what comes out, must go in

111
pg. 1 Macronutrient balance assessment of transitioning home garden systems in southern Ethiopia Nadine Galle (10850155) Dr. L.H. Cammeraat Dr. G.W.J. van de Ven Dr. K.K.E. Descheemaeker Drs. B.T. Mellisse Dr. B. Jansen Master Earth Science - University of Amsterdam Institute for Biodiversity and Ecosystem Dynamics MSc. Thesis | UvA 5264MTR30Y | WUR PPS-80430 Environmental Management | 30 ECTS October 2015 - April 2016 April 1, 2016 Must Go In: What Comes Out,

Upload: others

Post on 24-Dec-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

pg.1

Macronutrient balance assessment of transitioning home garden systems in southern Ethiopia

NadineGalle(10850155)

Dr.L.H.CammeraatDr.G.W.J.vandeVenDr.K.K.E.DescheemaekerDrs.B.T.MellisseDr.B.Jansen

MasterEarthScience-UniversityofAmsterdamInstituteforBiodiversityandEcosystemDynamicsMSc.Thesis|UvA5264MTR30Y|WURPPS-80430

EnvironmentalManagement|30ECTS

October2015-April2016

April1,2016

Must Go In: What Comes Out,

pg.2

MAINAPPLICANT

NadineGalle

Schoolmeesterstraat24

1053MCAmsterdam

TheNetherlands

+31651554818

[email protected]

UniversityofAmsterdamInstituteforBiodiversityandEcosystemDynamics(IBED)Amsterdam,TheNetherlands5264MTR30YMasterThesisEarthSciences

EnvironmentalManagementTrack

StudentNo.10850155

Supervisor:Dr.L.H.(Erik)Cammeraat

Secondreader:Dr.B.(Boris)Jansen

WageningenUniversityandResearchCenterPlantProductionSystems(PPS)Wageningen,TheNetherlandsPPS-80430MasterThesisPlantProductionSystems

RegistrationNo.920610-249-130

Supervisor:Dr.G.W.J.(Gerrie)vandeVen

Co-Supervisor:Dr.K.K.E.(Katrien)Descheemaeker

HawassaUniversityHawassaUniversityCollegeofAgriculture

WondoGenetCollegeofForestryandNaturalResources

Hawassa,Sidama,Ethiopia

Dailysupervisor:Drs.B.T.(Beyene)Mellisse

IdeclarethattheworkIamsubmittingforassessmentcontainsnosectioncopiedinwholeorinpartfromanyothersourceunlessexplicitlyidentifiedinquotationmarksandwithdetailed,completeandaccuratereferencing.

Signed,NadineJ.Galle

pg.3

The cattle is only as good as the pasture in which it grazes.

EthiopianProverb

pg.4

pg.5

ABSTRACT

WhatComesOut,MustGoin:Macronutrientbalance

assessmentoftransitioninghomegardensinsouthernEthiopia

ByNadineGalle

Smallholder-operated home garden agroforestry systems are the backbone of Ethiopia’s

agricultural sector. In southern Ethiopia, the enset (Enset ventricosum) and coffee (Coffeaarabica) based home gardens have sustainedmillions of livelihoods for centuries, combining

subsistence agriculture with a small cash crop income. Enset withstands drought, produces

largevolumesoffoodperunitareaandisexclusivelyfertilizedwithorganicmatter,aninternal

input. The resilience of these systems relies on efficient nutrient cycling and multi-species

composition. However, population growth induced land fragmentation has led to rapid

replacement of enset and coffeewith khat (Catha edulis), a lucrative cash crop and popularstimulant. Khat has expanded at the expense of land allocated to enset and coffee and

threatenswell-established internal nutrient flowswithin home gardens. The transition called

forthedefinitionoffivedistincthomegardentypes:fourenset-oriented(enset-based,enset-

coffee,enset-cereal-vegetable,andenset-livestock)andonekhat-based.Thispaperdescribes

macronutrient (NPK)balances calculatedat componentand farm level inSidamaandGedeo,

southern Ethiopia. Fields with the same or similar crop were grouped into five farm

‘components’. Livestockwas also a component. Representative farms for each home garden

type were conceived based on component land use. Processes quantified included mineral

fertilizer, organic matter, internal fodder, external fodder and harvested products, removed

crop residues,household livestockconsumption,harvestedproducts soldoff-farmandwhole

livestockandlivestockproductssoldoff-farm.Component levelbalancesaddedvaluedtothe

study by permitting comparison of internal flows, demonstrating the inherent diversity and

complexitywithinhomegardensystems.Nutrientbalancesat the farm levelshowedpositive

nitrogen (N) balances, fluctuating phosphorus (P) balances and deficient potassium (K)

balances, amongst all representative farms. Component level balances were similar but

revealedthemostsevereKdeficiencieswereinthekhatcomponent.Measurementstoaddress

nutrientdeficiencies,suchasenset leavesascropresidueandpropermanurehandling,were

presentedandtheurgencytodevelopstrategiestoreversekhatexpansionattheexpenseof

ensetwasstressed.

Keywords: nutrient balance, nutrient management, nitrogen, phosphorus, potassium, home

garden,agroforestry,Enseteventricosum(enset),Coffeaarabica(coffee),Cathaedulis(khat)

pg.6

pg.7

TABLEOFCONTENTSMAINAPPLICANT 2ABSTRACT 5COVERPHOTO 10PROJECTTITLE 11GLOSSARY 11ACRONYMSANDABBREVIATIONS 12LISTOFTABLES,FIGURESANDEQUATIONS 13ACKNOWLEDGEMENTS 17

1.INTRODUCTION 18

1.1RESEARCHWITHINTHECASCAPEPROJECT 19

1.2SOCIETALANDSCIENTIFICSIGNIFICANCE 20

1.3OUTLINEOFTHETHESIS 21

2.RESEARCHOBJECTIVESANDQUESTIONS 223.THEORETICALFRAMEWORK 23

3.1DEFINITIONOFCONCEPTUALTERMS 23

3.1.1NUTRIENTBALANCES 233.1.2COMPONENTLEVELNUTRIENTBALANCE 243.1.3NUTRIENTFLOWS 24

3.2INFLOWSINTOTHEHOMEGARDENSYSTEM 26

3.2.1MINERALFERTILIZER(IN1) 263.2.2EXTERNALLIVESTOCKFODDER(IN4) 27

3.3OUTFLOWSFROMTHEHOMEGARDEN 28

3.3.1REMOVALINHARVESTEDPRODUCTSSOLDOFF-FARM(OUT5) 283.3.2LIVESTOCKOUTPUT(OUT3) 28

3.4INTERNALFLOWSINTHEHOMEGARDENSYSTEM 28

3.4.1ORGANICMATTER(IN2) 283.4.2INTERNALLIVESTOCKFODDER(IN3) 293.4.3REMOVALINALLHARVESTEDPRODUCTS(OUT1) 293.4.4REMOVALINCROPRESIDUES(OUT2) 303.4.5HOUSEHOLDLIVESTOCKCONSUMPTION(OUT4) 30

pg.8

4.METHODOLOGY 31

4.1STUDYAREA 31

4.2FARMTYPOLOGIES 34

4.3DATACOLLECTION 34

4.4EXPERIMENTALDESIGN 35

4.4.1THEREPRESENTATIVEFARM 354.4.2QUANTIFYINGNUTRIENTFLOWS 374.4.3MACRONUTRIENTINPUT 384.4.4MACRONUTRIENTOUTPUT 404.4.5THEHARVESTINDEX 414.4.6THEENSETEXCEPTION 414.4.7COMPONENTLEVELANDFARMLEVELMACRONUTRIENTBALANCE 43

4.5ETHICALCONSIDERATIONS 45

5.RESULTS 46

5.1THEREPRESENTATIVEFARMS 46

5.2FARMSIZE 48

5.3LIVESTOCKPOPULATION 50

5.4COMPONENTLEVELNUTRIENTBALANCEASSESSMENT 51

5.4.1ENSET-BASED 51

5.4.2ENSET-COFFEE 54

5.4.3ENSET-CEREAL-VEGETABLE 57

5.4.4ENSET-LIVESTOCK 60

5.4.5KHAT-BASED 63

5.5FARMLEVELNUTRIENTBALANCEASSESSMENT 68

5.6RESULTSPERHECTARE 72

6.DISCUSSION 75

6.1UNCERTAINTIES 75

6.2INTERPRETATIONANDDISCUSSIONOFRESULTS 77

6.2.1FARMSIZE 78

pg.9

6.2.2FARMLEVELNUTRIENTBALANCES 78

6.2.3COMPONENTLEVEL:ENSET 80

6.2.4COMPONENTLEVEL:COFFEEANDCOFFEE+ENSETINTERCROPPING 81

6.2.5COMPONENTLEVEL:ANNUALCEREALSANDVEGETABLES 82

6.2.6COMPONENTLEVEL:KHAT 82

6.2.7COMPONENTLEVEL:LIVESTOCK 84

6.3METHODOLOGICALIMPROVEMENTSANDSUGGESTIONSFORFURTHERRESEARCH 86

6.4MANAGEMENTRECOMMENDATIONS 87

6.4.1ENSETLEAVESASCROPRESIDUEORCOMPOSTADDITIVE 87

6.4.2PROPERMANUREHANDLING 88

6.4.3NUTRIENT-RELATEDCONSEQUENCESOFKHATEXPANSION 89

7.CONCLUSIONS 908.REFERENCES 927.APPENDICES 99

7.1CONVERSIONTABLE 99

7.2NUTRIENTCONTENT 100

7.3SURVEY:INPUTSANDOUTPUTSOFHOMEGARDENTYPESINSOUTHERNETHIOPIA 102

pg.10

pg.11

COVERPHOTO

Thephotographonthefrontcovershowstwoboysamongsttheirfamily’straditionalhome

gardenintheWondoGenetworeda.PhotobyNadineGalle(October2015).

ThephotographonpagetwoillustratesaviewofahomegardensystemintheMalgaworeda.

PhotobyNadineGalle(December2015).

PROJECTTITLE

“WhatComesOut,MustGoin:Macronutrientbalanceassessmentoftransitioninghome

gardensystemsinsouthernEthiopia”

GLOSSARYAgroforestry Theintentionalintegratedlandusemanagementsystem,whichcombines

treesandshrubswithcropsand/orlivestocktocreateenvironmental,

socialandeconomicbenefits.

Birr(ETB) TheEthiopiancurrency.

Bula Producedfromtheinnerpartofensetandproducedintofinepowderforhigh

qualitypancakes,porridgeordumplings.

Chartercity Acitywherethegoverningsystemisdefinedbyacity’scharter

document,ratherthanbyregionalornationallaws.InEthiopia,chartered

citiesbelongtothefirstlevelofadministrativedivision(sameaskililoch).

Fertilizer Anyorganicorinorganicmaterialofnaturalorsyntheticoriginaddedto

soilwiththeintenttosupplyoneormoreplantnutrientsessentialto

growth.Kebele Ethiopia’sfourthandlowestadministrativedivision.Kebeleshavesimilar

functiontoamunicipality,neighbourhoodsorward.

Kililoch Ethiopia’sfirstlevelofadministrativedivision.Since1995,Ethiopiais

constitutionallymadeupofnineethicallybasedregionalstates.The

word“kilil”means“reservation”or“protectedarea”.

Kocho Bulkoffermentedstarchfromtheensetstem,oftenmadeintoapancakefrom

themixtureofscrappedensetsheaths.

Woreda Ethiopia’sthirdlevelofadministrativedivision.Equivalenttoadistrict.

Zone Ethiopia’ssecondlevelofadministrativedivision.InEthiopia,kililochare

furthersubdividedinto68zones,thesearefurtherdividedintoworedas.

Zurba Abunchoffreshkhatleaves,weighingapproximately1kg.

pg.12

ACRONYMSANDABBREVIATIONSACV Annualcerealsandvegetables

AGP AgriculturalGrowthProgramme

BNF Biologicalnitrogenfixation

CASCAPE Capacitybuildingforscalingupofevidence-basedbestpracticesinagriculturalproductionin

EthiopiaCSA CentralStatisticalAgencyofEthiopia

DAP DiammoniumphosphateDCM DevelopmentofCompetitiveMarkets(Ethiopia)

DEP AtmosphericdepositionEATA EthiopiaAgriculturalTransformationAgency

ECI Ensetandcerealintercropping

ESC EthiopiaSugarCorporation

ETB EthiopianBirr

f1 Nutrientflow:feedstuffstakenfromfrontgrazingyard

f2 Nutrientflow:cowdungleftinfrontgrazingland

f3 Nutrientflow:milkandmeatconsumedbythefamily

f4 Nutrientflow:collectionoffarmyardmanure

f5 Nutrientflow:applicationoffarmyardmanureindifferentlandusetypef6 Nutrientflow:feedstufftakenfromdifferentlandusetypebylivestockf7 Nutrientflow:householdwasteaddedtomanureheapf8 Nutrientflow:familyconsumptionofbothperennialandannualcropsFGB Farm-GateNutrientBalance

FYM Farmyardmanure

GDP GrowthDomesticProduct

GOE GovernmentofEthiopia

GTP GrowthandTransformationPlan

HwU HawassaUniversity

IBED InstituteforBiodiversityandEcosystemDynamics

IN1 Macronutrientinflow:mineralfertilizer

IN2 Macronutrientinflow:organicmatter

IN3 Macronutrientinflow:internallivestockfodder

IN4 Macronutrientinflow:externallivestockfodder

L1 Lossesfromfrontgrazinglandbyleaching,volatilizationanderosion

L2 Lossesfromlivestock

L3 Lossesfromthemanureheapbyleachingandvolatilization

L4 Lossesduringapplicationofmanuretofields

L5 Lossesfromthehomegardenfieldsbyleachingandvolatilization

MSA MultivariateStatisticalAnalysis

NPK Nitrogen,PhosphorusandPotassium

NUE NutrientUseEfficiencyOUT1 Macronutrientoutflow:removalinallharvestedproducts

OUT2 Macronutrientoutflow:removalincropresidues

OUT3 Macronutrientoutflow:livestockoutput

OUT4 Macronutrientoutflow:householdlivestockconsumption

OUT5 Macronutrientoutflow:removalinharvestedproductssoldoff-farm

SNNPR SouthernNations,NationalitiesandPeoples’Region

TLU TropicalLivestockUnit

TSP Triplesuperphosphate

UvA UniversityofAmsterdamWUR WageningenUniversityandResearchCentre

pg.13

LISTOFTABLES,FIGURESANDEQUATIONSTables

Table4.1 Agro-ecologicalzoneswithcharacterizingaltitude,rainfall,temperatureand

predominantperennialcrops(Mellisseetal.,inprep.).

Table4.2 TropicalLivestockUnits(TLU)conversionchart(FAO,1987).

Table4.3 Macronutrientcontent(mean±SD)forthefourinputprocessesemployedin

calculatingnutrientbalances.

Table4.4 Outputprocessandtheirrespectiveoutputs.

Table4.5 Ensetoutputdrymattercontent(%DM)andnutrientcontents(mean±SD)(HU

AgriculturalCollegeSoilLab,2015;WondoGenetCollegeSoilLab,2015).

Table5.1 RegressionequationsandR-SquaredvaluesforGPSmeasuredlandsize

(ha,x-axis)vs.farmerreportedlandsize(ha,y-axis)bycomponent.

Table5.2 Componentlevelmacronutrientinflows(kg/farm/yr)andtotalsumofnutrient

(TSN)frommineralfertilizers(IN1),organicmatter(IN2),internalfodder(IN3)

andexternalfodder(IN4)(mean±SD)byfarmcomponent,acrossfive

representativefarms.

Table5.3 Componentlevelmacronutrientoutflows(kg/farm/yr)andtotalsumofnutrient

(TSN)fromremovalinharvestedproducts(OUT1),removalincropresidues

(OUT2),wholelivestockandlivestockproductssoldoff-farm(OUT3)and

householdlivestockconsumption(OUT4)(mean±SD)byfarmcomponent,across

fiverepresentativefarms.

Table5.4 Farmlevelmacronutrientinflows(kg/farm/yr)andtotalsumofnutrient(TSN)

frommineralfertilizers(IN1)andexternalfodder(IN4)(mean±SD)byfarm

component,acrossfiverepresentativefarms.

Table5.5 Farmlevelmacronutrientoutflows(kg/farm/yr)andtotalsumofnutrient(TSN)

fromremovalinharvestedproductssoldoff-farm(OUT5)andwholelivestock

andlivestockproductssoldoff-farm(OUT3)(mean±SD)byfarmcomponent,

acrossfiverepresentativefarms.

Table5.6 Componentlevelmacronutrientinflows,outflowsandbalances(kg/ha/yr)by

farmcomponent,acrossfiverepresentativefarms.

Table5.7 Farmlevelmacronutrientinflows,outflowsandbalances(kg/ha/yr)byfarm

component,acrossfiverepresentativefarms.

Table6.1 Nutrientbalanceanalysisinterpretationcriteria(expressedaskgofnutrientlost

(oradded)/ha/yr.

Table6.2 Farmnutrientbalances(kg/ha/yr)byrepresentativefarm,excludinglivestock

component.

Table6.3 Farmnutrientbalances(kg/ha/yr)fordifferenthouseholdgroups(Eliasetal.,

1998;adaptedfromRoyetal.,2013).

Table6.4 Ensetcomponentnutrientbalances(kg/ha/yr)byhomegardentype.

Table6.5 Coffeeandenset+coffeeintercropping(ECI)componentnutrientbalances

(kg/ha/yr)byhomegardentype.

pg.14

Table6.6 Annualcerealandvegetable(ACV)componentnutrientbalances(kg/ha/yr)by

homegardentype.

Table6.7 Khatcomponentnutrientbalances(kg/ha/yr)byhomegardentype.

Table6.8 Livestockcomponentnutrientbalances(kg/farm/yr)byhomegardentype.

Table6.9 Nutrientcomposition(%)(indrymatter)ofmanure(Eliasetal.,1998),Central

Kenyancompost(Lekasietal.,2003;Kimani&Lekasi,2004)andcompost(this

study).

Figures

Figure1.1 Fromlefttoright:1)thetraditionalhomegardenwithgrazinglandinthe

foregroundandbehindthat,thehomestead,thenensetinfieldsand

coffee/annualcerealsandvegetable/khatoutfields(Galle,2015),2)Ensetplants,

withDrs.BeyeneMellisseandourtranslatorforscale(Galle,2015),3)Women

harvestingtheensetplant(Mellisse,2015),4)Bunches(zurba)offreshkhat

leaves(CCTVAfrica,2014).

Figure3.1 Schematicmodelofnutrientinputsandoutputsacrossthefivehomegarden

types,includinginputs:atmosphericdeposition(DEP),biologicalnitrogen

fixation(BNF),purchasedfoodcrops,livestockandfarminputs(Market),cattle

whicharetakenfromotherfarmsforfatteningpurposes(Fat)(e.g.feedingthe

cattleforthreemonthsandthenreturningthemtotheowner).Themodelalso

showsoutputs:lossesfromfrontgrazinglandbyleaching,volatilizationand

erosion(L1),lossesfromlivestock(L2),lossesfromthemanureheapbyleaching

andvolatilization(L3),lossesduringapplicationofmanuretofields(L4),losses

fromthehomegardenfieldsbyleachingandvolatilization(L5).Nutrientflowson

individualhomegardeninclude:feedstuffstakenfromfrontgrazingyard(f1),

cowdungleftinfrontgrazingyard(f2)(especiallyduringdaytimesinceanimals

aretiedupin grazingyard),milkandmeatconsumedbythefamily(f3),

collectionoffarmyardmanure(FYM)(f4),applicationofFYMindifferentland

usetype(f5),feedstufftakenfromdifferentlandusetype(especially,enset

leaves)bylivestock(f6),householdwasteaddedtomanureheap(f7),family

consumptionofbothperennialandannualcrops(f8)(Mellisseetal.,inprep.).

Figure4.1 Locationofstudydistricts(woredas:Wondo-Genet,Malga,Dale,Bule)within

SidamaandGedeozonesofSouthernNations,NationalitiesandPeoples’Region

(SNNPR).ThelegenddisplaysEthiopia’snineregionalstatesandtwocharted

cities.

Figure4.2 Conceptualworkflowshowingstepsandformulaeusedtoextractmacronutrient

contentfrominput.

Figure4.3 Ageneralnutrientflowdiagramofahomegardensystem.Theblackdashedline

denotesthecomponentlevelboundaryofthefarm.Inflowsandoutflows

outsidetheboundaryrepresentthoseatthefarmlevel.Thin,graydashedlines

denoterelationshipsexcludedfromthestudy.Labelsinitalicsignifyfactorsnot

quantified,forwhichitwasstillworthidentifyingtheirplacewithinthesystem.

Figure5.1 Landuseofrepresentativefarmsexpressedinareashares(%).

pg.15

Figure5.2 GPSmeasuredlandsize(ha)vs.farmerreportedlandsize(ha)byfarm

component.

Figure5.3 Areashareofgrazingland(ha)ineachrepresentativefarmvs.averageTropical

LivestockUnit(TLU)foreachrepresentativefarm,byhomegardentype.

Figure5.4 Componentlevelnutrientinflows,outflowsandbalancesforN,PandK

(kg/farm/yr)foranenset-basedrepresentativefarm.

Figure5.5 Nutrientflows(kg/farm/yr)thatinfluencesthenutrientbalanceofanenset-

basedsystem.Theasterisk(*)afterorganicmatter(IN2)denotesthatthisinput

likelycamefromanexternalsource,as0.43TLUcouldnothaveproducedthis

muchcompost.Theblackdashedlinedenotesthecomponentlevelboundaryof

thefarm.Inflowsandoutflowsoutsidetheboundaryrepresentthoseatthefarm

level.Thegraydashedlinesdenoterelationshipswhichwereexcludedfromthe

study.Labelsinitalicsignifyfactorsnotquantified,forwhichitwasstillworth

identifyingtheirplacewithinthesystem.

Figure5.6 Nutrientflows(kg/farm/yr)thatinfluencesthenutrientbalanceofanenset-

basedsystem.Theasterisk(*)afterorganicmatter(IN2)denotesthatthisinput

likelycamefromanexternalsource,as0.43TLUcouldnothaveproducedthis

muchcompost.Theblackdashedlinedenotesthecomponentlevelboundaryof

thefarm.Inflowsandoutflowsoutsidetheboundaryrepresentthoseatthefarm

level.Thegraydashedlinesdenoterelationshipswhichwereexcludedfromthe

study.Labelsinitalicsignifyfactorsnotquantified,forwhichitwasstillworth

identifyingtheirplacewithinthesystem.

Figure5.7 Nutrientflows(kg/farm/yr)thatinfluencesthenutrientbalanceofanenset-

coffeesystem.Theblackdashedlinedenotesthecomponentlevelboundaryof

thefarm.Inflowsandoutflowsoutsidetheboundaryrepresentthoseatthefarm

level.Thegraydashedlinesdenoterelationshipswhichwereexcludedfromthe

study.Labelsinitalicsignifyfactorsnotquantified,forwhichitwasstillworth

identifyingtheirplacewithinthesystem.

Figure5.8 Componentlevelnutrientinflows,outflowsandbalancesforN,PandK

(kg/farm/yr)foranenset-cereal-vegetablerepresentativefarm.

Figure5.9 Nutrientflows(kg/farm/yr)thatinfluencesthenutrientbalanceofanenset-

cereal-vegetablesystem.Theblackdashedlinedenotesthecomponentlevel

boundaryofthefarm.Inflowsandoutflowsoutsidetheboundaryrepresent

thoseatthefarmlevel.Thegraydashedlinesdenoterelationshipswhichwere

excludedfromthestudy.Labelsinitalicsignifyfactorsnotquantified,forwhich

itwasstillworthidentifyingtheirplacewithinthesystem.

Figure5.10 Componentlevelnutrientinflows,outflowsandbalancesforN,PandK

(kg/farm/yr)foranenset-livestockrepresentativefarm.

Figure5.11 Nutrientflows(kg/farm/yr)thatinfluencesthenutrientbalanceofanenset-

livestocksystem.Figure5.12 Componentlevelnutrientinflows,outflowsandbalancesforN,PandK

(kg/farm/yr)forakhat-basedrepresentativefarm.

pg.16

Figure5.13 Nutrientflows(kg/farm/yr)thatinfluencesthenutrientbalanceofakhat-based

system.Theblackdashedlinedenotesthecomponentlevelboundaryofthe

farm.Inflowsandoutflowsoutsidetheboundaryrepresentthoseatthefarm

level.Thegraydashedlinesdenoterelationshipswhichwereexcludedfromthe

study.Labelsinitalicsignifyfactorsnotquantified,forwhichitwasstillworth

identifyingtheirplacewithinthesystem.

Figure5.14 Farmlevelnutrientinflows,outflowsandbalancesforN,PandK(kg/farm/yr)

acrossrepresentativefarms.

Equations

Equation4.1 Landusepercentageforeachcomponent.Equation4.2 Averagecomponentpercentagestoequal100.

Equation4.3 Macronutrientamountfromoutput.Equation4.4 Totalsumofnutrient(TSN)foreachcomponent.

Equation4.5 Harvestindex.Equation4.6 Meanmacronutrientamountfromensetoutput.

Equation4.7 Macronutrientbalance.

pg.17

ACKNOWLEDGEMENTSThisresearchcouldnothavebeenrealizedwithoutthehelpofseveralinspiringpeople.Iwould

like to express my sincere gratitude towards Dr. Gerrie van de Ven and Dr. Katrien

Descheemaekerfortheirinterest,guidanceandwelcomingtoPlantProductionSystems(PPS).

InEthiopia,thankyoutomydailysupervisoratHawassaUniversity,Drs.BeyeneMellisse.This

thesiswouldnothavebeenpossiblewithoutyouradviceandfeedback,thankyoufortakingan

earthscientistunderyouragriculturalwing.Tocarryoutthisresearch,thankyoutothefarmers

across the Wondo Genet, Malga, Bule and Dale woredas, for welcoming this “faranji”

(foreigner)intoyourfarmandsharingyourvastknowledge.

AspecialthankstomysupervisorattheUniversityofAmsterdam,Dr.ErikCammeraat.Thank

youfortrustingmeintherealizationofthisproject.Iwouldalsoliketoextendmygratitudeto

Dr. Boris Jansen, who will act as my co-assessor and second reader at the University of

Amsterdam.Moreover,Iwanttothankmyfellowearthscientistsforthedetailedfeedbackon

myproposalandresearchworkshoppresentations.Constructivefeedback is invaluabletothe

thesisprocess.AtWageningenUniversity,IowegratitudetofellowPPSstudentsforchallenging

myproposalandinspiringmetopersevere.

Finally,aspecialmentiontoJolanda,WillemandNina.Wemaybespreadacrosstheglobebut

withyourcombinedsupport,mydreamsfeelinfinitelywithinreach.

