water tank design as per moody chart

38
document.xls Slab design 4.5m-ANAND 18:10:52 7.0) Design of slab 7.0 Analysis & Design of Precast slab above Road Beam at RP1 to RP4 7.1 General Details : Width of slab Panel = 5.000 m Width of slab Panel without ledg (5-0.287-0.288) = 5.000 m Length of slab Panel = 4.630 m Bearing below slab on Road beam @ North side = 0.000 m Bearing below slab on Retaining wall = 0.000 m Deck slab depth = 0.45 m Effective Deck slab depth (450- 40- 0.5*20) = 400.0 mm Effective Span of simply supported slab = (4.63-0-0+0.4-0) = 4.500 m Wearing coat thickness = 0.106 m Concrete density = 25 Wearing coat material density = 24 Concrete Grade Slab fck = 30 Mpa Reinforcement fy = 500 Mpa Fill height = 1m 7.2 Loading & Design forces: 7.2.1) Dead Loads Uniformly distributed load for per metre width for dead load due to self weigth of slab and SIDL due to wear moment and Shear force at distance d from face of support are tabulated below. Crash barrier is present at b slab are supported on beam on one side andon retaining wall on other side. Hence crash barrier load will not slab. Table - 1 ; Design UDL and BM & SF for Dead Load & SIDL Load type Max Midspan moment (kNm) Result Result Result Dead Load (0.45x25) = 11.25 11.25x4.5^2 / 8 28 11.25x4.5 / 2 25 18 kN/m 3 kN/m 3 Max Uniformly distributed load (kN/m) Max shear force @ centre of support (kN) Max Shear force @ distance d from face of support

Upload: arifrubin

Post on 20-Oct-2015

1.284 views

Category:

Documents


180 download

DESCRIPTION

Design of underground water tank with moody chart

TRANSCRIPT

document.xls Slab design 4.5m-ANAND 16:44:13

7.0) Design of slab

7.0)Analysis & Design of Precast slab above Road Beam at RP1 to RP4

7.1)General Details :Width of slab Panel = 5.000 m

Width of slab Panel without ledge (5-0.287-0.288) = 5.000 m

Length of slab Panel = 4.630 m

Bearing below slab on Road beam @ North side = 0.000 m

Bearing below slab on Retaining wall = 0.000 m

Deck slab depth = 0.45 m

Effective Deck slab depth (450- 40- 0.5*20) = 400.0 mm

Effective Span of simply supported slab = (4.63-0-0+0.4-0) = 4.500 m

Wearing coat thickness = 0.106 m

Concrete density = 25

Wearing coat material density = 24

Concrete Grade Slab fck = 30 Mpa

Reinforcement fy = 500 MpaFill height = 1 m

7.2)Loading & Design forces:

7.2.1) Dead Loads

Uniformly distributed load for per metre width for dead load due to self weigth of slab and SIDL due to wearing coat and its Bending

moment and Shear force at distance d from face of support are tabulated below. Crash barrier is present at both end of slab where

slab are supported on beam on one side andon retaining wall on other side. Hence crash barrier load will not cause any bending in

slab.

Table - 1 ; Design UDL and BM & SF for Dead Load & SIDL

Load type Max Midspan moment (kNm)

Result Result ResultDead Load (0.45x25) = 11.25 11.25x4.5^2 / 8 28 11.25x4.5 / 2 25 18

kN/m3

kN/m3

Max Uniformly distributed load (kN/m)

Max shear force @ centre of support (kN)

Max Shear force @ distance d from face of

support (kN)

document.xls Slab design 4.5m-ANAND 16:44:13

SIDL due to wearing coat (0.106x24) = 2.54 2.544x4.5^2 / 8 6 2.544x4.5 / 2 6 4Fill (1x24) = 24.00 24x4.5^2 / 8 61 24x4.5 / 2 54 39Total 14 96 85 61

4.5000.0 0.0

96 kNm85 kN

61 kN

0.625

0.625

61 kN85 kN

7.2.2) Live LoadsLive Load for different vehicles (i.e. IRC 70R Wheeled, IRC 70R Tracked, IRC Class A & 40T boggie) are placed symmetrically on span to get maximum bending moment & nearer to support to get maximum shear force are tabulated below: -

a) IRC 70R TRACKED VEHICLE :-Load of tracked vehicle = 70 TonsLength of tracked vehicle = 4.57 mDispersion in longitudnal direction =. 4.57 + 2* 1 6.57 mVehicle width in transverse direction 2.90 mDispersion in transverse direction =. 2.9 + 2* 1 4.90 mImpact factor = 25.0 %Load intensity per square m= 70*9.81*(1+25/100) / ( 6.57*4.9 ) 26.7 KN/m2

document.xls Slab design 4.5m-ANAND 16:44:13

i) Bending moment calculation

4.57

27 kN/m 27 kN/m 1.2 5.00

0.85

4.500Va = 60 kN 4.5 Vb = 60 kN

4.50067 kNm

ii) Shear Force calculationMaximum shear force is obatined for the same laoding condition

