in Japan in 1993: Histopathological study. Fish Pathol., 29, 141-148. 

48.    Mushiake K., Shimizu K., Satoh J., Mori K., Arimoto M., Ohsumi S. & Imaizumi K. (1999). Control of penaeid acute viremia (PAV) in Penaeus japonicus: Selection of eggs based on the PCR detection of the causative virus (PRDV) from receptaculum seminis of spawned broodstock. Fish Pathol., 34, 203-207. 

49.    Nakano H., Hiraoka M., Sameshima M., Kimura T. & Momoyama K. (1998). Inactivation of penaeid rod-shaped DNA virus (PRDV), the causative agent of penaeid acute viraemia (PAV), by chemical and physical treatments. Fish Pathol., 33 (2), 65-71. 

50.    Nakano H., Koube H., Umezawa S., Momoyama K., Hiraoka M., Inouye K. & Oseko N. (1994). Mass mortalities of cultured kuruma shrimp, Penaeus japonicus, in Japan in 1993: Epizootiological survey and infection trails. Fish Pathol., 29, 135-139. 

51.    Namikoshi A., Wu J.L., Yamashita T., Nishizawa T., Nishioka T., Arimoto M. & Muroga K. (2004). Vaccination trials with Penaeus japonicus to induce resistance to white spot syndrome virus. Aquaculture, 229 (1-4), 25-35. 

52.    Nunan L.M. & Lightner D.V. (1997). Development of a non-radioactive gene probe by PCR for detection of white spot syndrome virus (WSSV). J. Virol. Methods, 63, 193-201. 

53.    Nunan L.M., Poulos B.T. & Lightner D.V. (1998). The detection of white spot syndrome

Page 16: White Spot

virus (WSSV) and yellow head virus (YHV) in imported commodity shrimp. Aquaculture, 160, 19-30. 

54.    Peng S.E., Lo C.F., Lin S.C., Chen L.L., Chang Y.S., Liu K.F., Su M.S. & Kou G.H. (2001). Performance of WSSV-infected and WSSV-negative Penaeus monodon postlarvae in culture ponds. Dis. Aquat. Org., 46, 165-172. 

55.    Poulos B.T., Pantoja C.R., Bradley-Dunlop D., Aguilar J. & Lightner D.V. (2001). Development and application of monoclonal antibodies for the detection of white spot syndrome virus of penaeid shrimp. Dis. Aquat. Org., 47, 13-23. 

56.    Rodriguez J., Bayot B., Amano Y., Panchana F., de Blas I., Alday V. & Calderon J. (2003). White spot syndrome virus infection in cultured Penaeus vannamei (Boone) in Ecuador with emphasis on histopathology and ultrastructure. J. Fish Dis., 26 (8), 439-450. 

57.    Sahul Hameed A.S., Balasubramanian G., Musthaq S.S. & Yoganandhan K. (2003). Experimental infection of twenty species of Indian marine crabs with white spot syndrome virus (WSSV). Dis. Aquat. Org., 57, 157-161. 

58.    Sahul Hameed A.S., Xavier Charles M. & Anilkumar M. (2000). Tolerance of Macrobrachium rosenbergii to white spot syndrome virus. Aquaculture, 183 (3-4), 207-213. 

59.    Takahashi Y., Itami T., Kondom M., Maeda M., Fujii R., Tomonaga S., Supamattaya K. & Boonyaratpalin S. (1994). Electron microscopic evidence of bacilliform virus infection in Kuruma shrimp (Penaeus japonicus). Fish Pathol., 29, 121-125. 

60.    Takahashi Y., Itami T., Maeda M., Suzuki N., Kasornchandra J., Supamattaya K., Khongpradit R., Boonyaratpalin S., Kondo M., Kawai K., Kusuda R., Hirono I. & Aoki T. (1996). Polymerase chain reaction (PCR) amplification of bacilliform virus (RV-PJ) DNA in Penaeus japonicus Bate and systemic ectodermal and mesodermal baculovirus (SEMBV) DNA in Penaeus monodon Fabricius. J. Fish Dis., 19, 399-403. 

