when the wave enters shallow water, it slows down and its amplitude (height) increases

29
When the wave enters shallow water, it slows down and its amplitude (height) increases.

Upload: heliodoro-aurelio

Post on 28-Jan-2016

221 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: When the wave enters shallow water, it slows down and its amplitude (height) increases

When the wave enters shallow water, it slows down and its amplitude (height) increases.

Page 2: When the wave enters shallow water, it slows down and its amplitude (height) increases
Page 3: When the wave enters shallow water, it slows down and its amplitude (height) increases

Shield volcanoes are made of thousands of thin basalt lava flows. Because the lava has a relatively low viscosity (low resistance to flow) the lava can travel far from the vent, the location where the lava reaches the surface. The resulting volcanic landform has a broad base and very gentle slopes, much like a warrior's inverted shield.

Eruptions at shield volcanoes are only explosive if water somehow gets into the vent, otherwise they are characterized by low-explosive fountaining that forms cinder cones and spatter cones at the vent. In a shield volcano, 90% of the volcano is lava rather than pyroclastic material. Due to high magma supply rates, the lava is hot and changes very little after it is generated. A common product of hotspot volcanism, shield volcanoes can also be found along subduction-related volcanic arcs or all by themselves.

The Big Island of Hawaii is composed of five coalesced volcanoes of successively younger ages, with the older ones apparently extinct. Mauna Loa, one of the main volcanoes on the Big Island, has a higher elevation than any mountain on Earth: 30,000 feet from the floor of the ocean to its highest peak.

Page 4: When the wave enters shallow water, it slows down and its amplitude (height) increases

Lava domes result from the slow extrusion of highly viscous silica-rich magma. Most domes are rather small, but can exceed 6 cubic miles in volume. Extrusions from the dome may end up as rather slow-moving lava, but many begin explosively, forming explosion pits blanketed by pyroclastic debris.

A dome has been growing slowly within the crater of Mount St. Helens since its eruption in 1980

St Helens in the Rocky Mountains, 2004

Page 5: When the wave enters shallow water, it slows down and its amplitude (height) increases

Mount St. Helens Lava Dome Growthfrom 2004 to 2008. Awesome video!!

Page 6: When the wave enters shallow water, it slows down and its amplitude (height) increases

Calderas are circular to oblong depressions formed by the collapse along curved fractures associated with the extrusion of pyroclastic materials.

The frequency of such voluminous eruptions is very low, with volumes of 119 cubic miles having a frequency of about 100,000 years.

The area of caldera collapse is proportional to the volume of erupted material.

Page 7: When the wave enters shallow water, it slows down and its amplitude (height) increases
Page 8: When the wave enters shallow water, it slows down and its amplitude (height) increases
Page 9: When the wave enters shallow water, it slows down and its amplitude (height) increases
Page 10: When the wave enters shallow water, it slows down and its amplitude (height) increases
Page 11: When the wave enters shallow water, it slows down and its amplitude (height) increases

Leyenda: 1- Calizas con Calceola. 2- Pizarras con Calamites. 3- Pizarras bituminosas. 4- Cuarcitascon pistas de Trilobites. 5- Arenas y arcillas con Dinosaurios. 6- Conglomerados del Jurásicoterminal.

FOLDS AND FAULTS IN CONTEXT:GEOLOGICAL HISTORY n1

Page 12: When the wave enters shallow water, it slows down and its amplitude (height) increases

Devonian

Carboniferous

/Permian

Jurassic

RocksRocks Sedimentary

3.(Paleozoic before Devonian1.Devonian2.Carboniferous/Permian6.Jurassic5. (Mesozoic)

Rock deformationRock deformation

Older

Younger

Orogeny Permian before Jurassic

caused folds

Normal fault

Erosion 1

ErosionErosionErosion1 after2 before6Erosion2 after5

normal fault before Jurassic

Erosion 2

Leyenda: 1- Calizas con Calceola. 2- Pizarras con Calamites. 3- Pizarras bituminosas. 4- Cuarcitascon pistas de Trilobites. 5- Arenas y arcillas con Dinosaurios. 6- Conglomerados del Jurásicoterminal.