NadineJoanneGalle

Amsterdam

pg.18

1.INTRODUCTION

Africa’ssmallholdersdominatetheagriculturalsector,whichremainsatthebasisofdeveloping

economies. InEthiopia,agricultureaccounts fornearly46%ofgrossdomesticproduct (GDP),

73% of employment and almost 80% of foreign export earnings (Ethiopia Agricultural

TransformationAgency [EATA],2014).Nationwide foodsecurityandEthiopian livelihoodsare

profoundly relianton the successof this sector. In theSidamaandGedeo zonesof southern

Ethiopia,theenset(Enseteventricosum)andcoffee(Coffeaarabica)basedhomegardenshave

sustainedmillionsoflivelihoodsforcenturies.Ensetisaspeciesofthebananafamilywherethe

pseudostem (not the fruit) is consumed. Its edible products kocho and bula are the region’s

staple food and its leaves offer construction material and protein-rich livestock feed. Enset

cultivationrequiresrelatively lowexternal inputs,hasa large foodperunitareacapacityand

holds a distinct resistance to drought. Coffee has long reigned as the dominant cash crop in

theseparts. In2005,according to theCentralStatisticalAgencyofEthiopia (CSA,2007), total

coffeesuppliedtomarketfromSidamaandGedeowas63,562tons,whichaccountedfor63%

oftheregional(SouthernNations,NationalitiesandPeoples’Region[SNNPR])and23%ofthe

nationalcoffeeproduction.

Owingtothetwodominantperennialcrops,thesetraditionalhomegardensareoftenreferred

toas ‘enset-coffee’homegardens.Thesesystemsarecharacterizedbythe farmingofannual

and perennial agricultural crops and livestock in close association with trees and/or shrubs

(Abebe, 2005; Kippie, 2002). Ninety percent of Ethiopian smallholders practice the home

garden system, typically cultivating less than one hectare. Despite their small size, home

gardens support dense populations, ensure consistent availability of multiple products and

generate employment and income through multi-species integration (Kumar & Nair, 2004).

Homegardenshavelongbeenestablishedasstablefarmingsystemsmanagedbyfamilylabour

with low external inputs. Efficient nutrient cycling within farms, offered by multi-species

composition,conservationofbio-culturaldiversityandproductdiversification,aresomeofthe

key factors contributing to the stability of these systems in SNNPR, oneof themost densely

populatedregionsinEthiopia(Abebe,2005).

Inrecentdecades,thetrendofhomegardenchangedrivenbyincreasingpopulationpressure

inducedlandfragmentation,hasledtorapidreplacementofensetandcoffeewithkhat(Cathaedulis) (Mellisse et al., in prep.). Khat, a lucrative cash crop grown for its financial gain and

chewed for its stimulating effects, has expanded at the expense of land allocated to enset,

coffeeandinsomecasesotherfoodcrops(e.g.cereals)andcashcrops(e.g.vegetables)(Abebe

etal.,2010).Comparedtocoffee,khatgenerateshigherfinancialreturns,useslesswaterand

canbeharvestedmultiple timesayear.Mellisseetal. (inprep.) reported that thecombined

area share of enset and coffee coveredmore than 45% of the farms in four study districts

(WondoGenet,Melga,BuleandDale)ofSidamaandGedeozonesin1991.Twodecadeslaterit

fellbelow25%inbothWondoGenetandMelga,whiletheshareofkhatrosefrom7%and5%

in 1991 to 36% and 33% in 2013, respectively (Mellisse et al., in prep.). Dale increased khat

shareby0.9%in1991to9%in2013.Incontrast,Buleexperiencedanexpansionratesolowit

pg.19

hardlywarrantsmention.Nonethelessitisevidenttheintroductionofkhatinthestudyarea’s

homegardensproducedrapidchangeinitscroppingandlandusepatterns.

The transition has called for the definition of five distinct home garden types: four enset-

oriented(enset-based,enset-coffee,enset-cereal-vegetable,andenset-livestock)andonekhat-

based. Enset-oriented farms rely heavily on internal inputs of organicmatter in the form of

compost.Farmscultivatingcereals,vegetablesandkhataremoredependentonexternalinputs

ofmineralfertilizers.Inadditiontoreleasingnutrients,compostimprovessoilstructureandits

water-holding capacity. Thesewell-established internal nutrient flows arewhat sustain these

homegardens;shiftingtoexternalinput-onlycropscouldaltertheseflows,inducedeficiencies

ofnutrientslackinginmineralfertilizersandimplicatethelong-termstabilityofthesesystems.

It is argued the future of Sidama and Gedeo agriculture hinges on the expansion of khat

monoculture (Mellisse et al., in prep.). Intensification without adequate restoration of soil

nutrientsupplymaythreatenthistransition’ssustainability.Ofthechemicalprocessesinvolved

in soil degradation, nutrient depletion is one of the most important as nutrient stocks are

central to crop production (Syers, 1997). Nutrient ‘hotspots’ can reveal depletion, or may

indicateanexcessofunusednutrientswhichcouldbebetterutilizedinotherareasofthefarm.

Theonceubiquitousenset-coffeehomegardenhastransitionedintofivedistincthomegarden

types.Thedividewithinaconfinedstudyareaoffersauniqueopportunitytocomparesystems

underthesameclimaticandbiologicalconditions.Assuch,analyzingtheimplicationsofrecent

transition inhomegardensystemscouldhighlightpotentialnutrient-relatedconsequencesof

theintroductionofkhat.Figure1.1displaysatraditionalhomegarden,ensetplants,harvestof

theensetplantandfreshkhatleaves.

1.1RESEARCHWITHINTHECASCAPEPROJECT

Despite Ethiopia’s technological advancements and accelerated agricultural growth in recent

years,lowagriculturalproductivitypersists.TheGovernmentofEthiopiaadoptedthefiveyear

Growth and Transformation Plan (GTP) in its hopes to eradicate poverty. Within GTP, the

AgriculturalGrowthProgramme(AGP)wasestablishedtorealizefullfoodsecurityandsupport

high economic and export growth. Scaling up best practices has the highest priority. The

‘Capacitybuildingforscalingupofevidence-basedbestpractices inagriculturalproduction in

Ethiopia’ (CASCAPE)projectwasdesigned to support the Ethiopian government in increasing

agricultural productivity for smallholder farmers by identifying and disseminating best

practices. Funded by the Ministry of Foreign Affairs of The Netherlands through the Dutch

embassy in Addis Ababa, CASCAPE collaborateswith six Ethiopian universities (Addis Ababa,

Bahir Dar, Haramaya, Hawassa, Jimma andMekelle) and ALTERRA atWageningenUniversity

andResearchCentre(WUR).Workingcloselywithregionalresearch institutesandBureausof

Agriculture,CASCAPEaimstostrengthenshareholderlinkagesandimprovesustainablefarming

strategies.

pg.20

Figure1.1Fromlefttoright:1)thetraditionalhomegardenwithgrazinglandintheforeground

and behind that, the homestead, then enset infields and coffee/annual cereals and

vegetable/khat outfields (Galle, 2015), 2) Enset plants, with Drs. Beyene Mellisse and our

translator for scale (Galle, 2015), 3) Women harvesting the enset plant (Mellisse, 2015), 4)

Bunches(zurba)offreshkhatleaves(CCTVAfrica,2014).

1.2SOCIETALANDSCIENTIFICSIGNIFICANCETo realizeanecologically sustainableand favourable socio-economic future for thepeopleof

Sidama and Gedeo, their home gardens must be resilient to this change in cultivation.

Currently, little is known on the nutrient accumulation, losses and management of these

systems. Research on the topic is either out of date (Eyasu, 1997), on a continental scale

(Stoorvogel, Smaling & Janssen, 1993) or at the national level (Roy et al., 2003).Moreover,

Ethiopiahas12diverseagro-ecologicalzones,renderingmuchoftheexistingresearchspatially

pg.21

irrelevantandunsuitableforcomparativeanalysis(Abera,2013;Abrham,2014;Haileslassieet

al.,2006;Kirosetal.,2014).

Furthermore, when confronted with new crop cultivation (e.g. khat, annual cereals and

vegetables), farmers turn to nation-wide blanket recommendations regardless of local soil

conditions.Reorientingextensioneffortsofblanketprescriptionsbypresentinghomegarden

type-specific information can empower smallholders to diagnose nutrient accumulations and

soildegradation.Aknowledgegapexiststobetterunderstandthealteredinflowsandoutflows

thatimpactthenutrientbalanceoftheseevolvingsystems,ideallywithsite-specificexpertise.

Traditionalhomegardensarehighlydependentonorganicfertilizersintheformofcompostfor

enset, coffee and some annual cereals and vegetable fields. But quantification of nutrient

amounts are lacking. According to Mwangi (1996), inorganic fertilizer use is assumed to be

relatively low. Wallace & Knausenberger (1997) have even argued for increased inorganic

fertilizer use withminimal environmental consequences, but socio-economic factors, lack of

credit and pricing policy hinder farmer accessibility. Investigating farm-specific inorganic

fertilizer use and its interactions with other internal and external homegarden inputs will

support the accurate quantification of the nutrient balance of these systems before they

transitionentirely.

SidamaandGedeoareataturningpoint.Thediversityofsystemsveeringawayfromtraditional

enset-coffeehomegardensisnovelandvastlyunderresearched.Askhatmonocultureissetto

increaseincomingdecades,thedistincthomegardentypeshaveneverbeenmoredivided.The

opportunityforcomparativeanalysisatpresent isexemplary.Andwiththistransitionalready

underway for over two decades (Mellisse et al., in prep.), the demand for this research has

neverbeengreater.

1.3OUTLINEOFTHETHESIS

The research is structured as follows. Chapter 2 presents the research aims and questions.

Chapter3consistsofabriefoverviewoftherelevanttheoriesandexistingresearchonnutrient

balanceassessments.Chapter4 gives anoverviewof the studyarea,data collectionand the

methodologies used in this research. Chapter 5 shows the results of the quantification and

comparisons. InChapter6 the results andmethodologyarediscussed in relation toprevious

research. In addition, methodological improvements, suggestions for further research and

management recommendations are provided. Chapter 7 completes the thesis with the

conclusions.Theappendixfeaturesadditionalfiguresandtablesthatareusedinthisresearch.

pg.22

2.RESEARCHOBJECTIVESANDQUESTIONS

Theobjectivesofthisresearchare:

1. Produce representative farms for each home garden type based on farm component

(e.g.crops,livestock)prevalence.

2. QuantifyN, P andK inflows, outflows and internal flows for the representative farms

across studydistricts ofWondoGenet,Malga,Dale andBule for the cropping season

2014/15.

3. Compare representative farms based on component level and farm level nutrient

balance assessments to assess nutrient depletion or accumulation under current

nutrientmanagement.

4. Improve and broaden understanding of inflows, outflows and internal flows that

influencethenutrientbalanceoftransitioninghomegardensystemsandrecommended

futuremanagementactions.

Theassociatedresearchquestionsare:

1.1 Basedon the representative farms,what farmcomponentsaremost significant in

eachhomegardentype?

2.1 HowdoN,PandKinflowsandoutflowsdifferamongstthehomegardentypes?

3.1 Howdonutrientbalancescompareacrosshomegardentypesatcomponent level,

andatfarmlevel?

3.2 Wheredo“hotspots”ofnutrientdepletionand/oraccumulationexist?

4.1 Whatfuturemanagementactionscanbetakentoimprovenutrientmanagement?

pg.23

3.THEORETICALFRAMEWORK

Overviewoftheexistingliteratureprovidesthebasisforthisstudy’stheoreticalframework.In

thischapter,keytermsaredefined(3.1)andtheinflows(3.2),outflows(3.3)andinternalflows

(3.4)ofthehomegardensystemaredescribed.

3.1DEFINITIONOFCONCEPTUALTERMS

Conceptualtermsnecessarytoanswerresearchquestionsandconductmethodsareexplained

inthissection.

3.1.1NUTRIENTBALANCESMuchlikeafinancialbalance,nutrientbalancesrevealsurplusesordeficits.Dobermann(2005)

expresses a surplus or deficit as either a measure of net depletion (output > input) or

enrichment(output<input).Asurplus,oranaccumulationofhighlevelsofnutrients,isoften

attributed to negative environmental consequences, in which case, the nutrients are

considered pollutants. A moderate surplus, however, could result in improved soil fertility.

Nutrientscanbeexportedfromfarmsintheformofrunoff(PandsomeN),leaching(NO3-and

someP) or its gaseous form via denitrification (NO3- toN2) or volatilization (NH4

+ toNH3). A

deficit, or nutrient loss, can indicate land degradation and lead to gradual soil depletion.

Ultimately,bothoutcomescanrenderagriculturalpracticeunsustainableinlong-term.

Byexamininginputs,outputsandstorageprocessesoffarmingsystems,nutrientbalancescan

helpinmanagingnutrientsbyidentifyingproductiongoalsandopportunitiesforimprovement

(Gourleyetal.,2007).Balancingnutrient inputsandoutputscan reduceundesirableoff-farm

nutrient consequences (e.g. eutrophication caused by excessive nitrogen runoff) and reduce

expenditureonfarminputs(e.g.fertilizersandfeedsupplements).Thebalancesareproduced

for various spatial and temporal boundaries. In brief, a balance tracks inputs, outputs and

stores of a defined systemover a fixedperiodof time, such as a specific year. Balances can

range from broad farm-gate analyses to those at specific field-level to detailed soil-level

studies.Thepurposeofthebalancedeterminesthedegreeofdatadetailnecessary.Naturally,

thisalsoworksintheoppositefashion,wheretheextentofdataavailabilitylimitsthebalance’s

detail.

Eachlevelofnutrientbalance—farm-gate,fieldandsoil—hasitsbenefitsandlimitations.Farm-

gatenutrientbalances (FGB)areproduciblewith readilyavailabledata,easily repeatableand

simpletocommunicate(Öbornetal.,2003).FGBsalsohavethecapacitytoaccountformultiple

nutrients,calculateoutcomesfinanciallyandareusefulforfarmbudgeting.However,theFGB

can overlook depletion caused by flows of nutrients within the farm (Cherry et al., 2008).

Internal flows can be significant; with shortages in some areas and accumulation in others.

Fluctuationsinlocalconditions(e.g.climateandsoilfertility)andnutrientfluxes(e.g.biological

nitrogenfixation(BNF),atmosphericdeposition(DEP)andleaching)aretypicallynotaccounted

pg.24

for because such detail is too much for the purposes of a FGB. Internal flows are better

analyzedinafield-levelbalance,whichexaminesthebalanceatthesoil-surfaceleveloneach

fieldwithin a farm. Field-level balances consider DEP, BNF, leaching and nutrient content of

manures and crops, but typically rely on estimates and assumptions for these components.

Localizedsurplusesanddeficitscanbebetteridentifiedandmanagedusingafield-levelbalance

(Cherry et al., 2008). Soil-level balances measure denitrification, volatilization and lateral

transport.Itistheonlybalancetoaccuratelyaccountforspatialandtemporalaspectsoffluxes

(Öbornetal.,2003),butrequireshighqualitydata.Soil-levelbalancesareausefultoolforsite-

specific researchanddevelopment.Onlywhen it is representativeof thegreatersystem,can

soil-level balances identify processes where problems occur and follow the fate of nutrient

sources(Wander,2015).

3.1.2COMPONENTLEVELNUTRIENTBALANCE

First,abalancemustdelineatestricttemporalboundariesandassuchourbalancewasannual,

examining the 2014/15 cropping season. Second, partial nutrient balances were used.

Agriculturalfieldstendtohaveresidualnutrientsandbecauseofthedifficultyinmeasuringall

individualoutputpathwaysintotheenvironment,residualswereassumedtobezero(Jackson-

Smith,2010).Third,abalancemustadheretospatialboundaries;thereforeacomponentlevel

nutrientbalancewasused.ThecomponentlevelapproachliesbetweenthecoarserFGBanda

morecomprehensivefield-levelbalance.Thefieldsaregroupedtogether intocomponentsby

landuse.Forexample, theannualcerealsandvegetablescomponentgroups togethermaize,

barley,onionandcabbagefields.Fordiversifiedfarmscultivatingmultiplecropsinasmallarea,

likeahomegarden, simplyusingaFGBwouldunderestimate the influenceof internal flows.

Field-levelassessmentscan identifymovementofnutrientswithin farms,but requireadetail

notfeasibleinthetimespanofthisproject.Groupingfieldstogetherincomponentsispractical

whileitstillprovidesageneralindicationofenvironmentalperformanceanddetailedinsightof

internalnutrientflows.Thechoicebehindacomponentlevelbalanceisespeciallyrelevantfor

home gardens in the study site, where land use allocation has changed and distinct home

gardentypeshaveemerged,thusdisruptinginternalflowsandcallingfortheircomparison.The

farmcomponents in thisstudyareenset,coffee,enset+coffee intercropping,annualcereals

andvegetables(ACV)andkhat.Livestockwasalsoacomponent.

3.1.3NUTRIENTFLOWS

Mellisseetal. (inprep.)producedaschematicmodelofnutrientoutflowsand inflowsof five

differenthomegardentypes(Figure3.1).Inthemodel,nutrientoutflowsfromthefarminclude

market, which are sales of livestock produce (e.g. meat, milk) and exported crops (chiefly,

coffee, vegetables and khat). Several nutrient losses are also defined, including: losses from

frontgrazinglandbyleaching,volatilizationanderosion(L1), lossesfromlivestock(L2), losses

fromthemanureheapbyleachingandvolatilization(L3), lossesduringapplicationofmanure

tofields(L4),lossesfromthehomegardenfieldsbyleachingandvolatilization(L5).

pg.25

NutrientinflowstothefarmincludeDEP,BNF,purchasedfoodcrops,livestockandfarminputs

(Market),andcattlewhicharetakenfromotherfarmsforfatteningpurposes(Fat)(e.g.feeding

thecattleforthreemonthsandthenreturningthemtotheowner)(Mellisseetal.,inprep.).

Figure3.1Schematicmodelofnutrientinputsandoutputsacrossthefivehomegardentypes,

including inputs: atmospheric deposition (DEP), biological nitrogen fixation (BNF), purchased

food crops, livestock and farm inputs (Market), cattlewhich are taken from other farms for

fatteningpurposes(Fat) (e.g. feedingthecattle forthreemonthsandthenreturningthemto

the owner). The model also shows outputs: losses from front grazing land by leaching,

volatilization and erosion (L1), losses from livestock (L2), losses from the manure heap by

leachingandvolatilization (L3), lossesduringapplicationofmanure to fields (L4), losses from

thehomegarden fieldsby leachingandvolatilization (L5).Nutrient flowson individualhome

gardeninclude:feedstuffstakenfromfrontgrazingyard(f1),cowdungleftinfrontgrazingyard

(f2) (especially during day time since animals are tied up in grazing yard), milk and meat

consumedbythefamily(f3),collectionoffarmyardmanure(FYM)(f4),applicationofFYMin

different land use type (f5), feedstuff taken from different land use type (especially, enset

leaves)by livestock (f6),householdwasteadded tomanureheap (f7), familyconsumptionof

bothperennialandannualcrops(f8)(Mellisseetal.,inprep.).

Theschematicmodel(Figure3.1)alsodisplaysinternalnutrientflowswithinanindividualhome

garden.Itisimportanttodistinguishbetweeninternalandexternalinputs.Internalinputsare

on-farm resources such as manure, enset leaves and grasses. External inputs are off-farm

pg.26

resources purchased for use on the farm such as livestock fodder, chemical fertilizers,

insecticides and/or pesticides. If manure or livestock fodder was purchased, rather than

produced on the farm where it is applied, it is considered an external input. In this study,

nutrient flows and nutrient balances allow understanding the interactions between home

gardencomponents.

3.2INFLOWSINTOTHEHOMEGARDENSYSTEMIn southern Ethiopia, farmers’ use of agricultural inputs is highly dependent on their

accessibility.Ethiopia’sBureauofAgriculture,theopenmarket,NGOsandneighbouringfarms

allsupplyfarmerswith inputs(Dessalegneetal.,2012).Thissectionhighlightsonlythemajor

nutrientresource inflowsthatareconsideredfor the farm levelnutrientbalanceassessment.

Atmospheric deposition (DEP) and biological nitrogen fixation (BNF) are excluded as inflows.

DEP can occur in two forms: wet deposition (rain and fog) and dry deposition (gases and

particles,withoutaidofprecipitation).BNFisdependentonseveralsoilfactors.Forexample,

thepresenceofphosphorus,thepresenceofappropriateRhizobiaandpH.Theapplicationof

fertilizers is by far themost commonway to supply crops with nitrogen. However, possibly

moresustainablepracticessuchascroprotationwithsymbioticN-fixationbyleguminouscrops

or planting them alongside N-fixing crops are being used as well. For the partial nutrient

balanceassessmentinthisstudy,DEPisexcludedduetodifficulties in itsaccurateestimation

(Munters, 1997). BNF is excluded, as only few legumes are grown in the study areas. Codes

assignedtoeachinflowarenotintendedtobeinnumericalorder.

3.2.1MINERALFERTILIZER(IN1)Nitrogenisoneofthemostabundantelementsonearth,butonlyintheformofnitrate(NO3

-)

andammonium(NH4+)isitavailableforplantuptake.Theapplicationofmineralfertilizersisby

far themostcommonwaytosupplycropswithnitrogen.Dessalegneetal. (2012) report low

mineral fertilizer use in Ethiopian home gardens. Despite projects like the Development of

Competitive Markets (DCM), reforms designed to encourage private sector participation in

fertilizer distribution, fertilizer use has remained low. The reasons are its high cost,

unavailability, limitedknowledgeabout itsbenefitsand little informationonhowtoproperly

applyit(Wallace&Knausenberger,1997).Devaluationsofdomesticcurrencyandlackofcredit

can also constrain fertilizer use in already impoverished areas. This is especially true in

unirrigated,rain-fedagriculturalzones,whichareconsideredtohavehighrisk.

However,uponcompletionin1995,DCMdidincreasefertilizersalesdrastically:from132,000

tonnesin1993to236,000tonnesin1995(Wallace&Knausenberger,1997).Kirosetal.(2012)

reportedEthiopianfertilizeruseroseto7kg/hain1997.ThisiscomparabletotheSub-Saharan

Africanaverageof6kg/habutstillverylowcomparedtotheglobalaverageof78kg/haatthat

time (Makken,1993).Results fromDCMarenearly twodecadesoldandwitha lackofmore

recentdataitisdifficulttodeducecurrenttrendsininorganicfertilizeruse.However,theprice

of inorganic fertilizer is still high due to its foreign production and poorly developed

pg.27

infrastructureinEthiopia.Abateetal.(2015)indicatedthatinorganicfertilizeruseremainson

the rise. Their research showed nationwide consumption of N and P for fertilizingmaize at

20,000 tonnes in 2004 to 68,000 tonnes in 2013—amore than 3-fold increase (Abate et al.,

2015).NandPaccountedforroughly67%and33%ofthisgrowth,respectively.

All of Ethiopia’s mineral fertilizer is imported (Abate et al., 2015). Currently, the most

commonlyusednitrogenfertilizerinEthiopiaisurea.Itcanbeinexpensivelymanufacturedand

is widely applicable to nearly all crops. Urea holds 46% nitrogen content. However, urea is

highlysolubleinwaterandmeasurestolimitnitrogenrunoffshouldbeprudentlyundertaken.

The nation’smost commonly used phosphate fertilizers are triple superphosphate (TSP) and

diammonium phosphate (DAP). Both fertilizers are in dry form andwhen dissolved have pH

valuesof1.5and8.0,respectively.OnbasicsoilsTSPmightbemoreeffective,whileonacidic

soilsDAPishazardousasdirectcontactwithseedsmaycauseseedlingdamage.TSPmaybeless

favourableeconomicallyasitismorecostlytoproduce.InSidamaandGedeoagriculture,urea

andDAPareavailablewhileTSPisnot.

Whilehighexternalinputorevenindustrialagriculturalnationsarerightfullyconcernedabout

thenegativeenvironmentalconsequencesofexcessivefertilizeruse,KellyandNaseem(2004)

argue Ethiopia faces negative environmental impacts of too little fertilizer use. Although

environmental damage from too little fertilizer is unlikely, its on-farm effects have serious

implications. For example, a soil that receives little to no inputs can rapidly losenutrients, a

process known as nutrient mining. This is especially true if inadequate biomass production

limitsnutrientrecyclingforfutureplantings.

3.2.2EXTERNALLIVESTOCKFODDER(IN4)

Externalfodder(IN4)comprisesofsugarcanetopsandwheatbran.Thesefoddersourcesoften

supplementinternalfodder.Ethiopiastrivestobeoneoftheworld’stop10sugarproducersby

2023 and sugarcane tops are abundant in sugar-growing countries. Through the state-run

Ethiopia Sugar Corporation (ESC), the Government of Ethiopia (GOE) has invested in new

processing factories, revitalizingolder factories andexpanding sugar cultivated land toboost

sugarproduction(Francom,2015).Onehectareofsugarcanecanyield30tons(freshweight)of

tops (Mahala et al., 2013). Sugarcane tops are primarily fed to fatten livestock, rather than

provide nutrients. They are highly palatable and can often sustain cattle with little protein

supplement(Leng&Preston,1976).

To livestock,wheatbran isalsoverypalatable.Asaby-productofthemilling industry,wheat

bran is diverse. Mixed wheat bran is widely considered of better quality due to its good

proportion of flour and husks (Gebremedhin et al., 2009). Coarse bran has poor nutritional

valuewhilefinebrancouldcausebloatinginlivestock.FarmersnearHawassapreferfinebran

forfatteninganimalsandcoarsebranfordairycattle(Gebremedhinetal.,2009).

pg.28

3.3OUTFLOWSFROMTHEHOMEGARDEN

This section highlights only themajor nutrient resource outflows relevant to the local home

garden systems. Outflows from fields such as leaching, gaseous loss and erosion were not

expounded for this assessment due to lack of data. The following outflowswere taken into

accountforthefarmlevelnutrientbalanceassessment.Theseoutflowsareexportedcropssold

off-farm,wholelivestockleavingthefarmandlivestockproductsales.Codesassignedtoeach

outflowarenotintendedtobeinnumericalorder.

3.3.1REMOVALINHARVESTEDPRODUCTSSOLDOFF-FARM(OUT5)Severaldifferentperennialandannualagriculturalcropsaregrown in theSidamaandGedeo

zones.Thetraditionalhomegardensaredominatedbyensetandcoffee.Accompanyingthese

twomaincropsarevegetables(e.g.onion,cabbage)andsomeannualcerealcrops(e.g.maize,

barley).Khathasbeenincreasinglycultivatedforitseconomiclureinrecentyears,whileatthe

expenseofensetandcoffee.Toquantifyandcompareinputsandoutputsatthefarmlevel,the

cropsmostoften sold are cash crops: onions, cabbage, coffee and khat.On someoccasions,

kochoorensetleaveswillbesoldoff-farm.Fibrousensetleavesaremulti-functionalandcould

besoldasbuildingmaterialortextileforclothing.

3.3.2LIVESTOCKOUTPUT(OUT3)Exportingwhole animals is another potential resource flowout of the home garden system.

Mostcommonly,chickens,goats,sheepandcattlearesoldforconsumption.However,whole

animalsforutilizationcanalsobesoldand/ortradedamongstfarmers.Livestockareprimarily

sustained by enset leaves and grasses (Mellisse et al., prep.). On occasion, their diet is

supplementedwithpurchasedexternalfodder(e.g.sugarcanetop,wheatbran).Thesenutrient

inputscyclebacktocropfieldsintheformofmanuremixedincompost(IN2).

Fromthemilkproducedbythecattle,partissoldandpartaccountsfornutrientlossfromthe

farm. Butter is also made from the milk, but has been grouped together with milk for this

assessment.Eggsarealsosoldandresultinnutrientlosses.Inthestudyarea,meatisnotsold

separately,onlyaswholeanimalsleavingthefarm.

3.4INTERNALFLOWSINTHEHOMEGARDENSYSTEM

Thissectiondescribesthe internalnutrient flowsrelevant tothehomegardensystem.Codes

assignedtoeachinternalflowarenotintendedtobeinnumericalorder.

