week 13 thursday (4/7) - purdue engineering · 8:40 courtney mcmanus pm 1 8:45 devon parkos aero 2...

89
AAE 450 Spring 2011 Week 13 – Thursday (4/7) Courtney McManus 4/7/2011

Upload: trinhthuan

Post on 25-Jul-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

AAE 450

Spring 2011

Week 13 – Thursday (4/7)

Courtney McManus

4/7/2011

AAE 450

Spring 2011

Today’s Schedule

Turn in Final Report!!!

Group Roll Call

Section 2 Presents

C. McManus Project Manager 4/7/2011

AAE 450

Spring 2011

4/7/2011

8:40 Courtney McManus PM

1 8:45 Devon Parkos Aero

2 8:51 Trey Fortunato Att/Con

3 8:57 Chris Luken Att/Con

4 9:03 Justin Axsom Comm

5 9:09 Tony D'Mello Comm

BREAK for 1 hour (meet downstairs)

6 10:35 Sonia Teran MisDes

7 10:41 Evan Helmeid MisDes

8 10:47 Graham Johnson MisDes

9 10:53 Matthew Hill Power

BREAK

10 11:10 Alex Park Power

11 11:16 Joel Lau Power

12 11:22 Kyle Svejcar Prop

13 11:28 Jillian Roberts HF

BREAK

14 11:45 Brendon White HF

15 11:51 Leonard Jackson StrcThrm

16 11:57 Alex Kreul StrcThrm

AAE 450

Spring 2011

Courtney McManus

450 Presentation – Week 9

Project Manager Schedule, Logistics, CDR preparation

Mass to Ceres cost analysis

Rapid Cost Assessment

Advanced Mission Cost Model

Top-Level Risk Analysis

Event trees and Fault Trees by mission phase

Future work Finalize cost model

Complete risk analysis (include quiescent ops)

Organize final report

4/7/2011 McManus, Courtney Project Manager

AAE 450

Spring 2011

Final Cost Estimate

4/7/2011 McManus, Courtney Project Manager

* Measured in year 2011 dollars

Total Cost: $172.7 Billion USD*

Cost/Kilogram (dry mass) = $ 0.66 Million USD

$15.66 Billion USD per year

$136.3 Million USD/page of the report

AAE 450

Spring 2011

Risk Analysis

4/7/2011 McManus, Courtney Project Manager

Mission Success Probability*:

91.6%

* Probability is only Loss of Crew

AAE 450

Spring 2011

Devon Parkos AAE 450: Week 13 Presentations Aerodynamics Group, CTV Group, Capsule Group, Launch

Vehicle Group

Tasks Accomplished:

Finalize CTV and Capsule trajectories

Finalize CTV and Capsule heat shield sizing

Finalize CTV and Capsule tether coating sizing

Parkos, Devon Aerodynamics 4/7/2011

AAE 450

Spring 2011 CTV Trajectories

Parkos, Devon Aerodynamics

Assumptions • CD,HS = 0.025

• CD,B = 1.37

• CL,B = 0.11

• AHS = 60.8 m2

• AB,EFF = 75,200 m2

• ± 2.5σ Uncertainty

• v∞ = 7.89 km/s

Without Heat Shields

• mCTV = 123.7 t

4/7/2011

AAE 450

Spring 2011 CTV Trajectories

Parkos, Devon Aerodynamics

Max Values

a = 9.10 g’s

Δv1 = 3.75 km/s

Δt = 7.40 days

Without Structure

mHS = 327 kg

VHS = 0.64 m3

Ballute System

mB = 2350 kg

mTETH = 990 kg

Success Rate

98.8%

4/7/2011

AAE 450

Spring 2011 Capsule Trajectories

Parkos, Devon Aerodynamics

Assumptions • CD,HS = 0.025

• CD,B = 1.37

• CD,PAR = 0.75

• CL,CAP = 0.42

• CL,B = 0.11

• AHS = 25.0 m2

• AB,EFF = 5800 m2

• APAR = 2350 m2

• ± 2.5σ Uncertainty

• v∞ = 7.89 km/s

Without Heat Shields

• mCAP = 9.56 t

4/7/2011

AAE 450

Spring 2011 Capsule Trajectories

Parkos, Devon Aerodynamics

Max Values

a = 9.05 g’s

Δv1 = 3.75 km/s

Δt = 7.58 days

Without Structure

mHS = 19.2 kg

VHS = 0.038 m3

Ballute System

mB = 181.4 kg

mTETH = 75.9 kg

Success Rate

98.8%

4/7/2011

AAE 450

Spring 2011

AAE 450: Week 12

Fortunato, Trey (ADCS Lead, CTV Lead, Graphic Design) Attitude Determination and Control Systems

Tasks:

Finalized Spin Values

IonRail Error and Feasibility Analysis

Possible New CTV Configuration

IonRail Movie

4/7/2011

AAE 450

Spring 2011

Attitude Determination and Control Systems Fortunato, Trey

CTV IonRail:

Burn Arc Half Angle 90 deg

Total Rotation in Orbit 164.0 deg

Transfer Time 1.38 yrs

Max Turn Per ½ Revolution 4.34 µrad

Wobble Angle 0.46 µrad

Total Propellant Loss 7.8 g

Spin Axis

H A_B ΔH

A_B

Δψ

F _z

4/7/2011

AAE 450

Spring 2011

Fortunato, Trey

CTV A-Grav:

Attitude Determination and Control Systems

1 Kwan is 84.983 meters, the

necessary radius to achieve

Martian gravity at 2 rpm.