61.    Tsai M.F., Kou G.H., Liu H.C., Liu K.F., Chang C.F., Peng S.E., Hsu H.C., Wang C.H. & Lo C.F. (1999). Long-term presence of white spot syndrome virus (WSSV) in a cultivated shrimp population without disease outbreaks. Dis. Aquat. Org., 38, 107-114. 

62.    Vaseeharan B., Jayakumar R. & Ramasamy P. (2003). PCR-based detection of white spot syndrome virus in cultured and captured crustaceans in India. Lett. Appl. Microbiol., 37, 443-447. 

63.    Venegas C.A., Nonaka L., Mushiake K., Shimizu K., Nishizawa T. & Muroga K. (1999). Pathogenicity of penaeid rod-shaped DNA virus (PRDV) to kuruma prawn in different developmental stages. Fish Pathol., 34, 19-23. 

Page 17: White Spot

64.    Vidal O.M., Granja C.B., Aranguren F., Brock J.A. & Salazar M. (2001). A profound effect of hyperthermia on survival of Litopenaeus vannamei juveniles infected with White Spot Syndrome Virus. J. World Aquaculture Soc., 32 (4), 364-372. 

65.    Vijayan K.K., Stalin Raj V., Balasubramanian C.P., Alavandi S.V., Thillai Sekhar V. & Santiago T.C. (2005). Polychaete worms - a vector for white spot syndrome virus (WSSV). Dis. Aquat. Org., 63, 107-111. 

66.    Vlak J.M., Bonami J.R., Flegel T.W., Kou G.H., Lightner D.V., Lo C.F., Loh P.C. & Walker P.J. (2004). International Committee on Taxonomy of Viruses (ICTV) 

67.    Wang Q., Poulos B.T. & Lightner D.V. (2000). Protein analysis of geographic isolates of shrimp white spot syndrome virus. Arch. Virol., 145, 263-274. 

68.    Wang Y.T., Liu W., Seah J.N., Lam C.S., Xiang J.H., Korzh V. & Kwang J. (2002). White spot syndrome virus (WSSV) infects specific hemocytes of the shrimp Penaeus merguiensis. Dis. Aquat. Org., 52 (3), 249-259. 

69.    Wang Y.C., Lo C.F., Chang P.S. & Kou G.H. (1998). Experimental infection of white spot baculovirus in some cultured and wild decapods in Taiwan. Aquaculture, 164, 221-231. 

70.    Withyachumnarnkul B. (1999). Results from black tiger shrimp Penaeus monodon culture ponds stocked with postlarvae PCR-positive or -negative for white-spot syndrome virus (WSSV). Dis. Aquat. Org., 39 (1), 21-27. 

71.    Witteveldt J., Vlak J.M. & van Hulten Marielle C.W. (2004). Protection of Penaeus monodon against white spot syndrome virus using a WSSV subunit vaccine. Fish Shellfish Immunol., 16(5), 571-579. 

72.    Wongteerasupaya C., Vickers J.E., Sriurairatana S., Nash G.L., Akarajamorn A., Boonsaeng V., Panyim S., Tassanakajon A., Withyachumnarnkul B. & Flegel T.W. (1995). A non-occluded, systemic baculovirus that occurs in cells of ectodermal and mesodermal origin and causes high mortality in the black tiger prawn Penaeus monodon. Dis. Aquat. Org., 21, 69-77. 

73.    Yan D.C., Dong S.L., Huang J., Yu X.M., Feng M.Y. & Liu X.Y. (2004). White spot syndrome virus (WSSV) detected by PCR in rotifers and rotifer resting eggs from shrimp pond sediments. Dis. Aquat. Org., 59 (1), 69-73. 

74.    Yoganandhan K., Thirupathi S. & Hameed A.S. Sahul (2003). Biochemical, physiological and hematological changes in white spot syndrome virus-infected shrimp, Penaeus indicus. Aquaculture, 221 (1-4), 1-11. 

75.    Zhan W.B., Wang Y.H., Fryer J.L., Yu K.K., Fukuda H. & Meng Q.X. (1998). White Spot syndrome virus infection of cultured shrimp in China. J. Aquat. Anim. Health, 10 (4), 405-

Page 18: White Spot

410. 

** *

NB: There are OIE Reference Laboratories for White spot disease (see Table at the end of this Aquatic Manual or consult the OIE Web site for the most up-to-date list: www.oie.int).