3.4.1ORGANICMATTER(IN2)InEthiopia,organicfertilizerscanbecategorizedintoanimalmanuresandcompost.InSidama

andGedeo,livestockmanureisarguedtobetheprincipalfarminputtocrops(Mellisseetal.,in

pg.29

prep.).Applyingmanureimprovessoilfertilityanditsphysicalcondition(Elias,2002).Withthe

aimtosupplynutrients,manureisregularlyapplied.However,itseffectvarieswithapplication

amountsandmanurequality,andisoftendependentonlivestockandlabouravailability,which

is necessary to transport manure onto fields (Kiros et al., 2012). Use of manure on crops

competes with non-farm uses. For example, increasing shortage of fuel wood forces rural

Ethiopians to burn dried cattle dung. Kiros et al. (2012) found this to deprive soil of an

importantsourceoforganicmatterandnutrients.

Compost is the decomposed organic waste produced from crop residues, animal manure,

householdwasteand sludge. It is stabilizedbymacro-andmicro-organisms throughaerobic,

semi-aerobicandanaerobicbiologicalprocesses.InSidamaandGedeo,compostsmademainly

of cattle dung and household refuse ismost commonly used.Utilizing human excreta is still

widely considered taboo. Compost in itself is not a rich source of nutrients, but acts as an

important soil amendment by increasing microbial activity and soil fertility. Like manure,

applicationamountsvaryaccordingtolabouravailability.Asaresult,fieldslocatedclosetothe

homestead generally receive more compost compared to fields further away. Compost is

typically collected,decomposedand stored in anoutdoorpile close to thehomestead. From

thereitisdistributedtofields.Dessalegneetal.(2012)stipulatedfurtherresearchisessential

tosurveyifcompostaloneisenoughtoincreasehomegardenproductivity.

3.4.2INTERNALLIVESTOCKFODDER(IN3)

To feed livestock, internal fodder (IN3) consists of enset leaves and grasses collected from

enset, coffee and khat fields. Typically, internal fodder remainswithin the farmbymeansof

livestockmanure that is appliedon the crop fields,which is a characteristic of a closed-loop

system. Together with manures, crop residues can replenish the essential macronutrients;

contributetomaintainingsoilorganicmatterandthesoil’sstructure.Exportingtheseresources

off-farm can have negative nutrient-related consequences, should they not be replacedwith

inorganic fertilizer means. For example, in Ethiopia, complete removal of all crop residues

(internal fodder) is estimated to remove 101 and 168 kg/ha/yr of N and P nutrients,

respectively(Kirosetal.,2012).Whilefatteningsupplementsviaexternalfodderarecrucialin

livestockfeed,theroleofinternalfoddershouldnotbeundervalued.

3.4.3REMOVALINALLHARVESTEDPRODUCTS(OUT1)

Nutrientremovalinallharvestedproductsconsidersallcropsthatareproduced,notonlythose

thataresoldoff-farm.Cropsmostlikelytoremainwithinthehomegardenareensetproducts

(e.g.kocho,bula)andcereals(e.g.barley,maize).Thesecropsarepresumablyconsumedbythe

household.

pg.30

3.4.4REMOVALINCROPRESIDUES(OUT2)

Cropresiduesarerelevantonlyonmaizeandbarleyfieldswherestoverandstrawremainson

thesoilafterharvest.Theharvest index(HI)wasusedtodeterminetheseabove-groundcrop

residues.Onenset,coffeeandkhatfields,allgrassesarecollectedforinternallivestockfodder

(IN3) and no crop residues remain. Regarding vegetables, onion and cabbage are both

uprooted.Assuch,thesefieldscanalsobeconsideredacompleteharvest.

3.4.5HOUSEHOLDLIVESTOCKCONSUMPTION(OUT4)

Household crop consumption was not explicitly asked for in the input/output survey, but

household livestock consumptionwas.However, the survey only asked about the household

consumingwholeanimals insteadof livestockproducts.Sincehouseholdconsumptionofmilk

and eggs was not explicitly requested, it has been excluded from the nutrient balance

assessment.

pg.31

4.METHODOLOGY

To analyzenutrientmanagement and flowson transitioninghomegardens, component level

and farm levelmacronutrient balances are used to compare the nutrient amounts entering,

leaving and circulating (within) the farm. The methodology considers the system over the

2014/15croppingseason.Nutrientbalancescanbeindicatorsof(i)anutrientsurplus(inputs>

outputs),leadingtoanaccumulation,(ii)adeficit(outputs<inputs),depletingnutrientreserves

andheightenedriskofreducedcropyieldsduetonutrientmining–theunreplenishednutrient

removal by crops, or (iii) a neutral balance (Cuttle, 2002). The research strategy to quantify

nutrient inflows, outflows and internal flows and to calculate the farm level and component

levelnutrientbalancesaredescribedhere.

4.1STUDYAREA

Ethiopiahasacomplexhistoryofdividingitscountry.Asof2015,Ethiopiahas9regionalstates

(kililoch) and two chartered cities (Addis Ababa, Dire Dawa). Kililochs are based on ethnicterritorialityandfurthersubdividedinto68zones.Somezonesarefurtherdividedintodistricts

(woreda), which are then split into municipalities (kebele). Kebele are the smallest unit of

administrativedivisioninEthiopia.

The research was conducted in the Sidama and Gedeo zones of the Southern Nations,

NationalitiesandPeoples’Region(SNNPR)kililoch(regionalstate)insouthernEthiopia(Figure4.1).Encompassing7,672squarekilometers (Abebe,2005), Sidama is locatedat5°45’-6°45’N

latitude and38°-39°E longitude andhome to 3.5million inhabitants (CSA, 2007). The area is

densely populatedwith over 450 people per km2 (CSA, 2007). Some 95% of the inhabitants

speakSidaamuAfoo,thedistrict’sprimaryfirstlanguage.Incontrasttothemajorityofnorthern

Ethiopia’sarid landscape,Sidamais largely lushandgreenwithrollinghillsandfertilevalleys.

Sidama is subdivided into 19woredas (district), ofwhich three (WondoGenet,Malga, Dale)

werestudied.Theworedaswerechosenbasedonpopulationdensity,agro-ecologyandaccess

tomarkets.

Sidama surrounds the city of Hawassa. At an altitude of 1665 m a.s.l., Hawassa serves as

SNNPR’scapital.Hawassahas165,275inhabitantsrepresentingover50ethnicities.Nearlyhalf

ofthepopulationresides inHawassa’snearbykebeles(neighbourhood).Thecity liesadjacenttoLakeAwasa,thesmallestoftheGreatAfricanRiftValleylakes.Itsfishcombinedwiththatof

theneighboringAbayaLakeinGedeoprovidearobustlocalfishingindustry.

Gedeo is subdivided into eight woredas, of which one (Bule) was studied. Again, Bule was

selectedforitspopulationdensity,distinctagro-ecologyanddistancetomarkets(addtable).Its

isolationcontrastswellwithSidama’sselectedworedas,renderingadiverseandrepresentative

studyarea.Gedeo is1,347squarekilometers (Kippie,2002),hasapopulationof0.84million

and is located at 5°-7° N latitude and 38°-40° E longitude (CSA, 2007). Gedeo shows similar

variationinelevationtoSidama,witharangeof1268(atLakeAbaya)to2993m.a.s.l.(atHaro

pg.32

WolabuPond).Gedeozone isnamedafter itsGedeopeople,whichpredominantly speak the

Gedeo language.Although the languages are alike, theGedeopeople have a distinct culture

compared to theSidamapeople.However,both zones share identicalagriculturaleconomies

basedoncultivatingensetandcoffeewithintraditionalhomegardens.

Thezonesalsosharecomparablebimodalrainfalldistribution,rangingfrom1200to2000mm

perannum(Abebe,2005).Thelong(JunetoSeptember)andshort(MarchtoMay)rainyseason

createfavourableconditionsforthedominantperennial-basedhomegardensystems.Sidama

and Gedeo cover two agro-ecological zones (Table 4.1). Both zones support different

agricultureandlifestyles.

Table 4.1: Agro-ecological zones with characterizing altitude, rainfall, temperature and

predominantperennialcrops(Mellisseetal.,inprep.)

Agro-ecologicalzone Altitude(m.a.s.l.)

Averageannualrainfall(mm)

Averageannualtemperature(oC)

Moistmid-altitude,subtropicalzone

(Amharic:woinadega)1500-2300 1200-1600 16-22

Moisthighland,coolzone

(Amharic:dega)2300-3200 1600-2000 15-19

In SNNPR, there are 116meteorological stations recording climatedata. Stations inHawassa

andArbaMinch (270kmsouthofHawassa) are synoptic (large-scale) receiving satellitedata

andrecordingallweatherelements.Theother114stationsvaryandarelessdetailed.Altitude

andrainfallarethemaindeterminantsofclimateintheregion.DominantsoiltypesareNitosol,

CambisolandLithosol(Tsegaye,2001).

pg.33

Figure 4.1: Location of study districts (woredas: Wondo-Genet, Malga, Dale, Bule) within

SidamaandGedeozonesofSouthernNations,NationalitiesandPeoples’Region(SNNPR).The

legenddisplaysEthiopia’snineregionalstatesandtwochartedcities.

pg.34

4.2FARMTYPOLOGIES

Homegardensystemsarediverse.Tobetteranalyzetheirdifferences;Mellisseetal.(inprep.)

constructedafarmtypology.Differentfarmswithsimilarcharacteristicswerecategorizedinto

five types—four enset-oriented (enset-based, enset-coffee, enset-cereal-vegetable, enset-

livestock) and one khat-based. To construct the typology, data from the 240 surveyed

householdsandmultivariatestatisticalanalysis(MSA)wasused.Thefarmtypeswereidentified

basedonareasharesofenset,coffee,khat,annualcerealandvegetablesandgrazingland.

4.3DATACOLLECTION

The data for a partial macronutrient balances and MNUE was acquired through household

surveys.In2012/13,240householdsacrossthefourstudyworedasweresurveyed.Theheads

ofthehouseholdswereaskedtoreporttheyearofkhatintroduction,landallocationtovarious

perennialandannualcrops,totallandholdingsandlivestockherdsize(Mellisseetal.,inprep.).

Demographiccharacteristicssuchas familysizeand levelofeducation,productionobjectives,

sourcesofincome,constraintstocropproductionandlivestockrearinganddependencyonthe

market for family food,werealso requested.Secondarydataat theworedaandkebele level

werecollectedonpopulationdensity,populationsizeandkocho,coffeeandkhatprices.From

thisanalysis,thefarmtypologieswerecreated.

Of these 240 households, a sub-sample of 63 households was selected for the detailed

input/output survey. In this survey, data onmacronutrient inputs, outputs and stores of the

2014/15 cropping season for farmer’s home gardens was recalled. Household surveys also

requiredfarmerstospecify livestockkept,died,consumedorsold.Livestocktypeandgender

was also asked. The translated English version of this household survey questionnaire is

availableinAppendix7.3.Thedatacollectedfromthese63surveyswasenteredintoExcelfor

further analysis. This research project compiled all macronutrient inputs and outputs at the

component and farm level, conceived representative farms and conducted partial

macronutrientbalancesforeachhomegardentype.

Inadditiontodetailedsurveydata,compositesamplesofcrops, internal livestockfodderand

homegardencompostweretakenfornutrientcontentanalysispriortomyarrivalinEthiopia.

The samples were analyzed in the laboratory facilities of Hawassa University College of

AgricultureandtheWondoGenetCollegeofForestryandNaturalResources.Basedonnutrient

values anddrymatter, the amountof nutrients transported fromboth component and farm

level was quantified. A complete table of the nutrient content of all output is available in

Appendix7.2.Thenutrientcontentforcabbage,milkandeggsweretakenfromliterature(The

NationalAgriculturalLibrary,2015;Myburghetal.,2012;Roeetal.,2012).Thenutrientcontent

of animals leaving the farm was based on Van Heerden et al. (2002) and the Agricultural

ResearchCouncil[ARC](1984).Forexternallivestockfodder,whichincludessugarcanetopand

wheatbran,thenutrientcontentwasalsotakenfromliterature(Heuzéetal.,2015a;Heuzéet

al.,2015b).

pg.35

Literatureontypicalsub-SaharanAfricanmacronutrientinputsandnutrientbalancesforsimilar

smallholder subsistence systems was studied to develop a frame of reference for detecting

outliers. Outliersmay indicate either variability in themeasurements or experimental error.

Selectioncriteriafor identifyingoutlierswerebasedonEthiopia’sblanketrecommendationof

100 kg/ha of DAP and urea fertilizers. As Ethiopian authorities report fertilizer

recommendationsinkilograms,thesedatasetswereconvertedintoactualelementalnitrogen

andphosphorusnutrientsforstandardizedcomparisons.Thus,Ethiopiarecommends63kg/ha

ofN(DAP=18kgofN,urea=45kgofN)asDAPis18%Nandureais45%N.Toaccountfor

potential over-fertilization, any application ofmore than 125 kg/ha of N was isolated as an

outlier,butnooutlierswererevealedinthedataset.

4.4EXPERIMENTALDESIGN

In this section the experimental design and analytical techniques are described. The

representative farm for each home garden type is explained, as well as the approach for

extractingthenutrientamountfrominputsandoutputsandassessmentofthemacronutrient

balance for both crop and livestock. As Ethiopian farmers tend to use their own units, a

conversiontableforalllocalunitstokilogramscanbefoundinAppendix7.1.

4.4.1THEREPRESENTATIVEFARM

Drawing from the farm typologydesignedbyMellisse et al. (inprep.) for eachhomegarden

type a representative farm was formulated. The first phase is to categorize crops and

distinguishcomponentsofahomegarden.Thefivedeterminedcomponentsare:enset,coffee,

annual cereals and vegetables (ACV, including maize, barley, onion and cabbage), khat and

livestock.Annualcerealsandvegetablesweregroupedbasedontheirsimilarity in inputsand

thefactthattheyareannualcrops.Despitetheiropposingrolesasfoodandcashcrops,annual

cereals and vegetables are often found together. A trend of increasing ACV area to meet

household dietary and income needswas observed and resulted in a separate enset-cereal-

vegetablehomegardentype(Mellisseetal.,inprep.).

Second, a criterion to exclude or include the type of component from or to a specific

representative farmwassetbasedon itspresence.Accordingly,a component represented in

50%ormoreofthesurveyedfarmswasretainedandexcludedotherwise.Forexample,inthe

enset-coffeehomegardens,14ofthe18farmscultivatedcoffee,socoffeewas included.The

third phase is to determine the proportion of land allocated to each component in its

representative farm. For this, the allocated land area for each selected component over the

totalfarmer-reportedfarmsizewastaken.

!"#$&'((ℎ"/ℎ") = .//01.234/.54.63.706108905352

202./:;7.68<=>3

Note:FRdenotesfarmer-reported.

(Equation4.1)

pg.36

WHAT’SINANDWHAT’SOUT

(Equation4.2)

Inthisstudy,allfruitsandsomevegetablecropswere

nottakenintoaccount.Cropssuchasbananas,avocados,mangoes,guava,potatoesandfaba

beanswere excluded due to their negligible presence in the home gardens, as only 8 of 63

homegardenscultivatedthesecrops.

Equation4.1isrepeatedforeachcomponentoneachfarmandaveraged.Thisconstitutesthe

averagelanduseofeachcomponentwithintherepresentativefarm.Theaverageswillnotadd

upto100%,asexcludedcomponentsarenotaccountedfor.Therefore,thefollowingformula

(Equation4.2)isappliedtocalculatethealteredpercentages.

x%

+y%

z%=mustequal100%

(100/N) ∗ N% = 1 (100/N) ∗ P% = "%

(100/N) ∗ Q% = R%

"% + R% = 100%

Wherex=componentx

y=componenty

z=originalpercentagesum,beforealterations

a=alteredpercentageforcomponentx

b=alteredpercentageforcomponenty

The representative farm approach has the capability of providing insights into an otherwise

complexfarmtypology.

Togaingreaterunderstandingofthelivestockcomponent,TropicalLivestockUnit(TLU,250kg

bodyweight)wascalculatedforeachrepresentativefarmtoindicatethepotentialinfluenceof

livestockwithindifferenthomegardentypes.TLUarelivestocknumbersconvertedtoa

commonunit(Table4.2).

Table4.2:TropicalLivestockUnit(TLU)conversionchart(FAO,1987).

Species TLUconversionfactorCattle 0.70

Sheep 0.10

Goat 0.10

Chicken 0.01

Horse 0.80

pg.37

4.4.2QUANTIFYINGNUTRIENTFLOWS

Stoorvogel and Smaling (1990) pioneered the methodology behind nutrient balance

assessments. Subsequent studies have modified the methods to fit study objectives and

research location.Theiroriginalmodel included five inputand fiveoutputprocesses:mineral

fertilizer;organicmatter,comprisingmanureandhouseholdrefuseandleaflitter;atmospheric

deposition (DEP); biological N-fixation (BNF); and sedimentation (inflows) and removal in

harvested products; removal in crop residue; leaching; denitrification; and water erosion

(outflows). Inputandoutputprocessesquantified for this researchvariedon the component

andfarmlevelandwereadaptedtothelocalcontext.

Onthecomponentlevel,themajorinputflowsquantifiedwere

1. mineralfertilizer(IN1),

2. organicmatter(IN2),comprisingofmanureandhouseholdrefuse,

3. internalfodder(IN3),

4. externalfodder(IN4).

Thekeyoutputflowsquantifiedwere

1. removalinharvestedproducts(OUT1),

2. removalincropresidue(OUT2),

3. wholelivestockandlivestockproductssoldoff-farm(OUT3),

4. householdlivestockconsumption(OUT4).

Inputflows;DEP,BNFandsedimentationwereexcluded.DEPisexcludedduetodifficultiesin

its accurate estimation and lack of local data (Munters, 1997). BNF is excluded, as only few

legumes are grown in Sidama and Gedeo. Sedimentation is not relevant as there are no

irrigationschemesorfloodplainsinthestudyarea(Eliasetal.,1998).Outputflows;leaching,

denitrification and water erosion were excluded based on lack of regional-specific

measurements which are also subject to temporal variability. Household consumption of

livestockproducts(e.g.milkandeggs)wasexcludeddueto lackofexplicitdata.Manureasa

directoutputfromlivestockwasexcludedbecausenocompositesamplesweretakenoffresh

manure.

Onthefarmlevel,themajorinputflowsquantifiedwere

1. mineralfertilizer(IN1),

2. externalfodder(IN4).

Thekeyoutputflowsquantifiedwere

1. removalinharvestedproductssoldoff-farm(OUT5),

2. wholelivestockandlivestockproductssoldoff-farm(OUT3).

pg.38

4.4.3MACRONUTRIENTINPUT

ThesurveydatasuppliedDAP,ureaandcompost inputs inkilogram(kg)orgimbola(9.78kg).

The formulas used to extractmacronutrient amount from these inputs are presented in the

workflowbelow(Figure4.2):

Figure 4.2: Conceptualworkflow showing steps and formulae used to extractmacronutrient

contentfrominput.

The third step in the workflow mentions the nutrient content of the inputs (Table 4.3).

Livestocktotalswerederivedusingthesameconceptualworkflow(Figure4.2)tocalculatethe

nutrientcontentofinternalandexternalfodder.

Table 4.3: Macronutrient content (mean ±SD) for the four input processes employed in

calculatingpartialnutrientbalances.

Inputprocess

Codeandnutrients %DM N(%) P(%) K(%) Reference(N) Reference(P/K)

DAP(NH4)2HPO4

IN1(N&P)

- 18 20 - (Mitchell,2008) (Mitchell,2008)

UREACO(NH2)2

IN1(N)

- 45 - - (Mitchell,2008) (Mitchell,2008)

Organicmatter

IN2(N,P&K)

26.37 0.83 0.03 0.29(HUAgricultural

College,2015)

(WondoGenet

CollegeSoilLab,

2015)

Grass IN3(N,P&K) 33 1.63 0.49 1.96

(HUAgricultural

CollegeSoilLab,

2015)

(WondoGenet

CollegeSoilLab,

2015)

Ensetleaves

IN3(N,P&K) 13.7

1.32

(±0.22)0.45

(±0.09)4.6

(±0.48)

(HUAgricultural

CollegeSoilLab,

2015)

(WondoGenet

CollegeSoilLab,

2015)

Sugarcanetops

IN4(N,P&K) 26.8 0.78 0.12 1.87

(Heuzéetal.,

2015a)(Heuzéetal.,

2015a)

Wheatbran

IN4(N,P&K) 87 2.77 1.11 1.37

(Heuzéetal.,

2015b)(Heuzéetal.,

2015b)

pg.39

CONVERSIONTOELEMENTALFORM

Fertilizer inputs are expressed in elemental

formfornitrogen(N)butintheoxideformforphosphorus(P2O5)andpotassium(K2O).Forthis

study,nutrientsareexpressedinactualelementalform(suchasinTable4.2,4.2).Therefore,to

convertP2O5toP,multiplyby0.44.ToconvertK2OtoK,multiplyby0.83.

Tocalculatethemacronutrientamountinfodder,somespecialstepsmustbetaken:

1. Suminputspereachindividualfarm.

2. Multiplyeachsumby180daysor25weeks(ofthedryseason)basedonwhetherinput

wasreporteddailyorweekly.DryseasoninEthiopiaistypicallyfromDecembertoMay

(6months)andfodderissuppliedinthisperiod.

3. Convertfromlocalunit(Appendix7.1)tokg.

4. Convertto%drymatter(DM).

5. Multiplyby%N/P/K.

6. Averagemacronutrientamounttocalculatemean(±SD)foreachrepresentativefarm.

pg.40

4.4.4MACRONUTRIENTOUTPUT

Thenutrientcontentand%DMofalloutputsisavailableinAppendix7.2.Eachcomponenthas

severaloutputs(Table4.4).Outputscanhavedifferentfunctions.Typically,kocho,bula,barley

andmaize are consumed. Coffee, cabbage, onion, khat,milk, eggs, chicken, goat, sheep and

cattle tend to be sold.Only in rare instances iswhole livestock consumed. Enset leaves and

grassesfromenset,coffeeandkhatfieldsareusedforlivestockfodder.

Table4.4:Outputprocessandtheirrespectiveoutputs.

Outputprocess

Codeandnutrients Output

Removalinharvestedproduct

OUT1

(N,P&K)

Kocho,bula,ensetleaves,maizegrain,barleygrain,

cabbage,onionleafandroot,coffeeberry,coffeebean,

dwarfkhatleavesandtwigs,tallkhatleavesandtwigs

Removalincropresidue

OUT2

(N,P&K)Maizestover,barleystrawleftoveronfields

Livestockoutputsoldoff-farm

OUT3

(N,P&K)

Milk*,eggs,chicken(1.3kg),goat(30kg),sheep(30

kg),cattle(500kg)thataresoldproducts

Livestockhouseholdconsumption

OUT4

(N,P&K)

Chicken(1.3kg),goat(30kg),sheep(30kg),cattle(500

kg)thatareconsumedbyhousehold

Removalinharvestedproductsoldoff-farm

OUT5

(N,P&K)

Kocho,bula,ensetleaves,maizegrain,barleygrain,

cabbage,onionleafandroot,coffeeberry,coffeebean,

dwarfkhatleavesandtwigs,tallkhatleavesandtwigs

thataresoldproducts

* butterisincludedinthisoutputNote:Forlivestock,ifthewholeanimalissoldthewholeanimal’snutrientcontentisaccounted

for.AssumedbodyweightsarelistedinTable4.3.

pg.41

The formula used to extract macronutrient amount from these outputs is presented below

(Equation4.3):

Foreachindividualfarm’s(notrepresentativefarm)output:

`&a = b ∗ %cd ∗ #

e =`&a

f

Where`&a = g"hij#&aik(#a"gj&#ajl("hℎk#$kmk$&"nl"ig(kg/farm/yr)

b = l"ig(i − i(qjia($j&aq&ajl("hℎk#$kmk$&"nl"ig

%cd = q(ih(#a"r($iQg"aa(i

# = #&aik(#ahj#a(#a % jlj&aq&a

e = "m(i"r(g"hij#&aik(#a"gj&#aljii(qi('(#a"akm(l"ig(sr/l"ig/Qi)

f = #&gR(ijlk#$kmk$&"nl"ig'tkaℎk#i(qi('(#a"akm(l"ig

Onceeisestablishedforalloutputs,thesum(∑)canbetakenforeachcomponent(Equation

4.4).

uvf = w=

=

Equation4.4isrepeatedforeachmacronutrient(N/P/K).

4.4.5THEHARVESTINDEX

Nutrient removal in crop residue (OUT3) from maize and barley was calculated using the

harvest index (HI). The harvest index is defined as the kg of grain divided by the total kg of

abovegroundbiomass(stover/strawplusgrain).

x"im('ak#$(P = srjlri"k#/(srjl'ajm(i/'ai"t + srjlri"k#)

TheHIusedforbarleywas0.39andtheHIusedformaizewas0.52(Mellisseetal.,inprep.).

4.4.6THEENSETEXCEPTION

Determiningthemacronutrientcontentfromensetrequiresparticularattention.Forperennial

cashcropscoffeeandkhat,theyieldisharvestedtwotofourtimesayear.Annualcerealsand

vegetablesareannualcropswhichperformtheirentirelifecyclefromseedtoflowerwithinone

growingseason.

(Equation4.3)

(Equation4.4)

(Equation4.5)

pg.42

Enset isanexception.Withinthehomegarden,enset is theonlycropwhich isnotharvested

each year. In fact, as the primary subsistence crop and staple food, the enset harvest is

dependentonhouseholddemand.Onlysomeoftheavailableensetplantsareharvestedevery

year,andfourpossibleoutputsareproduced:kocho,bula,fibreandleaves.However,fibrewas

excludedfromthisstudyasitscarcelycontainsnutrientsandensetleavesareaccountedforas

internalfodder.Thatleaveskochoandbula.Thenutrientcontentfortheseoutputsarelistedin

thetablebelow(Table4.5).Ensetoutputsaretypicallyrecordedinchinet,whichequals50kg.

First,outputswereconvertedintokilogramsanddrymatter.Second,DM(kg)istakenoverthe

allocatedensetlandarea(ha)togettheharvestedyieldinDM(kg)perhaperyear.Third,the

yield (DMkg/farm/yr)wasmultipliedby thenutrientcontentof the respectiveoutput (%DM

output).Thiswastheresultperindividualfarmanditwasrepeatedforallindividualfarms,for

each macronutrient. The calculation was performed at component and farm level. For

componentlevel,allharvestedoutput(OUT1)wastakenintoaccount.Forthefarmlevel,only

theharvestedoutputthatissold(OUT5)istakenintoaccount.Amean(±SD)wastakenforeach

macronutrientforboththecomponentandfarmlevel,foreachrepresentativefarm.

P = Q ∗ 50sr

N = P ∗ %cd

R = >

.

h = R ∗ f/w/zhj#a(#ak#(#'(aj&aq&a(%cd(#'(aj&aq&a)

e =h

f

WhereP = "gj&#ajlli('ℎ(#'(aj&aq&a(sr) (Equation4.6) Q = "gj&#ajlli('ℎ(#'(aj&aq&a(k#hℎk#(a = 50sr)

N = "gj&#ajl(#'(aj&aq&ak#cd(sr)

" = n"#$"i(""nnjh"a($aj(#'(ah&nakm"akj#(ℎ")

R = "gj&#ajlcd(#'(aj&aq&a(sr/l"ig/Qi)

h = g"hij#&aik(#a"gj&#ajl(#'(aj&aq&a(sr/l"ig/Qi)

e = "m(i"r(g"hij#&aik(#a"gj&#ajl(#'(aj&aq&a(sr/l"ig/Qi)

f = #&gR(ijlk#$kmk$&"nl"ig'tkaℎk#("hℎi(qi('(#a"akm(l"ig

Table 4.5 Enset output dry matter content (%DM) and nutrient contents (mean ±SD) (HU

AgriculturalCollegeSoilLab,2015;WondoGenetCollegeSoilLab,2015).