Parameter Value Unit

Tether Length 178.84 m

Tether Length 2.1 Kwan

Tether Diameter 4.7 cm

Tether Mass 918.2 kg

Parameter Outbound

Spin-Up

Outbound

De-Spin

Return

Spin-Up

Return

De-Spin

Unit

Maneuver Time 2195 2014 1298 1087 s

0.609 0.559 0.361 0.302 hr

Propellant Mass 381.62 375.6 324.1 288.7 kg

4/7/2011

AAE 450

Spring 2011

Luken, Chris (Web Developer) Attitude Determination and Control Systems 4/7/2011

AAE 450

Spring 2011

Luken, Chris (Web Developer) Attitude Determination and Control Systems

Analysis Characteristics Outbound Return Units

Transverse Inertia 7.248x108 1.029x109 [kg-m2]

Axial Inertia 3.876x106 1.455x106 [kg-m2]

Vehicle Mass 333,078 189,107 [kg]

Attitude Thrust 100 [N]

Outbound Transfer Trajectory Return Transfer Trajectory

Trajectories by: Trieste Signorino

4/7/2011

AAE 450

Spring 2011

Luken, Chris (Web Developer) Attitude Determination and Control Systems

ω = 2 rpm

Jupiter

Sun Gravitational Moment about the Spin Axis at Ceres

Outbound Torques

Sun, [AU] Max Torque, [kNm]

1 42.7

2.658 2.27

Return Torques

2.766 2.48

1.035 48.99

Required Counter-Moment Propellant Transfer Propellant Mass, [kg]

Outbound (Earth to Ceres) 1,938

Return (Ceres to Earth) 1,924

Total 3,862

Graphics by: Chris Luken

4/7/2011

AAE 450

Spring 2011

Luken, Chris (Web Developer) Attitude Determination and Control Systems

Environmental Source Force, [N] Outbound Propellant, [kg] Return Propellant, [kg]

Solar Radiation 9.02x10-6A(t) 34.2 33.9

Solar Wind 2.3x10-9A(t) Negligible Negligible

Micrometeorites 8x10-10A(t) Negligible Negligible

Analysis Characteristic Value Units Vehicle Mass (Outbound) 333,078 [kg]

Vehicle Mass (Return) 189,107 [kg]

Maximum Surface Area 1500 [m2]

Minimum Surface Area 500 [m2]

kelm 2 --

fo 1353 [W/m2]

c 3x108 [m/s]

ρa (3 AU) 2.44x10-18 [kg/m3]

Va (3 AU) 17.98x103 [m/s]

Graphic by: Chris Luken

4/7/2011

AAE 450

Spring 2011

Luken, Chris (Web Developer) Attitude Determination and Control Systems

Ceres

Earth

Sun

Major Turning Maneuvers

CATIA Models by: Alex Roth

Ceres Operations

Configuration

Maneuver Angle, [deg] Propellant, [kg]

Earth Departure Re-Orientation 94.4 27.18

Heliocentric Transfer Re-

Orientation 96.5 12.76

Ceres Arrival Re-Orientation 98.4 12.09

Ceres Operations General Stabilization 1290.7

Ceres Return Kick Re-

Orientation 94.4 7.43

Heliocentric Transfer Re-

Orientation 82.9 13.79

Earth Aerocapture Re-

Orientation 79.0 5.38

Total Propellant Required 1369.33

4/7/2011

AAE 450

Spring 2011

Luken, Chris (Web Developer) Attitude Determination and Control Systems

Outbound, [kg] Ceres Operations, [kg] Return, [kg]

Propellant Requirements

Environmental Torques 1,973 -- 1,958

Spin-up/De-spin Events 758 -- 613

Re-orientation Maneuvers 53 -- 26.6

Ceres Operations 78.5 551 50.1

Total Propellant 2,863 551 2,649

Attitude Hardware

Attitude Thrusters 5.6 5.6 5.6

Alternate Control Devices 64 64 64

Total Attitude Hardware 69.6 69.6 69.6

4/7/2011

AAE 450

Spring 2011 Justin Axsom

Communication

Group Lead

Human Launch Vehicle

Crew Transfer Vehicle

Earth Decent/Reentry Vehicle

Communication Satellites

Optical System Logistics

Axsom, Justin Communication 4/7/2011

AAE 450

Spring 2011

Optical vs. RF Tradeoff

Axsom, Justin Communication

Justin

Axsom

• Used the upper bound of the Ka band at 40 GHz

• Iterated to find a ballpark solution for the furthest link

• 9 HDTV signals, ~5.98x108 km

• Ceres Orbiting Halo Satellites

• Earth – Trailing Relay Satellite

Mass, kg Power, kW Dr, m Dt, m Volume, m3

RF 387 150 15.0 11.0 331

Optical 124 37.0 4.00 0.20 9.62

Table 1: Optical and RF comparison

4/7/2011

AAE 450

Spring 2011

Optical vs. RF Tradeoff Continued

Axsom, Justin Communication

• The table summarizes only 1 link

• Could not find a solution to converge for the optical power of 37 kW

• Radiator adds mass for optical (~0.5 T worst case scenario), but

significantly saves on power and volume

• To reduce dish size comparable to optical, need 3.9 MW of power!

