wellcome trust workshop working with pathogen genomes module 2 gene prediction

44
Wellcome Trust Workshop Working with Pathogen Genomes Module 2 Gene Prediction

Upload: ruby-gordon

Post on 02-Jan-2016

217 views

Category:

Documents


0 download

TRANSCRIPT

Wellcome Trust Workshop

Working with Pathogen Genomes

Module 2 Gene Prediction

The Annotation Process

DNA SEQUENCE

AN

NA

LY

SIS

SO

FT

WA

RE

UsefulInformation

Annotator

Gene finding

Accurately predict sample set of genes

Sequence

base composition sequence alignment to related gene (e.g. orthologue) sequence alignment

transcript data (e.g. EST)

training set

Gene finding software

Full gene set

AT content

Forward translations

Reverse Translations

DNA and aminoacids

DNA in Artemis

Gene prediction programs:ORFs and CDSs

ORFs are not equivalent to CDSs

Not all open reading frames are coding sequences

GC content

• Coding regions have higher GC content in AT-rich genomes

GC content

CODON USAGE

• Codon bias is different for each organism.• DNA content in coding regions is restricted

– but it is not restricted in non coding regions.

• The codon usage for any particular gene can influence expression.

Codon usage

• All organisms have a preferred set of codons.

Malaria TrypanosomaGUU 0.41 GUU 0.28

GUC 0.06 GUC 0.19

GUA 0.42 GUA 0.14 GUG 0.11 GUG 0.39

Codon Usage

• http://www.kazusa.or.jp/codon/

Codon Usage Table

UUU 34.3( 26847) UCU 15.3( 11956) UAU 45.6( 35709) UGU 15.3( 11942)UUC 7.3( 5719) UCC 5.3( 4141) UAC 5.5( 4340) UGC 2.4( 1872)UUA 49.2( 38527) UCA 18.2( 14239) UAA 1.0( 813) UGA 0.2( 188)UUG 10.1( 7911) UCG 2.8( 2154) UAG 0.2( 123) UGG 5.2( 4066)

CUU 8.7( 6776) CCU 9.1( 7148) CAU 19.5( 15287) CGU 3.3( 2561)CUC 1.7( 1354) CCC 2.5( 1982) CAC 3.9( 3020) CGC 0.5( 354)CUA 5.4( 4217) CCA 13.1( 10221) CAA 25.1( 19650) CGA 2.4( 1878)CUG 1.3( 1044) CCG 0.9( 742) CAG 3.3( 2598) CGG 0.2( 184)

AUU 34.0( 26611) ACU 12.8( 10050) AAU105.5( 82591) AGU 21.6( 16899)AUC 5.9( 4636) ACC 5.5( 4312) AAC 18.5( 14518) AGC 3.8( 2994)AUA 44.7( 34976) ACA 22.8( 17822) AAA 90.5( 70863) AGA 16.9( 13213)AUG 20.9( 16326) ACG 3.8( 2951) AAG 19.2( 15056) AGG 3.9( 3091)

GUU 18.1( 14200) GCU 12.5( 9811) GAU 55.5( 43424) GGU 16.6( 12960)GUC 2.6( 2063) GCC 3.2( 2541) GAC 8.6( 6696) GGC 1.6( 1269)GUA 18.2( 14258) GCA 12.6( 9871) GAA 65.8( 51505) GGA 16.7( 13043)GUG 4.9( 3806) GCG 1.1( 890) GAG 10.1( 7878) GGG 2.9( 2243)

Codon Usage in Artemis

Forward frames

Reverseframes

Gene prediction: Amino acid usage: Correlation scores

Within each window, plots correlation between amino acid usage in window and global amino-acid usage in EMBL

“Magic number” = 52.7

Arbitrary units

Gene prediction: Correlation scores

M. tuberculosis NADH dehydrogenase operon

Gene prediction: Positional base preference (FramePlot)

Plots the GC content in each position of each reading frame of the DNA sequence.

In G+C-rich organisms the GC content of the 3rd base is often higher; in A+T rich organisms it is lower.

Good prediction of coding in malaria and trypanosomes and G+C-rich prokaryotes.

G+C content of chromosome

Frame-specific G+C content

1

2

3

Genefinding programs

• Genefinding software packages use Hidden Markov Models.• Predict coding, intergenic and intron sequences• Need to be trained on a specific organism.• Never perfect!