43 kN

0.625 0.6254.500

Va = 43 kNVb = 43 kN

B) IRC 40T Boggie Load :-IRC 40T Boggie Load consists of 2 axles of 20T each.Axle No. 1 = 20 Tons Axle No. 2 = 20 Tons

Impact factor = 25.0 % 1.2

Total Live Load on the slab panel = 20+20= 40 TonsLoad on one side wheels including impact factor = 40 Tons/2 x 1.250 x 9.81 = 245 kNi) Bending moment calculation

1

20T 20T

document.xls Slab design 4.5m-ANAND 16:44:13

Wheel contact surface in longitunal direction 0.31 mWheel spacing in longitunal direction 1.22 mWheel contact surface in transverse direction 0.86 mWheel spacing in transverse direction 1.93 mDispersion due to fill of 1m = 2* 1m in each direction 2.00 mTotal diespersion in longitudnal direction =0.31+1.22 +2 3.53 mTotal diespersion in transverse direction =0.86+1.93 +2 4.79 mLoad intensity per square m= 25*9.81*(1+40/100) / ( 3.53*4.79 ) 29.0 KN/m2

5.00

0.86

29 kN/m 29 kN/m 1.07 4.5

0.3

4.500Va = 51 kN 3.53 Vb = 51 kN

5.00070 kNm

ii) Shear Force calculation

47 kN

0.625 0.6254.500

Va = 47 kNVb = 47 kN

Table - 2 ; DesignBM & SF for LL

document.xls Slab design 4.5m-ANAND 16:44:13

Vehicle type

IRC70R TRACKED 67 kNm 43 kNIRC 40T Boggie Load 70 kNm 47 kNMAXIMUM 70 kNm 47 kN

Load case 1 : DL + SIDL + LL = Bending Moment : 28+6+61+70= 166 kNmShear force @ deff: 18+4+39+47= 109 kN

Maximum Midspan

Moment (kNm)

Max Shear force @

distance d from face of support (kN)

document.xls Slab design 6m 16:44:13

7.0) Design of slab

7.0)Analysis & Design of Precast slab above Road Beam at RP1 to RP4

7.1)General Details :Width of slab Panel = 20.000 m

Length of slab Panel = 6.300 m

Bearing below slab on Road beam @ North side = 0.300 m

Bearing below slab on Retaining wall = 0.300 m

Deck slab depth = 0.60 m

Effective Deck slab depth (600- 40- 0.5*20) = 550.0 mm

Effective Span of simply supported slab = (6.3-0.3-0.3+0.55-0) = 6.000 m

Wearing coat thickness = 0.106 m

Concrete density = 25

Wearing coat material density = 24

Concrete Grade Slab fck = 30 Mpa

Reinforcement fy = 500 MpaFill height = 1 m

7.2)Loading & Design forces:

7.2.1) Dead Loads

Uniformly distributed load for per metre width for dead load due to self weigth of slab and SIDL due to wearing coat and its Bending

moment and Shear force at distance d from face of support are tabulated below. Crash barrier is present at both end of slab where

slab are supported on beam on one side andon retaining wall on other side. Hence crash barrier load will not cause any bending in

slab.

Table - 1 ; Design UDL and BM & SF for Dead Load & SIDL

Load type Max Midspan moment (kNm)

Result Result ResultDead Load (0.6x25) = 15 15x6^2 / 8 67 15x6 / 2 45 33

kN/m3

kN/m3

Max Uniformly distributed load (kN/m)

Max shear force @ centre of support (kN)

Max Shear force @ distance d from face of

support (kN)

document.xls Slab design 6m 16:44:13

SIDL due to wearing coat (0.106x24) = 2.54 2.544x6^2 / 8 11 2.544x6 / 2 8 6Fill (1x24) = 24.00 24x6^2 / 8 108 24x6 / 2 72 52Total 42 187 125 90