Mass, kg Power, kW Dr, m Dt, m Volume, m3

RF 387 150 15.0 11.0 331

RF (smaller dish size) 35.8 3900 4.00 4.00 2.60

Optical 124 37.0 4.00 0.20 9.62

Table 2: Optical and RF comparison

4/7/2011

AAE 450

Spring 2011 Tony D’Mello

AAE 450: Week 13 Presentations Communications Overview

Rover <-> Communications Satellites

Crew Communication Tools

D’Mello, Tony Communications 4/7/2011

AAE 450

Spring 2011

Using university

dishes as ground

stations

Ground stations

send RF signal to

Earth Orbiting

Satellites (EOS)

EOS send optical

signal out to

Ceres

Communications: Earth Focused

D’Mello, Tony Communications

36,000 km

To HOS

or ETRS

EOS

EOS

EOS

Ground

Station

Ground

Station

Figure created by: Tony D’Mello

*Note: images not to scale

4/7/2011

AAE 450

Spring 2011

Blackouts

D’Mello, Tony Communications

Distance from Sun (km)

Dis

tance

from

Sun(k

m)

x108

3

2

1

0

-1

-2

-3

-4

3 2 1 0 -1 -2 -3 -4 4 5

x108

30

30

Blackout when

Ceres is in

conjunction with

the Earth

Figure created by: Tony D’Mello

*Note: images not to scale

4/7/2011

AAE 450

Spring 2011

Blackout when

Ceres is in

opposition with

the Earth

Blackouts

D’Mello, Tony Communications

Distance from Sun (km)

Dis

tance

from

Sun(k

m)

x108

3

2

1

0

-1

-2

-3

-4

3 2 1 0 -1 -2 -3 -4 4 5

x108

30

30

Figure created by: Tony D’Mello

*Note: images not to scale

4/7/2011

AAE 450

Spring 2011

Communications: Intermediate

D’Mello, Tony Communications

Distance from Sun (km)

Dis

tance

from

Sun(k

m)

x108

3

2

1

0

-1

-2

-3

-4

3 2 1 0 -1 -2 -3 -4 4 5

x108 Optical signal can

be sent directly to

Halo Orbiting

Satellites (HOS)

Signal sent to

Earth Trailing

Relay Satellite

(ETRS)

Figure created by: Tony D’Mello

ETRS model by : Alex Roth

*Note: images not to scale

Max Dist: 5.6e8 km

Max Dist: 2.1e8 km + 5.6e8 km

= 7.7e8 km

EOS

HOS

ETRS

4/7/2011

AAE 450

Spring 2011

HOS sends

optical signal to

CTV

CTV sends RF

signal to ISPP

station

ISPP sends signal

to harvesters

Communications: HOS-CTV-ISPP

Communications

CTV

ISPP Station Harvesters

HOS

Figure created by: Tony D’Mello

Models by : Alex Roth

*Note: images not to scale D’Mello, Tony

From EOS

or ETRS

4/7/2011

AAE 450

Spring 2011

HOS sends RF

signal to other

HOS

HOS sends RF

signal to ISPP

station

ISPP sends signal

to harvesters

Communications: HOS-ISPP

D’Mello, Tony Communications

From EOS

or ETRS

ISPP Station Harvesters

HOS HOS

Figure created by: Tony D’Mello

Models by : Alex Roth

*Note: images not to scale 4/7/2011

AAE 450

Spring 2011

HOS sends RF

signals to each

rover

Rovers send RF

signals to one

receiver on HOS

Communications: HOS-Rover

Communications

HOS

Rover 1 Rover 2 Rescue Rover

D’Mello, Tony

Figure created by: Tony D’Mello

Models by : Kim Madden and Alex Roth

*Note: images not to scale

From EOS

or ETRS

4/7/2011

AAE 450

Spring 2011

Rover and HOS RF Communication

D’Mello, Tony Communications

Mass

(kg) Power

(kW) Volume

(m3)

Transmitter 0.33 0.1 0.00043

Receiver 6.35 -- 0.012

Total 6.67 0.1 0.013

Exploration Rover 1 Communication Hardware

Mass

(kg) Power

(kW) Volume

(m3)

Transmitter 0.37 0.1 0.0012

Receiver 5.92 -- 0.026

Total 6.29 0.1 0.026

Rescue Rover Communication Hardware

Mass

(kg) Power

(kW) Volume

(m3)

Transmitter 0.67 0.1 0.00080

Receiver 16.35 -- 0.033

Total 17.02 0.1 0.034

Exploration Rover 2 Communication Hardware

Mass

(kg)

Power

(kW)

Volume

(m3)

Transmitter –

Exploration Rover 1 6.76 0.35 0.01

Transmitter –

Exploration Rover 2 16.35 0.35 0.03

Transmitter –

Rescue Rover 6.73 0.1 0.03

Receiver –

Rovers 10.13 -- 0.42

Transmitter –

Halo Satellite 8.89 9 0.01

Receiver –

Halo Satellite 8.89 -- 0.01

Total 57.75 9.8 0.51

Halo Orbiting Satellites Communication Hardware

4/7/2011

AAE 450

Spring 2011

Crew Interface

D’Mello, Tony Communications

Ceres Orbit

Mars Orbit

Earth Orbit

C

E R

Sun

Distance (km)

Dis

tance (

km

)

x108

x1

08

Mass

(kg) Power

(kW) Volume

(m3) 2 TVs 10 0.2 0.016

4 Cell Phones 2.4 0.28 0.002 1 Antenna 1.7e-3 1.5e-3 1.94e-7

Total 12.4 0.48 0.018

Exploration Rover Communication Hardware

Crew uses cell phone-like devices and television monitors to communicate.

