water resources publications p. o. · water resources public a tio ns p.o. box 2841 littleton,...

172
WATER RESOURCES PUBLICATIONS P. o. Box 2841 •Littleton, Colorado 80161 •U.S.A. I (Technical Release No. 59 )) II'. "' Hydraulic Design of Riprap Gradient Control Structures ''" , from the UNITED STATES SOIL CONSERVATION SERVICE

Upload: others

Post on 21-Mar-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

WATER RESOURCES PUBLICATIONS P. o. Box 2841 •Littleton, Colorado 80161 •U.S.A.

I

(Technical Release No. 59 )) II'.

"'

Hydraulic Design of Riprap Gradient Control Structures

''" ,

NAl'~ONAl ENG~NIEER~NG PUl8l~CAT~ONS from the

UNITED ST ATES SOIL CONSERVATION SERVICE

Page 2: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

,. . ., ••

I • • • I •

.. .., ! ... ~ • ... .. I ... ! .. • ... i I ~ f -• I ... .. = "' • ... "' ... .. -.. ... c • .. ! "' ... -' -• f :: c ... ! • Ill .. c •

i . ... -' -' -.. .. .. .. c ... z .. c .. i I

1: c• ·­... • • Cl'I SN .... ... •c :! .. , ... .. C I ... z I

- •I ; .. s;; I

r•;, .. -0 I ... • I' . -· ! :. .. w • ... -1 f I .. '"'I - ·­.. .... ... -= I : ... : _, C lflC

y == r

.. -.. ... -' c

= r .. • -.. • Ill .. 'I! c • c ..

.. Ill Ill

I I • = • c .. • .. • • • .. • • . • •

• • • Ill

• .. I ... • • • • • .. -• .. ... • • . • • s • Ill • • . • • • .. t • • . • Ill ... .. • •

I -.. -I • .. I • i

.. ·* ·­..

I Ill• .....

0 • .~ cl ... , • -'

-' c .... -­... ii

• ...

• ... ... .... • ... . ... • z .. IC ... -'

................ ,.. -·· ... ----· .. -. . . . . . . . . . . 111 ........ ,..., __ --

::=s::::::s: . . . . . . . . . . . Ne•"°•lll•lltN•• --:•::;====== ...=t.111 ........ .. . . . . . . . . . . . ·······--..... s::::~:::x:: ..................... ··------~-· ••••••••••• ••••••••••• . . . . . . . . . . . ••••••••••• ............ ._. ....... !!-: :~::::==-= . . . . . . . . . . . "'"'"'"'••111111•""•

::""··-... ~=1111'1 .... ::::;::;:N:: . . . . . . . . . . . 1111111'11'11'11'11'11'1•••

........... ! .. ::::::::: a: . . . . . . . . . . . . ................... . • ::•t::::· ... -..s ....... sai . . . . . . . . . . . ............. ::::::::::: . . . . . . . . . . . ....................... :s::::::::: • • • • • • • • • • • ....................... ::::::!:::: e.;.:.:;e.;.:·•..;• ................ -s:::::::::: ·-"'···-··· ·······---­• • • • • • • • • • • ••••••••••• ................. ............. . . . . . . . . . . . ................... ............... ---

I "' u -i i

"' •• ·­..

I .... '"'i . ~ cl .. , • -'

s .. ;C~ .. u ... -• ...

s .... ..... I

s .. ... .... ... .... •

... ................ .. .. .............. -.. .. . . . . . . . . . . . -----------········---­••lll•l'INNN ...... ••t11llllfllf'4fltl'llllllllfl . . . . . . . . . . . NN .. NllllNllllNNNN

=========== . . . . . . . . . . . -----------::::;:;!::::: ............ . . . . . . . . . . . "'"'"'"'"'"'"'"'"'"'"'

:::::·====~ 111-•··=····· ................................... ••••••••••• ••••••••••• . . . . . . . . . . . •••••••••••

--·=·-••!!•• ::s.:::=•== . . . . . . . . . . . •••••••••••

"'"'"'"'"'"'"'"'"'"'"' :i.:::::.:.:.:: . . . . . . . . . . . ••••••••••• • •••••••••• ••••••••••• ..---------­. . . . . . . . . . . ••••••••••• ;1::s:::::: ·····-----­. . . . . . . . . . . 111••········ ::::::::::: • • • • • • • • • • • ...................... ••••••••••• ................ . . . . . . . . . . . .. .................. .. ::::::::::1 aaaiaaa:i:iai :::•:::::• ,,. ... ~ ...... s

............... ;i . . . . . . . . . . . .................. •••••••••• ............. • • • • • • • • • • • ................. .. :;:=~~=s=

I -.. i • .. I I

i

.. •• ·­.. .. • £i .... ... -'

I .. .. ...... 0 • ..