Output %DM Ncontent(%) Pcontent(%) Kcontent(%)

Kocho 31.15 1.14(±0.67) 0.15(±0.02) 0.63(±0.25)

Bula 53.69 0.99(±0.05) 0.27(±0.07) 0.46(±0.14)

pg.43

4.4.7COMPONENTLEVELANDFARMLEVELMACRONUTRIENTBALANCEAftermacronutrientamountswerecalculatedfrominputsandoutputs,thetwowerebalanced

inatthecomponentlevelandfarmlevel.Toindicateeitheranutrientsurplusordeficitforall

macronutrients,thisformulawasused(Equation4.6):

d"hij#&aik(#aR"n"#h( = #&aik(#ak#q&a– #&aik(#aj&aq&a(4.7)

Note:Anutrientsurplus=inputs>outputsandanutrientdeficit=outputs>inputs.

Tofinish,nutrientflowdiagramsforeachrepresentativefarmwereproduced(Figure4.3).The

diagrampresentstheinflowsandoutflowsthatareaccountedforatthefarmlevel.Allnutrient

flowsaredeterminedinkg/farm/yr.

pg.44

Wherefh = g"hij#&aik(#a(fwz)hj#a(#a(sr/l"ig/Qi)

e = n"#$"i(""nnjh"a($ajhijqh&nakm"akj#(ℎ")

l = #&gR(ijll"ig'(PℎkRkak#rhjgqj#(#ajlk#a(i('a

a = aja"n#&gR(ijll"ig'tkaℎk#ℎjg(r"i$(#aQq(

Figure 4.3:Ageneralnutrient flowdiagramofahomegarden system.Theblackdashed line

denotesthecomponentlevelboundaryofthefarm.Inflowsandoutflowsoutsidetheboundary

representthoseatthefarmlevel.Thin,graydashed linesdenoterelationshipsexcludedfrom

thestudy.Labels in italicsignify factorsnotquantified, forwhich itwasstillworth identifying

theirplacewithinthesystem.

pg.45

4.5ETHICALCONSIDERATIONS

Methods for this researchareheavily reliantondetailedsurveydata from63homegardens.

Thedataextractedfromthesesurveysmustbetreatedwithcareandconfidentiality.Duringthe

surveyprocess,theparticipantswerefullyinformedoftheaimsofthesurveyandconsentwas

obtainedtoparticipate.Althoughsurveyresultshavebeentranslatedandenteredintothedata

set,distinguishing factorsof farmersmaybepresent. Therefore,discretion is takenbynever

leavingthedatasetunattendedandtreatingfarmer’sidentifyinginformationwiththeutmost

confidentiality.

Issuesofprivacyareespeciallyimportantinlightofkhatcultivation.Khat’shigheconomicprice

increasinglyattractsthieves,especiallyatharvesttime.Itisnotuncommonforkhatfieldstobe

guarded24hoursaday,atandjustpriortotimeofharvest.Althoughkhatcultivation,saleand

use are legal in Ethiopia, it remains a banned substance inmost of the world. Research on

MNUE of khat-based cultivation may be seen as a hindrance to economic profitability by

farmers.Toavoidemotionaldistressofkhatfarmersandtoprotectownpersonalsafety,Ionly

visitedhomegardensunder theguidanceofDrs.Mellisse.ThroughouthisPhDresearch,Drs.

Mellissehasestablishedlong-standingandtrustingrelationshipswithfarmers.Thesebondsare

crucialtothesuccessofmyandDrs.Mellisse’sresearchandshouldneverbejeopardized.

Therearealsoethicalconsiderations fordatacollection.Thisstudyhas littlecontrolover the

ethical considerationsof the surveydesignandexecution,whichoccurred in2013.However,

withinthisstudy,moredatawascollectedwhilecarryingouttheoutlieraccuracycheck.When

visiting home gardens and conversing with farmers (albeit via a translator), an ethical duty

exists to respect each individual participant’s autonomy. As well, although some farmers

participatedinthesurveyin2013,theymaynothavethesameinclinationsin2015.Anethical

dutyalsoexiststoresistsolicitingandrespectthisdecision.

While carryingout thedataanalysis, ethics alsoplaya role. Forexample, all resultswhether

positive, significant or negative should be reported. Failing to report negative findings is

misconductandwillseverelyweakenthestudy’sconclusions.Also,thedataIcollectedtouse

shouldbewell-preservedforpotentialfutureresearch.Changingthehypothesisofthepaper,

using other research’s words or data and/or editing or producing false data are major

misconductsandaretobeavoidedatallcosts.

Overall, this study aims to improve farmer and academic knowledge on the macronutrient

inflows, outflowsandbalances across five representative farms.However, the roleof ethical

considerations in a study of this nature is not to be understated. By taking ethical

considerationsfordatacollectionandanalysis intoaccount,thisstudycansuccessfullyrealize

itsobjectives.

pg.46

5.RESULTS

Inthischaptertheresultsarepresented.First,therepresentativefarms,farmsizeandlivestock

populationresultsareshown.Second,nutrientflowsatthecomponentlevel,followedbythe

farm level, are presented in figures, elaborated in tables and illustrated in a nutrient flow

diagram for eachhomegarden type. Third, results are converted toper hectarebasis to aid

discussionandcomparativeanalysis.

5.1THEREPRESENTATIVEFARMS

Land use of representative farms expressed in area shares is presented in Figure 5.1. The

representativefarmforanenset-basedhomegarden,basedonninefarms,was1.10ha.Land

usecomprisedtwo-thirds(66%)ensetcultivation,aquarter(28%)ACVandasmallarea(6%)of

grazingland.Fababeans,acropexcludedfromthisstudy,andcoffee,whichwasonlypresent

on3of9farms,wereunaccountedfor.Theenset-basedrepresentativefarmdidnotproduce

anybula,theironlyensetoutputswerekochoandgrassfromensetfields.TheaverageTLUfor

this representative farm was 0.43 and there was little household consumption of livestock,

averagingat0.18,0.04and0.02kg/farm/yrofN,PandK,respectively.

Therepresentativeenset-coffeehomegarden,basedon18farmswas1.21ha.Thisistheonly

homegardensystemwith intercroppingofensetandcoffee (23%)andtheonlyonetoshow

traditionallycombinedproductionofthefoodcropenset(36%)andthecashcropcoffee(24%),

togethertakingup83%ofthe landarea.Theremaining landwasallocatedtoACV(10%)and

grazingland(7%).Theareaunaccountedforwascoveredinkhat,butonlyon8outof18farms,

excludingitfromtheanalysis.TheaverageTLUforanenset-coffeehomegardenwas0.46with

householdlivestockconsumptioncomparabletothatinanenset-basedhomegarden.

Therepresentativeenset-cereal-vegetablehomegarden,basedonninefarms,was1.15ha. It

cultivatedACV(49%),enset(32%)andgrazingland(19%).Noareaorcropwasunaccountedfor

in this home garden. Enset-cereal-vegetable home gardens did not cultivate anymaize, only

barley, cabbage and onion. The average TLU was 0.64 with identical household livestock

consumptionasanenset-basedsystem.

The representative enset-livestock home garden, based on nine farms,was 1.12 ha. Grazing

land is represented by 39% in the enset-livestock system, more than in any other

representative farm. The remaining area is cultivatedwith enset (34%), khat (20%) and ACV

(7%).Noareaor cropwasunaccounted for in this homegarden. TheaverageTLUwas0.77,

morethaninanyotherhomegarden.Householdlivestockconsumptionwasalsohigherthanin

anyothersystem,with1.40,0.09and0.11kg/farm/yrofN,PandK,respectively.

pg.47

Figure5.1:Landuseofrepresentativefarmsexpressedinareashares(%).

pg.48

Therepresentativekhat-basedhomegarden,basedon18farms,was1.03ha.Khatcultivationcoveredalmosthalfofthearea(45%),withrelativelyequalsharesofenset(24%),ACV(16%)andgrazingland(15%).Landuseunaccountedforwas8%,likelyattributedtopotatoes,acropexcludedfromthisanalysis,andcoffee,whichwasonlypresenton8of18farms.TheaverageTLUwas0.62,therewasnolivestockconsumedbykhat-basedhouseholds.

5.2FARMSIZEThe average farm size per householdwas not substantially different amongst the five homegardentypes.Thelargest(1.21ha)farmsizewasobservedfortheenset-coffeesystem,whilethe smallest (1.03 ha) was the khat-based system. The farm size in the other three homegardenswerebetween these twohomegarden types. Theaccuracyof farmer-reported farmsize was crosschecked bymeasuring the area of each land use typewith Global PositioningSystem(GPS)devices(Figure5.2).Thiswasdonefor24ofthe63farmssurveyed.ThescatterplotofGPSmeasured(independentvariable)againstfarmer-reported(dependantvariable)hadastrongrelationship,witharangeofcoefficientofdetermination(R2)valuesof0.6 to 0.9, except for ACV (R2 = 0.1) (Table 5.1). The relationshipwas stronger for perennialcrops(enset,coffee,khat)andpermanentlanduseofgrazinglandthanannual-basedlandusetypes, such as ACV. Of the permanent crops, grazing land had strongest relationship with acoefficientofdetermination(R2)valueofclosetoone.Acrossallhomegardensystems,grazingland is ubiquitous and its generally small landallocation is constant. For enset, as the staplecrop,alsoreportedandmeasuredareaswereinreasonableagreementwithanR2valueof0.82.Anydatapointabovethey=xlinearreferencelinerepresentsunder-reportingoflandsize,anydatabelowthelinerepresentsover-reportingOverall, 12 of 24 farmers over-reported their total land size, the other half under-reported.However,when ACVwere excluded due to their significant divergence (R2 = 0.11), 15 of 24farmerswere over-reportingwith on average 0.2 ha. On the contrary,when farmers under-reportedtheydidsobyanaverageof0.1ha.Table5.1:RegressionequationsandR-SquaredvaluesforGPSmeasured landsize(ha,x-axis)vs.farmerreportedlandsize(ha,y-axis)bycomponent.

Farmcomponent Equationsofregressionlines R-Squared(R2)Enset y=1.30x-0.03 0.82Coffee y=1.17x+0.05 0.69ECI y=0.75x-0.04 0.57ACV y=0.44x+0.17 0.11Khat y=0.90x+0.09 0.57

Grazingland y=0.82x+0.05 0.96Note:ECI=Enset+coffeeintercrop,ACV=Annualcerealsandvegetables

pg.49

Figure5.2:GPSmeasuredlandsize(ha)vs.farmerreportedlandsize(ha)byfarmcomponent.

pg.50

5.3LIVESTOCKPOPULATIONLivestock isanessentialcomponentof thehomegardensystem.AverageTLUwascalculatedfor each representative farm and plotted against area share of grazing land (ha) for eachrepresentative farm(Figure5.3).Thedatapointsareclose to the linear trend linewithanR2valueof 0.90.A positive correlation also exists between TLU and area shareof grazing land.When TLU increases, the area share allocated to grazing land grows. A logical correlation ashigherTLUcharacteristicallyrequiresgreatershareofgrazingland.

Figure 5.3: Area share of grazing land (ha) in each representative farm vs. average TropicalLivestockUnit(TLU)foreachrepresentativefarm,byhomegardentype.

Enset-based

Enset-cereal-vegetable

Enset-coffee

Enset-livestock

Khat-based

pg.51

5.4COMPONENTLEVELNUTRIENTBALANCEASSESSMENTThe balances were calculated by aggregating the inflows and outflows across all farmcomponents (enset, coffee,enset+coffee intercropping,annual cerealsandvegetables,khatand livestock)within the representative farms.Allnutrientamountsare reported inkilogramper farm per year (kg/farm/yr). This section also presents nutrient flow diagrams for eachrepresentativefarm.

5.4.1ENSET-BASEDFigure 5.4 shows the component level nutrient inflows, outflows and balances for an enset-based representative farm. In an enset-based system, organicmatter (IN2) was the primarysourceofNPKtoenset.Itsupplies108kgofN,4kgofPand38kgofK.ThemajorinputsourceforACVwasmineralfertilizer(IN1),supplying14kgNand4kgP.Internalfodder(IN3)inputstolivestockcomponentwerelowestamongstallrepresentativefarmswith10kgN,4kgPand29 kg K. Enset-based farms also have the lowest TLU (0.43) indicating either a decreaseddemand for their own internal fodder use or the practice of feeding its internal fodder totemporarylivestock.Thispracticewouldnotbereportedontheinput/outputsurveybutcouldexplainthehighorganicmatteravailabletothesetypicallypoorer-farmers.Externalfodderwasverysmall,under0.5kgNPK.Outflows were primarily through removal in harvested products (OUT1), particularly ensetoutput(kocho)fromensetcomponentandACVoutput(barley).Cropresiduesweresosmall,N,PandKwereallunder0.5kgNPKfromACVcomponent.Removalthroughwholelivestockandlivestock products (OUT3) was 2 kg N from livestock component. Household livestockconsumption(OUT4)wasalsoverysmall,under0.5kgNPK.Nutrient balances in the components of enset-based farmswere nearly all positivewith theexceptionofasmallnegativeKbalanceintheACVcomponent.Nbalancesonensetfieldswerehighly positive, likely attributed to their exorbitant organicmatter inputs from their “guest”livestock. Pbalanceswere slightlypositiveorneutral throughout all three farmcomponents.ThelivestockKbalancewaspositive,butonlyduetoitshighKinputsfrominternalfodderandlack of K in its livestock outputs. Figure 5.5 presents the nutrient flows of the enset-basedsystem.

pg.52

Figure5.4:Componentlevelnutrientinflows,outflowsandbalancesforN,PandK(kg/farm/yr)foranenset-basedrepresentativefarm.

pg.53

Figure5.5:Nutrientflows(kg/farm/yr)thatinfluencesthepartialnutrientbalanceofanenset-basedsystem.Theasterisk(*)

afterorganicmatter(IN2)denotesthatthisinputlikelycamefromanexternalsource,as0.43TLUcouldnothaveproducedthismuchcompost.Theblackdashedlinedenotesthecomponentlevelboundaryofthefarm.Inflowsandoutflowsoutsidetheboundaryrepresentthoseatthefarm level. Thegraydashed linesdenoterelationshipswhichwereexcludedfromthestudy.Labelsinitalicsignifyfactorsnotquantified,forwhichitwasstillworthidentifyingtheirplacewithinthesystem.

pg.54

5.4.2ENSET-COFFEEFigure 5.6 shows the component level nutrient inflows, outflows and balances for an enset-coffeerepresentativefarm.Inanenset-coffeesystem,therewerelowermineralfertilizer(IN1)inputsthaninanenset-basedsystemanditwasonlyappliedtoACVfields.Theseinflowswerecalculatedtobe6kgNand2kgPintheACVcomponent.Itisalsothesmallestinfluxofmineralfertilizers amongst all representative farms. The other components (enset, coffee and ECI)reliedonorganicmatter.Themostwasappliedtointhecoffeecomponent,likelyprioritizedascoffeeistheprimarycashcropinthisrepresentativefarm.Farmersapplied11kgNand4kgKtothecoffeecomponent.Pamountonthesefieldswasunder0.5kg.Thelivestockcomponentreceived17kgN,5kgPand46kgKfrominternalfodder(IN3).Surprisingly,enset-coffeefarmshad the largest input of external fodder (IN4) amongst all representative farms. Inputs fromwheat bran and sugarcane tops combined were 5 kg N, 1 kg P and 8 kg K to the livestockcomponent.The amount of NPK removed from harvested products in enset-coffee farmswere relativelyequallydistributedamongsttheenset,coffeeandECIcomponents.Eachcomponentremoved5kgNand1kgP.Kvariedmore,with3kg,9kgand6kgremovedfromenset,coffeeandECIfields,respectively.NutrientremovalsfromtheACVcomponentwere2kgN,1kgPand1kgK.The enset-coffee representative farm was the only one with coffee and enset + coffeeintercropping and therefore the only home garden to display NPK influx and removal fromthese components. Nutrient removals from crop residues were negligible in the ACVcomponentandlivestockoutputswereslightwithjust2kgNinthelivestockcomponent.AcrossallcomponentsNbalanceswerepositive.Thehighestwas in the livestockcomponentwithanNsurplusof20kgN.Forenset,coffeeandECI,PandKbalanceswereallnegativewiththelargestoncoffeefields(-5kgK).AlthoughtheACVcomponenthadapositivePbalance,itsKbalancewasalsonegative. Inanenset-coffeerepresentative farm,ACV fields receivedonlymineral fertilizerswhichdonotgivea sourceofK.On theotherhand,enset, coffeeandECIfarms do not receive enough organic matter and consequently inadequate amounts of K.Livestockbalanceswerepositive,almostmatchingNPKinputsasthereissolittleoutputfromthelivestockcomponent.Figure5.7presentsthenutrientflowsoftheenset-coffeesystem.

pg.55

Figure5.6:Componentlevelnutrientinflows,outflowsandbalancesforN,PandK(kg/farm/yr)foranenset-coffeerepresentativefarm.

pg.56

Figure5.7:Nutrientflows(kg/farm/yr)thatinfluencesthepartialnutrientbalanceofanenset-coffeesystem.Theblackdashedlinedenotesthecomponentlevelboundaryofthefarm.Inflowsandoutflowsoutsidetheboundaryrepresentthoseatthefarmlevel. The gray dashed lines denote relationships which were excluded from the study. Labels in italic signify factors notquantified,forwhichitwasstillworthidentifyingtheirplacewithinthesystem.

pg.57

5.4.3ENSET-CEREAL-VEGETABLEFigure 5.8 presents the component level inflows, outflows and balances for an enset-cereal-vegetablerepresentativefarm.Inanenset-cereal-vegetablesystem,theensetcomponenthadorganicmatterinputsof23kgN,1kgPand8kgN.TheACVcomponenthadacombinationoforganicmatterandmineral fertilizerapplied, although itwasprimarily suppliedwithmineralfertilizers,with16kgNand8kgP.AsmallamountofK(2kg)wassuppliedwiththeorganicmatterintheACVcomponent.Acrossrepresentativefarms,bothenset-basedandenset-cereal-vegetable representative farms had the lowest influx of nutrients via internal fodder and noinputfromexternal fodder.NPK inputtothe livestockcomponentwas19kg,6kgand52kg,respectively.TheACVcomponentwasthelargestsourceofnutrientdepletioninanenset-cereal-vegetablesystembythenutrientremovalsofharvestedACVproducts,valuedat19kgN,7kgPand14kgK.Asignalthesystemisappropriatelynamedafteritsconsiderableannualcerealandvegetableproduction. The enset-cereal-vegetable systemwas the only one amongst all representativefarmstohaveanynutrientsremovedviacropresidues;thesewerevaluedat1kgNand1kgK.Thesecropresiduesareeitheraddedtothecompostpile,orusedaslivestockfeed.AsmallnegativePbalanceexisted intheensetcomponent.LargernegativePandKbalancesexisted in the ACV component. P was depleted by 7 kg and K was depleted 9 kg. Livestockbalanceswereverypositiveinthelivestockcomponent.Figure5.9presentsthenutrientflowsoftheenset-cereal-vegetablesystem.

pg.58

Figure5.8:Componentlevelnutrientinflows,outflowsandbalancesforN,PandK(kg/farm/yr)foranenset-cereal-vegetablerepresentativefarm.

pg.59

Figure5.9:Nutrientflows(kg/farm/yr)thatinfluencesthepartialnutrientbalanceofanenset-cereal-vegetablesystem.Theblackdashedlinedenotesthecomponentlevelboundaryofthefarm.Inflowsandoutflowsoutsidetheboundaryrepresentthoseatthefarm level. Thegraydashed lines denote relationshipswhichwereexcluded from the study. Labels in italic signify factorsnotquantified,forwhichitwasstillworthidentifyingtheirplacewithinthesystem.

pg.60

5.4.4ENSET-LIVESTOCKFigure5.10presentsthecomponentlevelinflows,outflowsandbalancesforanenset-livestockrepresentative farm. Enset-livestock farms have the largest land use allocated to livestock(grazingland=0.39ha)andthelargestTLU(0.77).However,theyhavelowerinfluxofexternalfodder than enset-coffee farms, with 1 kg N and 1 kg fromwheat bran and sugarcane top.Inputsofsugarcanetopswereonlyobservedin1of9surveyedfarmswithintheenset-livestockrepresentativefarm.Internalfodderinputswerehighestamongstallrepresentativefarms,butonlyslightly.Influxesofnutrientsfromensetleavesandgrasseswerecalculatedat22kgN,8kgPand66kgKtothelivestockcomponent.Theenset-livestockrepresentativefarmisoneoftwowhichallocateslandtokhat,theotherbeingthekhat-basedsystem.Thischangecausesaspikeinmineralfertilizer.Thekhatcomponentinenset-livestockfarmsreceived25kgNand4kgP.The ACV component received substantially lower mineral fertilizers with 1 kg N. The ensetcomponentreliedonorganicmatterwith13kgNand4kgK.Compared to enset-cereal-vegetable farms, enset-livestock systems saw a drastic drop ofmacronutrientsremovedviaharvestedACVproductswith1kgN,1kgPand1kgK,removed.Enset-livestockfarmsproduceverylittleACVoutput.Thekhatcomponentdepleted7kgN,2kgPand8kgK.Livestockoutputsrosesubstantiallywith17kgN,4kgPand3kgPremovedviaeitherwholelivestockorlivestockproducts.Householdlivestockconsumptionremovedonly1kg N but was the only representative farm to do so. Dismal figures for household livestockconsumptionacrossrepresentativefarmssuggestlivestockconsumptionisoflittlerelevanceinall of these systems andmay only occur for special occasions. Harvested products from theensetcomponentremoved9kgN,1kgPand7kgK.The introduction of khat, which receives only mineral fertilizers in an enset-livestockrepresentative farm,has introducedKdeficiencieson these fields. In thisassessment,khat isdepletingsoilof-8kgKperyear.TheensetcomponentalsoobservenegativebalancesforbothPandK; likelya resultof receiving too littleorganicmatter.TheACVcomponent receives solittleorganicmatter,only1kgNisappliedandvirtuallynonutrientsareremoved.Thisleavesanegative, but small, N balance. Figure 5.11 presents the nutrient flows of the enset-cereal-vegetablesystem.

pg.61

Figure 5.10: Component level nutrient inflows, outflows and balances for N, P and K(kg/farm/yr)foranenset-livestockrepresentativefarm.

pg.62

Figure 5.11: Nutrient flows (kg/farm/yr) that influences the partial nutrient balance of an enset-livestock system. The blackdashedlinedenotesthecomponentlevelboundaryofthefarm.Inflowsandoutflowsoutsidetheboundaryrepresentthoseatthefarm level. Thegraydashed lines denote relationshipswhichwereexcluded from the study. Labels in italic signify factorsnotquantified,forwhichitwasstillworthidentifyingtheirplacewithinthesystem.

pg.63

5.4.5KHAT-BASEDFigure 5.12 presents the component level inflows, outflows and balances for a khat-basedrepresentativefarm.Theinfluxesofmineralfertilizersinthissystemarethehighestamongstallrepresentativefarms. Inthekhatcomponent,83kgNand13kgPwasappliedtokhatfields.MineralfertilizerswerealsoappliedtoACVfieldswith9kgNand4kgP.Organicmatterwasapplied to theenset componentwith12 kgNand4 kgK added. Internal fodderwason thelowerspectrum,secondtolastamongstallrepresentativefarms.Theywerevaluedat14kgN,4kgPand39kgK.Externalfodderwerevaluedat4kgN,1kgPand3kgK,justbehindenset-coffeesystems,inthelivestockcomponent.Thekhat-basedrepresentativefarmwasaptlynamedforits10kgN,3gPand10kgKremovalfromthekhatcomponent,thelargestamongstallfarmtypes.Thesystemremoved4kgN,3kgPand3kgKfromitsACVcomponentand7kgN,1kgPand3kgKfromitsensetcomponent.Nutrientremovalfromwholelivestockandlivestockproductswas8kgN,2kgPand2kgKandhouseholdlivestockconsumptionwasnon-existentinthelivestockcomponent.The K balance for the ACV component was slightly negative. The N balance for the khatcomponentwasverypositiveindicatingexcessivemineralfertilizerapplication.Khatfieldshada severe K deficiency of -10 kg. The remaining balances (enset component, livestockcomponent)weremainly positivewith the K balance in the livestock component being veryhigh.Figure5.13presentsthenutrientflowsoftheenset-cereal-vegetablesystem.Table 5.2 elaborates on the mean (±SD) component level NPK inflows (kg/farm/yr) by farmcomponent for each representative farm. The table separates NPK inputs by input source:mineral fertilizer (IN1) isDAPand/orurea,organicmatter (IN2) is compost, internal livestockfodder(IN3)isgrassorensetleavesandexternallivestockfodder(IN4)issugarcanetopand/orwheat bran. A code is assigned to each farm component and its respective output(s). In thebracketsbehindtheoutputfunctioncode(OUT)isthatoutput’sproduct.Forinstance,OUT1issplitintokochoandbulaproducts.Table5.3doesthesameforcomponentlevelNPKoutflows(kg/farm/yr)byfarmcomponentforeachrepresentativefarm.

pg.64

Figure 5.12: Component level nutrient inflows, outflows and balances for N, P and K(kg/farm/yr)forakhat-basedrepresentativefarm.

pg.65

Figure5.13:Nutrientflows(kg/farm/yr)thatinfluencesthenutrientbalanceofakhat-basedsystem.Theblackdashedlinedenotesthecomponentlevelboundaryofthefarm.Inflowsandoutflowsoutsidetheboundaryrepresentthoseatthefarmlevel. The gray dashed lines denote relationshipswhichwere excluded from the study. Labels in italic signify factors notquantified,forwhichitwasstillworthidentifyingtheirplacewithinthesystem.

pg.66

n n n n n n n n n n n n n n n

IN2 108 (±72) 9 4 (±3) 9 38 (±25) 9 7 (±6) 16 0 (±0) 16 3 (±2) 16 23 (±26) 9 1 (±1) 9 8 (±9) 9 13 (±14) 9 0 (±1) 9 4 (±5) 9 12 (±10) 18 0 (±0) 18 4 (±3) 18

Total 108 4 38 7 0 3 23 1 8 13 0 4 12 0 4IN2 11 (±10) 14 0 (±0) 14 4 (±3) 14Total 11 0 4IN2 6 (±6) 10 0 (±0) 10 2 (±2) 10Total 6 0 2

IN1(DAP) 4 (±3) 8 4 (±3) 8 2 (±2) 11 2 (±2) 11 7 (±5) 21 8 (±6) 21 3 (±2) 14 4 (±2) 14IN1(urea) 10 (±8) 8 5 (±5) 11 9 (±12) 21 5 (±6) 14

IN2 0 (±1) 8 0 (±0) 8 0 (±0) 8 7 (±8) 21 0 (±0) 21 2 (±3) 21 1 (±1) 7 0 (±0) 7 0 (±0) 7Total 14 4 0 6 2 23 8 2 1 0 0 9 4 0

IN1(DAP) 4 (±2) 8 4 (±2) 8 0 11 (±9) 17 13 (±10) 17IN1(urea) 21 (±11) 8 0 0 71 (±35) 17

IN2 0 0 0 0 (±0) 17 0 (±0) 17 0 (±0) 17Total 25 4 0 83 13 0

IN3(grass) 2 (±1) 6 1 (±0) 6 2 (±2) 6 5 (±5) 16 1 (±1) 16 6 (±6) 16 7 (±3) 9 2 (±1) 9 9 (±4) 9 5 (±2) 9 2 (±1) 9 7 (±3) 9 4 (±2) 16 1 (±1) 16 5 (±3) 16IN3(EL) 8 (±5) 8 3 (±2) 8 27 (±19) 8 12 (±9) 15 4 (±3) 15 40 (±30) 15 12 (±7) 9 4 (±2) 9 43 (±24) 9 17 (±5) 9 6 (±2) 9 59 (±18) 9 10 (±5) 18 3 (±2) 18 34 (±19) 18IN4(SCT) 3 (±4) 7 0 (±1) 7 7 (±10) 7 0 (n/a) 1 0 (n/a) 1 1 (n/a) 1 1 (±1) 8 0 (±0) 8 2 (±2) 8IN4(WB) 0 (±0) 3 0 (±0) 3 0 (±0) 3 2 (±2) 16 1 (±1) 16 1 (±1) 16 0 (±1) 5 0 (±0) 5 0 (±0) 5 1 (±1) 6 0 (±0) 6 0 (±0) 6 3 (±3) 10 1 (±1) 10 1 (±2) 10Total 10 4 29 22 6 54 19 6 52 23 8 67 17 5 42TSN 132 12 67 52 8 62 65 15 62 62 13 72 120 22 46

NKPNKP NKPNKP KP

Khat

Livestock

Enset

Coffee

ECI

ACV

Farmtype Farmtype FarmtypeEnset-cereal-vegetable Enset-livestock Khat-basedComponent

Inputfunction(IN)

Farmtype FarmtypeEnset-based Enset-coffee

N

Table5.2:Componentlevelmacronutrientinflows(kg/farm/yr)frommineralfertilizers(IN1),organicmatter(IN2),internalfodder(IN3)andexternalfodder(IN4)(mean±SD)byfarmcomponent,acrossfiverepresentativefarms.Note:EL=ensetleaves,SCT=sugarcanetopandWB=wheatbran.N/A=notapplicable,writteniftherewasonlyoneobservation.

pg.67

Table 5.3: Component level macronutrient outflows (kg/farm/yr) from removal in harvested products (OUT1), removal in cropresidues(OUT2),wholelivestockandlivestockproductssoldoff-farm(OUT3)andhouseholdlivestockconsumption(OUT4)(mean±SD)byfarmcomponent,acrossfiverepresentativefarms.

