welcome to: physics i

49
Physics I Welcome to: I’m Dr Alex Pettitt, and I’ll be your guide!

Upload: others

Post on 08-Dec-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Welcome to: Physics I

Physics IWelcome to:

I’m Dr Alex Pettitt, and I’ll be your guide!

Page 2: Welcome to: Physics I

x

Physics I:

Lecture 13: 13-11-2020

Mirrors and lenses

Page 3: Welcome to: Physics I

Light ray hits surface

Light ray hits surface

Ray moves away from surface

Ray enters object and changes speed & direction.

Reflection & RefractionLast lecture:

✓01 = ✓1

Reflection:

✓1

✓01

Refraction:

✓1✓2

n1 sin ✓1 = n2 sin ✓2

Now is a good time to go try:

Class 13: review

Page 4: Welcome to: Physics I

Optics

Mirrors and lenses

Page 5: Welcome to: Physics I

Plane mirror

Plane (flat) Mirrors

Eye assumes light rays are straight

Light from the triangle reflects off the mirror to the eye.

‘Sees’ the triangle behind the mirror.

Image is virtual : no light actually comes from behind the mirror.

Object Image

behi

nd m

irror

Page 6: Welcome to: Physics I

Plane MirrorsWhere is the image?

??Height?

??

Distance from mirror?

I’ll just use an arrow to represent an arbitrary object. be

hind

m

irror

Object Image

Plane mirror

Page 7: Welcome to: Physics I

Plane Mirrors2 light rays needed to locate each point in the mirror.

arrow to mirror distance = image to mirror distance

Rays top and bottom of arrow are normal to mirror and parallelimage is same height as arrow

locate arrow bottom

locate arrow top

behi

nd

mirr

or

Object Image

congruent triangles(sides & angles equal)

O O’P

Q

Plane mirror

Page 8: Welcome to: Physics I

Plane Mirrors

Plane mirror image has same length and orientation (not upside down) as object.

But reverse the object front-to-back*.

Your right hand looks like your left hand.

*better to think of it as a “front to back:, not

“right to left"

Page 9: Welcome to: Physics I

Curved MirrorsParabolic curved mirror:

axis focal point

If ray is parallel to axis,

it will be reflected through the focal point/focus.

angle with normal angle with line to focal point

=

Can concentrate light at the focal point

or put light source at the focal point and get parallel rays

Page 10: Welcome to: Physics I

Curved MirrorsParabolic curved mirror:

axis focal point

If ray is parallel to axis,

angle with normal angle with line to focal point

=

it will be reflected through the focal point/focus.

Can concentrate light at the focal point

or put light source at the focal point and get parallel rays

Page 11: Welcome to: Physics I

Curved Mirrors

axis focal point

Close to apex, mirror looks spherical.

Easier to make spherical mirrors

slight image distortion: spherical aberration

most focussing mirrors are spherical.

Famous example: Hubble Space Telescope

Mirror made with wrong curve, big spherical aberration.

Page 12: Welcome to: Physics I

Curved Mirrors

focal length

Focal length >> mirror

Rays strike the mirror ~ parallel to axis paraxial approximation

To minimise spherical aberration:

Mirror small fraction of whole sphere

Page 13: Welcome to: Physics I

Curved MirrorsTo find image draw 2 rays from different points on the object.

Any ray possible, but these are simplest:

(1) A ray parallel to the mirror axis reflects through the focal point.

(2) A ray passing through the focal point reflects parallel to the axis.

(3) A ray striking the center of the mirror reflects symmetrically about the mirror axis.

(4) A ray through the centre of curvature of the mirror returns on itself.

FC

1

2

3

4

Page 14: Welcome to: Physics I

Curved MirrorsExamples:

Locate image top with 2 rays (types 1 & 2)

From symmetry, bottom of image is on the axis.

Light rays come from the image and converge as a real image

(check rays 3, 4 also make sense!)

FC

O

I

Real, inverted, reduced

Object outside of C results in smaller image.

Page 15: Welcome to: Physics I

Curved MirrorsExamples:

From symmetry, bottom of image is on the axis.

move object closer to mirror

As object gets closer to mirror, image size increases.

When object is between mirror centre (C) and focus point (F), image is larger than object and further away.

Locate image top with 2 rays (types 1 & 2)

FC

I

O

Light rays come from the image: real image

Page 16: Welcome to: Physics I

Curved Mirrors

What does a real image look like?