6.0000.3 0.3

187 kNm125 kN

90 kN

0.850

0.825

89 kN125 kN

7.2.2) Live LoadsLive Load for different vehicles (i.e. IRC 70R Wheeled, IRC 70R Tracked, IRC Class A & 40T boggie) are placed symmetrically on span to get maximum bending moment & nearer to support to get maximum shear force are tabulated below: -

a) IRC 70R TRACKED VEHICLE :-Load of tracked vehicle = 70 TonsLength of tracked vehicle = 4.57 mDispersion in longitudnal direction =. 4.57 + 2* 1 6.57 mVehicle width in transverse direction 2.90 mDispersion in transverse direction =. 2.9 + 2* 1 4.90 mImpact factor = 21.3 %Load intensity per square m= 70*9.81*(1+21.25/100) / ( 6.57*4.9 ) 25.9 KN/m2

document.xls Slab design 6m 16:44:13

i) Bending moment calculation

4.57

26 kN/m 26 kN/m 1.2 20.00

0.85

6.000Va = 78 kN 6 Vb = 78 kN

6.000116 kNm

ii) Shear Force calculationAs dispersion width is greater than slab panel span. The SF force vehicle position as used for BM calcuation is used.

56 kN

41 kN

0.825 0.8256.000

Va = 56 kNVb = 56 kN

B) IRC 40T Boggie Load :-IRC 40T Boggie Load consists of 2 axles of 20T each.Axle No. 1 = 20 Tons Axle No. 2 = 20 Tons

Impact factor = 25.0 % 1.2

Total Live Load on the slab panel = 20+20= 40 TonsLoad on one side wheels including impact factor = 40 Tons/2 x 1.250 x 9.81 = 245 kNi) Bending moment calculation

1

20T 20T

document.xls Slab design 6m 16:44:13

Wheel contact surface in longitunal direction 0.31 mWheel spacing in longitunal direction 1.22 mWheel contact surface in transverse direction 0.86 mWheel spacing in transverse direction 1.93 mDispersion due to fill of 1m = 2* 1m in each direction 2.00 mTotal diespersion in longitudnal direction =0.31+1.22 +2 3.53 mTotal diespersion in transverse direction =0.86+1.93 +2 4.79 mLoad intensity per square m= 25*9.81*(1+40/100) / ( 3.53*4.79 ) 29.0 KN/m2

0.00

0.86

29 kN/m 29 kN/m 1.93 6.0

0.31

6.000Va = 51 kN 3.53 Vb = 51 kN

20.000108 kNm

ii) Shear Force calculationTo obtain maximum shear force, the load is so placed that the dispersion just touches the support, thus bringing the concentratedload nearer to the support.

29 kN/m 29 kN/m

6.0003.53

0.275 m

document.xls Slab design 6m 16:44:13

68 kN

60 kN

0.825 0.8256.000

Va = 68 kNVb = 35 kN

Table - 2 ; DesignBM & SF for LL

Vehicle type

IRC70R TRACKED 116 kNm 41 kNIRC 40T Boggie Load 108 kNm 68 kNMAXIMUM 116 kNm 68 kN

Load case 1 : DL + SIDL + LL = Bending Moment : 67+11+108+116= 303 kNmShear force @ deff: 33+6+52+68= 158 kN

7.3) Distribution Moment Calculation for Lateral distribution of LoadsFor solid slabs spanning in one direction, distributing bars shall be provided at right angles to the main tensile bars to provide forlateral distribution of loads.

0.2*187+0.3*116 = 72 kNm

Maximum Midspan

Moment (kNm)

Max Shear force @

distance d from face of support (kN)

Distribution moment = MD = 0.2 x (DL & SIDL moment) + 0.3 x (LL moment)

MD =

Binnoor Engineers Consultants, Vapi Sludge tank for CETP, Vapi

1.1 Moment & Reaction for Rectangular Plate - Interpolation - (Chamber Wall C1) - Water PressureChamber design _ Moment, Shear force & Direct tension calcualation

Note: Co-efficient are taken from Moody"s chart.

0where ka = 1.000

γ = Density of soil = 10.000h = Height at which pressure is acting

Earth pressure upto bottom slab = 1.000 x 5.55 x 10 = 55.5Phi

a = Half width 1.25 kab = Height 5.55a/b 1/4.44

a/ b = 1/4.00Mx - Horizontal moment coefficient My - Vertical moment coefficient

y/b x/a 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1Rx Ry -0.0061 -0.0102 0.0056 0.0169 0.0237 0.026

