weka lab record experiments
Post on 16-Apr-2015
84 views
Embed Size (px)
DESCRIPTION
JNTUH B.Tech III Year II SEM Information Technology Data Mining Lab Record Experiments document. It contains WEKA -Machine Learning Tool experiments and some ARFF file examples.TRANSCRIPT
EXPERIMENT 1: CREATE STUDENT DETAILS ARFF FILE AND ANALIZE ATTRIBUTE STEP 1: OPEN NOTEPAD WITH NAME STUDENT_DETAILS.ARFF STEP 2: FILE CONTENT: @RELATION student_details
@ATTRIBUTE SID STRING @ATTRIBUTE SNAME STRING @ATTRIBUTE SMARKS NUMERIC @ATTRIBUTE GENDER {M,F} @ATTRIBUTE AGE NUMERIC @ATTRIBUTE BRANCH {IT,CSE,EEE,ECE} @DATA S1,AAA,34,M,19,EEE S2,SSS,90,M,20,IT S3,AAA,34,F,19,ECE S4,SSR,56,M,20,IT S5,TVS,34,M,19,EEE S6,TYI,90,F,20,IT S7,HJK,34,M,19,ECE S8,DFG,90,M,20,IT S9,ASD,34,F,19,CSE S10,SSS,90,M,20,IT
STEP3: START WEKA STEP4: SELECT EXPLORER IN WEKA GUI CHOOSER STEP 5: OPEN INPUT FILE WITH NAME STUDENT_DETAILS.ARFF STEP6: OUTPUT
EXPERIMENT 2: DATA PREPROSESSING USING DISCRETIZATION ON STUDENT DETAILS DATA STEP1: OPEN INPUT FILE NAME STUDENT_DETAILS.ARFF UNDER PREPROCESS TAB OF WEKA EXPLORER
STEP 2: CHOOSE DATA PREPROCESS FILTER DISCRETIZE UNDER PREPROCESS TAB
STEP3: OUTPUT (ATTRIBUTE SMARKS IS DISCRETIZED INTO TWO RANGES)
EXPERIMENT 3: GENERATE STRONG/BEST ASSOCIATION RULES FOR ALL ELECTRONICS SALES DATA USING APRIORI ALGORITHM STEP 1: OPEN SALES.ARFFFILE UNDER PREPROCESS TAB IN WEKA EXPLORER.
STEP 2: CHOOSE ASSOCIATE TAB IN WEKA EXPLORER
STEP 3: CHOOSE APRIORI ASSOCIATION ANALYSIS ALGORITHM AND CONFIGURE THE ALGORITHM BY SETTING MIN_SUP & MIN_CONFIDANCE VALUES
STEP 4: CLICK STARTBUTTON IN ASSOCIATE TAB TO GET BEST ASSOCIATION RULES
EXPERIMENT4: GENERATE STRONG/BEST ASSOCIATION RULES FOR ALL ELECTRONICS SALES DATA USING FREQUENT PATTERN GROWTH ALGORITHM STEP 1: OPEN SALES.ARFFFILE UNDER PREPROCESS TAB IN WEKA EXPLORER
STEP 2: CHOOSE ASSOCIATE TAB IN WEKA EXPLORER
STEP 3: CHOOSE FP-GROWTH ASSOCIATION ANALYSIS ALGORITHM AND CONFIGURE THE ALGORITHM BY SETTING MIN_SUP & MIN_CONF
STEP 4: CLICK START BUTTON UNDER ASSOCIATE TAB TO GET THE BEST ASSOCIATION RULES
EXPERIMENT5: CLASSIFICATION BY DECISION TREE INDUCTION FOR ANALYSING WEATHER DATA TO DECIDE TO PLAY OR NOT STEP 1: OPEN INPUT FILEWEATHER.ARFF UNDER PREPROCESS TAB IN WEKA EXPLORER
STEP2: SELECT CLASSIFY TAB IN WEKA EXPLORER STEP3: CHOOSE J48 DECISION TREE CLASSIFIER UNDER TREES IN CLASSIFY TAB.
STEP 4: CLICK START BUTTON UNDER CLASSIFY TAB TO GET THE BEST CLASSIFICATION RULES AND RIGHT CLICK ON RESULT LIST TO VISUALIZE THE TREE.
EXPERIMENT 6: CLASSIFICATION BY BAYES FOR ANALYSING WEATHER DATA TO DECIDE TO PLAY OR NOT STEP 1: OPEN INPUT FILEWEATHER.ARFF UNDER PREPROCESS TAB IN WEKA EXPLORER
STEP2: SELECT CLASSIFY TAB IN WEKA EXPLORER STEP3: CHOOSE NAVE BAYES CLASSIFIER UNDER BAYES IN CLASSIFY TAB.
STEP 4: CLICK START BUTTON UNDER CLASSIFY TAB TO GET THE BEST CLASSIFICATION RULES AND RIGHT CLICK ON RESULT LIST TO VISUALIZE THE CURVE.
EXPERIMENT 7: CLUSTERING FOR ANALYSIS OF WEATHER DATA TO DECIDE TO PLAY OR NOT STEP 1: OPEN INPUT FILEWEATHER.ARFF UNDER PREPROCESS TAB IN WEKA EXPLORER
STEP2: SELECT CLUSTER TAB IN WEKA EXPLORER STEP3: CHOOSE SIMPLE MEAN CLUSTERER UNDER CLUSTER TAB.
STEP 4: CLICK START BUTTON UNDER CLUSTER TAB TO GET THE CLUSTERS AND RIGHT CLICK ON RESULT LIST TO VISUALIZE THE CLUSTER ASSINGMENTS.