Page 13: When the wave enters shallow water, it slows down and its amplitude (height) increases

Devonian

Carboniferous

/Permian

Jurassic

RocksRocks Sedimentary

3.(Paleozoic before Devonian1.Devonian2.Carboniferous/Permian6.Jurassic5.(Mesozoic)

Rock deformationRock deformation

Older

Younger

Orogeny Permian before Jurassic

caused folds

Normal fault

Erosion 1

ErosionErosionErosion1 before6Erosion2 after5

normal fault when relaxationbefore Jurassic

Erosion 2

Leyenda: 1- Calizas con Calceola. 2- Pizarras con Calamites. 3- Pizarras bituminosas. 4- Cuarcitascon pistas de Trilobites. 5- Arenas y arcillas con Dinosaurios. 6- Conglomerados del Jurásicoterminal.

Starting pointStarting point

Page 14: When the wave enters shallow water, it slows down and its amplitude (height) increases

Leyenda: 1- Pizarras con abundantes Calamites. 2- Aureola de metamorfismo. 3- Calizas y dolomíascon Fusulina. 4- Pórfido cuarcífero. 5- Gravas y arenas con restos de cerámica.6- Conglomerados del Pérmico.

FOLDS AND FAULTS IN CONTEXT:GEOLOGICAL HISTORY n2

Page 15: When the wave enters shallow water, it slows down and its amplitude (height) increases

Leyenda: 1- Pizarras con abundantes Calamites. 2- Aureola de metamorfismo. 3- Calizas y dolomíascon Fusulina. 4- Pórfido cuarcífero. 5- Gravas y arenas con restos de cerámica.6- Conglomerados del Pérmico.

1ºCarboniferous

/Permian

2ºCarboniferous

/Permian

3ºPermian

4ºmagmatic dique

after Permian

Normal fault

Erosion 1 before normal fault

Erosion 2

Page 16: When the wave enters shallow water, it slows down and its amplitude (height) increases

Leyenda: 1- Pizarras con abundantes Calamites. 2- Aureola de metamorfismo. 3- Calizas y dolomíascon Fusulina. 4- Pórfido cuarcífero. 5- Gravas y arenas con restos de cerámica.6- Conglomerados del Pérmico.

1ºCarboniferous

/Permian

2ºCarboniferous

/Permian

3ºPermian

4ºmagmatic dique

after Permian

RocksRocks Sedimentary

3.Carboniferous/Permian1.Carboniferous/Permian6.Permian5.Cuaternary

Volcanic and metamorphic4.after Permian before Quaternary2. “ “ “ “

Rock deformationRock deformation

Older

Younger

folds before Permian rock 6

Normal fault

Erosion 1 before normal fault

ErosionErosionErosion 1Erosion 2

normal fault

Erosion 2

Page 17: When the wave enters shallow water, it slows down and its amplitude (height) increases

Leyenda: 1- Pizarras con abundantes Calamites. 2- Aureola de metamorfismo. 3- Calizas y dolomíascon Fusulina. 4- Pórfido cuarcífero. 5- Gravas y arenas con restos de cerámica.6- Conglomerados del Pérmico.

1ºCarboniferous

/Permian

2ºCarboniferous

/Permian

3ºPermian

4ºmagmatic dique

after Permian

RocksRocks Sedimentary

3.Carboniferous/Permian1.Carboniferous/Permian6.Permian5.Cuaternary

Volcanic and metamorphic4.after Permian before Quaternary2. “ “ “ “

Rock deformationRock deformation

Older

Younger

Orogeny before Permian rock 6-late Carboniferous-early Permian-caused folds and reverse fault

Normal fault

Erosion 1 before normal fault

ErosionErosionUplift, emersion and erosion 1Erosion 2

normal fault when divergent stresses

Erosion 2

Starting pointStarting point

Page 18: When the wave enters shallow water, it slows down and its amplitude (height) increases
Page 19: When the wave enters shallow water, it slows down and its amplitude (height) increases
Page 20: When the wave enters shallow water, it slows down and its amplitude (height) increases

Leyenda: 1- Gneises precámbricos. 2- Calizas con Fusulina. 3- Conglomerados y arenas con restosde flora pérmica. 4- Andesitas. 5- Arenas con pisadas de Dinosaurios. 6- Calizas con Hildoceras.