·~ Clll .. , • -' ,_

;C~ ... "''"' -• ...

-' c wz -· .. .. -1 ~

• .. .. ..... I

z .. . .. .... •

=c .. -· • s .. 1: ... -'

• I I I • • I .......... ._ ......... .

llf•lll• ...... 111 ...... . . .......... . ................... "". --· • • -····-····· 111111e11tl'l••-111•• ,,. .......... ,.. ... 111 . . . . . . . . . . . .............. 11t•••11t••"'-"'• ... ............ ,.._ . . . . . . . . . . . . ._. ............ :: ... ,...,.. ..... "' . :::::::::;=:=: ........... ................ . ................. _ . •N••l'llll..,111••111 :::x:::::::: • •••••••••• ••••••••••• . . . . . . . . . . . ••••••••••• ................ ........ .-. ..... ·--··--··"'­. . . . . . . . . . . ......... ,..,..,..,.. ... ............... . ::::::::;;:::::: . . . . . . . . . . . ... ,..,..,..,..,..,.. ... "' •••Ill•••"'•"'' ... ,,. ... ,.. ... _, •"'•••••--Ne ........... . ....................... .

• ...... .,. ..... _ .. ::::::::::: . . . . . . . . . . . ...................

I

• .......... ,,..,,.. 111111••· ... ·•··· . . . . . . . . . . . NNNNNN--.NNN"' . ............ . 111111••······· . . . . . . . . . . . NNNNN .. NNNNl'I

: ......... . .. ............. . . . . . . . . . . . . . .... "' .... _ ....... ................ • f .......... ._. ...

=:•i=~:::=~== ·····------" ............. • ••••••••••• . . • ··-------.... ·--··-... ·-· .... · . ............ . . ._. ............. . .. .. ._. ........... "' .. • • • • •

Page 3: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

,,.

\ . !

WATER RESOURCES PUBLIC A TIO NS P.O. Box 2841

Littleton, Colorado 80161-2841 U.S.A.

HYDRAULIC DESIGN OF

RIPRAP GRADIENT CONTROL STRUCTU-RES

TECHNICAL RELEASE NO. 59 Design Unit

January 23, 1976

Page 4: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res
Page 5: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

1 l

PREFACE

Mr. M. M. Culp, former Chief of the Design Branch, suggested the Design Unit make a study of a steepened riprap channel to obtain gradient con­trol. The resulting investigation led Mr. Paul D. Doubt, former Head of the Design Unit, to conceive and develop the riprap gradient control structure presented in this technical release. The first version of a computer program to determine the dimensions and parameters associated with the design of this riprap structure and portions of a preliminary draft of this technical release were written by Mr. Doubt.

A draft of this technical release dated July 14, 1975, was circulated through the Engineering Division and sent to the Engineering and Watershed Planning Unit Design Engineers for ·review and comment.

A publication is being prepared which will contain the necessary charts for the graphical solution of parameters used in the design of a limited class of riprap structures.

This technical release was prepared by Mr. H. J. Goon with the assist­ance of Mr. John A. Brevard, both of the Design Unit, Design Branch, Engineering Division, Hyattsville, Maryland.

Page 6: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res
Page 7: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

·-

TECHNICAL RELEASE NUMBER 59 /

HYDRAULIC DESIGN OF RIPRAP GRADIENT CONTROL STRUCTURES

PREFACE

NOMENCLATURE

Introduction

Report 108 • • • •

. . . . . . . .

• • • • • • •

Contents

. . . . . . . • . . . . . . . . . •

Purpose of Technical Release • • • • • • • • • • • • • • Computer Program • • • • • • • •

Riprap Gradient Control Structure • • •

• •

• • . .

Riprap Structure Concept • •

Hydraulic Design of Structure • •

Design Discharge • • • • • • •

Specific Energy Head •••••

. . .

. . . .

. . . . . • • • • •

• • • • • • • •

• • • • • • • • . . . .