Note:N/A=notapplicable,writteniftherewasonlyoneobservation.ECIoutputreportedashalfofensetmacronutrientoutputandhalf of coffeemacronutrient output, due todata availability. Thismethod couldnot produce a value for standarddeviation andnumberofobservationsfortheECIcomponent.Thisisdenotedwithasmalldash.

n n n n n n n n n n n n n n n

OUT1(kocho) 24 (±19) 9 3 (±3) 9 13 (±11) 9 5 (±5) 16 1 (±1) 16 3 (±3) 16 10 (±5) 9 1 (±1) 9 6 (±3) 9 9 (±6) 9 1 (±1) 9 5 (±3) 9 6 (±4) 18 1 (±1) 18 0 (±0) 18

OUT1(bula) 0 (±0) 16 0 (±0) 16 0 (±0) 16 0 (±0) 6 0 (±0) 6 0 (±0) 6 0 (±0) 9 0 (±0) 9 0 (±0) 9 0 (±0) 17 0 (±0) 17 0 (±0) 17OUT1(leaves) 0 (±0) 3 0 (±0) 3 0 (±0) 3 0 (±0) 9 0 (±0) 9 2 (±1) 9 1 (±1) 13 0 (±0) 13 3 (±3) 13

Total 24 3 13 5 1 3 11 1 6 9 1 7 7 1 3OUT1(coffeeberry) 4 (±2) 18 1 (±1) 17 8 (±5) 18OUT1(coffeebean) 1 (±1) 17 0 (±0) 17 1 (±1) 17

Total 5 1 9OUT1(enset) 3 - - 0 - - 1 - -OUT1(coffee) 2 - - 0 - - 4 - -

Total 5 1 6OUT1(barley) 1 (±1) 4 1 (±0) 4 1 (±1) 4 0 (n/a) 1 0 (n/a) 1 0 (n/a) 1 2 (±1) 8 1 (±1) 8 1 (±1) 8 0 (n/a) 1 0 (n/a) 1 0 (n/a) 1 1 (±2) 5 1 (±1) 5 1 (±1) 5OUT1(maize) 1 (±1) 2 0 (±0) 2 0 (±0) 2 1 2 9 1 (±1) 9 1 (±1) 9 0 (±1) 3 0 (±1) 3 0 (±0) 3 3 (±4) 10 1 (±2) 10 1 (±2) 10

OUT1(cabbage) 0 (±1) 2 0 (±1) 2 0 (±1) 2 4 (±2) 5 5 (±3) 5 3 (±2) 5 0 (n/a) 1 0 (n/a) 1 0 (n/a) 1OUT1(onion) 0 (n/a) 1 0 (n/a) 1 0 (n/a) 1 13 (±8) 8 2 (±1) 8 9 (±5) 8OUT2(barley) 0 (±0) 4 0 (±0) 4 0 (±0) 4 0 (n/a) 1 0 (n/a) 1 0 (n/a) 1 1 (±0) 8 0 (±0) 8 1 (±0) 8 0 (n/a) 1 0 (n/a) 1 0 (n/a) 1 0 (±0) 5 0 (±0) 5 0 (±1) 5OUT2(maize) 0 (±0) 2 0 (±0) 2 0 (±0) 2 0 (±0) 9 0 (±1) 9 0 (±0) 9 0 (±0) 3 0 (±0) 3 0 (±0) 3 0 (±1) 10 1 (±2) 10 1 (±1) 10

Total 2 1 1 2 1 1 19 7 14 1 1 1 4 3 3OUT1(leaves,twigs) 7 (±5) 8 2 (±2) 8 8 (±5) 8 10 (±6) 18 3 (±2) 18 10 (±7) 18

Total 7 2 8 10 3 10OUT3 2 (±1) 8 0 (±0) 8 0 (±0) 8 2 (±1) 8 0 (±0) 8 0 (±0) 8 6 (±3) 8 2 (±1) 8 1 (±1) 8 17 (±9) 9 4 (±2) 9 3 (±1) 9 8 (±4) 18 2 (±1) 18 2 (±1) 18OUT4 0 (±1) 2 0 (±1) 2 0 (±1) 2 0 (n/a) 1 0 (n/a) 1 0 (n/a) 1 0 (±1) 4 0 (±0) 4 0 (±0) 4 1 (±1) 3 0 (±0) 3 0 (±0) 3Total 2 0 0 2 0 0 6 2 1 18 4 3 8 2 2TSN 28 5 15 18 4 19 36 11 21 36 8 18 28 9 18

N NKPNKP KPNKPNKP

Livestock

ACV

Khat

Enset

Coffee

ECI

Farmtype Farmtype Farmtype FarmtypeEnset-coffee Enset-cereal-vegetable Enset-livestock Khat-basedComponent

Outputfunction(OUT)

FarmtypeEnset-based

pg.68

5.5FARMLEVELNUTRIENTBALANCEASSESSMENTFigure5.14presents the farm level inflows,outflowsandbalances forNPKby representativefarm type. For the farm level nutrient balance assessment onlymineral fertilizers (IN1) andexternalfodder(IN4)inflowsweretakenintoaccount.Theoutflowsconsideredwerenutrientremovalinharvestedproductssoldoff-farm(OUT5)andwholelivestockandlivestockproductssoldoff-farm(OUT3).Atthefarmlevel,Nbalancesweremostvariedatthefarmlevel.Thoseofenset-based and enset-coffee farms were slightly positive. The N balance for enset-cereal-vegetablefarmswas-8kgNnegative.However,Figure5.9revealsthisisduetoenset-cereal-vegetable farms high livestock output but lack of external fodder. Enset-livestock and khat-based farms have very highN balances due to their highmineral fertilizer inputs. The khat-basedNbalanceisparticularlyhighat94kgN.Pbalanceswereneutralamongstallrepresentativefarms,exceptforthekhat-basedsystem.Inthisrepresentativefarm,Pincreasedwith12kg.Thiswasattributedtokhat-basedpropensityforhighmineral fertilizerapplication. In thiscase,DAPwas inexcessas it is theonlymineralfertilizertosupplyP.Kbalanceswerenegativethroughoutallrepresentativefarms.Kdeficienciesinenset-basedandenset-cereal-vegetablewereespeciallynoticeable.Figure5.5showsthenutrientoutputwithinenset harvested products, but no external inputs to enset fields. As such the K, which issufficientfrominternal input, isdeemedinsufficient. Infact,enset-fieldsreceive22kgKfromorganic matter in enset-based farms. K deficiency in enset-cereal-vegetable farms can beattributed to the largenutrient removal fromharvestedACVproducts soldoff-farmbutonlyfertilized with mineral N and P fertilizers (Figure 5.9). Crops fertilized only with mineralfertilizerswillfaceKdeficiencies.Enset-coffee,enset-livestockandkhat-basedsystemsallhadrelativelysimilarKdeficienciesatthefarmlevel.Theenset-coffeerepresentativefarmdoesnotreceive adequate organicmatter tomeet the amounts removed via harvested crops (Figure5.7).CoffeeespeciallyisaK-richcrop.Coffeeberrieshave3.19%Kandcoffeebeanshave2.16%K (Hawassa University Agricultural College Soil Laboratory, 2015; Wondo Genet College SoilLaboratory, 2015). Enset-livestock and khat-based farms had K deficiencies as K was neverappliedthroughexternalinputs.K scarcity in internal input-reliant farms is exaggerated in the farm level analysis as theassessmentdoesnottakeK inputs fromorganicmatterand internal fodder intoaccount.Forinstance,thehighpositiveKbalancesfrominternalfodder(especiallyensetleaveswith4.60%Kcontent (4.60%K) to livestock that is seen across all representative farms is concealed fromfarm balances. Table 5.4 elaborates on the mean (±SD) farm level macronutrient inflows(kg/farm/yr)andtotalsumofnutrient(TSN)frommineralfertilizers(IN1)andexternalfodder(IN4)by farmcomponent,across fiverepresentativefarms.Table5.5doesthesamefor farmlevel macronutrient outflows (kg/farm/yr) and total sum of nutrient (TSN) from removal inharvestedproducts soldoff-farm (OUT5)andwhole livestockand livestockproducts soldoff-farm(OUT3)byfarmcomponent,acrossfiverepresentativefarms.

pg.69

Figure5.14:Farmlevelnutrientinflows,outflowsandbalancesforN,PandK(kg/farm/yr)acrossrepresentativefarms.

pg.70

n n n n n n n n n n n n n n n

IN1(DAP) 4 (±3) 8 4 (±3) 8 2 (±2) 11 2 (±2) 11 7 (±5) 21 8 (±6) 21 3 (±2) 14 4 (±2) 14

IN1(urea) 10 (±8) 8 5 (±5) 11 9 (±12) 21 5 (±6) 14

Total 13 4 6 2 16 8 9 4

IN1(DAP) 4 (±2) 8 4 (±2) 8 0 11 (±9) 17 13 (±10) 17

IN1(urea) 21 (±11) 8 0 0 71 (±35) 17Total 25 4 82 13

IN4(SCT) 3 (±4) 7 0 (±1) 7 7 (±10) 7 0 (n/a) 1 0 (n/a) 1 1 (n/a) 1 1 (±1) 8 0 (±0) 8 2 (±2) 8IN4(WB) 0 (±0) 3 0 (±0) 3 0 (±0) 3 2 (±2) 16 1 (±1) 16 1 (±1) 16 0 (±1) 5 0 (±0) 5 0 (±0) 5 1 (±1) 6 0 (±0) 6 0 (±0) 6 3 (±3) 10 1 (±1) 10 1 (±2) 10Total 0 0 0 5 1 8 0 0 0 1 0 1 3 1 3TSN 14 4 0 11 3 8 16 8 0 27 4 1 94 18 3

NKPN NKPNKP KP

Khat

Livestock

ACV

NKP

Enset-based Enset-coffee Enset-cereal-vegetable Enset-livestock Khat-basedComponentInput

function(IN)

Farmtype Farmtype Farmtype Farmtype Farmtype

Table5.4:Farmlevelmacronutrientinflows(kg/farm/yr)frommineralfertilizers(IN1)andexternalfodder(IN4)(mean±SD)byfarmcomponent,acrossfiverepresentativefarms.Note:SCT=sugarcanetopandWB=wheatbran.N/A=notapplicable,writteniftherewasonlyoneobservation.

pg.71

n n n n n n n n n n n n n n n

Enset OUT5(kocho) 5 (±7) 9 1 (±1) 9 3 (±4) 9 1 (±2) 10 0 (±0) 10 0 (±1) 10 2 (±1) 7 0 (±0) 7 1 (±1) 7 0 (±0) 9 0 (±0) 9 0 (±0) 9 1 (±0) 18 0 (±0) 18 1 (±1) 18

OUT5(bula) 0 (±0) 2 0 (±0) 2 0 (±0) 2 0 (±0) 5 0 (±0) 5 0 (±0) 5 0 (±0) 6 0 (±0) 6 0 (±0) 6 0 (±0) 12 0 (±0) 12 0 (±0) 12

OUT5(leaves) 0 (±0) 3 0 (±0) 3 0 (±0) 3 0 (±0) 9 0 (±0) 9 2 (±1) 9 1 (±1) 13 0 (±0) 13 3 (±3) 13Total 5 1 3 1 0 0 2 0 1 0 0 0 1 0 1

Coffee OUT5(coffeeberry) 4 (±2) 18 1 (±0) 18 8 (±5) 18OUT5(coffeebean) 1 (±1) 14 0 (±0) 14 1 (±1) 14

Total 5 1 9ECI OUT5(enset) 1 - - 0 - - 0 - -

OUT5(coffee) 2 - - 0 - - 4 - -Total 3 0 4

ACV OUT5(barley) 0 (±0) 2 0 (±0) 2 0 (±0) 2 0 (±1) 2 0 (±1) 2 0 (±1) 2 0 (n/a) 1 0 (n/a) 1 0 (n/a) 1OUT5(maize) 0 (±1) 9 0 (±0) 9 0 (±0) 9 1 (±2) 4 0 (±1) 4 0 (±1) 4

OUT5(cabbage) 1 (±0) 2 1 (±0) 2 0 (±0) 2 3 (±3) 5 3 (±4) 5 3 (±2) 5OUT5(onion) 0 (n/a) 1 0 (n/a) 1 0 (n/a) 1 13 (±7) 8 2 (±1) 8 9 (±5) 8

Total 1 1 0 0 0 0 16 5 12 0 0 0 1 0 0Khat OUT5(leaves,twigs) 5 (±4) 8 2 (±1) 8 5 (±4) 8 10 (±6) 18 3 (±2) 18 10 (±7) 18

Total 5 2 5 10 3 10Livestock OUT3 2 (±1) 8 0 (±0) 8 0 (±0) 8 2 (±1) 8 0 (±0) 8 0 (±0) 8 6 (±3) 8 2 (±1) 8 1 (±1) 8 17 (±9) 9 4 (±2) 9 3 (±1) 9 8 (±4) 18 2 (±1) 18 2 (±1) 18

Total 2 0 0 2 0 0 6 2 1 17 4 3 8 2 2TSN 8 2 3 10 2 14 24 7 14 22 6 8 19 5 13

PN KPNKPNKPN

Farmtype

Enset-based Enset-coffee Enset-cereal-vegetable Enset-livestock Khat-basedComponentOutputfunction(OUT)

Farmtype Farmtype Farmtype Farmtype

KPNK

Table 5.5: Farm levelmacronutrient outflows (kg/farm/yr) from removal in harvested products sold off-farm (OUT5) andwholelivestockandlivestockproductssoldoff-farm(OUT3)(mean±SD)byfarmcomponent,acrossfiverepresentativefarms.Note:N/A=notapplicable,writteniftherewasonlyoneobservation.ECIoutputreportedashalfofensetmacronutrientoutputandhalf of coffeemacronutrient output, due todata availability. Thismethod couldnot produce a value for standarddeviation andnumberofobservationsfortheECIcomponent.Thisisdenotedwithasmalldash.

pg.72

5.6RESULTSPERHECTAREToeasecomparativeanalysiswithliteratureinthediscussion,theresultsforcropcomponents(enset, coffee, ECI, ACV and khat) originally reported in kg/farm/yr have been converted tokg/ha/yr. The livestock component was not converted to a per hectare basis because theinherentnatureoflivestockasananimal(andnotacrop)doesnotallowthisconversion.Table5.6showscomponentlevelmacronutrientinflows,outflowsandbalances(kg/ha/yr).Table5.7showsfarmlevelmacronutrientinflows,outflowsandbalances(kg/ha/yr).

pg.73

N FS N P FS P K FS K N FS N P FS P K FS K N FS N P FS P K FS K N FS N P FS P K FS K N FS N P FS P K FS K

IN 108 0.72 150 4 0.72 5 38 0.72 53 7 0.45 16 0 0.45 1 3 0.45 6 23 0.37 61 1 0.37 2 8 0.37 21 13 0.38 34 0 0.38 1 4 0.38 12 12 0.25 47 0 0.25 2 4 0.25 16

OUT 24 0.72 33 3 0.72 4 13 0.72 18 5 0.45 11 1 0.45 2 3 0.45 6 11 0.37 29 1 0.37 4 6 0.37 16 9 0.38 24 1 0.38 3 7 0.38 19 7 0.25 29 1 0.25 3 3 0.25 12BAL 84 0.72 117 1 0.72 1 25 0.72 34 2 0.45 5 0 0.45 -1 0 0.45 -1 12 0.37 33 -1 0.37 -2 2 0.37 6 4 0.38 9 -1 0.38 -2 -3 0.38 -7 4 0.25 18 0 0.25 -2 1 0.25 4IN 7 0.29 25 0 0.29 1 3 0.29 9OUT 5 0.29 16 1 0.29 3 9 0.29 31BAL 3 0.29 9 -1 0.29 -2 -6 0.29 -22IN 6 0.28 21 0 0.28 0 2 0.28 7OUT 5 0.28 18 1 0.28 4 6 0.28 21BAL 1 0.28 4 -1 0.28 -4 -4 0.28 -14IN 14 0.07 194 4 0.07 56 0 0.07 1 6 0.12 52 2 0.12 13 0 0.12 0 23 0.56 40 8 0.56 14 2 0.56 4 1 0.08 11 0 0.08 0 0 0.08 4 9 0.16 54 4 0.16 24 0 0.16 0OUT 2 0.07 28 1 0.07 18 1 0.07 18 2 0.12 14 1 0.12 7 1 0.12 10 19 0.56 34 7 0.56 13 14 0.56 25 1 0.08 17 1 0.08 10 1 0.08 10 4 0.16 22 3 0.16 17 3 0.16 18BAL 12 0.07 167 3 0.07 38 -1 0.07 -17 5 0.12 38 1 0.12 7 -1 0.12 -10 3 0.56 6 0 0.56 1 -12 0.56 -21 0 0.08 -6 -1 0.08 -9 0 0.08 -6 5 0.16 32 1 0.16 7 -3 0.16 -18IN 25 0.22 116 4 0.22 20 0 0.22 0 83 0.46 180 13 0.46 28 0 0.46 0OUT 7 0.22 32 2 0.22 10 8 0.22 35 10 0.46 21 3 0.46 7 10 0.46 23BAL 18 0.22 84 2 0.22 9 -8 0.22 -35 73 0.46 159 10 0.46 21 -10 0.46 -22IN 10 4 29 22 6 54 19 6 52 23 8 67 17 5 42OUT 2 0 0 2 0 0 6 2 1 18 4 3 8 2 2BAL 8 4 29 20 6 54 13 4 51 5 4 64 10 3 40

Farmtype Farmtype Farmtype Farmtype

Enset

Coffee

ECI

ACV

Khat

Livestock

Component

FarmtypeEnset-based Enset-coffee Enset-cereal-vegetable Enset-livestock Khat-based

Table5.6:Componentlevelmacronutrientinflows,outflowsandbalances(kg/ha/yr)byfarmcomponent,acrossfiverepresentativefarms.

Note:Non-boldednutrient(N/P/K)denotesoriginallyreportedmacronutrientamount(kg/farm/yr).FSdenotesfieldsizeadjustedasperlanduseallocationinrespectiverepresentativefarm.Boldednutrient(N/P/K)denotesmacronutrientamount(kg/ha/yr).

pg.74

N FS N P FS P K FS K N FS N P FS P K FS K N FS N P FS P K FS K N FS N P FS P K FS K N FS N P FS P K FS K

IN 0.72 0 0.72 0 0.72 0 0.45 0 0.45 0 0.45 0 0.37 0 0.37 0 0.37 0 0.38 0 0.38 0 0.38 0 0.25 0 0.25 0 0.25 0

OUT 5 0.72 7 1 0.72 1 3 0.72 4 1 0.45 2 0 0.45 0 0 0.45 0 2 0.37 5 0 0.37 0 1 0.37 3 0 0.38 1 0 0.38 0 0 0.38 0 1 0.25 4 0 0.25 0 1 0.25 4

BAL -5 0.72 -7 -1 0.72 -1 -3 0.72 -4 -1 0.45 -2 0 0.45 0 0 0.45 0 -2 0.37 -5 0 0.37 0 -1 0.37 -3 0 0.38 -1 0 0.38 0 0 0.38 0 -1 0.25 -4 0 0.25 0 -1 0.25 -4

IN 0.29 0 0.29 0 0.29 0OUT 5 0.29 16 1 0.29 3 9 0.29 31BAL -5 0.29 -16 -1 0.29 -3 -9 0.29 -31IN 0.28 0 0.28 0 0.28 0OUT 3 0.28 10 0 0.28 1 4 0.28 16BAL -3 0.28 -10 0 0.28 -1 -4 0.28 -16IN 13 0.07 190 4 0.07 56 0.07 0 6 0.12 52 2 0.12 13 0.12 0 16 0.56 29 8 0.56 14 0.56 0 0.08 0 0.08 0 0.08 0 9 0.16 54 4 0.16 24 0.16 0OUT 1 0.07 14 1 0.07 14 0 0.07 0 0 0.12 0 0 0.12 0 0 0.12 0 16 0.56 29 5 0.56 9 12 0.56 21 0 0.08 3 0 0.08 1 0 0.08 2 1 0.16 6 0 0.16 0 0 0.16 0BAL 12 0.07 176 3 0.07 42 0 0.07 0 6 0.12 52 2 0.12 13 0 0.12 0 0 0.56 0 3 0.56 5 -12 0.56 -21 0.08 -3 0.08 -1 0.08 -2 10 0.16 48 4 0.16 24 0 0.16 0IN 25 0.22 116 4 0.22 20 0.22 0 82 0.46 179 13 0.46 28 0.46 0OUT 5 0.22 23 2 0.22 9 5 0.22 23 10 0.46 21 3 0.46 7 10 0.46 23BAL 20 0.22 93 2 0.22 10 -5 0.22 -23 73 0.46 158 10 0.46 21 -10 0.46 -23IN 0 0 0 5 1 8 0 0 0 1 0 1 3 1 3OUT 2 0 0 2 0 0 6 2 1 17 4 3 8 2 2BAL -1 0 0 3 1 8 -6 -2 -1 -16 -4 -2 -4 -1 1

Coffee

Enset

Livestock

Khat

ACV

ECI

Component

Farmtype Farmtype Farmtype Farmtype FarmtypeEnset-based Enset-coffee Enset-cereal-vegetable Enset-livestock Khat-based

Table5.7:Farmlevelmacronutrientinflows,outflowsandbalances(kg/ha/yr)byfarmcomponent,acrossfiverepresentativefarms.Note:Non-boldednutrient(N/P/K)denotesoriginallyreportedmacronutrientamount(kg/farm/yr).FSdenotesfieldsizeadjustedasperlanduseallocationinrespectiverepresentativefarm.Boldednutrient(N/P/K)denotesmacronutrientamount(kg/ha/yr).

pg.75

6.DISCUSSIONTheexpansionofkhatcultivationhasprovidedashort-term,butuniqueopportunitytoquantifyandcomparenutrientinflowsandoutflowsoffivedistincthomegardentypesunderthesameconditions.Theaimofthisresearchwastoproducerepresentativefarmsforeachhomegardentype,quantifytheirmacronutrientinflowsandoutflowsandcomparebasedoncomponentandfarm levelnutrientbalances to improveunderstandingof these transitioning systems. In thischapteruncertainties regardingpartialnutrientbalancesand its implicationson this researcharedescribedinsection6.1.Theresultsofthisstudyareinterpreted,discussedandcomparedto recent literature in section 6.2. In section 6.3 suggestions for improvedmethodology andpossibilities for future researchareoutlined.To finish, section6.4 recommendsmanagementactions that can be taken to address nutrient deficiencies, and explores the nutrient-relatedconsequencesofkhatexpansion.