Page 17: Welcome to: Physics I

From symmetry, bottom of image is on the axis.

Curved MirrorsExamples: move object closer to mirror

Image is upright and enlarged.

Rays diverge (go apart) after reflection.

Appear to cross behind the mirror

Locate image top with 2 rays (types 1 & 2)

FCIO

Light rays do not come from the image: virtual image

Page 18: Welcome to: Physics I

Curved Mirrors

Page 19: Welcome to: Physics I

Curved Mirrors

Page 20: Welcome to: Physics I

Curved MirrorsConvex mirrors

Reflected rays diverge

Only forms virtual images

FO

Reflected parallel rays appear to come from the focal point behind the mirror, F

Image is always upright (not inverted) and smaller.

Used to image large area in small space (wide angle view)

I

Page 21: Welcome to: Physics I

Curved MirrorsConvex mirrors

Page 22: Welcome to: Physics I

Curved MirrorsReal vs virtual:

Real image: rays converge.Actual photons travel the path, and are collected at I.You can project image onto a screen.

Virtual image: rays diverge.No photons travel the path, light is dispersed.You cannot project image onto a screen.

FO I

FC

O

I

Page 23: Welcome to: Physics I

Now go and try: Class 13: quiz 1

Page 24: Welcome to: Physics I

C F

Mirror EquationDrawing rays works....

... but can we be more accurate?

2 rays (type 1 & 3)

Similar triangles:

�h0s0

h

s

M =h0

h= �s0

s(magnification)

inverted image: negative h’

(virtual image: negative s’)Here, because image is smaller|M | < 1

and negative, because image is inverted

s and s’ both >0.

h

sO

s’

-h’

Page 25: Welcome to: Physics I

Mirror EquationDrawing rays works....

... but can we be more accurate?

2 rays (type 1 & 3)

Similar triangles #2 :

h

f�h0s0 � f

�h0

h=

(s0 � f)

f

s0

s=

(s0 � f)

f

1

s+

1

s0=

1

fmirror equation

M = h0/h = �s0/s

C F-h’

h

O

I f

s’ - f

s’

h

Page 26: Welcome to: Physics I

Mirror Equation

If image is virtual: s0 < 0

image distance is negative

f < 0If mirror is convex:

1

s+

1

s0=

1

f

Page 27: Welcome to: Physics I

Mirror Equation Example

The Hubble Space Telescope has a mirror with 5.52 m focal length.

A man stands 3.85 m in front of the mirror.

What is the (a) location (b) magnification of the image?

1

s+

1

s0=

1

fmirror equation:

s0 =fs

s� f=

(5.52m)(3.85m)

3.85m� 5.52m

= �12.7m

Page 28: Welcome to: Physics I

Mirror Equation Example

The Hubble Space Telescope has a mirror with 5.52 m focal length.

A man stands 3.85 m in front of the mirror.

What is the (a) location (b) magnification of the image?

M = �s0

s= ��12.7m

3.85m= 3.30

Page 29: Welcome to: Physics I

Mirror Equation1

s+

1

s0=

1

f2f = RRemember the point of C is at:

Page 30: Welcome to: Physics I

Mirror Equation Example

Jurassic Park

OBJECTS IN MIRROR ARE CLOSER THAN THEY SEEM.

Page 31: Welcome to: Physics I

Mirror Equation Example

If the mirror’s curvature radius is 12 m and the T. rex is 9.0 m away, what is its magnification?

1

s+

1

s0=

1

fmirror equation: s0 =

fs

s� f

M = �s0

s= �fs/(s� f)

s= � f

s� f

= � (�6.0m)

9.0m� (�6.0m)= 0.4

|f | = R/2 = �6.0mand

40% of actual size, so seems to be further away.

ōō

Page 32: Welcome to: Physics I

Now go and try: Class 13: quiz 2

Page 33: Welcome to: Physics I

Lenses

Page 34: Welcome to: Physics I

LensesA lens uses refraction to form images.

Because lenses refract, not reflect, this is opposite to mirrors.

Convex lens that focusses parallel rays to the focal point

Converging lens

Concave lens: parallel rays seem to move away from a common focus.

Only forms virtual images.

Diverging lens

Page 35: Welcome to: Physics I

LensesThin lens approximation

Thickness << curvature radius

Although the ray refracts twice (as it enters lens and as it exits) single refraction

thin lens

Rays can pass through a lens in 2 directions

Focal length is the same both sides.