• • • • • •

• • • • • • •

• • • • • • • •

• • •

• •

• •

• • •

• • Manning's Roughness Coefficient ••••••••

Maximum Slope of Prismatic Channel • • • • • • • • • • • • • • •

Prismatic Channel •

Transitions • • • •

Design of Riprap • • •

• • •

• • •

• • •

• • • • • • • • • •

• • • • • • • • • •

• • • • • • • • •

• •

• • • •

• • • •

• • •

• • • • • •

• • • • • •

• • • . . • • • • •

Critical Tractive Stress • • • • . . . . . . . . . . . . . . Allowable Tractive Stress • • . . . • • • • • • • • • • • • ..

• • • • • • • • • • •

• • • • • • • • • • • • • • • •

Average Tractive Stress • • • •

Distribution of Tractive Stress •

Minimum Acceptable Riprap Size

Riprap Gradation • • • • • • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • •

Filter ••••••••••••••••

Thickness of Riprap Lining • • • • • •

Riprap Quantity in Prismatic Channel •

• • •

• • •

• • •

• • • •

• • • •

• • • •

• • • • •

• • • • •

• • • • • Summary of Design Criteria ••••

Recommended Value for DIV • • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • •

Computer Program • • • • • • • • • •• • • • • • • • • • • • • • • •

Modes • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Summary of Input Data • • • . . • • • • • • • • • • • • • • •

Input Data • • • • • • • • • • • • • • • • • • • • • • • • •

Default Parameters • • • • • • • • • • • • • • • • • • • • • • •

(210-VI-TR-59, Amend. 1, March 1986)

1

1

2

2

3

4

6

6

6

7

7

7

10

12

12

13

13

15

16

16

17

17

17

19

20

21

21

23

24

24

Page 8: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

ii

Limitations • • • • • • • • • • • • • • . . . . • • • • • • •

Page

• • 25

Output Data • • • • • • • • • • • • • • • • • • • • • • • • • • • 26

Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

29 Examples • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Figures

Figure 1. Riprap gradient control structure • • • • • • • • • • • • • 3

Figure 2. Development of riprap structure concept • • • • • • • • • • 5

Figure 3.

Figure 4.

Figure s.

Forces acting on a moving body of water • • • • •

Distribution of tractive stress along the wetted perimeter of a riprap lining ••••••••••

Maximum tractive stress on sides of trapezoidal channels • • • • • • • • • • • • • • • • • • • •

Figure 6. Maximum tractive stress on bottom of trapezoidal

• • • • • 13

• • • • • 15

• • • • • 18

channels • • • • • • • • • • • • • • • • • • • • • • • • • 18

Figure 7. Flow chart of procedure used in computer program to determine the bottom width ••••••••••••••• 22

(210-VI-TR-59, Amend. 1, March 1986)

Page 9: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

...

/:

(

iii

NOMmCIATURE

This technical release uses, insofar as possible, nomenclature which commonly appears 1n hydraulic literature. However, when nClJmenclature involves lower case letters, subscripts, and Greek lettera, difficul­ties are encountered in presenting, describing, and 1nter~reting com­puter input and output. Therefore, sometimes two symbol·s have the same meaning; one is used in the text and the other is used in describing computer input and output data. The symbols used for input and output data are also defined in the "Computer Program" section of this techni­cal release.

a

aa ac

&n b

ba

bj B.S

BU

C50

Cn

CONV

cs

CSU

= Flow area., ft2

= Average flow area, :rt2

= Fl.ow area corresponding to critical. depth, de,. tt2

= Fl.ow area corresponding to normal depth, dni :rt2

= Bottom width of trapezoidal section, :ft

= Average width of channel, :ft

= Bottom Width ot the transition at any section J, :ft

= Bottom width at the ends of the riprap structure, :ft

= Bottom width ot the prismatic channel ot riprap structure, ft

• C50 = Coetticient relating critical. tractive stress to riprap D!SO size, Tbc • c!SO Dso

• CN = Coettic ient relat 1ng Manning' a n to riprap D50 size,

n • Cn [ Dso] EXPN

= Rate of convergence ot the bottom width ot the upstream. transition, ft/tt Sn --•c SN --SC

. =Maximum &l.lowable ratio ot bottom slope to critical. slope

= Ratio ot bottom slope to critical slope used in the design ot a particular riprap structure

CTAUB s A coetticient used to determine the maximum tractive atreH along the boundary ot the riprap lining on the bottom ot the prismatic channel

CTAUS = A coetticient used to determine the maximum tractive atreH along the boundary ot the riprap lining on the side slope of the prismatic channel T

• Tbm e Ratio of maximum tractive stress on bottom of channel to av average tractive stress