1.00 * Ht Top -0.0061 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000.80 * Ht 0.0505 0.0042 0.0019 0.0001 -0.0011 -0.0018 -0.0021 0.0008 0.0004 0.0000 -0.0002 -0.0004 -0.00050.60 * Ht 0.102 0.0082 0.0037 0.0002 -0.0023 -0.0037 -0.0042 0.0016 0.0007 0.0000 -0.0006 -0.0010 -0.00110.40 * Ht 0.1517 0.0114 0.0049 0.0000 -0.0032 -0.0051 -0.0057 0.0023 0.0009 -0.0004 -0.0013 -0.0019 -0.0021 55.50.20 * Ht 0.1495 0.0102 0.0037 -0.0004 -0.0030 -0.0043 -0.0047 0.0020 0.0004 -0.0011 -0.0022 -0.0029 -0.00310.00 * Ht Botto 0.0304 0.0000 0.0004 0.0010 0.0016 0.0020 0.0021 0.0000 0.0020 0.0052 0.0081 0.0100 0.0107

Ry 0.0304 0.0309 0.1052 0.1563 0.1856 0.195

a/ b = 1/4.44Mx - Horizontal moment coefficient My - Vertical moment coefficient

y/b x/a 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1Rx Ry -0.005 -0.0077 0.00576 0.01537 0.02116 0.02311

1.00 * Ht Top -0.00495 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000.80 * Ht 0.045446 0.0036 0.0016 0.0001 -0.0009 -0.0015 -0.0018 0.0007 0.0003 0.0000 -0.0002 -0.0003 -0.00040.60 * Ht 0.091694 0.0070 0.0031 0.0002 -0.0020 -0.0031 -0.0036 0.0014 0.0006 0.0000 -0.0005 -0.0008 -0.00090.40 * Ht 0.136538 0.0098 0.0042 0.0000 -0.0027 -0.0044 -0.0049 0.0020 0.0008 -0.0003 -0.0011 -0.0016 -0.00170.20 * Ht 0.13852 0.0089 0.0033 -0.0003 -0.0026 -0.0038 -0.0041 0.0018 0.0004 -0.0009 -0.0018 -0.0024 -0.00260.00 * Ht Botto 0.033472 0.0000 0.0003 0.0009 0.0014 0.0017 0.0018 0.0000 0.0017 0.0044 0.0070 0.0086 0.0092

Assume angle of friction of sol ɸ = Co-efficient of active pressure = (1-sinɸ)/(1+sinɸ) =

kN/m3

kN/m2

Binnoor Engineers Consultants, Vapi Sludge tank for CETP, Vapi

Ry 0.03347 0.02753 0.09517 0.14187 0.16869 0.17732

a/ b = 1/8.00Mx - Horizontal moment coefficient My - Vertical moment coefficient

y/b x/a 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1Rx Ry -0.0003 0.0024 0.0064 0.0092 0.0109 0.0114

1.00 * Ht Top -0.0003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000.80 * Ht 0.0250 0.0010 0.0005 0.0000 -0.0003 -0.0005 -0.0005 0.0002 0.0001 0.0000 -0.0001 -0.0001 -0.00010.60 * Ht 0.0500 0.0021 0.0009 0.0001 -0.0006 -0.0009 -0.0011 0.0004 0.0002 0.0000 -0.0001 -0.0002 -0.00020.40 * Ht 0.0752 0.0031 0.0014 0.0001 -0.0008 -0.0014 -0.0016 0.0006 0.0003 0.0000 -0.0002 -0.0003 -0.00030.20 * Ht 0.0941 0.0038 0.0016 0.0000 -0.0010 -0.0017 -0.0019 0.0008 0.0003 -0.0001 -0.0003 -0.0005 -0.00060.00 * Ht Botto 0.0459 0.0000 0.0001 0.0003 0.0005 0.0006 0.0006 0.0000 0.0005 0.0014 0.0023 0.0028 0.0030

Ry 0.0459 0.0139 0.0546 0.0835 0.1003 0.1058

Binnoor Engineers Consultants, Vapi Sludge tank for CETP, Vapi

1.2 Moment & Reaction co-efficient for Rectangular Plate of (Chamber Wall C1) - Water PressureChamber design _ Moment, Shear force & Direct tension calcualation

Note: Co-efficient are taken from Moody"s chart.

