wet flue gas desulphurization (fgd) optimization

18
Wet Flue Gas Desulphurization (FGD) Optimization Steve Piche, Ph.D. Director of Applied Development Pegasus Technologies Delin (Daren) Zhang, Ph.D. Manager of Operations and New Business Development Pegasus Technologies (China) Brad J. Radl President & CTO Pegasus Technologies

Upload: others

Post on 03-Feb-2022

10 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Wet Flue Gas Desulphurization (FGD) Optimization

Wet Flue Gas Desulphurization (FGD) Optimization

Steve Piche, Ph.D.Director of Applied DevelopmentPegasus TechnologiesDelin (Daren) Zhang, Ph.D.Manager of Operations and New Business DevelopmentPegasus Technologies (China)Brad J. RadlPresident & CTOPegasus Technologies

Page 2: Wet Flue Gas Desulphurization (FGD) Optimization

Outline

• Review of Wet FGD• FGD Optimization• Results• Benefits

Page 3: Wet Flue Gas Desulphurization (FGD) Optimization

Flue GasDesulfurization– Wet FGD– Dry FGD– FDA

ParticulateControl– Fabric Filter– Electrostatic

Precipitator

AshHandling

Pulverizer

Boiler

Steam Turbineand Generator

Coal Pile

-SCR Systems-SCONOx

Burner Systems- LNCFS- TFS 2000TM

- Fuel Switching

Substation Systems

NOx Control

Power Plant Optimization Systems

Page 4: Wet Flue Gas Desulphurization (FGD) Optimization

Flue GasDesulfurization– Wet FGD– Dry FGD– FDA

ParticulateControl– Fabric Filter– Electrostatic

Precipitator

AshHandling

Pulverizer

Boiler

Steam Turbineand Generator

Coal Pile

-SCR Systems-SCONOx

Burner Systems- LNCFS- TFS 2000TM

- Fuel Switching

Substation Systems

NOx Control

Post-Combustion Systems

Page 5: Wet Flue Gas Desulphurization (FGD) Optimization

MAKE-UP WATER TANK

TO WWTS

HYDROCLONE

BELT FILTER

SPRAY TOWER ABSORBER

ELECTROSTATIC PRECIPITATOR

STACKWATER

AIR

LIMESTONE

BALL MILL

TO BALL MILL

FROM MW TANK

GYPSUM

FGD Process Diagram

Page 6: Wet Flue Gas Desulphurization (FGD) Optimization

SO2(Sulfur dioxide)

H2O(Water)

CaCO3(Calcium carbonate,

limestone)

O2(Oxygen)

CaSO4•2H2O(Calcium sulfate,

gypsum)

CO2(Carbon dioxide)

SO2 + CaCO3 + ½O2 + H2O → CaSO4•2H2O + CO2

FGD Process Chemical Reaction

Page 7: Wet Flue Gas Desulphurization (FGD) Optimization

DCS and Historian

Pegasus Data Interface

Power Perfecter™ Implementation

Workstation

GlobalOptimizer

Auto-Retune

APC MVCController

OptimizerControllerScheduler

Real-Time Feedback

PowerPerfecter

Page 8: Wet Flue Gas Desulphurization (FGD) Optimization

MPC Functionality

• Advanced Process Controller: Used to reduce variability on a high frequency (minute by minute or faster) basis due to external factors, thus, driving the manipulated variables to optimal settings.

Page 9: Wet Flue Gas Desulphurization (FGD) Optimization

Model Predictive Control

MV set point

MV measured value

MV prediction

CV prediction

CV measured valuePerfecter optimizes future trajectories using an internal simulation

Use first step of horizon

CV desired valuecurrent time indicator

Page 10: Wet Flue Gas Desulphurization (FGD) Optimization

Power Perfecter™ Advantages

Reduced Variability- By Moving the Manipulated Variables at the right

time and right amount so that CV’s stay close to their setpoints

Optimal Allocations of the resources (MV), to achieve better objective- Calculating the optimal combination among

Manipulated Variables trajectories for minimizing the overall cost function

Page 11: Wet Flue Gas Desulphurization (FGD) Optimization

Power Perfecter™ Advantage –Reduced Variability

Reduced Variability Results in – Reduced maintenance– Safe operation– Increased efficiency