6.1UNCERTAINTIESOenemaetal.(2003)distinguishedpossiblesourcesofbiasesanderrorsinnutrientbalances.Inthisstudy,fivepotentialsourcesofbiaswereidentified:(i)personalbiases,(ii)samplingbiases,(iii)measurementbiases,(iv)datamanipulationbiasesand(v)biasesduetofraud.

i. Personalbiases.Whenconstructinganutrientbalance,itsboundariesareintheopinionof the researcher. The partial nutrient balancewas produced for the component andfarm level. Parameters (e.g. DEP, BNF, leaching, etc.) have been excluded asquantitative, regional-specific datawasnot available (Elias et al., 1998).Hadoutflowssuch as leaching, denitrification andwater erosion been included, the chiefly positivebalancesmay have neared equilibriumor even been pressed into a deficit. However,Elias et al. (1998) determined removal in harvested products (OUT1) and removal incrop residue (OUT3)were themajor causes of N and P export from the soil inmostfields.Thissuggeststhatdespiteexcludingsomeparameters,OUT1andOUT3actuallyprovideagoodindicationofnutrientremovalfromthesoil.Eliasetal.(1998)didpointout leaching and denitrification could have a considerable role in nutrient removal,based on estimations and assumptions. However, Elias’ team (1998) questioned theaccuracyof this findingbecause it reliedonestimationsandassumptions.Due to thisand the little conclusive evidence on best practices for leaching, denitrification andwatererosionestimationsinthisspecificagro-ecologicalzone,itwaselectedtoexcludetheseparametersastheirestimationwouldlikelyonlyincreaseerror.

ii. Samplingbiases.Withinnutrientbalanceassessments,samplingcanbealargepotential

source of bias when quantifying all nutrient losses, including leaching, volatilization,erosion and runoff (Oenema et al., 2003). Since this study elected to exclude theselossesfromtheresearch,thispotentialforbiaswasmoreorlessexcludedtoo.

pg.76

iii. Measurement biases. Laboratory analysis of nutrient content was performed forlivestock manure and all crop outputs, with the exception of cabbage as it was notsampled byMellisse et al. (in prep.). Livestock output nutrient contentwas obtainedfromliterature.ThelaboratoryanalysiswascompletedatHawassaUniversityCollegeofAgricultureforNcontentandWondoGenetCollegeofForestryandNaturalResourcesforPandKcontent.Poorcalibrationofequipment, incompletedissolutionandrushedextraction of nutrients are all sources of measurement bias (Oenema et al., 2003).Althoughthisresearch is relianton laboratoryresults, thestudyhas littlecontroloverthesebiasesbutshouldbementionedforcomprehensiveness.

iv. Datamanipulationbiases.Inthisresearch,inputsandoutputsof63homegardenswere

averaged, generalized and grouped by home garden type. Home garden types weredevelopedintorepresentativefarmmodels.Theseprovidedthemeansforcomparativeanalysis but increasesdatamanipulationby simplifying thehomegarden.As a result,some farms components were never defined, such as faba beans, a legume withpotentialforBNFbutonlyappearedin3of63farms.Potatoes,acashcrop,werealsonever defined as part of a component as it occurred on just 4 of 63 farms. Anotherexample was coffee. The traditional cash crop only qualified for the enset-coffeerepresentativefarm,eventhoughitwaspresentin8of18khat-basedfarms,narrowlymissingthe50%ormorequalificationcut-off.Datamanipulationbiasesintroducedcanalteranalyzes,butboundariesmustbedrawninanynutrientbalanceassessment.Laboratoryresultsofnutrientcontentwerealsoaveragedtosimplifythequantificationof nutrient inflows and outflows. With this you may introduce an inaccuracy. Forexample, the nutrient content of kocho was averaged from 3 to 7-year-old kochosampleseventhoughNandKcontentbothreducewithage.Anotherinstancewasthenutrientcontentoforganicmatter(IN2),whichwasaveragedacrossallhomegardens,eventhoughheterogeneitywithinfarmsisknowntooccur.

v. Biasesduetofraud.Oenemaetal. (2003)refertobiasesduetofraudasstakeholdersthatmaymanipulatethebudget tominimizeeconomicconsequences. In thisstudy, itseems exaggerated to accuse farmers of deceitfulness. In lieu of fraud, there can bebiasesduetofarmererroranddeliberateornot,farmerscanmisreportinputs,outputsand land size. When farmers report inputs, some have the tendency to report therecommendeddosevs.theactualdose.Whetherornotthisisafrequentoccurrenceisdifficulttomeasure,assomefarmersmayactuallyapplytherecommendedapplication.Recommended doses came about after Murphy (1963) reported survey resultsdemonstratingNandPwerelimitingcropproductioninEthiopia.

Reportedinputsmayalsobeskewediffarmersmisreportfieldandfarmsizes.Toextractnutrient amount, intensification variables aremeasured in per hectare terms (e.g. kgDAP/ha). Beegle et al. (2012) uncovered under- or overestimation of farm size canamplifymeasurement errors at smaller farm sizes. A conclusion especially relevant in

pg.77

thisstudy;whererepresentativefarmswere1.10,1.21,1.15,1.12and1.03haforenset-based, enset-coffee, enset-cereal-vegetable, enset-livestock and khat-based systems,respectively. When the dependant variable is measured in per hectare terms,misreporting farm sizes amplifies per hectare measurement error at very small farmsizes.Inthiscaseinputsandoutputsaremeasuredperfarm,althoughtheaveragefarmsizeofanyhomegardenisequalto1.12ha.Toassessthemeasurementarea,GPSfieldmeasurementsfrom24farmswereplottedagainstfarmer-reportedfieldsize.Halfover-reportedandhalfunder-reported.HoweverwhenACVfieldmeasurementswereexcludedfromtheanalysisduetotheirsignificantdivergence(R2=0.1119),63%offarmerswerefoundtohaveover-reportedtheirfieldsizesbyanaverageof0.2ha.One-fifthofahectareonanaveragefarmsizeof1.12haissubstantial.Inthequantificationofthenutrientbalance,itwasdebatedwhethertouseGPS measured or farmer-reported field sizes. Eventually farmer-reported field sizeswerefavouredasonly38%ofallfarmsstudiedhadbeenmeasuredviaGPS.Inaddition,farmer-reportedvalueswererecordedsixmonthspriortowhentheGPSmeasurementsweretaken.Assuchannualcomponents,likeannualcerealsandvegetableshadalreadybeenharvestedandreplacedwithanothercroporlaidfallow,renderingacomparisonofGPSmeasuredversusfarmer-reportedvaluesatoddswithoneanother.

Errors canoriginate fromspatial and temporal variabilityand showupas variance in results.Twoerrortypeswerealsoidentified:(i)samplingerrorsand(ii)measurementerrors.

i. Samplingerrors.Thenutrientbalanceassessmentinthisstudyisa‘snapshotintime’asitconsidersall inflowsandoutflowsoveroneyear.Therefore, itgivesan indicationofthe nutrient balances within that time span, but can say little about balances overtemporalscalesorextrapolateacrossspatialscales.Whensamplingorganicmatter(IN2)andcropoutputs,thereisalwaysvarianceinsoils,cropsandanimalwastes.Thisiseventhecasewhenbalancemarginsarestrict,asisthecasewiththisresearch.

ii. Measurement errors. Variations introduced in the determination of volume and

composition of samples can result in measurement errors. The study is unlike fromsimilar,research(Abrham,2014;Eliasetal.,1998)asitanalyzedthenutrientcontentofall crop outputs (OUT1) and organic matter (IN2). It relies heavily on the accuratemeasurementofthiscontentforitsanalysis.

6.2INTERPRETATIONANDDISCUSSIONOFRESULTSTheresultsareinterpretedbydiscussingthenutrient inputs,outputsandbalancesinitiallyonthefarm-scaleandthennarrowingintothecomponentlevel,byfarmcomponent. Toassistincomparative analysis, the results originally reported in kg/farm/yr have been converted tokg/ha/yr(Table5.7).Thelivestockcomponenthasbeenexcludedfromthisconversionas it is

pg.78

not possible to express livestock inflows and outflows per hectare. In this discussion, theexpressions ‘very strong’, ‘strong’, ‘moderate’ and ‘slight’ are used to describe nutrientbalances. The classification was originally put forward by Smaling (1993) and used in thenutrient balance assessment by Elias et al. (1998) to classify depletion. As such, the originalterms refer to nutrients lost, but this discussion will apply the same ranges for nutrientsaccumulated(Table6.1).SinceEliasetal.(1998)onlyclassifiedNandP;Kclassificationwillbebasedonhalfof the suggestedN ranges,asKbalancesweregenerally found tobehalfofNbalancesinthisnutrientbalanceassessment.Table6.1Nutrientbalanceanalysis interpretationcriteria(expressedaskgofnutrient lost(oradded)/ha/yr.

Classification N P K+ - + - + -

Verystrong >40 <-40 >7 <-7 >20 <-20Strong 20to40 -20to-40 4to7 -4to-7 10to20 -10to-20Moderate 10to20 -10to-20 2to4 -2to-4 5to10 -5to-10Slight <10 >-10 <2 >-2 <5 >-56.2.1FARMSIZEAgricultural economists have expressed concern over farmers’ self-reporting of land size(Carlettoetal.,2013).Tovalidatethiscritique,Mellisseetal.(inprep.)measuredfieldandfarmsize of 24 of the 63 surveyed farms using Global Positioning System (GPS) devices. The GPSmeasurementsputsidebysidewithfarmer-reporteddimensionsFigure5.2.ThedivergenceofACVisattributedtothetimelagbetweenfarmerreportingandGPSmeasurement.Mellisseetal. (in prep.) reported this was done six months apart at which point farmers have eitherharvested their ACV or switched to another crop. This also explained the coefficient ofdetermination(R2)valueof0.1119(Table5.1)forACV.Forcoffee,ECI,andkhatwereR2valuesof0.6904,0.5700and0.5737,respectively.Apossibleexplanationcouldbethenatureofthesecropsas cashcrops. Farmersmaybemore likely tounder-report their landsizeofprofitablecrops,especiallywhenrequestedtoreporttogovernmentofficials.

6.2.2FARMLEVELNUTRIENTBALANCES

Table6.2presentsonly the farmnutrientbalancesby representative farm.At the farm level,across all five representative farms,N balancesweremoderately to very strongly positive. Palso had mainly positive balances, but fluctuated from slight to very strong balances. TworepresentativefarmshadmoderatetostrongnegativePbalanceswhichwastheenset-coffeefarm system and enset-cereal-vegetable system, respectively. K had moderately negativebalances across all representative farms; except for enset-based which was only slightlynegative.Theresultsatfarmlevelarelogical.ThemineralfertilizerureaprovideshighNinput

pg.79

(45kgN/100kgurea),DAPalsoprovidesNinput(18kgN/100kgDAP)andasmallquantityofP(20kgP/100kgDAP).ThereisnoinputsourceofKatthefarmlevel.Thesefarmbalancesareasharp contrast to Stoorvogel, Smaling and Janssen’s (1993) national report on Ethiopia’snutrient depletion to be rising at -122 kgN/ha/yr, -13 kg P/ha/yr and -41 kg K/ha/yr,whichwere very strong depletions according to Smaling’s (1993) own interpretation criteria.However,extensivelandscapedifferencesmakedirectcomparisonsofanationwidebalancetoa woreda (district) specific balance—such as this study—nearly impossible. Moreover, theStoorvogel,SmalingandJanssenassessmenttookplaceovertwentyyearsago. Inthisperiod,inorganic fertilizer use rose dramatically (Abate et al., 2015; Kiros et al., 2012; Wallace &Knausenberger,1997)andcouldatleastpartiallyexplainwhyEthiopia’ssoilwassodepletedin1993.Infact,Stoorvogel,SmalingandJanssen(1993)foundthemostdepletednutrienttobeN(-122kgN/ha/yr),thenutrientmostprevalentinmineralfertilizers.Tenyearslater,Royetal.(2003)alsoestimatedEthiopia’snutrientbalancetobenegativeforallmacronutrients,with lossesof -47, -7 and -32 kg/ha/yr ofN, P andK, respectively. Thesedeficiencieswereconsideredverystrong(Table6.1;Smaling,1993).ComparedtoStoorvogel,Smalingand Janssen (1993),Ethiopia’snutrient levelshad improved.Since,NandPbalanceshadespecially improvedandwere lessnegative; this couldbeevidenceof increasedmineralfertilizeruseacrossEthiopia.Again,comparingthisstudy’sassessmenttothoseonanationalscale should be preceded with caution. Ethiopia’s landscape, soils and crop cultivation arehighlydiverse.However,sincethisresearchhadseveralcasesofpositivenutrientbalances,thepopular suggestion that all Ethiopian soil suffers from nutrient mining, certainly cannot begeneralizedacrossthecountry.Table 6.2 Farm partial nutrient balances (kg/ha/yr) by representative farm. The livestockcomponentisexcluded,buttheinternalinputofcompostisincluded.Representativefarm N P K

Enset-based 169 40 -4

Enset-coffee 12 -2 -9

Enset-cereal-vegetable 20 -6 -5

Enset-livestock 20 2 -7

Khat-based 76 10 -7

Negativenutrientbalancesareoftengrantedasevidenceofsoilnutrientdepletiononthefarm,nationalor largerscale.Frequently, theyareacall foralarm.Ethiopiansmallholderfarmsaresourcesofsurvivalandassumedtobecontinuouslyfarmed,withlimitedtimetoliefallowandhavenutrientsrestock.Asaresult,ithasbeenwidelyacknowledgedtheseplotsandfarmsmusthave nutrient depleted soils. However, Vanlauwe and Giller (2006) argue not all nutrientbalances are always negative. In fact, some plots have very high positive balances, likelythroughconcentrationofnutrientsfromotherpartsofthefarm(Vanlauwe&Giller,2006).Table6.2showsanexceptionallystrongNbalance for theenset-basedfarm,comparedtoallotherrepresentativefarms.This isasurprisingfindingasenset-basedfarmsreceiverelatively

pg.80

littleexternalinput.Uponfurtherinvestigation,theNsurpluswasdeemedparticularlyhighduetoitsconversiontokg/ha/yr.Theenset-basedfarmcultivatessomeACVonaverysmallplotofland (0.07 ha) and when its original mineral fertilizer input (IN1) of 12 kg N/farm/yr wasconvertedtohectarebasis,thevalueincreaseddramatically.ThenutrientbalanceassessmentbyEliasetal. (1998)was themost spatially relevant to thisresearchastheyassessedfarmingsystemsintheKindoKoishadistrictofWollaitainsouthernEthiopia,some150kmwestofSidamaandGedeo.Comparingonthisregionalscale,Eliasetal.(1998) foundNbalances tobenegativeacrossallhouseholdgroups (rich,medium,poorandverypoor)and thePbalance tobepositive formost farms (Table6.3).However, their studyestimatedremovalinleaching,denitrificationandwatererosion.Theresultwasanuncertaintyrangethoughtto includethe‘real’value(Royetal.,2003).TheinclusionoftheseparameterscouldexplaintheshifttoanegativeNfarmbalanceintheEliasetal.(1998)assessmentversusthepositivefarmbalanceobservedinthisresearch.Table6.3Farmnutrientbalances(kg/ha/yr)fordifferenthouseholdgroups(Eliasetal.,1998;adaptedfromRoyetal.,2013).

Households N P

Highland

Rich -47 11.7Medium -51 4.8Poor -19 3.6Verypoor -6 1.1

Lowland

Rich -49 30.5Medium -41 17.3Poor -55 3.8Verypoor -20 -1.6

Eliasetal.(1998)didnotquantifytheKbalanceastheyidentifiedonlyNandPasparticularlydeficient.Inthepaper,Eliasetal.arguedthatpotassiumwascommonlyavailableinEthiopiansoils and sufficient enough to satisfy crop requirements. Yet, K had moderately negativebalancesinfourrepresentativefarms,aslightnegativebalanceinonerepresentativefarmandthe only nutrient to have negative balances across all representative farms. Based on thisfinding, one may conclude K is in fact the most important nutrient to include in a balanceassessment. The farm level analysis does not present a full representation of what occurswithinahomegardensystem.Thefollowinganalysiswillbeonthecomponentlevel.

6.2.3COMPONENTLEVEL:ENSETNandKensetnutrientbalancesrevealverystrongsurplusesintheenset-basedsystem(Table6.4).Thesefieldshadaccumulationsof117kgN/ha/yrand34kgK/ha/yr,whereasthesecondhighestNsurpluswas33kgN/ha/yr(enset-cereal-vegetablesystem)andthesecondhighestP

pg.81

surpluswas6 kgP/ha/yr in the same system. This findingwasnotable as enset-based farmshavethesmallestallocationofgrazingland(6%)andsmallestaverageTLU(0.43)(Figure5.3).Onepossibleexplanationisthepracticeofpoorer,enset-basedfarmersallowingricherfarmer’scattlegrazeon their landand in returncollect the livestock’smanure for theirownuse.Thiscouldbe5-6cowsatanygiventime.Enset-basedfarmersmaylacklargegrazinglandplotsbutthey have a large supply of internal fodder, especially enset leaves, which could potentiallymakeupthedifference.Table6.4Ensetcomponentnutrientbalances(kg/ha/yr)byhomegardentype.Representativefarm Component N P KEnset-based Enset 117 1 34Enset-coffee Enset 5 -1 -1Enset-cereal-vegetable Enset 33 -2 6Enset-livestock Enset 9 -2 -7Khat-based Enset 18 -2 4Enset-coffeefarmsalsohadsmallgrazingland(7%)andlowaverageTLU(0.46)yetlackedthehighN surpluses found in enset-based systems. Enset-coffee farmersmay practice the samelivestock grazing formanure trade, butmay spreadout their acquiredorganicmatter acrosstheirenset,coffeeandenset-coffeeintercroppingfields.Theseplotsreceiveexclusivelyorganicmatterastheirsoleinput.

6.2.4COMPONENTLEVEL:COFFEEANDCOFFEE+ENSETINTERCROPPINGThetraditionalcashcroponlyappearedinenset-coffeesystems.Itscounterpart,intercroppingofensetandcoffeewasalsoonlypresentinthisrepresentativefarm.Despiteitsorganicmatterinputs, thePbalanceswereslightlyandmoderatelynegativeandtheKbalanceswerestrongandverystronglynegative, suggestingorganicmatteralone,at least in its current form,maynotbesufficientforthesecomponents.TheNbalancewasslightlypositivewith9Nkg/ha/yrand4Nkg/ha/yroncoffeeandECIplots,respectively(Table6.5).Table6.5Coffeeandenset+coffeeintercropping(ECI)componentnutrientbalances(kg/ha/yr)byhomegardentype.Representativefarm Component N P K

Enset-coffeeCoffee 9 -2 -22ECI 4 -4 -14

NegativePandKbalances forcoffeesimplypromotearguments in favourofkhatcultivationversus the age-old practice of coffee farming. If this persists, coffee cultivationmay depletecoffee and ECI plots of its P and K. However, temporal projections should be treated withcautioninnutrientbalanceassessments.Enset-coffeefarmsarethelowestreceiversofmineral

pg.82

fertilizers likely due to their small ACV allocation (10% land share) compared to enset-basedfarmswiththesecondlargestACVallocation(28%landshare).RecommendationstoboastP&KincoffeeandECIplotsareputforward.

6.2.5COMPONENTLEVEL:ANNUALCEREALSANDVEGETABLESAnnualcerealsandvegetableswerepresentineveryrepresentativefarmandrevealedmainlyslight tovery strongpositiveNbalances,mainly slight tovery strongpositivePbalancesandmoderatetoverystrongnegativeKbalances(Table6.6).NalsohadoneslightnegativebalanceandPhadoneverystrongnegativebalance.ThesefindingsindicatenutrientbalancesforACVvarysubstantially.ACV is theonlycomponenttoreceivemineral fertilizer (IN1)withsporadicquantitiesoforganicmatter(IN2),whichcouldexplain itsnegativeKbalances.Theextremely‘very strong’NandPbalances in theenset-based systemaredue to the system’s small landallocationforACV(0.07ha).Table6.6Annualcerealandvegetable(ACV)componentnutrientbalances(kg/ha/yr)byhomegardentype.Representativefarm Component N P K

Enset-based ACV 167 38 -17Enset-coffee ACV 38 7 -10Enset-cereal-vegetable ACV 6 1 -21Enset-livestock ACV -6 -9 -6Khat-based ACV 32 7 -18IntheKindoKoishadistrict,Eliasetal.(1998)alsoanalyzedthenutrientcompositionofannualcereals and vegetables. However, the only overlapping crop with this study wasmaize. ThereportonlyconsideredNandP,buttheyfoundthenutrientcomposition(%DM)formaizewas1.25 and 0.18, respectively. This study found 1.13 and 0.54 (%DM) formaize, a comparablenutrient composition. All values fit into the Stoorvogel and Smaling (1990) reported meanvalues from several countries across sub-Saharan Africa, except for 0.54 %DM of P whichexceededStoorvogelandSmaling’s(1990)0.15-0.27range.However,thesearethelowestandhighestquartilesfromseveralcountriesanddonotrepresentregionalvariation.

6.2.6COMPONENTLEVEL:KHATKhat,unsurprisingly,receivedthehighestquantityofmineralfertilizers,withanextremely‘verystrong’positiveNbalanceof159kgN/ha/yrinakhat-basedfarm.Traditionally,onlyensetandcoffeereceiveorganicmatterandmineralfertilizersarereservedforkhat.Occasionallyorganicmatter is applied to khat plots, but only in the khat-based representative farm. This is likelybecausetherewasanexcessoforganicmatterandfarmerswanttoencourageprofitablekhatcultivationanywaypossible.Despiteoccasionalcompostapplication,khatfieldsoftenhavethe

pg.83

most severe K deficiencies (Table 6.7). However, before farmer’s flock to compost piles tosupply khat plots with increased K, other farm component nutrient balances should beconsidered. Precaution should also be taken with neutral balances. This indicates the soilfertilitywasnarrowlymaintainedforthiscroppingseason.Insuchclosesituationsitisadvisabletosupplymorenutrients(Abrham,2014).Table6.7Khatcomponentnutrientbalances(kg/ha/yr)byhomegardentype.Representativefarm Component N P K

Enset-livestock Khat 84 9 -35Khat-based Khat 159 21 -22At present there are no recommended doses available to farmers for khat cultivation. As aconsequence, farmers rely on the blanket fertilizer recommendations for annual cereals andvegetables.Evidently, thismethod is supplyingkhat fieldswithveryhighNandPapplicationratesleadingtoaverystrongpositiveNbalance,verystrongpositivePbalanceandverystrongdeficiencies of K. Urea and DAP reductions and compost (combined with animal manure)increases could address this. In other words, khat plots require integrated nutrientmanagementofmineralandorganicfertilizers.At the time of data collection (2014/15) global khat markets still existed. It was the lastcroppingseason,beforetheNetherlandsandtheUnitedKingdom(UK),Europe’slastlegalkhatnations,bannedkhat.TheUKwasEthiopia’sthird largestkhatexportdestination, justbehindDjibouti(2nd)andSomalia(1st).ItissaidtheUKwasakeyhubforsmugglingkhattotheUnitedStates (US).Political instability inYemen,anotherpopularkhatexportdestination,hasclosedthe airports and hindered imports. At present, only domestic and two regional (Somalia,Djibouti)marketsforkhatremain.Khatexportearningshadbeensteadilyrisingpriortothebans,exporting36000,41000and41100 tonnes in 2010, 2012, 2013, respectively (Fantahun, 2015). Ethiopiabrought in 209, 238and297millionUSdollarsduringthoseyears.Despiteitscontinuedriseindomesticproduction,thekhatexportdeclined8.4%inthe2014/15fiscalyear.Whilethisstudycannotmakemarketprojectionsortemporalnutrientpredictions,thebanwillundoubtedlyhaveanimpactonthedemandforkhat. Ifthedemandstaysthesame, iteitherindicates domestic demand has increased (with troubling health concerns) or an even largerblack market to export the drug has emerged. Khat is addictive and can have devastatingimpacts on labour productivity. For instance, in Yemenwhere 90% ofmen are estimated tochewkhatuptosixhoursaday,labourproductivityinpeakhoursislow(WHOBulletin,2008).TheEthiopianMinistryofAgriculturehaveconfirmedthecultivationanddistributionofkhatisoperated solely by the farmers, with no support from authorities. Should the governmentremainindifferenttokhatfarming,farmersmayseekothermarketopportunitiesandperhapsevenreturningtocoffeeproductionfortheircashcropincome.

pg.84

6.2.7COMPONENTLEVEL:LIVESTOCKEthiopia’slivestockpopulationissaidtobethelargestinAfrica(CSA,2009).Ethiopiansassignhigh personal wealth and cultural value to the quality and quantity of their livestock. Thereplacementofensetwithkhatmonoculturehasinducedinternalfoddershortages.Mellisseetal.(inprep.)foundthistohavedirectrepercussionsonpercapitaherdsize,herdcompositionand the nutritional value of household diets. The main animal products sold off-farm aresourced from these livestock. More than any other component, livestock had slight tomoderatepositivebalancesforN,moderatetostrongpositivebalancesforPandverystrongpositivebalances forK (Table6.8).Thefollowingbalancesarepresented inkg/farm/yrasthelivestockcomponent(notacrop)cannotbeconvertedtokg/ha/yr.Table6.8Livestockcomponentnutrientbalances(kg/farm/yr)byhomegardentype.Representativefarm Component N P K

Enset-based Livestock 8 4 29Enset-coffee Livestock 20 6 54Enset-cereal-vegetable Livestock 13 4 51Enset-livestock Livestock 5 4 64Khat-based Livestock 10 3 40The livestock balance analyzed two inputs (IN3; IN4) and two outputs (OUT3; OUT4). Thelivestockbalancewaslikelyskewedpositivelyasitdoesnotaccountforlivestockthatremainsand circulates within the system for years. For this reason, livestock systems are inherentlydifferent fromcropping systemsand itsoutputs fromanimals andanimalsproducts soldoff-farm(OUT3)andhouseholdconsumption(OUT4)areonlyonepartoftheequation.Inaddition,twootheroutputswereexcluded:1)household consumptionofmilk andeggswasexcludedbecause there was no explicit data collected, and 2) manure as output from livestock wasexcludedbecausetherewerenocompositesamplestakenoffreshmanure.Freshmanureandcompost differ as compost is the mixture of manure and household refuse and throughcollectionandstoragehaslostsomeofitsoriginalnutrientcontent.The K influx from internal fodder (IN3) is 67 kg K/farm/yr at its largest in an enset-livestocksystem.TheKcontentofensetleavesislarge(4.60%)andmeanthighKinput.TheKsurplusisrevealed in Table 6.8 across all representative farms, but especially in the enset-livestocksystem(64kgK/ha/yr).Ensetleavessupplementgrassescollectedfromenset,coffeeandkhatfields.Relative tonutrient inflows from internal fodder,nutrient inputs fromexternal fodder(IN4)wassmall.Thelargestinputcameinanenset-coffeesystemwith14kgNPK/farm/yr.Eventhe enset-livestock supplied only 3 kgNPK/farm/yr of external fodder to its livestock. Enset-coffeefarmersspendanaverageof180ETB($8USD)onexternalfodder.Thisrepresents7%oftheiraveragetotalinputcosts.Forsuchsmallnutrientinflows,thismoneymaybebetterspentonotherfarmneeds.

pg.85

Ammonium volatilization of manure is likely a large nutrient loss factor in home gardens,particularlyinthelivestockcomponent.Inthisstudy,onlythenutrientcompositionofcompost(includingmanure)wasanalyzed.Ammoniumlossesareamplifiedwhenmanureisrepeatedlyhandled,stockpiledwhilstmoistand/ornotusedimmediately.Thisisespeciallytrueinwarm,dryconditionssimilartothoseinthestudyarea.Fieldobservationsrevealedtheorganicmatterwasstoredinanuncoveredpileclosetothehomestead.Nutrientcompositionoffreshmanurewasnottestedsoaveragelossescannotbeestimated.Norcouldaveragemanureproductionbased on TLU derive the amounts of manure necessary to meet nutrient requirements.However,Daviesetal. (2009)estimatedN lossesvaryfrom5-50%,P lossesvary3-30%andKlosses vary from 5-80%. Considering these potential losses, integration of better manurehandling techniques has vast potential to retain higher nutrient composition of manure,possibly correcting nutrient deficiencies. Overall, when negative nutrient balances areobserved,theyaremarginal,withthelargestat-9Kkg/ha/yr.Thisstudytookcompositesamplesofcompost,includingmanure,notfreshmanure.Compost(IN2)isappliedtofarmer’sfields,whilefreshmanureiscollected,mixedwithhouseholdwasteandstoredinanoutdoorpileuntilapplied.Similarcompositiondataofthisregionally-specificsort of compost could not be located in literature, but Elias et al. (1998) did sample freshmanureonsimilarhomegardens.Eliasetal.studiedfarmsinthehighlandsandlowlandsandsampledmanurefromeach.Forthepurposesofthiscomparison,onlythehighlandvaluesarepresented as this study’s farms were in the highlands andmidlands. Elias et al. (1998) alsoprovidedarangecollectedfromliteraturedata.ArangeforcompostfoundforCentralKenyanfarms(Lekasietal.,2003;Kimani&Lekasi,2004,ascitedinPauletal.,2009)isalsoincludedforacomparisonofcompost(Table6.9).Table6.9Nutrientcomposition(%)(indrymatter)ofmanure(Eliasetal.,1998),CentralKenyancompost(Lekasietal.,2003;Kimani&Lekasi,2004)andcompost(thisstudy).Material N(%) P(%) K(%)