Phone communication is through antenna located at the ceiling in the center of the vehicle.

Television is wired.

Mass

(kg) Power

(kW) Volume

(m3) 2 TVs 10 0.2 0.016

6 Cell Phones 3.6 0.42 0.003 1 Antenna 1.7e-3 1.6e-3 1.94e-7

Total 13.6 0.64 0.019

Rescue Rover Communication Hardware

Mass

(kg) Power

(kW) Volume

(m3)

6 TVs 30 0.6 0.048

6 Cell Phones 3.6 0.42 0.003 3 Antennas 5.1e-3 6.3e-3 5.82e-7

Total 33.61 1.03 0.051

CTV Communication Hardware

4/7/2011

AAE 450

Spring 2011

See you downstairs at 10:30

AAE 450

Spring 2011

Terán, Sonia Mission Design 35

AAE 450

Spring 2011

36

Cepheus and Cassiopeia

Terán, Sonia Mission Design

Cassiopeia

APES 2

3.5years Consumables

ECCO 1*

ECCO 2*

Cephus

APES 1

3.5years Consumables

Castor

Pollux

SPRINT

*ECCO 1 and ECCO 2 are transferred only for interplanetary trajectory

Who’s along for the ride?

AAE 450

Spring 2011

37

Cepheus and Cassiopeia

Terán, Sonia Mission Design

Low Thrust Spiral Values

TOF

(years)

Thrust (N) Low Thrust

Power1

(MW)

mprop,LT

(T)

finert

Cepheus 1.411 25 1.225 23.04 0.529

Cassiopeia 1.466 25 1.225 23.37 0.519

Kick Values2

∆vEarth

(km/s)

∆vCeres

(km/s)

mprop,Earth

(T)

mprop,Ceres

(T)

finert Earth Kick

finert Ceres Kick

Cepheus 5.00 2.37 724.9 134.7 0.043 0.143

Cassiopeia 5.01 2.19 728.7 127.2 0.042 0.149

1 Power required only for the MPD motors 2 A 15% mass of propellant cost was added for burn arcs

How much is propellant?

AAE 450

Spring 2011

38

Cepheus and Cassiopeia

Teran, Sonia Mission Design

Should we ask for directions?

By: Sonia Teran

AAE 450

Spring 2011 Evan R. Helmeid

AAE 450: Presentations Mission Design Accomplishments:

Rescue Rover Hopping analysis Ballistic trajectory

Transfer orbit trajectory

Final Report and Appendices

Report Involvement:

Quick specs, Acronyms, Vehicle names, Propulsion sizing, Landing with STV, Landing-surface-take-off for CTV, Hohmann transfer, Rescue rover trajectories

Helmeid, Evan Mission Design

AAE 450

Spring 2011 Rescue Rover:

Trajectory based on distance

Helmeid, Evan Mission Design

Method Distance, km mpropellant, kg Total time, min

Optimal to ULCO 207.5-765.4 2155 31.33-88.87

Ballistic trajectory 7.2-207.5 319-2025 11.13-60.53

Driving 0.0-7.2 ~0 0.0-60

AAE 450

Spring 2011 Crew Transfer Vehicle:

Maneuver summary

Helmeid, Evan Mission Design

Maneuver Engine Wet mass, T Prop. mass, T Total time, min

Landing Ceres regime 169.0 14.20 12.22

ISPP transfer Ceres regime 187.3 24.24 85.66

Launch Kick engine @ 30% 465.1 46.81 468.0

0 5 10 15

x 104

0

1

2

3

4

5x 10

4

Evan Helmeid

Trajectory of Spacecraft

X-position (m)

Y-p

ositio

n (

m)

Final altitude

Final trajectory

0 200 400 600 800-60

-40

-20

0

20

40

60

80

Evan Helmeid

Steering Angle, , vs Time

time (s)

Ste

ering A

ngle

,

(deg)

50 100 150 200 250 300 350-140

-120

-100

-80

-60

-40

-20

0

Evan Helmeid

Y-Velocity vs X-Velocity

Velocity x-component (m/s)

Velo

city y

-com

ponent

(m/s

)

0 200 400 600 800-200

-100

0

100

200

300

400

Evan Helmeid

Velocity Components vs Time

time (s)

Velo

city (

m/s

)

Velocity: x-direction

Velocity: y-direction

0 2 4 6 8 10

x 104

0

1

2

3

4

5x 10

4

Evan Helmeid

Trajectory of Spacecraft

X-position (m)

Y-p

ositio

n (

m)

Final altitude

Final trajectory

0 100 200 300 400 500-100

-50

0

50

100

Evan Helmeid

Steering Angle, , vs Time

time (s)

Ste

ering A

ngle

,

(deg)

50 100 150 200 250 300 3500

50

100

150

200

Evan Helmeid

Y-Velocity vs X-Velocity

Velocity x-component (m/s)

Velo

city y

-com

ponent

(m/s

)

0 100 200 300 400 5000

50

100

150

200

250

300

350

Evan Helmeid

Velocity Components vs Time

time (s)V

elo

city (

m/s

)