Page 36: Welcome to: Physics I

LensesRay through lenses

(1) Ray parallel to lens axis refracts through the focal point.

(2) Ray passing through the centre travels straight, no deflection.

Use these two rays to find images formed with lenses.

F F

1

2

Page 37: Welcome to: Physics I

LensesExample #1

Object further than two focal lengths, s > 2f

Image smaller and inverted.

Light rays come from the image: real image

(do not need to look through lens to see images)

f2fs >2f

Of 2f

I

Page 38: Welcome to: Physics I

LensesExample #2

Decrease the distance of object to lens.

Image becomes larger and further away, still inverted.

2f

f 2f

O

2f < s < f

f

f 2f I

Page 39: Welcome to: Physics I

LensesExample #3

Image large and virtual:

Object closer than focal length, s < f

rays do not come from image

Can only be seen looking through the lens.

f fs < f

O

I

Page 40: Welcome to: Physics I

Lenses

Page 41: Welcome to: Physics I

Lenses

Concave (diverging) lens always forms a smaller, upright image.

Only visible through the lens.

Page 42: Welcome to: Physics I

The lens equation

s

h

Similar triangles: M =h0

h= �s0

s

(same as mirrors)

Magnification

s0<latexit sha1_base64="eeHcdpXaj3Yu4KrXbkxnG1RBzko=">AAAB6XicjVBNS8NAEJ3Ur1q/qh69LBbRU0mqoMeiF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jNu1BRcEHA4/3ZpiZFyRSGHTdD6ewtLyyulZcL21sbm3vlHf3WiZONeNNFstYdwJquBSKN1Gg5J1EcxoFkreD8dXMb99zbUSs7nCScD+iQyVCwSha6dYc98sVr+rmIH+TCizQ6Jffe4OYpRFXyCQ1puu5CfoZ1SiY5NNSLzU8oWxMh7xrqaIRN36WXzolR1YZkDDWthSSXP06kdHImEkU2M6I4sj89Gbib143xfDCz4RKUuSKzReFqSQYk9nbZCA0ZygnllCmhb2VsBHVlKENp/S/EFq1qndard2cVeqXiziKcACHcAIenEMdrqEBTWAQwgM8wbMzdh6dF+d13lpwFjP78A3O2ydE2o0v</latexit>

�h0<latexit sha1_base64="cgj0ifIG5UrV4guAP8UucuQbi40=">AAAB6nicjVDLSgNBEOyNrxhfUY9eBoPoxbCbCHoMevEY0TwgWcLspDcZMju7zMwKYcknePGgiFe/yJt/4+RxUFGwoKGo6qa7K0gE18Z1P5zc0vLK6lp+vbCxubW9U9zda+o4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDX1W/eoNI/lnRkn6Ed0IHnIGTVWuj0dHveKJa/szkD+JiVYoN4rvnf7MUsjlIYJqnXHcxPjZ1QZzgROCt1UY0LZiA6wY6mkEWo/m506IUdW6ZMwVrakITP160RGI63HUWA7I2qG+qc3FX/zOqkJL/yMyyQ1KNl8UZgKYmIy/Zv0uUJmxNgSyhS3txI2pIoyY9Mp/C+EZqXsVcuVm7NS7XIRRx4O4BBOwINzqME11KEBDAbwAE/w7Ajn0XlxXuetOWcxsw/f4Lx9Ap2XjVs=</latexit>

F

Fh<latexit sha1_base64="ZP3wvKjWegbhzzCXkUO27rPrfwo=">AAAB6HicjVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GTduDioIPBh7vzTAzL0gE18Z1P5zCyura+kZxs7S1vbO7V94/aOs4VQxbLBax6gZUo+ASW4Ybgd1EIY0CgZ1gcp37nXtUmsfy1kwT9CM6kjzkjBorNceDcsWrunOQv0kFlmgMyu/9YczSCKVhgmrd89zE+BlVhjOBs1I/1ZhQNqEj7FkqaYTaz+aHzsiJVYYkjJUtachc/TqR0UjraRTYzoiasf7p5eJvXi814aWfcZmkBiVbLApTQUxM8q/JkCtkRkwtoUxxeythY6ooMzab0v9CaNeq3lm11jyv1K+WcRThCI7hFDy4gDrcQANawADhAZ7g2blzHp0X53XRWnCWM4fwDc7bJ9OsjPM=</latexit>