0where ka = 1.000

γ = Density of soil = 10.000h = Height at which pressure is acting

Earth pressure upto bottom slab = 1.000 x 5.55 x 10 = 55.5Phi

a = Half width 1.25 kab = Height 5.55a/b 1/4.44

Mx - Horizontal moment coefficient My - Vertical moment coefficienty/b x/a 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Rx Ry -0.005 -0.0077 0.00576 0.01537 0.02116 0.023111.00 * Ht Top -0.00495 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000.80 * Ht 0.045446 0.0036 0.0016 0.0001 -0.0009 -0.0015 -0.0018 0.0007 0.0003 0.0000 -0.0002 -0.0003 -0.00040.60 * Ht 0.091694 0.0070 0.0031 0.0002 -0.0020 -0.0031 -0.0036 0.0014 0.0006 0.0000 -0.0005 -0.0008 -0.00090.40 * Ht 0.136538 0.0098 0.0042 0.0000 -0.0027 -0.0044 -0.0049 0.0020 0.0008 -0.0003 -0.0011 -0.0016 -0.0017 55.50.20 * Ht 0.13852 0.0089 0.0033 -0.0003 -0.0026 -0.0038 -0.0041 0.0018 0.0004 -0.0009 -0.0018 -0.0024 -0.00260.00 * Ht Botto 0.033472 0.0000 0.0003 0.0009 0.0014 0.0017 0.0018 0.0000 0.0017 0.0044 0.0070 0.0086 0.0092

Ry 0.03347 0.02753 0.09517 0.14187 0.16869 0.17732

Mx - Horizontal moment coefficient My - Vertical moment coefficienty/b x/a 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Rx Ry -1.52 -2.37 1.77 4.74 6.52 7.125.55 -1.52 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.004.44 14.00 6.10 2.77 0.14 -1.61 -2.64 -3.05 1.16 0.58 0.00 -0.31 -0.58 -0.723.33 28.24 11.95 5.38 0.31 -3.36 -5.38 -6.13 2.33 1.03 -0.02 -0.86 -1.44 -1.582.22 42.06 16.68 7.19 0.03 -4.66 -7.46 -8.36 3.36 1.34 -0.55 -1.85 -2.71 -2.981.11 42.67 15.27 5.61 -0.55 -4.45 -6.47 -7.09 3.01 0.65 -1.54 -3.12 -4.14 -4.450.00 10.31 0.00 0.58 1.47 2.36 2.94 3.08 0.00 2.91 7.60 11.88 14.66 15.68

10.31 8.48 29.32 43.70 51.96 54.62

Assume angle of friction of sol ɸ = Co-efficient of active pressure = (1-sinɸ)/(1+sinɸ) =

kN/m3

kN/m2

Binnoor Engineers Consultants, Vapi Sludge tank for CETP, Vapi

document.xls Chamber des - Page 14/20

1.3 Design of tank - (Chamber wall C1) (LC - 100 - Water Pressure) :-

Grade of concrete = 20 MpaGrade of steel = 415 MpaModular ratio = 13.33Permissible comp. flex. stress in concrete = 7.0 Mpa IS 456-2000, Table 21Permissible tensile. stress in steel Liquid f = 150 Mpa IS 3370 Part II, Table 2

Remote = 190 MpaLiquid face Remote face

n1 = 0.384 0.329j = 0.872 0.890Q = 1.17 1.03 0 0

Design of sectionA. Design of section for flexural

Location Tension Moment Direct b D clear d Total Ast Remark. Pt %

Face Tension cover (for flex.)(for dir tension.) dia @ Spacing Prov.

(kN-m) (kN) (mm) (mm) (mm) (mm) (kn-m) (mm)Horizontal Wall Liquid 0.00 0.00 1000 200 25 170 33.8 0 0 0 369 10 @ 150 524 safe 0.31Corner y=0, Ht = 1.11Horizontal Wall Liquid 6.10 0.00 1000 200 25 170 33.8 274 0 274 369 10 @ 150 524 safe 0.31Corner y=0, Ht = 2.22Horizontal Wall Liquid 11.95 0.00 1000 200 25 170 33.8 537 0 537 369 10 @ 125 1081 safe 0.64Corner y=0, Ht = 3.33 12 @ 250Horizontal Wall Liquid 16.68 0.00 1000 200 25 170 33.8 750 0 750 369 10 @ 125 1081 safe 0.64Corner y=0, Ht = 4.44 12 @ 250Horizontal Wall Liquid 15.27 0.00 1000 200 25 170 33.8 687 0 687 369 10 @ 125 1081 safe 0.64Corner y=0, Ht = 5.55 12 @ 250Horizontal Wall Liquid 0.00 0.00 1000 200 25 170 33.8 0 0 0 369 10 @ 150 524 safe 0.31Centre y=1.25, Ht = 1.11 0 @ 250Horizontal Wall Liquid 3.05 0.00 1000 200 25 170 33.8 137 0 137 369 10 @ 150 524 safe 0.31Centre y=1.25, Ht = 2.22Horizontal Wall Liquid 6.13 0.00 1000 200 25 170 33.8 276 0 276 369 10 @ 125 628 safe 0.37Centre y=1.25, Ht = 3.33Horizontal Wall Liquid 8.36 0.00 1000 200 25 170 33.8 376 0 376 369 10 @ 125 628 safe 0.37Centre y=1.25, Ht = 4.44Horizontal Wall Liquid 7.09 0.00 1000 200 25 170 33.8 319 0 319 369 10 @ 125 628 safe 0.37Centre y=1.25, Ht = 5.55Vertical Wall Liquid 0.72 1000 200 25 167 32.7 33 0 33 362 8 @ 115 437 safe 0.26Centre y=1.25, Ht = 1.11Vertical Wall Liquid 1.58 1000 200 25 167 32.7 72 0 72 362 8 @ 115 437 safe 0.26Centre y=1.25, Ht = 2.22