Velocity: x-direction

Velocity: y-direction

Descent

Ascent

AAE 450

Spring 2011 Supply Transfer Vehicle:

Landing summary

Helmeid, Evan Mission Design

Vehicle Engine thrust, kN Wet mass, T Prop. mass, T Total time, min

STV 1 100.0 140.1 12.82 10.65

STV 2 80.0 107.9 10.04 10.38

0 2 4 6 8 10 12

x 104

0

1

2

3

4

5x 10

4

Evan Helmeid

Trajectory of Spacecraft

X-position (m)

Y-p

ositio

n (

m)

Final altitude

Final trajectory

0 100 200 300 400 500 600-100

-50

0

50

100

Evan Helmeid

Steering Angle, , vs Time

time (s)

Ste

ering A

ngle

,

(deg)

50 100 150 200 250 300 350-150

-100

-50

0

Evan Helmeid

Y-Velocity vs X-Velocity

Velocity x-component (m/s)

Velo

city y

-com

ponent

(m/s

)

0 100 200 300 400 500 600-200

-100

0

100

200

300

400

Evan Helmeid

Velocity Components vs Time

time (s)

Velo

city (

m/s

)

Velocity: x-direction

Velocity: y-direction

0 2 4 6 8 10 12

x 104

0

1

2

3

4

5x 10

4

Evan Helmeid

Trajectory of Spacecraft

X-position (m)

Y-p

ositio

n (

m)

Final altitude

Final trajectory

0 100 200 300 400 500 600-100

-50

0

50

100

Evan Helmeid

Steering Angle, , vs Time

time (s)

Ste

ering A

ngle

,

(deg)

50 100 150 200 250 300 350-200

-150

-100

-50

0

50

Evan Helmeid

Y-Velocity vs X-Velocity

Velocity x-component (m/s)

Velo

city y

-com

ponent

(m/s

)

0 100 200 300 400 500 600-200

-100

0

100

200

300

400

Evan Helmeid

Velocity Components vs Time

time (s)

Velo

city (

m/s

)

Velocity: x-direction

Velocity: y-direction

STV 1

STV 2

AAE 450

Spring 2011 The report:

Page count summary (unofficial)

Helmeid, Evan Mission Design

Appendix # Pages

A 470

B 36

C 28

D 54

E 16

F 56

G 30

H 14

I 36

TOTAL 740

http://www.ehow.com/how_6144796_many-lines-file.html

AAE 450

Spring 2011

AAE 450 Week 13 Presentations

Johnson, Graham Mission Design

AAE 450

Spring 2011

Mission Timeline

Johnson, Graham Mission Design

Assumptions for

model:

-Circular, Co-planar

Planetary Orbits

-Mars will not

influence trajectory

Mission Timeline

Dates: Duration(years):

Project Begins 1/1/2020 N/A

STV Launches/Construction 1/1/2020 - 1/1/2023 4

CTV Launches/Construction 2/11/2027 - 8/11/2028 1.5

STV 1 Departure 10/7/2024 1.411

STV 2 Departure 10/7/2024 1.466

STV 1 Arrival 3/6/2025 N/A

STV 2 Arrival 3/27/2025 N/A

ECCO(1,2) Dept 3/27/2025 1.856

ECCO(1,2) Arrive 2/8/2027 N/A

ISPP1 Production Complete 6/10/2027 2.256

ISPP2 Production Complete 6/30/2027 2.256

CTV Departure LEO 8/19/2028 1.38

CTV Arrival LCO 1/17/2030 N/A

Ceres Stay 1/18/2030 - 2/13/2031 392 DAYS

CTV Ceres Departure 2/13/2031 1.24

CTV Aerocapture at Earth 5/12/2031 7.58 DAYS

Capsule Aero-entry 5/18/2031

AAE 450

Spring 2011

Recap on ECCO1 and ECCO2

Johnson, Graham Mission Design

0.9995

0.9996

0.9997

0.9998

0.9999

1

1.0001

1.0002

1.0003

1.0004

1.0005

-3

-2

-1

0

1

2

3

x 10-4

-1

0

1

2

x 10-4

Nondimensional X-Direction

Transfer Manifolds to L1 & L2

Nondimensional Y-Direction

Nondim

ensio

nal Z

-Direction

Transfer to

L1

Transfer to

L2

ΔV, km/s 0.604 0.251

mprop, kg 2897.5 1137.8

Transfer Manifold Costs

Station-keeping Costs

L1 L2

ΔV, km/s 0.2991 0.2995

mprop, kg 1246.6 1248.3 Courtesy: Christopher Spreen

•Where ΔV was calculated for a 5 year duration time.

•Perturbation force caused by Jupiter’s Influence.