�h0<latexit sha1_base64="cgj0ifIG5UrV4guAP8UucuQbi40=">AAAB6nicjVDLSgNBEOyNrxhfUY9eBoPoxbCbCHoMevEY0TwgWcLspDcZMju7zMwKYcknePGgiFe/yJt/4+RxUFGwoKGo6qa7K0gE18Z1P5zc0vLK6lp+vbCxubW9U9zda+o4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDX1W/eoNI/lnRkn6Ed0IHnIGTVWuj0dHveKJa/szkD+JiVYoN4rvnf7MUsjlIYJqnXHcxPjZ1QZzgROCt1UY0LZiA6wY6mkEWo/m506IUdW6ZMwVrakITP160RGI63HUWA7I2qG+qc3FX/zOqkJL/yMyyQ1KNl8UZgKYmIy/Zv0uUJmxNgSyhS3txI2pIoyY9Mp/C+EZqXsVcuVm7NS7XIRRx4O4BBOwINzqME11KEBDAbwAE/w7Ajn0XlxXuetOWcxsw/f4Lx9Ap2XjVs=</latexit>

I

s<latexit sha1_base64="iiXZp1qIE9/cKSN29izQjznzI1M=">AAAB6HicjVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GTduDioIPBh7vzTAzL0gE18Z1P5zCyura+kZxs7S1vbO7V94/aOs4VQxbLBax6gZUo+ASW4Ybgd1EIY0CgZ1gcp37nXtUmsfy1kwT9CM6kjzkjBorNfWgXPGq7hzkb1KBJRqD8nt/GLM0QmmYoFr3PDcxfkaV4UzgrNRPNSaUTegIe5ZKGqH2s/mhM3JilSEJY2VLGjJXv05kNNJ6GgW2M6JmrH96ufib10tNeOlnXCapQckWi8JUEBOT/Gsy5AqZEVNLKFPc3krYmCrKjM2m9L8Q2rWqd1atNc8r9atlHEU4gmM4BQ8uoA430IAWMEB4gCd4du6cR+fFeV20FpzlzCF8g/P2CeRYjP4=</latexit>

f<latexit sha1_base64="lIz7WN3kNconKZMID4XK7Ev7jro=">AAAB6HicjVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GTduDioIPBh7vzTAzL0gE18Z1P5zCyura+kZxs7S1vbO7V94/aOs4VQxbLBax6gZUo+ASW4Ybgd1EIY0CgZ1gcp37nXtUmsfy1kwT9CM6kjzkjBorNcNBueJV3TnI36QCSzQG5ff+MGZphNIwQbXueW5i/Iwqw5nAWamfakwom9AR9iyVNELtZ/NDZ+TEKkMSxsqWNGSufp3IaKT1NApsZ0TNWP/0cvE3r5ea8NLPuExSg5ItFoWpICYm+ddkyBUyI6aWUKa4vZWwMVWUGZtN6X8htGtV76xaa55X6lfLOIpwBMdwCh5cQB1uoAEtYIDwAE/w7Nw5j86L87poLTjLmUP4BuftE9CkjPE=</latexit>

s0<latexit sha1_base64="eeHcdpXaj3Yu4KrXbkxnG1RBzko=">AAAB6XicjVBNS8NAEJ3Ur1q/qh69LBbRU0mqoMeiF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jNu1BRcEHA4/3ZpiZFyRSGHTdD6ewtLyyulZcL21sbm3vlHf3WiZONeNNFstYdwJquBSKN1Gg5J1EcxoFkreD8dXMb99zbUSs7nCScD+iQyVCwSha6dYc98sVr+rmIH+TCizQ6Jffe4OYpRFXyCQ1puu5CfoZ1SiY5NNSLzU8oWxMh7xrqaIRN36WXzolR1YZkDDWthSSXP06kdHImEkU2M6I4sj89Gbib143xfDCz4RKUuSKzReFqSQYk9nbZCA0ZygnllCmhb2VsBHVlKENp/S/EFq1qndard2cVeqXiziKcACHcAIenEMdrqEBTWAQwgM8wbMzdh6dF+d13lpwFjP78A3O2ydE2o0v</latexit>

O

Page 43: Welcome to: Physics I

The lens equation

f

s0 � f

Similar triangles #2: �h0

s0 � f=

h

f

1

s+

1

s0=

1

flens equation (same as mirror equation)