Mbal. Ast req. Ast req. Astmin

Ast req.

(mm2) (mm2) (mm2) (mm2) (mm2)

Binnoor Engineers Consultants, Vapi Sludge tank for CETP, Vapi

document.xls Chamber des - Page 15/20

Vertical Wall Liquid 2.98 1000 200 25 167 32.7 136 0 136 362 8 @ 115 437 safe 0.26Centre y=1.25, Ht = 3.33Vertical Wall Liquid 4.45 1000 200 25 167 32.7 204 0 204 362 8 @ 115 437 safe 0.26Centre y=1.25, Ht = 4.44Vertical Wall Liquid 15.68 1000 200 25 163 31.1 735 0 735 354 12 @ 115 983 safe 0.60Centre y=1.25, Ht = 5.55

B. Design of section for shear Location Shear b D clear d Shear Ast prov. Permissible Remark.

Force cover stress dia @ Spacing shear stress

(kN) (mm) (mm) (mm) (mm) (mm) (mm) (IS3370-1965)ςv=V/bjd Part-2, Table 1)

For M20Horizontal Wall 2 1000 200 25 170 0.01 10 @ 150 0.31 1.70 Safe

Corner y=0, Ht = 1.11Horizontal Wall 14 1000 200 25 170 0.09 10 @ 150 0.31 1.70 Safe

Corner y=0, Ht = 2.22Horizontal Wall 28 1000 200 25 170 0.19 10 @ 125 0.64 1.70 Safe

Corner y=0, Ht = 3.33Horizontal Wall 42 1000 200 25 170 0.28 10 @ 125 0.64 1.70 Safe

Corner y=0, Ht = 4.44Horizontal Wall 43 1000 200 25 170 0.29 10 @ 125 0.64 1.70 Safe

Corner y=0, Ht = 5.55Vertical Wall 14 1000 200 25 170 0.10 10 @ 150 0.26 1.70 Safe

Centre y=1.25, Ht = 1.11Vertical Wall 1000 200 25 170 0.00 10 @ 150 0.26 1.70 Safe

Centre y=1.25, Ht = 2.22Vertical Wall 1000 200 25 170 0.00 10 @ 125 0.26 1.70 Safe

Centre y=1.25, Ht = 3.33Vertical Wall 1000 200 25 170 0.00 10 @ 125 0.26 1.70 Safe

Centre y=1.25, Ht = 4.44Vertical Wall 55 1000 200 25 170 0.37 10 @ 125 0.60 1.70 Safe

Centre y=1.25, Ht = 5.55

Pt % provid

edςv (N/mm2)

Shirish Patel and AssociatesConsultants Private Limited

DELHI RAIL CORPORATION LTD.JAIPUR METRO RAIL PROJECT

STAGE-1 (JP/EW/C2)

document.xls Wing Wall DES-DL+SIDL---

7.4) Retaining wall design in normal case: ( LC 2 - DL + SIDL ) (Ref. Fig -1 )7.4.1) Design parameters :

Grade of concrete = 20Height of wall above Footing level = #REF! mDepth of foundation top below Road lvl = #REF! mTotal height of wall H = #REF! mSaturated Density of soil = 18Angle of internal friction ' phi' = 30 DegreeCoeff. Of friction m = 0.5Surcharge load SL = 0*18 = 0 No surchargeOver burden load SL = 0*18 = 0 No OverburdenConcrete density = 24

Coefficient of earth pressure Ka = #REF!Dynamic increament in Ka due to EQ, ' Ka1

#REF! #REF! = #REF!

#REF! = #REF!