AAE 450

Spring 2011

Matt Hill

Power Group/ISPP

AAE 450: Week 11 Presentations

Tasks Accomplished:

Created Images for Report Section

Completed Final Report

Mission Accomplished! (almost)

Hill, Matt Mission Power/ISPP Stations 47

AAE 450

Spring 2011

1. Reactor (without shielding) 2. Oven

3. Condensor 4. Electrolyzer

5. Stirling Engine 6. Turboalternator

7. LOX, LH2 Collection

Hill, Matt Mission Power;/ISPP Stations

Component Power Draw

(kWe)

Oven/Kiln 260

Condensor 15.1

Electrolyzer 500

RF Comms 0.05

Electronics/Sensor

s

0.5

LOX Tanks 4.2

LH2 Tanks 9.8

Water Tanks 150 (once only)

Harvester

Operations

0.026

Total 940 kWe 48

Alex Roth

AAE 450

Spring 2011

49

Overhead – Peripheral Equipment

Hill, Matthew Mission Power/ISPP

Alex Roth

AAE 450

Spring 2011

50

Further Images

Hill, Matt Mission Power/ISPP Station

Alex Roth

(both images)

AAE 450

Spring 2011

Radiation Protection Cross Section

Hill, Matt Mission Power/ISPP Stations

From center out: Core Vessel (Hafnium),

LiH, Tungsten, LiH, Boron Carbide (B4C),

Insulation

Total Shielding Thickness: 95cm

51

Matt Hill

AAE 450

Spring 2011

Using heat bled from reactor for the oven allows

us to reduce reactor yield to 2.3 MWth

52

New Revised Power Demand

Hill, Matt Mission Power/ISPP Stations

Component Power Draw (kWe)

Oven/Kiln 260 Thermal

Condensor 15.1

Electrolyzer 500

RF Comms 0.05

Electronics/Sensors 0.5

LOX Tanks 4.2

LH2 Tanks 9.8

Water Tanks 150 (once only)

Harvester Operations 0.026

Total 680 kWe, 260 kWth

AAE 450

Spring 2011

Study on reactor and radiator sizing for space

applications:

Mason, L. S. (2003). A Power Conversion Concept for

the Jupiter Icy Moons. Hanover, MD: NCIA.

Example of design selection and reactor, radiator

sizing for Mars surface:

Bushman, A., Carpenter, T., & Ellis, S. e. (2003). The

Mars Surface Reactor (MIT-NSA-TR-003). MIT.

References

Matt “The Iceman” Hill Atomic Space Prospector Extraordinaire 53

AAE 450

Spring 2011

Start again at 11:10

4/7/2011

AAE 450

Spring 2011 Alex Park

Group Lead

AAE 450: Power Group

Tasks Accomplished:

- Overview/Summary

- STV Power System

- More Detailed CATIA Models

- Compilation / Appendix (Final Report)

Park, Alex Power Group

AAE 450

Spring 2011

Park, Alex Power Group

STV 1 & STV 2 Specs.

2 MW Power

Requirement

STV Masses [kg]

Reactor Core 235

Armor Mass 1954.57

Shielding 18008.7

TPV 100

Radiator 1393.33

Molten Sodium 875.72

Total 22288.5

Total Volume 318.3 m3

AAE 450

Spring 2011

STV Reactor Model

Park, Alex Power Group

CATIA model: Alex Park

AAE 450

Spring 2011

Overall Power System Model

Park, Alex Power Group

CATIA model: Alex Park

AAE 450

Spring 2011 Joel Lau

AAE 450: Week 13 Presentation Tasks:

Rescue Rover Power Solution

Exploration Rover Power Solution

Crew Capsule Power Solution

Groups:

Power

Rovers

Crew Capsule

Lau, Joel Power 59

AAE 450

Spring 2011

Rescue Rover Power Solution

Lau, Joel Power

Component Mass

(kg)

Volume

(m3)

TRL

10 kW Hydrogen Fuel Cell 102.04 0.17 9

3x 2092 Watt-hour

Sodium-Sulfur Batteries

41.82 0.09 6

Tanks and Fuel 7.90 0.01 9

Total Mass: 151.71 kg

Total Volume: 0.27m3

60

AAE 450

Spring 2011

Exploration Rover Power Solution

Lau, Joel Power

Component Mass

(kg)

Volume

(m3)

TRL

36 kW H2/O2 ICE 98.00 0.62 3

Electric Generator 50.00 0.17 9

3x 2092 W-hr Na-S

Batteries

41.82 0.09 6

Tanks and Propellant 312.48 0.66 9

Total Wet Mass: 502.30 kg

Total IMLEO: 223.93kg

Total Volume: 1.28 m3

61

AAE 450

Spring 2011

Rescue Rover Power Solution

Lau, Joel Power

Component Mass

(kg)

Volume

(m3)