�h0<latexit sha1_base64="cgj0ifIG5UrV4guAP8UucuQbi40=">AAAB6nicjVDLSgNBEOyNrxhfUY9eBoPoxbCbCHoMevEY0TwgWcLspDcZMju7zMwKYcknePGgiFe/yJt/4+RxUFGwoKGo6qa7K0gE18Z1P5zc0vLK6lp+vbCxubW9U9zda+o4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDX1W/eoNI/lnRkn6Ed0IHnIGTVWuj0dHveKJa/szkD+JiVYoN4rvnf7MUsjlIYJqnXHcxPjZ1QZzgROCt1UY0LZiA6wY6mkEWo/m506IUdW6ZMwVrakITP160RGI63HUWA7I2qG+qc3FX/zOqkJL/yMyyQ1KNl8UZgKYmIy/Zv0uUJmxNgSyhS3txI2pIoyY9Mp/C+EZqXsVcuVm7NS7XIRRx4O4BBOwINzqME11KEBDAbwAE/w7Ajn0XlxXuetOWcxsw/f4Lx9Ap2XjVs=</latexit>

h<latexit sha1_base64="ZP3wvKjWegbhzzCXkUO27rPrfwo=">AAAB6HicjVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GTduDioIPBh7vzTAzL0gE18Z1P5zCyura+kZxs7S1vbO7V94/aOs4VQxbLBax6gZUo+ASW4Ybgd1EIY0CgZ1gcp37nXtUmsfy1kwT9CM6kjzkjBorNceDcsWrunOQv0kFlmgMyu/9YczSCKVhgmrd89zE+BlVhjOBs1I/1ZhQNqEj7FkqaYTaz+aHzsiJVYYkjJUtachc/TqR0UjraRTYzoiasf7p5eJvXi814aWfcZmkBiVbLApTQUxM8q/JkCtkRkwtoUxxeythY6ooMzab0v9CaNeq3lm11jyv1K+WcRThCI7hFDy4gDrcQANawADhAZ7g2blzHp0X53XRWnCWM4fwDc7bJ9OsjPM=</latexit>

F

Fh<latexit sha1_base64="ZP3wvKjWegbhzzCXkUO27rPrfwo=">AAAB6HicjVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GTduDioIPBh7vzTAzL0gE18Z1P5zCyura+kZxs7S1vbO7V94/aOs4VQxbLBax6gZUo+ASW4Ybgd1EIY0CgZ1gcp37nXtUmsfy1kwT9CM6kjzkjBorNceDcsWrunOQv0kFlmgMyu/9YczSCKVhgmrd89zE+BlVhjOBs1I/1ZhQNqEj7FkqaYTaz+aHzsiJVYYkjJUtachc/TqR0UjraRTYzoiasf7p5eJvXi814aWfcZmkBiVbLApTQUxM8q/JkCtkRkwtoUxxeythY6ooMzab0v9CaNeq3lm11jyv1K+WcRThCI7hFDy4gDrcQANawADhAZ7g2blzHp0X53XRWnCWM4fwDc7bJ9OsjPM=</latexit>

�h0<latexit sha1_base64="cgj0ifIG5UrV4guAP8UucuQbi40=">AAAB6nicjVDLSgNBEOyNrxhfUY9eBoPoxbCbCHoMevEY0TwgWcLspDcZMju7zMwKYcknePGgiFe/yJt/4+RxUFGwoKGo6qa7K0gE18Z1P5zc0vLK6lp+vbCxubW9U9zda+o4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDX1W/eoNI/lnRkn6Ed0IHnIGTVWuj0dHveKJa/szkD+JiVYoN4rvnf7MUsjlIYJqnXHcxPjZ1QZzgROCt1UY0LZiA6wY6mkEWo/m506IUdW6ZMwVrakITP160RGI63HUWA7I2qG+qc3FX/zOqkJL/yMyyQ1KNl8UZgKYmIy/Zv0uUJmxNgSyhS3txI2pIoyY9Mp/C+EZqXsVcuVm7NS7XIRRx4O4BBOwINzqME11KEBDAbwAE/w7Ajn0XlxXuetOWcxsw/f4Lx9Ap2XjVs=</latexit>