Manure(Eliasetal.,1998) 1.68 0.23 Notsampled

Manurefromliteraturedata(Eliasetal.,1998) 1.1–1.7 0.13–0.26 NotincludedCentralKenyancompost(Lekasietal.,2003;Kimani&Lekasi,2004) 1.12(0.3-1.9) 0.3(0.1-0.8) 2.4(0.4-7)

Compost(IN2) 0.83 0.03 0.29

ComparedtothemanurenutrientcontentfromEliasetal.(1998),thecompostfromthisstudyhastwiceaslessNandseventimeslessP.Thisstudy’scompostnutrientlevelsarelowerthanthelowestendoftherangeprovidedfromliteraturedata(Eliasetal.,1998).However,Eliasandcolleagues(1998)providedvaluesformanurewhichwouldbeexpectedtobegreaterthanthatof compost, regardless. Inamoredirect comparison toCentralKenyancompost, this study’scompost does not fare any better. In fact, the P content given for Central Kenyan compost(0.3% P) exceeds that of manure by Elias et al. (1998) (0.23% P). N content of this study’scompost (0.83% N) was the only nutrient to fall into the Central Kenyan compost range

pg.86

(0.3%-1.9%). Overall, when compared to nutrient values of manure and compost fromliterature,thisstudy’scompostislowinallmacronutrients.6.3METHODOLOGICALIMPROVEMENTSANDSUGGESTIONSFORFURTHERRESEARCHDuring the courseof this research, three topics thatwerebeyond the scopeof this researchwere distinguished. These topics relate to parameter exclusion, comparative analysis andassemblyofthe‘ideal’homegarden.Dataavailabilitypreventeda‘complete’nutrientbalanceassessment. Quite often balance assessments rely on assumptions for their inflows andoutflows. In lieu of assumptions, this research elected to use farmer-reported survey data,laboratoryanalysisofcompositesamples,fieldobservationsandliteraturedata,butonlywhenacropwasnotsampled.Asaresultofnotassumingtheremainingprocessesnotcoveredunderthisdatacollection,notallnutrientlosseswereaccountedfor.ManynutrientbalanceassessmentsusetheearlierdevelopedmethodologybyStoorvogelandSmaling (1990) but use different transfer functions to estimate deposition, sedimentation,leaching and erosion. This results in methodological discrepancies and hinders regional,nationalandcontinentalcomparison.Lesschenetal.(2007)haveaimedtoimprovetheexistingmethodology by making it spatially explicit. Their study upgrades transfer functions andexplicitly models the uncertainties in estimations. Further research should demonstrate theeffectivenessofthisimprovedmethodology.For future balance assessments, composite samples should be taken for freshmanure. Thiswould add a significant outflow to the livestock component and give a more accuraterepresentation of the internal nutrient processes. Also a database of regionally specificassumptions for commonly excluded parameters could be constructed using the improvedmethodology(byLesschenetal.,2007).Thiscouldalsoimprovecomparativeanalysisbetweennutrientbalanceassessments.The ‘partial’ nutrient balance assessment as completed in this research really is partial. Itconsidersnutrientinputs,removalsandrecycling,butexcludesnutrientstocks.Toimprovethebalances,moresoil-andfield-levelmeasurementsarenecessary.Goodsamplingstrategiesarecrucial as soil properties are highly variable. Roy et al. (2003) insists soil property indicatorssuchas:clay/silt/sandcontent,pH,organiccarbon,etc.,needtobereadilymeasurableinordertopermittheexaminationoftheactual impactofalternativefarmingstrategies.Moreover, ifthe research aim is to influence management policies, nutrient balances are a much betterindicatorofsoilfertilitystatusiforiginalnutrientstocksaretakenintoaccount.Thisstudycomparedfarmlevelbalancesandcomponentlevelbalancestooneanother.Fromthesecomparisons, itcouldbetemptingtoassemblethe‘ideal’homegardenbycombiningamodelofmixedfarmcomponents.However,thisdependsonseveralfactorsbeyondthescope

pg.87

of this study, such as the socioeconomic status and personal wishes of the farmer.Socioeconomicstatusplaysaroleonthefarmer’saccessibilitytoexternalinputs(Mellisseetal.,in prep.). Further research could possibly establish the most ‘sustainable’ home garden butsustainabilitywouldrequirecleardefinitiontoaccomplishthis.Withamodelhomegarden inplace, and its effectiveness confirmed, it couldbe suggested to farmers as an alternative forkhatmonoculture.

6.4MANAGEMENTRECOMMENDATIONSComplete management decisions would require a complete nutrient balance assessment.However,thepartialnutrientbalanceassessmentcanprovideatoolformanagementpurposes.Through theuseofnutrienthotspot identification, threemanagement recommendations aresuggested. Thesemeasurements relate to enset leaves as crop residue or compost additive(6.4.1) and propermanure handling (6.4.2). To finish, the implications of khat expansion onnutrientflowsofthehomegardenaresummarized(6.4.3).Identifyingnutrienthotspotsindicateeitherlossesoraccumulationofnutrients.Slighttoverystrongnegativebalances(losses)shouldbeaddressedtopreventfurtherdepletion.Moderateto very strong positive balances (accumulation) should be addressed to exploit underusednutrients in other areas of the farm. Slight positive balances should remain to provide anutrient‘buffer’forfuturecroppingseasons.

6.4.1ENSETLEAVESASCROPRESIDUEORCOMPOSTADDITIVEOnthefarmlevel,K ismoderatelydeficient foreachrepresentativefarm.Onthecomponentlevel,slighttoverystrongKdeficienciesarevirtuallyubiquitousacrossallcomponentsamongstall representative farms,witha smallexceptionofpositivebalancesofensetcomponentsonthree representative farms. The other exception to the rule is the very strong positive Kbalancesoflivestockcomponents(Table6.8).TheseverystrongKbalancesshouldbeexploitedtoaddressthewidespreadKdeficiencies.ThepositiveKbalancesareattributedtothelargeKcontent(4.60%)ofensetleaves,theprimaryingredientininternalfodder.Althoughcompositesamplesonfreshmanurewerenotcollected,wecanderivefromthelownutrientcompositionofcompostthatitsKcontent(0.29%)maynotbeashighasitcouldbe.Insteadoffeedingallenset leaves, or selling excess for small profit, the leaves should be chopped and directlyappliedtoenset,coffee,ECI,ACVandkhatfields.Presently,allnaturally-occurringgrassesoncoffee,ACVand khat fields areharvested for additional livestock feed.Grasseshave someK(1.96%)butenset leavesboastovertwicetheKcontent.Addingenset leavesasadirectcropresiduecouldnotonlyaddressKdeficienciesbutalsoreplenishsoilorganicmatterandimprovesoil physical properties. This is especially relevant on ACV and khat fields which currentlyreceivenoorverylittleapplicationoforganicmatter.

pg.88

Anotheroptionisindirectapplicationbyaddingchoppedensetleavestocompost.Ensetleavesfedtolivestockwilleventuallyreturntothefieldasanimalwaste,butwilllikelyundergolargenutrientlossesbeforethen.Utilizingensetleavesasacompostadditivewillsupplementsomeofthisnutrientloss,especiallyK.

6.4.2PROPERMANUREHANDLINGAs seen in the comparative analysis of this study’s compost with that in the literature, thisstudy’scompostislowinN,PandK.Thissuggestscompostissubjecttolargenutrientlosses,whichresultinlower-nutrientcompost.Undermanurehandling,lossesarebyfarhighestforN,followedbyKandveryminimalforP.Atpresent,compostisstoredinanoutdoor,uncoveredpile,alsoreferredtoasfarmyardmanureintheliterature(Daviesetal.,2009).InZimbabwe,bettermanurequality andhighermaize yieldsdeduced lossesof ammoniaNwere lower formanurecompostedanaerobically(inapit)thancompostedaerobically(inanopen-airheapontheground)(Daviesetal.,2009).Therisk forN lossesaresaidto increasewithmoreaerobicstoragesystems(above-groundheaps).Rotz(2004)alsosuggestedundisturbednatural‘crusts’on topofamanurepitmaysubstantially reduceammonia losses. In the localcontext,wholeenset leaves placed over top of a dug-out pit of compost, may help retain better nutrientcontent.K losses, unlikeN losses, are not associatedwith high temperatures, but rather its ability toretain the liquidportionof themanure. Themost commonK loss fromcompost is from theleachingofsolublenutrients,particularlyfromurine.Urineisinherentlydifficulttomanage,butremainsthemostimportantprocesstoharnessKcontentincompost.Urineisideallystoredinaclosedpit.Anotheroption is that farmerscanaddurine tomanureheaps,but thismethodwouldrequireawater-tightbasetocollectleachedliquids.Neitheroftheseoptionsispracticalinthelocalcontextastheseimprovedsystemsdemandhigherlabourandfinancialinvestmentin storage facilities. Cheap and available ‘makeshift’ water-tight bases such as plastic oraluminum sheets could be tested, but further experimentation would be necessary to testeffectiveness.Farmerscouldalsocollecturineseparatelyanddraintheurinetoperennialcropsviachannels.However,eventhecollectionofurineposesaproblemaslivestockisconfinedtograzing land and their urine will infiltrate almost immediately. An additional suggestion toreduce K loss would be to applymanure directly as a nutrient source. Still this comes withconcerns about the quality of manure, as composting allows the killing of weed seeds,eliminationofpathogensandreductionofodorproblems.Losses of Pmay diminish under thesemanure handling strategies, but original P content inmanuretendstobeverylow,withlossesalreadyminimal.However,thereissomepotentialfortheimprovementofcompostmanagement,butitwillmainlyimproveNlosses.Implementingthesuggestedmanurehandlingpracticeofstoringcompactedcompostinanensetleaf-coveredpit,willreduceNlossandpossiblylessenKlosses.

pg.89

6.4.3NUTRIENT-RELATEDCONSEQUENCESOFKHATEXPANSIONRecommendationstointegrateorganicmatterandmineralfertilizeronnutrientdepletedfields(e.g. coffee,ACVandkhat)werenotofferedbecause increasingorganicmatter isanunlikelyoption, especially in light of khat expansion. Mellisse et al. (in prep.) have found thereplacementofensetwithkhatmonocultureto induce internal foddershortages,particularlyensetleaves.Thiswasestablishedtohavedirectrepercussionsonpercapitaherdsizeandherdcomposition. Abebe (2013) reported when livestock holding is low, manure productiondecreasesandresultsinreducedensetyieldsduetolackoforganicmatter.Instead, the management recommendations put the focus on maximizing the nutrientaccumulation revealed in the component and farm level nutrient balance assessments.However,theyrelyheavilyontheroleofenset.Abebe(2013)argues,“asensetproducesthehighestvolumeof foodperunitareaandtime,anddueto itsdifferentendusesanddiverseecologicalroles,thefutureofthesehomegardensdependonthemaintenanceofenset-basedstaple foodproduction,” (p.36).Thediversityand integrationof thesehomegardensupholdtheir stabilityandresilience.Expansionofkhatmonoculturenotonly threatensverystrongKdeficiencies, but forces home gardens into specialization. Ultimately puttingwell-establishedinternal nutrient flows in jeopardy. Khat’s profitability may prove to replace coffee as theprimary cash crop in Sidama and Gedeo, but tremendous caution should precede khatexpansiontothedetrimentofensetcultivation.Therefore,strategiesshouldbedevelopedtorapidlyreversekhatdevelopmentattheexpenseofenset.

pg.90

7.CONCLUSIONSTheaimof this researchwas to improve theunderstandingof inflows,outflowsand internalflows that make up the nutrient balance of transitioning home garden systems. In recentdecades,populationpressureinducedlandfragmentationhasdrivenhomegardenstorapidlyreplace enset and coffeewith khat. For proper insight in to the dynamics of this transition,representative farmswereconceived foreachhomegardentype—enset-based,enset-coffee,enset-cereal-vegetable, enset-livestock and khat-based—to illustratewhich farm componentsweremostsignificant ineachtype.Therepresentativefarmsrevealedenset,ACVandgrazinglandwereprevalentacrossalltypes,coffeeonlyexistedintheenset-coffeetypeandkhatwasprevalent in the enset-livestock and khat-based type.Macronutrient (NPK) inflows, outflowsand internal flows were quantified and the resulting balances were compared at thecomponentandfarmlevel.At the farm level, N balances were moderately to very strongly positive, P balances werestronglynegative to very stronglypositive andKbalancesweremoderatelynegative.On thecomponent level, N balances were slightly positive to very strongly positive and P balanceswereverystronglynegativetoverystronglypositive,acrossallrepresentativefarms.Kbalanceswere moderately to very strongly negative, with the exception of the enset and livestockcomponents. P balances fluctuate considerably based on internal and external inputs tocomponentsanditsnarrowinterpretationcriteria.Some inherent flaws to nutrient balance assessments and this study’s methodology wereoutlined. Methodological improvements and possibilities for future research included adatabase of regionally specific assumptions to aid local scale comparative analysis and soilnutrientstockanalysistobetterindicatesoilfertilitystatus.Most significantly, the balances revealed nutrient hotspots of very strong K depletion in thekhatcomponentandahotspotofverystrongKaccumulation in the livestockcomponent.TocapitalizeontheunderutilizedsupplyofK,asuggestiontouseensetleavesascropresidueoras a compost additive was offered. Use as a crop residue could directly boast the soil’s Kcontent.Reviewofliteratureshowedthecompostinthisstudyhaslowmacronutrientcontentin contrast to that in similar systems. Recommendations for proper manure handling weregiven.Althoughpotential forreductionsfrommanurenutrient lossexist,properhandlingwilllikelyimproveNandonlypartiallyimprovetheKcontent.Toconclude,itprovedvaluabletodevelopnotonlyafarmlevelnutrientbalanceassessment,butalsoacomponentlevelassessment,asitrevealedtheinherentdiversityandcomplexityofhome garden systems. Well-established internal nutrient flows sustain home gardens andcomponentlevelanalysisallowedcomparisonbetweentheseflows.Khatexpansionthreatensinternalflowsinapositivefeedback.Whenkhatexpansioninducesinternalfoddershortages,itcauses livestock holding to decrease, which cuts manure production. As a result, there is

pg.91

reduced enset cultivation, smaller enset yields and a consistent decline of internal fodder,especiallyensetleaves.Undercurrent trends,khatwill likely replacecoffeeas theprincipal cashcrop in the region’shomegardens(Mellisseetal.,inprep.).ThiswillintensifynutrientminingandinducefurtherKdeficiencies, a shortage which could be effectively addressed with the managementrecommendations put forward. However, these proposals are dependent on adequate ensetleafsupply. Ifkhatexpansionreduces leafsupply,strategiesshouldbeurgentlydevelopedtoreversekhatdevelopmentattheexpenseofensetplots.Forcenturies,thelong-termstabilityandsustainabilityofthesehomegardenswereattributedtoitsintimateassociationwithensetcultivation.Theresilientensetplanthasbeenhailedasthe‘treeagainsthunger’(Springetal.,1997)andcontributedtotheenvironmentbyimprovingnutrientbalancesinsoils(Eliasetal.,1998).Now,inthefaceofkhatexpansion,ensetleavesmayjustprovidethemeanstosecurethesurvivalofthehomegardensystem.

pg.92

8.REFERENCESAbate,T.,Shiferaw,B.,Menkir,A.,Wegary,D.,Kebede,Y.,Tesfaye,K.,Kassie,M.,Bogale,G.,Tadesse, B.& Keno, T. (2015). Factors that transformedmaize productivity in Ethiopia.FoodSecurity7:965–981.Abebe, T. (2005). Diversity in home garden agroforestry systems of southern Ethiopia. PhDDissertation,WageningenUniversity,TheNetherlands:1-143.Abebe,T.,Wiersum,K.F.,&Bongers,F.(2010).SpatialandtemporalvariationincropdiversityinagroforestryhomegardensofsouthernEthiopia.AgroforestrySystems78(3):309-322.Abebe,T.(2013).DeterminantsofcropdiversityandcompositioninEnset-coffeeagroforestryhomegardensofSouthernEthiopia.JournalofAgricultureandRuralDevelopmentintheTropicsandSubtropics114(1):29–38.Abera, K. (2013). Growth, productivity and nitrogen use efficiency ofmaize (Zeamays L.) asinfluenced by rate and time of nitrogen fertilizer application in Haramaya District. EasternEthiopia.Abrham,B.(2014).EstimatingSoilNutrientBalanceOfCerealLandsOfTigrayRegion,NorthernEthiopia(Doctoraldissertation,AAU).AgriculturalResearchCouncil[ARC].(1984).TheNutrientRequirementsofRuminantLivestockin:CommonwealthAgriculturalBureaux,FarnhamRoyal,UK.Amede, T. & Taboge, E. (2007). Optimizing Soil Fertility Gradients in the Enset (Enseteventricosum).Chapter26:SystemsoftheEthiopianHighlands:Trade-offsandLocalInnovations.In Advances in Integrated Soil Fertility management in Sub-Saharan Africa: Challenges andOpportunities,SpringerNetherlands:289-297.Araya, H., & Edwards, S. (2006). The Tigray experience: A success story in sustainableagriculture.EnvironmentandDevelopmentSeries4,ThirdWorldNetwork,Penang.RetrievedSeptember8,2015fromhttp://www.twnside.org.sg/title/end/ed04.htm.Beegle,K.,Carletto,C.,&Himelein,K.(2012).Reliabilityofrecallinagriculturaldata.JournalofDevelopmentEconomics98(1),34-41.Blazy, J.M., Ozier-Lafontaine, H., Doré, T., Thomas, A., &Wery, J. (2009). Amethodologicalframework that accounts for farmdiversity in theprototypingof cropmanagement systems.Applicationtobanana-basedsystemsinGuadeloupe.AgriculturalSystems101(1),30-41.

pg.93

Brandt,S.,Spring,A.,Hiebsch,C.J.,McCabe,T.,Tabogie,E.,Diro,M.,Wolde-Michael,G.,Yntiso,G., Shigeta, M., & Tesfaye, S. (1997). The 'Tree Against Hunger' Enset-Based AgriculturalsystemsinEthiopia,AmericanAssociationfortheAdvancementofScience.Carletto, C., Savastano, S., & Zezza, A. (2013). Fact or artifact: The impact of measurementerrorsonthefarmsize–productivityrelationship.JournalofDevelopmentEconomics103:254–261.CentralStatisticalAgencyofEthiopia[CSA]. (2007).The2007PopulationandHousingCensus:Resultsof SouthernNationsNationalitiesPeoplesRegion.Retrieved September3, 2015 fromhttp://unstats.un.org/unsd/censuskb20/Attachment489.aspx.Cherry,K.A.,M.Shepherd,P.J.A.Withers,andS.J.Mooney.2008.Assessingtheeffectivenessofactions tomitigatenutrient loss fromagriculture:Areviewofmethods.TheScienceof theTotalEnvironment406:1–23.CSA. (2007, December). Livestock Sample Survey (AgLVS 2006), version 1.0. RetrievedSeptember6,2015fromhttp://213.55.92.105/nada4/index.php/catalog/238.Cuttle,S.P.(2002).Nutrientbalancesasatoolforresearchersandfarmers.In:Powell,Janeandetal.,(Eds.)ProceedingsoftheUKOrganicResearch2002Conference,OrganicCentreWales,InstituteofRuralStudies,UniversityofWalesAberystwyth:153-156.Davies,O.,Wouters,A.P.,Gachimbi,L.,Zake,J.,Ergano,K.,Abduke,M.,&Keulen,H.V.(2009).Cattlemanuremanagement inEastAfrica:Reviewofmanurequalityandnutrient lossesandscenariosforcattleandmanuremanagement(No.258,p.47).Wageningen,theNetherlands:WageningenURLivestockResearch.Dessalegne,L.,Yesuf,M.,Bekele,A.,&Abera,D.(2012).Homegardensforfoodandnutritionsecurity:NationalappraisalandacasestudyinMeki-Zwayarea.StudyonHome GardenVegetableandFruitsProductioninEthiopia(CASCAPE):1-73.Dobermann, A.R. (2005). Nitrogen use efficiency–state of the art. University of Nebraska–LincolnAgronomy&HorticultureFacultyPublications:316-332.Elias,E. (2000).Soilenrichmentanddepletion insouthernEthiopia. International InstituteforEnvironmentandDevelopment:62-82.Elias, E. (2002). Farmers’ perceptions of soil fertility change andmanagement. ISD and SOS-SahelInternational(UK).EDMPrintingPress.AddisAbaba,Ethiopia.Elias, E.,Morse, S., & Belshaw, D. G. R. (1998). Nitrogen and phosphorus balances of KindoKoishafarmsinsouthernEthiopia.Agriculture,Ecosystems&Environment71(1),93-113.

pg.94

Esilaba, A. O., Nyende, P., Nalukenge, G., Byalebeka, J. B., Delve, R. J., & Ssali, H. (2005).Nutrient flows and nutrient balances for crop and animal production in smallholder farmingsystemsineasternUganda.Agriculture,Ecosystems&Environment109(3):192-201.Ethiopia Agricultural Transformation Agency [EATA]. (2014). Annual report 2013/2014:Transforming Agriculture in Ethiopia. Retrieved September 2, 2015 fromhttp://www.ata.gov.et/annualreport.Eyasu,E.(1997).SoilfertilitymanagementandnutrientbalanceinKindokoyishafarms:AcasestudyinNorthOmo,SouthernEthiopia,K.FRPtechnicalpamphlet,15.FAO.(1987).ICS-data,StatisticalDivision,FAO,Rome.Fantahun,A. (2015, July30).Ethiopia’skhatearnings indecline.EthiopiaObserver.RetrievedFebruary 12, 2016, from http://www.ethiopiaobserver.com/2015/08/ethiopias-khat-export-earnings-in-decline.Francom,M.G. (2015). Ethiopia aims to become one of theworld’s top 10 sugar producers.USDA Foreign Agricultural Service. Retrieved March 3, 2016 fromhttp://gain.fas.usda.gov/Recent%20GAIN%20Publications/Ethiopia%20Aims%20to%20/ecome%20One%20of%20the%20World%E2%80%99s%20Top%2010%20Sugar%20Producers%20_Addis%20Ababa_Ethiopia_11-5-2015.pdf.Gebremedhin, B., Hirpa, A., & Berhe, K. (2009). Feedmarketing in Ethiopia: Results of rapidmarketappraisal(No.15).InternationalLivestockResearchInstitute.Ghirotti, M. (1998). The role of livestock in mitigating land degradation, poverty and childmalnutrition in mixed farming systems: the case of coffee-growing midlands of Sidama,Ethiopia. Livestock and the Environment – International Conference: Animal Production andHealthDivisionbyFoodandAgricultureOrganizationoftheUnitedNations(FAO).Gourley,C.J.P.,Powell,J.M.,Dougherty,W.J.&Weaver,D.M.(2007).Nutrientbalancingasanapproach to improvingnutrientmanagementonAustraliandairy farms.Australian JournalofExperimentalAgriculture47:1064-1074.Haileslassie,A.,Priess, J.A.,Veldkamp,E.,&Lesschen, J.P. (2006). Smallholders’ soil fertilitymanagementintheCentralHighlandsofEthiopia:implicationsfornutrientstocks,balancesandsustainabilityofagroecosystems.NutrientCyclinginAgroecosystems75(1-3),135-146.HawassaUniversityAgriculturalCollegeSoilLaboratory.(2015).Hawassa,Ethiopia.Haque, T. (2006). Resource use efficiency in Indian agriculture. Indian Journal of AgricultureEconomics61(1):65-76.

pg.95

He,C.E.,Wang,X., Lui,X.,Fangmeier,A.,Christie,P.,&Zhang,F.Nitrogendepositionand itscontributiontonutrientinputstointensivelymanagedagriculturalecosystems.EcologyApplied20(1):80-90.Heuzé V., TranG., Baumont R., Noblet J., RenaudeauD., LessireM., Lebas F. (2015).Wheatbran.Feedipedia,aprogrammebyINRA,CIRAD,AFZandFAO.RetrievedOctober4,2015fromhttp://www.feedipedia.org/node/726.HeuzéV.,TranG.,ArchimèdeH.,LebasF.(2015).Sugarcanetops.Feedipedia,aprogrammebyINRA,CIRAD,AFZandFAO.RetrievedOctober4,2015fromhttp://feedipedia.org/node/558.Jackson-Smith,D.(2010).TowardSustainableAgriculturalSystemsinthe21stCentury.NationalAcademiesPress.Kelly, V.A., & Naseem, A. (2004). Fertilizer use in Sub-Saharan Africa: Types and amounts.AgriculturalSciences2:1-7.Kebede,M. (2012).Determinationof Soil P forOptimumDurumWheatProduction inAda’a,AkakiandChefeDonsaofTheEastShewa,OromiyaRegionalStateInCentralEthiopia.JournalofEnvironmentandEarthScience2(1):1-9.Kimani, S.K., & Lekasi, J.K. (2004). Managing manures throughout their production cycleenhancestheirusefulnessasfertilisers:Areview.In:BationoA.(Ed.)ManagingNutrientCyclestosustainSoilFertilityinSub-SaharanAfrica.CIAT-TSBF,Nairobi,Kenya.Kippie, K.T. (2002). 5000 years of sustainability? A case study on Gedeo land use. PhDDissertation,WageningenUniversity,TheNetherlands.Kiros,G.,Haile,M.,&Gebresamuel,G.(2012).Resourcesflowandnutrientsbalanceanalysis:Nutrientsflowassociatedwiththeresourcesandtheirimpactonsoilfertilitymanagement.PhDDissertation,AksumUniversity–ShireCampus.ISBN978-3-84-84-9928-1:1-69.Kiros, G., Haile, M., & Gebresamuel, G. (2014). Assessing the Input and Output Flows andNutrientsBalanceAnalysisatCatchmentLevelinNorthernEthiopia.JournalofSoilScienceandEnvironmentalManagement5(1),1-12.Kumar, B.M., & Nair, P.R. (2004). The enigma of tropical homegardens. In New vistas inagroforestry.SpringerNetherlands:132-152.Lekasi, J.K., Tanner, J.C., Kimani, S.K., Harris, P.J.C. (2003). Cattlemanure quality inMaraguaDistrict,CentralKenya:effectofmanagementpracticesanddevelopmentofsimplemethodsofassessment.Agriculture,EcosystemsandEnvironment94:289-298.