TRL

2x 10 Kilowatt-hour

Sodium-Sulfur Batteries

41.82 0.28 6

Total Mass: 129.03kg

Total Volume: 0.28m3

62

AAE 450

Spring 2011 Kyle Svejcar

AAE 450: April 7, 2011

Technical Group: Propulsion

Vehicles: ISPP, satellites

Propulsion for ISPP harvesters

Propulsion Satellite Trailing Earth

Svejcar, Kyle Propulsion

AAE 450

Spring 2011

Earth Trailing Satellite

Svejcar, Kyle Propulsion

2 Thrusters with Thurst of 50398 N to 10079 N each

Vacuum Isp of 460 s

Expansion Ratio 150.9

Component Mass, kg Volume, m3

LH2 5116.8 --

LOX 26,300 --

2 Nozzles 233 31.7

2 LH2 tanks 60 72

2 LOX tanks 37.6 23

Pump system 29.5 --

Support Structure 33.1 --

Total 31,810 126.7

CAD model

By: Alex Roth

AAE 450

Spring 2011

ECCO 1

Svejcar, Kyle Propulsion

Thrust is 1447 N

Vacuum Isp of 330s

Expansion Ratio of 58.12

Component Mass, kg Volume, m3

MMH 756.7 --

N2O4 1650.6 --

Helium Pressurant 40.4 --

Nozzle 10.3 7.7

MMH tank 5.4 0.86

N2O4 tank 6.6 1.4

Pressurant tank 5.9 1.1

Feed system 17.0 --

Support Structure 2.8 --

Total 2495.7 11.06

By: Kyle

Svejcar

AAE 450

Spring 2011

Attitude Control

Svejcar, Kyle Propulsion

Component Mass, kg Volume, m3

H2O2 1248 --

H2O2 tank 5.1 0.73

Feed system 4.4 --

Nozzle 0.69 0.06

Support Structure 0.58 --

Total 1258.77 0.79

Vacuum Isp of 200 s

Expansion Ratio of 15.1

By: Kyle

Svejcar

AAE 450

Spring 2011

Backup Slide 1: ECCO 2

Svejcar, Kyle Propulsion

Component Mass, kg Volume, m3

MMH 297.1 --

N2O4 648.1 --

Helium Pressurant 40.4 --

Nozzle 10.3 7.7

MMH tank 3.9 0.33

N2O4 tank 4.7 0.56

Pressurant tank 5.9 1.1

Feed system 17.0 --

Support Structure 2.4 --

Total 1027.4 9.69

Same Nozzle

Dimensions

AAE 450

Spring 2011

Jillian Roberts

AAE 450: Week 5 Presentations

68

Human Factors and Science

7 April 2011

Duties:

Crew Capsule Group Lead

Launch Vehicle Group

Crew Transfer Vehicle

Water and Waste Management Systems

Spacesuit

Radiation Shielding and Dosimeters

Illumination

Fire Suppression and Detection

Noise Suppression

Crew Capsule Sizing

Topics:

Overview

AAE 450

Spring 2011

Crew Capsule

Roberts, Jillian Human Factors and Science 69

Key Features: 1. Ballute & parachute

cap with tunnel

2. Crew compartment,

instruments and

controls, consumables

and life support for 10

days

3. Side hatch and

windows

4. Ceres regolith storage

5. Curved heat shield

structure

Sketch: Jillian Roberts

Mass: 9834 kg

Power: 1.89 W

Volume: 43.7 m^3

Capsule Totals

CAD by Alex Roth

AAE 450

Spring 2011

70

Human Factors Issues

Roberts, Jillian Human Factors and Science

Problem Solution

Water Supply -Recycling (CTV, Exploration Rovers)

-Stored (Capsule, Rescue Rover)

Noise Suppression Acoustic blankets

Fire Detection and

Suppression

-Portable Fire Extinguishers

-Smoke Detectors

-Portable Breathing Apparatus

Radiation -Extensive shielding

-Dosimeters for continuous monitoring

Lighting -Solid State Light Modules

-Flashlights

Exposure to High G-

Forces

-Mission design and aerodynamic constraints

-Well-trained astronauts at peak fitness

Contingency Situations -Spacesuits

-High safety factor built in for consumables

Waste Generation Dump it!

AAE 450

Spring 2011

71

Maximum G-Forces

Roberts, Jillian Human Factors and Science

-Worst case scenario:

above 4g (peak 9g) for

~45 seconds

-Astronauts could

withstand twice as much

time above 4g as

currently

-However, can’t predict

how they will react when

accustomed to only 0.38g

-Effects:

-Difficulty breathing

-Difficulty reaching

for switches

For accelerations in the +Gx “Eyeballs In” direction

Graphs: Devon Parkos

Figure: Jillian Roberts

AAE 450

Spring 2011

Start again at 11:45

4/7/2011

AAE 450

Spring 2011 Brendon White

AAE 450: Final Presentation

Tasks Accomplished:

MATLAB artificial atmosphere code

Robonaut/air recycling research

CTV cabin design/spreadsheets

CATIA models

White, Brendon Human Factors and Science

AAE 450

Spring 2011

MATLAB Code

White, Brendon Human Factors and Science

0 100 200 300 400 500 600 700 8000

200

400

600

800

1000

1200

time (days)

mass o

f O

2 (

kg)

Mass of O2 Needed with 6 Crew Members (STP)0 100 200 300 400 500 600 700 800

0

0.5

1

1.5

2

2.5

3

3.5

4x 10

6

time (days)

Am

ount of O

2 n

eeded (

liters

)

Amount of Oxygen Needed With 6 Crew Members (Assumes standard pressure)

Without Recycling

With Recycling

With Exercise (no recycle)

With Exercise (recycle)

Computes air

needed for:

• CTV

• Rovers

• Crew Capsule

AAE 450

Spring 2011

Research

White, Brendon Human Factors and Science

Robonaut 1 2

Processors

(i.e. speed)

3 PowerPC

processors

38 PowerPC

processors

Approximate

Power

42 Watts 532 Watts

Total DOF 43 (14 in

each hand)

42 (12 in

each hand)

By: Brendon White and

Ben Stirgwolt

AAE 450

Spring 2011

CTV Crew Cabin Design

White, Brendon Human Factors and Science

AAE 450

Spring 2011

CTV Crew Cabin Design

White, Brendon Human Factors and Science

Assembly by: Brendon White

Parts by: Brendon White,

Jared Dietrich and Austin

Hasse

CATIA by: Brendon White

Concept by: Jill Roberts

AAE 450

Spring 2011

CTV Spreadsheets

White, Brendon Human Factors and Science

Gases Needed for

Artificial

Atmosphere

Oxygen (O2)