What is an HMM

• A statistical model that represents a gene.• Similar to a “weight matrix” but one that can recognise gaps and

treat them in a systematic way.• Has a different “states” that represent introns, exons, intergenic

regions, etc• Considers the “state” of preceding sequence

A typical HMM

http://linkage.rockefeller.edu/wli/gene/krogh98.pdf

Gene prediction programs: Problems

• ORFs are not equivalent to CDSs• Gene prediction programs find new genes that share properties

with a given set of genes. • They can be confounded by:

– Sequence constraints (ribosomal proteins etc.)

– Sequence biases

– Sequence quality

– Different sets of genes

– Horizontal gene transfer

– Non-coding DNA

Gene prediction programs: ProblemsSequence composition variation

Y. pestis ribosomal proteins

glimmer

orpheus

final

Gene prediction programs: Problems

Non-protein coding regions: S. typhi ribosomal RNA genes

glimmer

genefinder

final

orpheus

glimmer

genefinder

final

orpheus

Gene prediction programs: Problems

Non-protein coding regions: N. meningitidis DNA repeats

glimmerorpheusfinal

glimmerorpheusfinal

Gene prediction programs: Problems

Pseudogenes M. leprae

Gene prediction programs: Problems

Pseudogenes: M. leprae

Glimmer

Gene prediction programs: Problems

Pseudogenes: M. lepraePseudogenes: M. leprae

ORPHEUS

Gene prediction programs: Problems

Pseudogenes: M. leprae

WUBLASTX vs. M. tuberculosis

Gene prediction programs: Problems

Pseudogenes: M. leprae

Final annotation

Gene prediction programs: Statistics

Krogh+Larson pers comm

5 http://pedant.gsf.de/orpheus/

3

http://www.tigr.org/softlab/glimmer/glimmer.html1

Program genes same start and stop

same stop only

total sharing stop

false negative

false positive

Glimmer 2 1 6772 3101

56.2%

2310

41.8%

5411

98.0%

108

1.9%

1361

24.7%

GeneMark 2 5762 3987

72.2%

1413

25.6%

5400

97.8%

119

2.2%

362

6.6%

Glimmer 3 3 5699 3569

64.7%

1793

32.5%

5362

97.1%

157

2.8%

337

6.1%

EasyGene 4 5357 4427

80.2%

772

14.0%

5199

94.2%

320

5.8%

158

2.9%

Orpheus 5 5153 2736

49.6%

1799

32.6%

4535

82.2%

984

17.8%

618

11.2%

Mycobacterium marinum; 6,636,827 bp, 65.7% G+C compared to manually curated gene set: 5519 genes (incl 46 pseudogenes)

http://cbcb.umd.edu/software/glimmer/

4

2 http://opal.biology.gatech.edu/GeneMark/

Gene prediction programs: Problems

splicing Plasmodium falciparum

Original annotation

Updated annotation

Homology Data

• Coding regions are more conserved than non coding regions due to selective pressure.

• Comparing all possible translations against all known proteins will give clues to known genes.

• Blastx

BLASTX

Blastx on frame lines

EST sequencing

AAAAAAAAAACAP

AAAAAAAAAACAP

TTTTTTTTT

TTTTTTTTT

intron exon5’UTR Mstop 3’UTR

EST

EST

cDNA

mRNA

ESTs

Showing Multiple Evidence

Schistosoma mansoni expression

The Gene Prediction Process

DNA SEQUENCE

AN

NA

LY

SIS

SO

FT

WA

RE

UsefullCDSPrediction

Annotator

AT content

Gene finders

Codon Usage

BlastX

FASTA

ESTs

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

highlighted manually reviewed gene structure

pale brown hit to H. contortus EST cluster in Nembase found using PASAbrown-green hit to H.contortus individual ESTs in NCBI database found using PASApink/red blocks hits to Uniprotbright green twinscan prediction (homology based)pale pink snap prediction (ab initio)yellow hmmgene prediction (ab initio)pale blue genscan prediction (ab initio)red genefinder (ab initio)dark blue fgenesh prediction (ab initio)jade green augustus hints prediction (homology based)orange augustus prediction (ab initio)purple genewise prediction (homology based)

Gene prediction in eukaryotes: HMMs

A

B

Gene prediction in eukaryotes: HMMs

P. falciparum gene predictions (PlasmoDB)

Gene prediction in eukaryotes: HMMs

Dictyostelium discoideum gene predictions

BartfinderhmmgenegeneidPhatEST(contig)combined prediction

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

Manual refinement

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

P. falciparum

P. knowlesi

Ongoing manual annotation e.g. PF14_0021, PF14_0022

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

P. falciparum

P. vivax

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

Revised annotation(back to Two genes!)

Using FASTA Results

• FASTA is a global alignment tool

BLAST

FASTA

• Reduces sensitivity increases specificity