pg.96

Leng, R. A., & Preston, T. R. (1976). Sugar cane for cattle production, present constraints,perspectivesandresearchpriorities.TropicalAnimalProduction1:1-22.Lesschen,J.P.,Stoorvogel,J.J.,Smaling,E.M.A.,Heuvelink,G.B.M.,&Veldkamp,A.(2007).Aspatiallyexplicitmethodologytoquantifysoilnutrientbalancesandtheiruncertaintiesat thenationallevel.NutrientCyclinginAgroecosystems78(2):111-131.Mahala, A.G.,Mokhtar, A.M.S., Amasiab, E.O. & AttaElmnan, B.A. (2013). Sugarcane tops asanimal feed. International Research Journal of Agriculture Science and Soil Science 3(4): 147-151.Makken,F.(1993).NutrientsupplyanddistributionatcountrylevelcasestudyofMalawiandEthiopia.DutchAssociationofFertilizerProducers(VPK),Leidschendam:165-223.Mellisse, B.T., Van de Ven, G., & Descheemaeker, K. (in prep). Chapter One: Home gardensystem dynamics in Southern Ethiopia. PhD Dissertation, Wageningen University, TheNetherlands.MinistryofAgriculture (Ethiopia). (2000).Agro-ecological ZonationsofEthiopia.AddisAbaba,Ethiopia.Mitchell, C.C. (2008).Nutrient content of fertilizermaterials. AlabamaCooperative ExtensionSystem:AuburnUniversity.Munters, P. J. A. L. (1997). The Dutch Manure Policy: MINAS (Nutrient accounting system)ReportfromDutchDept.ofAgricultureoftheMinistryofAgriculture,NatureManagementandFisheries.FortheDanishFolketing.Murphy, H. F. (1963). Fertility and other data on some Ethiopian soils. Imperial EthiopianCollegeofAgricultureandMechanicalArts.Mwangi, W. M. (1996). Low use of fertilizers and low productivity in sub-Saharan Africa.NutrientCyclinginAgroecosystems47(2),135-147.Myburgh,J.,Osthoff,G.,Hugo,A.,DeWit,M.,Nel,K.,&Fourie,D.(2012).Comparisionofthemilk composition of free-ranging indigenous African cattle breeds. South African Journal ofAnimalScience42(1):2-14.Öborn,I.,Edwards,A.C.,Witter,E.,Oenema,O.,Ivarsson,K.,Withers,P.J.A.,...&Stinzing,A.R.(2003).Elementbalancesasatoolforsustainablenutrientmanagement:acriticalappraisalof their merits and limitations within an agronomic and environmental context. EuropeanJournalofAgronomy20(1):211-225.

pg.97

Oenema,O.,Kros,H.,&deVries,W.(2003).Approachesanduncertaintiesinnutrientbudgets:implications for nutrient management and environmental policies. European Journal ofAgronomy20(1),3-16.Paul, S.,Onduru,D.,Wouters, B.,Gachimbi, L., Zake, J.,& Ebanyat, P. (2009). CattlemanuremanagementinEastAfrica.Assessment94:289-298.Roe,M.,Pinchen,H.,Church,S.,&Finglas,P.(2012).Nutrientanalysisofeggs:analyticalreport.InstituteofFoodResearchUKDepartmentofHealth:2-44.Rotz, C.A. (2004). Management to reduce nitrogen losses in animal production. Journal ofAnimalScience82(13):119-137.Roy, R.N., Misra, R.V., Lesschen, J.P. & Smaling, E.M.A. (2003). Assessment of soil nutrientbalance: Approaches andmethodologies.FAO Fertilizer and PlantNutrition Bulletin 14. FoodandAgricultureOrganization,Rome.Smaling,E.M.A.(1993).Soilnutrientdepletioninsub-SaharanAfrica. In:VanReuler,H.,Prins,W.H. (Eds.),TheRoleofPlantNutrients forSustainableFoodCropProduction inSub-SaharanAfrica.DutchAssociationofFertilizerProducers(VKP),Leidschendam:232.Spring, A.,Hiebsch, C.,McCabe, J. T., Tabogie, E., Diro,M.,Wolde-Michael,G.,& Tesfaye, S.(1997).TheTreeAgainstHunger:Enset-BasedAgriculturalSysteminEthiopia.Washington,DC,USA:AmericanAssociationfortheAdvancementofScience.Stoorvogel,J.J.,&Smaling,E.M.A.(1990).AssessmentofsoilnutrientdepletioninSub-SaharanAfrica:1983-2000(Vol.1).Wageningen:WinandStaringCentre.Stoorvogel, J.J., Smaling, E.M.A., & Janssen, B.H. (1993). Calculating soil nutrient balances inAfricaatdifferentscales:I-supra-nationalscale.FertilizerResearch35:227-235.Syers, J.K. (1997).Managing soils for long-termproductivity. Philosophical TransactionsRoyalSocietyofLondon(B)352:1011-1021.Tadele, R. (2008). Farmer’s Perception of Environmental Degradation and Their Response toEnvironmentalManagement:ACaseofDaleWoreda,SidamaZone,SNNPR.Tena, W. & Beyene, S. (2011). Identification of growth limiting nutrient(s) in alfisols: Soilphysico-chemical properties, nutrient concentrations and biomass yield of maize. AmericanJournalofPlantNutritionandFertilizationTechnology1:23-35.The National Agricultural Library. (2015). United States Department of Agriculture.NationalNutrientDatabaseforStandardReferenceRelease28.

pg.98

Tizale,C.Y.(2007).ThedynamicsofsoildegradationandincentivesforoptimalmanagementintheCentralHighlandsofEthiopia.PhDDissertation,UniversityofPretoria,SouthAfrica.Tsegaye,Y.(2001).Coffee-Ensete-LivestockinteractionforsustainablelivelihoodintheSidamaareaofsouthernEthiopia.JournalofAgricultureintheTropicsandSubtropics102(2):119-131.United States Agency for International Development [USAID]. (2005). Southern Nations,Nationalities, and Peoples Region (SNNPR) Overview of Livelihood Profiles. USAID DisasterPrevention and Preparedness Commission (DPPC), The Government of Ethiopia. RetrievedOctober14,2015fromhttp://pdf.usaid.gov/pdf_docs/Pnadj867.pdf.Vanlauwe, B., & Giller, K. E. (2006). Popularmyths around soil fertilitymanagement in sub-SaharanAfrica.Agriculture,Ecosystems&Environment116(1),34-46.Van den Broek, J. & Van Hofwegen, G. (2013). Increasing nutrient use efficiency in Dutchagriculture. Retrieved September 20, 2015 from http://www.pbl.nl/sites/default/files/cms/publicaties/van_den_broek_-_verhoging_n-benutting.pdf.Van Ittersum, M.K., Claasen, G.D.H., Rossing, W.A.H., Schipper, R.A., Descheemaeker, K.,Stoorvogel, J.J., &De Ridder, N. (2014). Quantitative Analysis of LandUse SystemsQUALUS.Wageningen University PPS-30306 Course Guide: Plant Production Systems, OperationalResearchandLogistics,FarmingSystemsEcology,DevelopmentEconomics,SoilGeographyandLandscape.VanHeerden,S.M.,Schonfeldt,H.C.,Smith,M.F.,&JansenvanRensburg,D.M.(2002).NutrientcontentofSouthAfricanChickens.JournalofFoodCompositionandAnalysis15:47-64.Wallace,M.B.,&Knausenberger,W.I. (1997). Inorganic fertilizeruse inAfrica: Environmentaland economic distribution. Environmental and Natural Resources Policy and Training (EPAT)Project:WinrockInternationalEnvironmentalAlliance:1-53.Wander,M.(2015).Nutrientbalancebasicsfororganicfarming.eOrganic.RetrievedMarch3,2016 from http://articles.extension.org/pages/18794/nutrient-balance-basics-for-organic-farming-systems.Ward Jr, J.H. (1963). Hierarchical grouping to optimize an objective function. Journal of theAmericanStatisticalAssociation58(301),236-244.WondoGenetCollegeSoilLaboratory.(2015).WondoGenet,Ethiopia.

pg.99

7.APPENDICES

7.1CONVERSIONTABLE

Unit inkilogram(s)Chinet 50.00Cup(milk) 0.25Egg 0.06Ensetleaf 1.93Esir 1.00Gimbola 9.78Kutal 100.00Liter(milk) 1.00Shekim 12.48Zurba 1.00

pg.100

7.2NUTRIENTCONTENT

Croptype Specification Drymatter(%) N(ppm) TotalN(%) P(ppm) TotalP(%) K(ppm) TotalK(%) Reference(N) Reference(P&K)7year 31.15 4110 0.41 1301 0.13 3150 0.32 HawassaSoilLab(2015) WondoGenetSoilLab(2015)

6year 7520 0.75 1455 0.15 5175 0.52 HawassaSoilLab(2015) WondoGenetSoilLab(2015)

5year 8460 0.85 1828 0.18 9975 1.00 HawassaSoilLab(2015) WondoGenetSoilLab(2015)

4year 18330 1.83 1394 0.14 7200 0.72 HawassaSoilLab(2015) WondoGenetSoilLab(2015)

3year 18800 1.88 1642 0.16 6075 0.61 HawassaSoilLab(2015) WondoGenetSoilLab(2015)

Average 11444 1.14 1524 0.15 6315 0.637year 53.69 9870 0.99 1828 0.18 3650 0.37 HawassaSoilLab(2015) WondoGenetSoilLab(2015)

6year 9400 0.94 3321 0.33 6175 0.62 HawassaSoilLab(2015) WondoGenetSoilLab(2015)

5year 10340 1.03 3057 0.31 4050 0.41 HawassaSoilLab(2015) WondoGenetSoilLab(2015)

Average 9870 0.99 2736 0.27 4625 0.467year 12.85 13630 1.36 5187 0.52 44975 4.50 HawassaSoilLab(2015) WondoGenetSoilLab(2015)

6year 14.69 10340 1.03 4440 0.44 53000 5.30 HawassaSoilLab(2015) WondoGenetSoilLab(2015)

5year 15.11 16450 1.65 5560 0.56 45275 4.53 HawassaSoilLab(2015) WondoGenetSoilLab(2015)

4year 13.30 12220 1.22 3321 0.33 39625 3.96 HawassaSoilLab(2015) WondoGenetSoilLab(2015)

3year 12.76 13160 1.32 3881 0.39 47325 4.73 HawassaSoilLab(2015) WondoGenetSoilLab(2015)

Average 13.74 13160 1.32 4478 0.45 46040 4.60

Grass Fromkhat,enset

andcoffeefields33.00 16300 1.63 4900 0.49 19600 1.96 HawassaSoilLab(2015) WondoGenetSoilLab(2015)

Coffeeberry None 36.00 15510 1.55 3134 0.31 31875 3.19 HawassaSoilLab(2015) WondoGenetSoilLab(2015)

Coffeebean None 36.04 22090 2.21 4627 0.46 21625 2.16 HawassaSoilLab(2015) WondoGenetSoilLab(2015)

Grain 78.13 11750 1.18 6679 0.67 10200 1.02 HawassaSoilLab(2015) WondoGenetSoilLab(2015)

Grain 78.13 13160 1.32 7052 0.71 8200 0.82 HawassaSoilLab(2015) WondoGenetSoilLab(2015)

Grainaverage 78.13 12455 1.25 6866 0.69 9200 0.92Straw 71.24 7050 0.71 3694 0.37 2490 0.25 HawassaSoilLab(2015) WondoGenetSoilLab(2015)

Straw 71.24 5170 0.52 2388 0.24 14175 1.42 HawassaSoilLab(2015) WondoGenetSoilLab(2015)

Strawaverage 71.24 6110 0.61 3041 0.30 8333 0.83Grain 70.27 11280 1.13 5373 0.54 5075 0.51 HawassaSoilLab(2015) WondoGenetSoilLab(2015)

Stover 33.10 6580 0.66 16731 1.67 14175 1.42 HawassaSoilLab(2015) WondoGenetSoilLab(2015)

Cabbage None 25.00 20800 2.08 26000 2.60 16960 1.70 TheNationalAgriculturalLibrary(2015) TheNationalAgriculturalLibrary(2015)

Leaf 22.76 22090 2.21 5000 0.50 26750 2.68 HawassaSoilLab(2015) WondoGenetSoilLab(2015)

Root 22.76 49350 4.94 5000 0.50 24175 2.42 HawassaSoilLab(2015) WondoGenetSoilLab(2015)

Average 22.76 35720 3.57 5000 0.50 25463 2.55Dwarfleaf 33.79 11800 1.18 3838 0.38 13250 1.33 HawassaSoilLab(2015) WondoGenetSoilLab(2015)

Dwarftwigs 25.04 17400 1.74 5933 0.59 11125 1.11 HawassaSoilLab(2015) WondoGenetSoilLab(2015)

Tallleaf 34.40 14100 1.41 4254 0.43 18200 1.82 HawassaSoilLab(2015) WondoGenetSoilLab(2015)

Talltwigs 25.71 14100 1.41 4627 0.46 19750 1.98 HawassaSoilLab(2015) WondoGenetSoilLab(2015)

Average 29.74 14350 1.44 4663 0.47 15581 1.56Milk None n/a 3610 0.36 930 0.09 1550 0.16 Myburghetal.(2012) Myburghetal.(2012)

Butter Sameasmilk(forthis

study)n/a 3610 0.36 930 0.09 1550 0.16 Myburghetal.(2012) Myburghetal.(2012)

Eggs None n/a 2016 0.20 1450 0.15 1790 0.18 Roeetal.(2012) Roeetal.(2012)

Chicken

Bothmaleandfemale,

mineralsforraw

chickenmeatobtained

fromskin,whiteand

darkmeat(1.3kgbody

weightassumed)

n/a 84000 8.40 5380 0.54 6820 0.68 VanHeerdenetal.(2002) VanHeerdenetal.(2002)

Smallruminants(goat,sheep)

Male(30kgemptybody

weightassumed)n/a 25000 2.50 6000 0.60 2000 0.20 AgriculturalResearchCouncil(1984) AgriculturalResearchCouncil(1984)

Smallruminants(goat,sheep)

Female(30kgempty

bodyweightassumed)n/a 23000 2.30 6000 0.60 2000 0.20 AgriculturalResearchCouncil(1984) AgriculturalResearchCouncil(1984)

Largeruminant(cattle)

Bothmaleandfemale

(500kgtypicalmature

cowweightassumed)

n/a 24320 2.43 7233 0.72 1940 0.19 AgriculturalResearchCouncil(1984) AgriculturalResearchCouncil(1984)

Homegardencompost

Averageistaken.

Includesmanureand

householdleftovers

26.37 8300 0.83 300 0.03 2900 0.29 HawassaSoilLab(2015) WondoGenetSoilLab(2015)

Onion

Khat

Ensetkocho

Ensetbula

Ensetleaf

Barley

Maize

pg.101

Croptype Specification Drymatter(%) N(ppm) TotalN(%) P(ppm) TotalP(%) K(ppm) TotalK(%) Reference(N) Reference(P&K)7year 31.15 4110 0.41 1301 0.13 3150 0.32 HawassaSoilLab(2015) WondoGenetSoilLab(2015)

6year 7520 0.75 1455 0.15 5175 0.52 HawassaSoilLab(2015) WondoGenetSoilLab(2015)

5year 8460 0.85 1828 0.18 9975 1.00 HawassaSoilLab(2015) WondoGenetSoilLab(2015)

4year 18330 1.83 1394 0.14 7200 0.72 HawassaSoilLab(2015) WondoGenetSoilLab(2015)

3year 18800 1.88 1642 0.16 6075 0.61 HawassaSoilLab(2015) WondoGenetSoilLab(2015)

Average 11444 1.14 1524 0.15 6315 0.637year 53.69 9870 0.99 1828 0.18 3650 0.37 HawassaSoilLab(2015) WondoGenetSoilLab(2015)

6year 9400 0.94 3321 0.33 6175 0.62 HawassaSoilLab(2015) WondoGenetSoilLab(2015)

5year 10340 1.03 3057 0.31 4050 0.41 HawassaSoilLab(2015) WondoGenetSoilLab(2015)

Average 9870 0.99 2736 0.27 4625 0.467year 12.85 13630 1.36 5187 0.52 44975 4.50 HawassaSoilLab(2015) WondoGenetSoilLab(2015)

6year 14.69 10340 1.03 4440 0.44 53000 5.30 HawassaSoilLab(2015) WondoGenetSoilLab(2015)

5year 15.11 16450 1.65 5560 0.56 45275 4.53 HawassaSoilLab(2015) WondoGenetSoilLab(2015)

4year 13.30 12220 1.22 3321 0.33 39625 3.96 HawassaSoilLab(2015) WondoGenetSoilLab(2015)

3year 12.76 13160 1.32 3881 0.39 47325 4.73 HawassaSoilLab(2015) WondoGenetSoilLab(2015)

Average 13.74 13160 1.32 4478 0.45 46040 4.60

Grass Fromkhat,enset

andcoffeefields33.00 16300 1.63 4900 0.49 19600 1.96 HawassaSoilLab(2015) WondoGenetSoilLab(2015)

Coffeeberry None 36.00 15510 1.55 3134 0.31 31875 3.19 HawassaSoilLab(2015) WondoGenetSoilLab(2015)

Coffeebean None 36.04 22090 2.21 4627 0.46 21625 2.16 HawassaSoilLab(2015) WondoGenetSoilLab(2015)

Grain 78.13 11750 1.18 6679 0.67 10200 1.02 HawassaSoilLab(2015) WondoGenetSoilLab(2015)

Grain 78.13 13160 1.32 7052 0.71 8200 0.82 HawassaSoilLab(2015) WondoGenetSoilLab(2015)

Grainaverage 78.13 12455 1.25 6866 0.69 9200 0.92Straw 71.24 7050 0.71 3694 0.37 2490 0.25 HawassaSoilLab(2015) WondoGenetSoilLab(2015)

Straw 71.24 5170 0.52 2388 0.24 14175 1.42 HawassaSoilLab(2015) WondoGenetSoilLab(2015)

Strawaverage 71.24 6110 0.61 3041 0.30 8333 0.83Grain 70.27 11280 1.13 5373 0.54 5075 0.51 HawassaSoilLab(2015) WondoGenetSoilLab(2015)

Stover 33.10 6580 0.66 16731 1.67 14175 1.42 HawassaSoilLab(2015) WondoGenetSoilLab(2015)

Cabbage None 25.00 20800 2.08 26000 2.60 16960 1.70 TheNationalAgriculturalLibrary(2015) TheNationalAgriculturalLibrary(2015)

Leaf 22.76 22090 2.21 5000 0.50 26750 2.68 HawassaSoilLab(2015) WondoGenetSoilLab(2015)

Root 22.76 49350 4.94 5000 0.50 24175 2.42 HawassaSoilLab(2015) WondoGenetSoilLab(2015)

Average 22.76 35720 3.57 5000 0.50 25463 2.55Dwarfleaf 33.79 11800 1.18 3838 0.38 13250 1.33 HawassaSoilLab(2015) WondoGenetSoilLab(2015)

Dwarftwigs 25.04 17400 1.74 5933 0.59 11125 1.11 HawassaSoilLab(2015) WondoGenetSoilLab(2015)

Tallleaf 34.40 14100 1.41 4254 0.43 18200 1.82 HawassaSoilLab(2015) WondoGenetSoilLab(2015)

Talltwigs 25.71 14100 1.41 4627 0.46 19750 1.98 HawassaSoilLab(2015) WondoGenetSoilLab(2015)

Average 29.74 14350 1.44 4663 0.47 15581 1.56Milk None n/a 3610 0.36 930 0.09 1550 0.16 Myburghetal.(2012) Myburghetal.(2012)

Butter Sameasmilk(forthis

study)n/a 3610 0.36 930 0.09 1550 0.16 Myburghetal.(2012) Myburghetal.(2012)

Eggs None n/a 2016 0.20 1450 0.15 1790 0.18 Roeetal.(2012) Roeetal.(2012)

Chicken

Bothmaleandfemale,

mineralsforraw

chickenmeatobtained

fromskin,whiteand

darkmeat(1.3kgbody

weightassumed)

n/a 84000 8.40 5380 0.54 6820 0.68 VanHeerdenetal.(2002) VanHeerdenetal.(2002)

Smallruminants(goat,sheep)

Male(30kgemptybody

weightassumed)n/a 25000 2.50 6000 0.60 2000 0.20 AgriculturalResearchCouncil(1984) AgriculturalResearchCouncil(1984)

Smallruminants(goat,sheep)

Female(30kgempty

bodyweightassumed)n/a 23000 2.30 6000 0.60 2000 0.20 AgriculturalResearchCouncil(1984) AgriculturalResearchCouncil(1984)

Largeruminant(cattle)

Bothmaleandfemale

(500kgtypicalmature

cowweightassumed)

n/a 24320 2.43 7233 0.72 1940 0.19 AgriculturalResearchCouncil(1984) AgriculturalResearchCouncil(1984)

Homegardencompost

Averageistaken.

Includesmanureand

householdleftovers

26.37 8300 0.83 300 0.03 2900 0.29 HawassaSoilLab(2015) WondoGenetSoilLab(2015)

Onion

Khat

Ensetkocho

Ensetbula

Ensetleaf

Barley

Maize

pg.102

7.3SURVEY:INPUTSANDOUTPUTSINFIVEHOMEGARDENTYPESINSOUTHERNETHIOPIANameofhouseholdhead:Sex:

Woreda(District):

Kebele(Village):

Agro-ecology:Altitude:

DistancefromHawassa(km):

Distancefrommajorroads:Wealthstatus:

Coordinates:

Form1:Householdcomposition

HHM# Name Gender Age RelationtoHH Mainoccupation(1)

Mainoccupation(2) Educationlevel Presence(days

permonth)

HHM01

HHM02

HHM03

HHM04

HHM05

HHM06

HHM07

HHM08

HHM09

HHM10

HHM11

HHM12

HHM=householdmember

pg.103

Form2:Descriptionoffields(F)fromSeptember2014—August2015

Croptypeinspecificfield

Area(m2/ha)

DistancefromHS(m)

Inputtodifferentfields

Fertilizer Manure/compost Other DAP

(kg) Price When Urea(kg) Price When Quantity Unit When

(month)Herbicide(L/kg)

Priceperunit

When(month)

Frontyardgrazing

Enset Coffee Coffee+Enset

Khat Maize Barley Wheat Teff Vegetables Rootandtuber

Other Seed Malatine

(L/kg)Priceperunit(ዋጋ)

When(month)

DDT(L/kg)

Price(ዋጋ) When(month) Kilogram

Price(perkg)

Khat Maize Barely Wheat

Checklist:seed,fertilizer(e.g.DAP,urea),manure(e.g.FYMcattle,FYMchicken),pesticides(e.g.fungicide,herbicide,insecticide),hiredlabor(weedingforspecificF),machineryrent,croppingaids(sticks,plastic),fuelforirrigationandmore.

pg.104

Form2-I:Cropmanagement(inputsforeachspecificfield)

Nursery(seedbedpreparation) Transplanting/planting Weeding Harvesting/processing When

Date/MonthNo

labourPriceperunit/day

WhenDate/Month

Nolabour

Price/day

WhenDate/Month

Nolabour

Price/day

WhenDate/Month Nolabour Price/day

Enset

Coffee

Khat

Maize

Barley

Wheat

Teff

Vegetables

Rootandtuber

pg.105

Form2-O:Cropyields&residuemanagement(outputsfromeachfield)

Noensetharvested/cropyield Ensetleavesold No

FrequencyWhen

Date/MonthAmount(kg/localmeasurement) Amountsold(kg/localchinet)

Kocho Bula Kacha Kocho Price Bula Price Amountleave Price

Enset

Coffee Fresh Dry Fresh Price Dry Price

Timeofharvesting/year Harvest1 Harvest2 Harvest3 Harvest1 Price Harvest2 Price Harvest2 Price

1.September,2.March,3.June-July Nozurba Nozurba Nozurba Khat

Vegetables

Sugarcane Maize Barley Wheat Teff

Checklist:outputstoanywhere;cropproductsforsale(toEXT),forconsumption/storage(toSA),forprocessing(toOA);residuesforanimals(toAA)andcomposting.

pg.106

Form2A:Animalnumbersandchanges

AA(sub)type2014/2015 Sold(-) Born(+) Died(-) Consumed(-) Otherin(+) Otherout(-) Now(2015)

No. No No. No. No. No. No. No.LactatingCow Drycow Oxencastrated

Oxenintact(bull)

Heifer

Calves

Sheepadultmale Sheepyoungmale Sheepadultfemale

Sheepyoungfemale

Goatadultmale Goatyoungmale Goatadultfemale

Goatyoungfemale

Donkey Horse Chicken

Beestraditionalhive

Beesmodernhive

pg.107

Form2A-I:Animalfeeding&care(inputsinanimalactivities)

Checklist:inputsfromownfarm:ensetleaves,treetwigsandleaves,sugarcanetop,fodder.Purchased:purchasedfeeds(e.g.concentrates,cropresidues,saltlick,sugarcanetop),veterinaryservices.

Nameofproduct Ensetleave Grassfromyourfarm

(shekim) Concentrate Others Labour

Dryseason Rainyseason Rainyseason Dryseason Rainyseason Communalland Dry Rainy

No.enset(leaf/day) No.enset(leaf/day) Enset Coffee Khat Furushka

(kg) Price Furushka(kg) Price No.months

/year No No

Cattlecrossbred Cattleindigenous Sheep Goat Donkey Horse Chicken Treetwigsandleave Sugarcanetop Fodder Salt Medicine Dryseason Rainyseason Dry Rainy Dry Rainy Dry Price Rainy Price Cost(birr)Cattlecrossbred Cattleindigenous Sheep Goat Donkey Horse Chicken

pg.108

Form2-O:AA:Animalproduction(outputfromanimalactivities)

LivestocktypeMilk/butteroreggproduced(kg/liter) Sold

Milk/day Butter Egg/year Milk(kg)/day Price When Butter Price When Egg PriceCattlecrossbred Cattleindigenous Sheep Goat Chicken

Checklist:outputstoanywhere;animalproducts(milk,eggs,skins)forsale(toEXT)orforconsumption(toSA);manureandliveanimalforsale.

Form3-I:Manure&compostinputs(inputsinredistributionactivitiesortocompostpit)

Tocompostpit Tofieldsdirectly Ensetfield Coffeefield Khatfield

Cowdung Householdwaste Cowdung When(everydayorweekly

Cowdung

When(everydayorweekly

Cowdung

When(everydayorweekly

Cattle Sheep Goat Donkey Horse Chicken

Checklist:inputsfromoutsidepurchasedmanureandcompost,residuesforcomposting,compoststartersandenrichmentsorownfarm.

pg.109

Form3-O:Manure&compostmanagement(outputsfromredistributionactivitiesorfromcompostpit)

Fromcompostto... When(e.g.daily,weekly,monthly,

2timesayearetc.Quantityperapplicationtime

Unit Reason(saleorfields)

Ensetfield Coffeefield Ensetandcoffee Khatfield Maizefield Barleyfield Vegetablefield Assetsofthefarms No Price Cart Motorbike Car Mill Checklist:outputstoanywhere;compostandmanureforuseoncrops(toF)orsales(toEXT).

pg.110

Form4-I:Servicesobtainedathouseholdlevel(labourhirein)

To When What

No Date/Month Nameofservice/activities Quantity(no) Unit(mandayor---- Priceperunit Remarks

1 Khatfield

2 Ensetfield

3

4

5

6

7 Ext=externalchecklist.Form4-O:Off-farmlabor(servicesprovidedbyhouseholdmembersorlabourhireout)

HHM When What Responsible

No. Date/Month Nameofservice HHM# Quantity Unit(days) Priceperunit Remarks

1 Father

2 Son

3 Daughter

4

5

HHM;servicesprovidedbyhouseholdmembers;off-farmlabor(preferablyrecordedinno.ofdays),rentreceivedfromlandrentedout.

pg.111

Form5-I:Inputsintostock(externalinputsintostorageactivitiesorpurchaseditems)

No When What

Date/Month Nameofproduct Quantity Unit Priceperunit Remarks

1

2

3

4

5

Checklist:inputsfromoutside;purchasesofstaplefood(grainsandpulses)

Form5-O:Outputsfromstock(outputfromstorageactivities)

No When What

Date/Month Nameofproduct Quantity Unit Priceperunit Remarks(saleorsowing)

Checklist:outputstoanywhere;useofproductsinstockforsowing,sales(toEXT),andHouseholdconsumption.