Con

trol

led

Var

iabl

e

Manual PID MPC

Maximum Limit

Wei

ght f

ract

ion

Controlled Variable

Manual

DCS

Power Perfecter

Example: Steam Temperature and Pressure Control 50% Reduction in Variability is Typical

Page 12: Wet Flue Gas Desulphurization (FGD) Optimization

Power Perfecter™ Advantage Optimal Resource Allocations

CO

Time

CO Maximum Limit

NO

xC

O

Time

CO Maximum Limit

NO

x

Steady State Models andOptimizer

Dynamic Controller

(MPC)

Power Perfecterk

Targets

Page 13: Wet Flue Gas Desulphurization (FGD) Optimization

13

Goals:• Use Power Perfecter to maximize SO2 removal• Maintain gypsum quality• Minimize power usage

Recycle Slurry pH ControlStack SO2

Process Setpoints(Manipulated Variables)

Uncontrolled Influences(Disturbance Variables)

Process Results(Controlled Variables)

PerfecterFGD

Controller

Gypsum QualityRecycle Pumps

Coal Quality

Boiler Load

Coal Sulphur Content

Oxidation Air Control

Wet FGD Optimizer

Page 14: Wet Flue Gas Desulphurization (FGD) Optimization

WFGD Simulation:

Basis: Dynamic simulation of WFGD process based on proprietary ALSTOM WFGD spray-tower steady-state design techniques and empirical dynamic observations.

Page 15: Wet Flue Gas Desulphurization (FGD) Optimization

Comparison of Control Schemes

2000

4000

6000

8000

10000

12000

14000

16000

Time (126 days)

Inle

t SO

2 (lb

/hr)

250

350

450

550

650

750

850

950

Out

let S

O2

(lb/h

r)

Inlet SO2SO2 Emissions: 1 Day Rolling AverageSO2 Emissions: 30 Day Rolling AverageSO2 Emissions Target

Conventional PID/FF Controls 1-Day MPC Target 30-Day MPC Target

Page 16: Wet Flue Gas Desulphurization (FGD) Optimization

Operational Summary of Control Schemes

All Cases: Average Gypsum Quality: 95.2%

Rolling AverageTarget: 515 lb/hr

SO2 Emissions (lb/ hr)

Average Median Standard Deviation

Maximum Minimum

Instantaneous Conventional PID/ FF 504.8 488.7 153.2 1331.4 114.6 MPC: 1 Day Target 515.1 512.1 58.2 1225.1 122.0 MPC: 30 Day Target 510.5 511.5 99.0 1166.0 143.01 Hour Rolling Average Conventional PID/ FF 504.9 488.0 151.8 983.0 213.2 MPC: 1 Day Target 515.1 512.5 53.4 708.9 338.0 MPC: 30 Day Target 510.4 511.7 95.8 964.6 233.71 Day Rolling Average Conventional PID/ FF 505.0 485.1 129.0 919.8 255.2 MPC: 1 Day Target 515.3 514.8 13.0 568.3 480.6 MPC: 30 Day Target 510.5 514.2 41.0 628.2 377.330 Day Rolling Average Conventional PID/ FF 520.2 519.2 28.3 591.9 477.4 MPC: 1 Day Target 519.3 518.1 2.8 528.7 515.6 MPC: 30 Day Target 514.9 514.8 4.4 532.0 502.5

Page 17: Wet Flue Gas Desulphurization (FGD) Optimization

FGD Optimizer Benefits• Increased SO2 removal

efficiency (2-5%)• Decrease operation cost

for limestone and power (2-5%)

• Maintain by-products quality

• Consistent operations• Improved operations• Improved maintenance

Page 18: Wet Flue Gas Desulphurization (FGD) Optimization

FGD Benefits for a 600 MW Unit*

Benefit Savings per Year

SO2 Credit (2.5% improvement due to absorber control) $400,000Operational Savings for Power (4% reduction) $67,000Operational Savings for Limestone (2% reduction) $87,000Prevention of Limestone Blinding (2 incidents) $182,000Maintenance (Replacement of pH probes) $65,000Total $801,000

* 600 MW unit, 0.8 capacity, sulfur content of 2%, SO2 credit of $165/ton.