O2 stored at about 3000psi or 200bar

Vehicle/System

Mass

(kg)

Volume

(m3)

Storage Tank Mass

(kg)

Crew Launch Vehicle 5.01 3.3 1.82364

Crew Transfer Vehicle 3507 2.31E+03 1276.548

ISPP 1 5832 2.31E+03 2122.848

ISPP 2 5832 2.31E+03 2122.848

Exploration Rovers 239.7 157.9 87.2508

Rescue Rover 55.92 36.83 20.35488

Earth Descent/Re-entry

Vehicle 5.01 3.3 1.82364

Used Space

(m3) % of Free

Free Space

(m3)

Total Space

(m3)

Kitchen/Dining/Conference Room 5.575 0.261675663 17.97580967 23.55080967

Bathroom 5.54 0.260032856 17.86295705 23.40295705

Cockpit 2 0.093874677 6.448720958 8.448720958

Laundry/Exercise Room 1.69 0.079324102 5.449169209 7.139169209

Medical Suite 6.5 0.305092701 20.95834311 27.45834311

Storage Space 44.303 - 10 54.303

Total Common Area Space (m3) 90

Used Common Space (m3) 21.305

Free Space (m3) 68.695

To Right: Artificial

atmosphere spreadsheet

Below: CTV sizing

spreadsheet

AAE 450

Spring 2011

Other CATIA Models

By: Brendon White

Assembly by: Brendon White

Parts by: Brendon White and

Jared Dietrich

By: Brendon White

AAE 450

Spring 2011 Leonard Jackson

AAE 450: Week 13 Presentations Structures and Thermal Control

ISPP and Comm. Satellites

Satellite Structure

Boom

Array

Bus

Jackson, Leonard Structures and Thermal Control 4/7/2011 80

AAE 450

Spring 2011

Satellite Boom Structure

Coilable Boom Technology Uses Carbon Fiber

Structure Longeron (Black)

Batten (Green)

Diagonals (Red)

4/7/2011 81 Jackson, Leonard Structures and Thermal Control

Volume (m³) Mass (kg)

ECCO 1&2 0.49 152.22

ECCO Base 0.008 26.64

By: Leonard Jackson

AAE 450

Spring 2011

Solar Array Structure

Ultraflex Solar Array

Structure

Radial Spars (grey)

Flexible Vectran Open Weave Mesh (blue)

4/7/2011 82 Jackson, Leonard Structures and Thermal Control

Mass (kg) Volume (m3)

ECCO 1&2 709.6 8.4

ECCO Base 80.6 0.96

Source: Next Generation Ultraflex Solar Array for NASA’s New Millennium Program Space Technology 8

AAE 450

Spring 2011

Mass (kg) Volume (m3)

ECCO 1&2 956.9 193.5

ECCO Base 1364.1 270.75

4/7/2011 83

Bus Structure

Jackson, Leonard Structures and Thermal Control

Honeycomb Structure

Al Alloy (4.4% Cu)

Structure

Big Bus

Little Bus

AAE 450

Spring 2011 Alex Kreul

AAE 450: Week 13 Presentations

Structures & Thermal group

Crew Launch Vehicle (CLV) group

Crew Transfer Vehicle (CTV) group

Major tasks accomplished:

CTV Chassis sizing

CTV Primary & Earth Departure Tank sizing

Kreul, Alex Structures & Thermal

AAE 450

Spring 2011

CTV Chassis sizing

Kreul, Alex Structures & Thermal

Alex Roth

Component Material mass

(kg)

Axial members CFRP 3044

Tank support structure Al 250

Hoop members Al 3388

Capsule docking structure Al 905

Landing legs (Andrew Curtiss) CFRP, steel 288

TOTAL 7,875 kg

pictured, axial members, hoop

members, capsule support structure

not pictured: tank support structure,

landing legs

AAE 450

Spring 2011

CTV Tank sizing

Kreul, Alex Structures & Thermal

Tank number

of tanks

V per tank

(m3)

V total

(m3)

M per tank

(kg)

M total

(kg)

Primary (LH2) 3 380 1139 884 2653

Primary (Lox) 3 93 280 487 1460

Earth Departure (LH2) 3 519 1557 1106 3317

Earth Departure (Lox) 3 145 436 806 2419

TOTAL 3,412 m3 9,849 kg

pictured, left: Primary Tanks w/ support structure, kick motor, Ceres regime motor, landing leg

pictured, right: Earth Departure Tanks w/ support structure, kick motor

Alex Roth

AAE 450

Spring 2011

CTV Tank launch

Kreul, Alex Structures & Thermal

Launch type # of

launches

V

per launch

(m3)

V

total

(m3)

M

per launch

(kg)

M

total

(kg)

Primary Tanks (1-3) 3 497 1491 123950 371850

Earth Depart. Tanks (4-6) 3 689 2067 187044 561132

TOTAL 6 3,558 m3 932,982 kg

Alex Roth

1 2 3 4 5 6

AAE 450

Spring 2011

Primary Tank names

Kreul, Alex Structures & Thermal

Alex Roth

Alex Kreul

bigten.org

AAE 450

Spring 2011

Earth Departure Tank names

Kreul, Alex Structures & Thermal

Alex Roth

Alex Kreul

bigten.org