= #REF! = 0.07.4.2) Design of Abutment @ Base : -7.4.2.1)Summary of forces @ Base of Abutment: Stem depth = #REF! m

Load Load in kN L.A @ A Moment(kN) (kN-m)

W1 #REF! #REF! #REF! #REF!W2 #REF! #REF! #REF! #REF!W4 #REF! #REF! #REF! #REF!W6 #REF! #REF! #REF! #REF!W8 #REF! #REF! #REF! #REF!W9 #REF! #REF! #REF! #REF!W10 #REF! #REF! #REF! #REF!W11 #REF! #REF! #REF! #REF!Total #REF! #REF!Earth pressure :Horizontal component of Active P1 #REF! #REF! #REF!Total #REF! #REF!Vertical component of Active V1 #REF! #REF! #REF!

7.4.2.2)Load combination under DL+SIDL condition#REF! = #REF! kN#REF! = #REF! kN-m#REF! = #REF! kN#REF! = #REF! kN-m

Net stabilizing moment = #REF! kN-m

7.4.2.3)Stability Check :a) FOS against overturning #REF! = #REF! > 2

#REF!Eccenticity from 'A' #REF! = #REF! m

Eccenticity from C.G. of base #REF! = #REF! m

N/mm2

g kN/m3

kN/m2

kN/m2

kN/m3

Earth pressure at Base = Ka * g * H * Cos (δ+(90-α))kN/m2

Passive pressure at Base = Kp * g * HkN/m2

( Ka * g * H * Cos (δ+(90-α)))/2 * H

( Ka * g * H * Sin (δ+(90-α)))/2 * H

Shirish Patel and AssociatesConsultants Private Limited

DELHI RAIL CORPORATION LTD.JAIPUR METRO RAIL PROJECT

STAGE-1 (JP/EW/C2)

document.xls Wing Wall DES-DL+SIDL---

b) FOS against sliding

0.5 #REF! = #REF! > 1.5#REF! #REF!

c) Check for pressure : Width of Wall @ base = #REF! m

P/A = #REF! = #REF!

M/Z #REF! = #REF!

Over burden pressure below Bed = #REF! #REF!

Maximum pressure = P/A + M/Z = #REF!

Net pressure #REF! = #REF! #REF!

Minimum pressure = P/A - M/Z = #REF! #REF!

7.4.3) Design of Abutment @ Height #REF! from Retaining Wall top 7.4.3.1) #REF! Stem depth = #REF!

Load Load in kN L.A @ B Moment(kN) (kN-m)

W1 #REF! #REF! #REF! #REF!W2 #REF! #REF! #REF! #REF!W6 #REF! #REF! #REF! #REF!Total #REF! #REF!Earth pressure :Horizontal component of Active P1 #REF! #REF! #REF!Total #REF! #REF!Vertical component of Active V1 #REF! #REF! #REF!

7.4.3.2)Load combination under DL+SIDL condition#REF! = #REF! kN#REF! = #REF! kN-m#REF! = #REF! kN#REF! = #REF! kN-m

Net stabilizing moment = #REF! kN-m

7.4.3.3)Stability Check :a) FOS against overturning #REF! = #REF! > 2

#REF!Eccenticity from 'A' #REF! = #REF! m

Eccenticity from C.G. of base #REF! = #REF! m

b) Check for pressure : Width of STEM = #REF! m

P/A = #REF! = #REF!

M/Z #REF! = #REF!

Permissible concrete stresses Ref IRC21:2000, Tab 9 & 11

Maximum pressure = P/A + M/Z = #REF! 5000 kN/sq mt#REF!

Minimum pressure = P/A - M/Z = #REF! -530 kN/sq mt#REF!

kN/m2

kN/m2

kN/m2

kN/m2

kN/m2

kN/m2

( Ka * g * H * Cos (δ+(90-α)))/2 * H

( Ka * g * H * Sin (δ+(90-α)))/2 * H

kN/m2

kN/m2

kN/m2

kN/m2

Shirish Patel and AssociatesConsultants Private Limited

DELHI RAIL CORPORATION LTD.JAIPUR METRO RAIL PROJECT

STAGE-1 (JP/EW/C2)

document.xls Wing Wall DES-DL+SIDL+EQ---

7.6) Retaining wall design in Seismic case: ( LC 4 - DL + SIDL + EQ ) (Ref. Fig -1 )7.6.1) Design parameters :

Grade of concrete = #REF!Height of wall above ground = #REF! mDepth of foundation below ground = #REF! mTotal height of wall H = #REF! m

Saturated Density of soil = #REF!Angle of internal friction = #REF! DegreeCoeff. Of friction m = #REF!