FOLDS AND FAULTS IN CONTEXT:GEOLOGICAL HISTORY n3

Page 21: When the wave enters shallow water, it slows down and its amplitude (height) increases

Carboniferous/Permian

Precambrian

Permian

Volcanic rock

RocksRocks Sedimentary

1.Precambrian2.Carboniferous/Permian3.Permian5.Trias/Juras6.Jurassic

Volcanic4.after erosion2 Rock deformationRock deformation

Older

Younger

Folds1 after3 before5 and erosion1Folds2 after6 before erosion2

Normal fault

Erosion 1

ErosionErosionErosion 1 after folds1 before5Erosion 2 after folds2 before rock4

normal fault before erosion2

Erosion 2

Leyenda: 1- Gneises precámbricos. 2- Calizas con Fusulina. 3- Conglomerados y arenas con restosde flora pérmica. 4- Andesitas. 5- Arenas con pisadas de Dinosaurios. 6- Calizas con Hildoceras.

JurassicMesozo

ic Trias/

JurFolds1

Folds2

Page 22: When the wave enters shallow water, it slows down and its amplitude (height) increases

Carboniferous/Permian

Precambrian

Permian

Volcanic rock

RocksRocks Sedimentary

1.Precambrian2.Carboniferous/Permian3.Permian5.Trias/Juras6.Jurassic

Volcanic4.after erosion2 Rock deformationRock deformation

Older

Younger

Folds1 after3 before5 and erosion1Folds2 after6 before erosion2

Normal fault

Erosion 1

ErosionErosionErosion 1 after folds1 before5Erosion 2 after folds2 before rock4

normal fault before erosion2

Erosion 2

Leyenda: 1- Gneises precámbricos. 2- Calizas con Fusulina. 3- Conglomerados y arenas con restosde flora pérmica. 4- Andesitas. 5- Arenas con pisadas de Dinosaurios. 6- Calizas con Hildoceras.

JurassicMesozo

ic Trias/

JurFolds1

Folds2

Starting pointStarting point

Page 23: When the wave enters shallow water, it slows down and its amplitude (height) increases

Leyenda: 1- Calizas y arcillas caolínicas del Neógeno inferior. 2- Arenas silíceas. 3- Conglomeradoscon restos de Dinosaurios terminales. 4- Calizas con Hildoceras. 5- Gneises paleozoicos.6- Gravas.

FOLDS AND FAULTS IN CONTEXT:GEOLOGICAL HISTORY n4

Page 24: When the wave enters shallow water, it slows down and its amplitude (height) increases

Paleozoic

MesozoicJurassi

c

RocksRocks Sedimentary

5.Paleozoic4.Jurassic3.Mesozoic Juras-Cretaceous2.1.Neogene (late Tertiry)6.Recent times

Rock deformationRock deformation

Older

Younger

Orogeny after3 before2caused foldsReverse faults after3 before2-the same compressional stressesas for the folds-

Reverse faults

Erosion 1

ErosionErosionErosion1 after3 before2Erosion2 after1 before6

Erosion 2

Leyenda: 1- Calizas y arcillas caolínicas del Neógeno inferior. 2- Arenas silíceas. 3- Conglomeradoscon restos de Dinosaurios terminales. 4- Calizas con Hildoceras. 5- Gneises paleozoicos.6- Gravas.

Late Tertiary

Page 25: When the wave enters shallow water, it slows down and its amplitude (height) increases

Paleozoic

MesozoicJurassi

c

RocksRocks Rock deformationRock deformation

Older

Younger

Reverse faults

Erosion 1

ErosionErosionErosion1 after3 before2Erosion2 after1 before6

Erosion 2

Starting pointStarting point

Leyenda: 1- Calizas y arcillas caolínicas del Neógeno inferior. 2- Arenas silíceas. 3- Conglomeradoscon restos de Dinosaurios terminales. 4- Calizas con Hildoceras. 5- Gneises paleozoicos.6- Gravas.

Late Tertiary

Sedimentary

5.Paleozoic4.Jurassic3.Mesozoic Juras-Cretaceous2.1.Neogene (late Tertiry)6.Recent times

Orogeny after3 before2caused foldsReverse faults after3 before2-the same compressional stressesas for the folds-

Page 26: When the wave enters shallow water, it slows down and its amplitude (height) increases
Page 27: When the wave enters shallow water, it slows down and its amplitude (height) increases

ISOSTASY

Page 28: When the wave enters shallow water, it slows down and its amplitude (height) increases

ISOSTASY

Page 29: When the wave enters shallow water, it slows down and its amplitude (height) increases

ISOSTASY