I

s<latexit sha1_base64="iiXZp1qIE9/cKSN29izQjznzI1M=">AAAB6HicjVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GTduDioIPBh7vzTAzL0gE18Z1P5zCyura+kZxs7S1vbO7V94/aOs4VQxbLBax6gZUo+ASW4Ybgd1EIY0CgZ1gcp37nXtUmsfy1kwT9CM6kjzkjBorNfWgXPGq7hzkb1KBJRqD8nt/GLM0QmmYoFr3PDcxfkaV4UzgrNRPNSaUTegIe5ZKGqH2s/mhM3JilSEJY2VLGjJXv05kNNJ6GgW2M6JmrH96ufib10tNeOlnXCapQckWi8JUEBOT/Gsy5AqZEVNLKFPc3krYmCrKjM2m9L8Q2rWqd1atNc8r9atlHEU4gmM4BQ8uoA430IAWMEB4gCd4du6cR+fFeV20FpzlzCF8g/P2CeRYjP4=</latexit>

f<latexit sha1_base64="lIz7WN3kNconKZMID4XK7Ev7jro=">AAAB6HicjVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GTduDioIPBh7vzTAzL0gE18Z1P5zCyura+kZxs7S1vbO7V94/aOs4VQxbLBax6gZUo+ASW4Ybgd1EIY0CgZ1gcp37nXtUmsfy1kwT9CM6kjzkjBorNcNBueJV3TnI36QCSzQG5ff+MGZphNIwQbXueW5i/Iwqw5nAWamfakwom9AR9iyVNELtZ/NDZ+TEKkMSxsqWNGSufp3IaKT1NApsZ0TNWP/0cvE3r5ea8NLPuExSg5ItFoWpICYm+ddkyBUyI6aWUKa4vZWwMVWUGZtN6X8htGtV76xaa55X6lfLOIpwBMdwCh5cQB1uoAEtYIDwAE/w7Nw5j86L87poLTjLmUP4BuftE9CkjPE=</latexit>

s0<latexit sha1_base64="eeHcdpXaj3Yu4KrXbkxnG1RBzko=">AAAB6XicjVBNS8NAEJ3Ur1q/qh69LBbRU0mqoMeiF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jNu1BRcEHA4/3ZpiZFyRSGHTdD6ewtLyyulZcL21sbm3vlHf3WiZONeNNFstYdwJquBSKN1Gg5J1EcxoFkreD8dXMb99zbUSs7nCScD+iQyVCwSha6dYc98sVr+rmIH+TCizQ6Jffe4OYpRFXyCQ1puu5CfoZ1SiY5NNSLzU8oWxMh7xrqaIRN36WXzolR1YZkDDWthSSXP06kdHImEkU2M6I4sj89Gbib143xfDCz4RKUuSKzReFqSQYk9nbZCA0ZygnllCmhb2VsBHVlKENp/S/EFq1qndard2cVeqXiziKcACHcAIenEMdrqEBTWAQwgM8wbMzdh6dF+d13lpwFjP78A3O2ydE2o0v</latexit>

O

Page 44: Welcome to: Physics I

The lens equation

Page 45: Welcome to: Physics I

The lens equation Example

You use a magnifying glass with a 30-cm focal length to read.

How far from the page should you hold the lens to see the print enlarge x 3?

=1

f=

1

30cm

s =(2)(30cm)

3= 20cm

M = �s0

s= 3 s0 = �3s

1

s+

1

s0=

1

f

1

s� 1

3s=

2

3s

Page 46: Welcome to: Physics I

Example 1: eyesEye focuses light on the retina on the back of the eyeball.

Lens can change shape to alter f.

FarsightedNearsighted

An extra lens can be used to correct problems with eyes:

Page 47: Welcome to: Physics I

Example 2: micro/telescopesUsed to enlarge images.

First lens magnifies and flips the image.

The second places a virtual image at a large distance so the eye can focus.

Telescopes similar, but the object is much further away!

There are also “reflecting” telescopes. object at infinity focuses on f

Focus by changing L

Page 48: Welcome to: Physics I

Lecture 13 : Summary

Geometrical optics: drawing propagation lines for the path light travels.

Differences between real and virtual images.

Mirrors and lenses, their similarities and differences.

The mirror and lens equations:s s’

h h’f

1

s+

1

s0=

1

flens equation

1

s+

1

s0=

1

fmirror equation

M =h0

h= �s0

s(magnification)

Page 49: Welcome to: Physics I

Now go and try: Class 13: quiz 3