Concrete density = #REF!Horizontal Siesmic coeff. = #REF!Vertical Siesmic coeff. = #REF!Coefficient of earth pressure Ka = #REF!Dynamic increament in Ka due to EQ, ' Ka1

#REF! #REF! = #REF!Dynamic decreament in Kp due to EQ, ' Kp1 = #REF!

#REF! #REF!

= #REF! = #REF!

= 0 = 0.0

7.6.2) Design of Abutment @ Base : -7.6.2.1) Summary of forces @ Base of Abutment:

Load Load in kN L.A @ A Moment(kN) (kN-m)

W1 #REF! #REF! #REF! #REF! #REF!W2 #REF! #REF! #REF! #REF! #REF!W4 #REF! #REF! #REF! #REF! #REF!W6 #REF! #REF! #REF! #REF! #REF!W8 #REF! #REF! #REF! #REF! #REF!W9 #REF! #REF! #REF! #REF! #REF!W10 #REF! #REF! #REF! #REF! #REF!W11 #REF! #REF! #REF! #REF! #REF!Total #REF! #REF!Dynamic increment in Earth pressure :P1 #REF! #REF! 2.0 #REF! #REF! #REF!Total #REF! #REF!

7.6.2.2) Load summary under EQ condition without LL & 50% surcharge :Total vertical load #REF! #REF! kN

#REF! #REF! kN-m#REF! #REF! kN#REF! #REF! kN-m

Net stabilizing moment = #REF! kN-m

7.6.2.3) Stability Check :a) FOS against overturning #REF! = #REF! > 1.5

#REF!Eccenticity from 'A' #REF! = #REF! m

N/mm2

g kN/m3

kN/m3

Dyn increment Earth pressure at Base = Ka * g * H* Cos (δ+α)

kN/m2

Dyn. Decrement in passive pressure at Base = Kp' * g * H

kN/m2

Shirish Patel and AssociatesConsultants Private Limited

DELHI RAIL CORPORATION LTD.JAIPUR METRO RAIL PROJECT

STAGE-1 (JP/EW/C2)

document.xls Wing Wall DES-DL+SIDL+EQ---

Eccenticity from C.G. of base #REF! = #REF! m

b) FOS against sliding

#REF! #REF! = #REF! > 1.25#REF! #REF!

c) Check for pressure : Width of Wall @ base = #REF! m

P/A = #REF! = #REF!

M/Z #REF! = #REF!

Over burden pressure below Bed = #REF! #REF!

Maximum pressure = P/A + M/Z = #REF!

Net pressure #REF! = #REF! #REF!

Minimum pressure = P/A - M/Z = #REF! #REF!

7.6.3) Design of Abutment @ Height #REF! from Retaining Wall top 7.6.3.1) #REF! stem depth #REF!

Load Load in kN L.A @ B Moment(kN) (kN-m)

#REF! #REF! #REF! #REF! #REF! #REF!#REF! #REF! #REF! #REF! #REF! #REF!#REF! #REF! #REF! #REF! #REF! #REF!

Total #REF! #REF!Horizontal Force due to braking (50% in EQ case) #REF! #REF! #REF!P1 #REF! #REF! 2.0 #REF! #REF! #REF!Total #REF! #REF!

7.6.3.2) Load summary under EQ condition without LL & 50% surcharge :Total vertical load #REF! #REF! kN

#REF! #REF! kN-m#REF! #REF! kN#REF! #REF! kN-m

Net stabilizing moment = #REF! kN-m

7.6.3.3) Stability Check :a) FOS against overturning #REF! = #REF! > 1.5

#REF!Eccenticity from 'A' #REF! = #REF! m

Eccenticity from C.G. of base #REF! = #REF! m

b) Check for pressure : Width of STEM = #REF! m

P/A = #REF! = #REF!

M/Z #REF! = #REF!

kN/m2

kN/m2

kN/m2

kN/m2

kN/m2

kN/m2

kN/m2

kN/m2

Shirish Patel and AssociatesConsultants Private Limited

DELHI RAIL CORPORATION LTD.JAIPUR METRO RAIL PROJECT

STAGE-1 (JP/EW/C2)

document.xls Wing Wall DES-DL+SIDL+EQ---

Permissible concrete stresses Ref IRC21:2000, Tab 9 & 11

Maximum pressure = P/A + M/Z = #REF! 5000 kN/sq mt#REF!

Minimum pressure = P/A - M/Z = #REF! -530 kN/sq mt#REF!

kN/m2

kN/m2