T • Tame Ratio of maximum tractive stress on side slope ot channel

av to average tractive stress

CTb

d = Depth of f'law, :f't

Page 10: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

iv

Dso = D50 = Size of rock in riprap of which 50 percent by weight is finer, ft

D50U = The D50 size of riprap used in the design of a particular

riprap structure, ft

de = Critical depth corresponding to design discharge, Q, ft

DC = Critical depth corresponding to design discharge, Q, in the prismatic channel of riprap structure, f't

DIV = Rate of divergence of the bottom width of the downstream transition, ft/ft

dn = Normal depth corresponding to design discharge, Q, ft

DN =Normal depth corresponding to the design.discharge, Q, in the prismatic channel of riprap 1tructure, ft

dn, d = Normal depth in the downstream channel, ft

dn,u =Normal depth in the upstream channel, ft

DS = Depth of flow corresponding to the de11.gn discharge, Q, at the ends of the riprap structure, ft

miN = Value of the exponent in the equation for computing Manning's

F

g

H

HC

roughnesa coefficient, n = Cn fDso]EXPB . = Re1ultant of horizontal force1 acting on the body of moving

water, lb

= Reaultant of hydrostatic pres1ures acting at Section l, lb

E Resultant of lzydrostatic pressures acting at Section 21 lb

= Total :f'rictiona.1. force, lb

= Factor of sa.f ety

= Factor of safety uaed in the design of a particular riprap structure

= Acceleration of gravity, ft/1ec2 . = Specific energy head corresponding to the design discharge, Q, ft

= Critical. specific energy head ·corresponding to the design discharge, Q, ft

- ft-lb = Friction head loss, lb

BN a Nornal specific energy head corresponding to the design discharge, Q, in the prismatic channel of the riprap 1tructure, ft

J

K

KPS

=

Distance in the transition f%oom. any section to 1ection of width BU total length of the transition

1 _ sin2 (cot-1 z)

sin2 e e Ratio of critical tractive stress

on 1ide elope to critical. tractive 1trea1 on bottom of the trapezoidal channel

p = ..!!. a Ratio of wetted perimeter to bottom slope of the prismatic

Sn channel

\,

J

Page 11: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

l

rm LPC

LT Lt1l'

M

n

p

Pc

Pn Q

.·· ...

= Horizontal length of a portion of a channel, ft

= Length of downstream transition, ft

= Length of prismatic channel, ft

= Length of the transition, ft

= Length of upstream transition, ft

= 1 Qdt = mass of body of water between Sections 1 and 2 g

= N = Manning's coefficient of roughness

=Wetted perimeter, rt

s Wetted perimeter corresponding to the critical depth, de, ft

= Wetted perimeter corresponding to the normal depth, <lo' ft

= Design discharge through the riprap structure, cfs

o d z Normal discharge correspo.nding to depth, d, cfs ""n,

r

8

• RN = Hydraulic radius at normal depth, ft

= Energy gradient, rt/rt

• SC = Critical slope corresponding to the design discharge, Q, in the prismatic channel of the riprap structure, ft/rt

• SN = Bottom slope of the prismatic channel of the riprap struc­ture and also normal slope corresponding to the design discharge, Q, ft/ft

= Slope of channel bottom, ft/ft

t =Time, sec

C50 x D50U TAUBA • FSU = The allowable tractive stress for the riprap

lining on the bottom of the prismatic channel, lb/rt2

TAUBM • (CTAUB)(r)(RN)(SN) • The maximum tractive stress along the riprap lining on the bottom of the prismatic channel, lb/ft2

TAUSA· • K C~tt D50U i! The allowable tractive stress for the riprap

lining on the aide slope ot the prismatic channel, lb/ft 2

TAUSM • (CTAUS)(r)(RN)(SN) • The maximum tractive stress along the riprap lining on the aide slope ot the prismatic channel, lb/ft 2

Tc a Top width of tlav corresponding to critical depth, de, ft

THE:rA - e a Angle of repose of the riprap, degrees

v = Velocity corresponding to the design discharge, Q, ft/sec

VN

= Average velocity, rt/sec

= Velocity at normal depth corresponding to the design discharge, Q, 1n the prismatic channel of riprap structure, ft/sec

VS s Velocity corresponding to the design discharge, Q, at the ends ot the riprap structure, ft/sec .

W • Total weight of water between s ectiona, lb

v

Page 12: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

vi

de Xe a i) = Ratio of critical depth to bottom width

~ . Xn • i)= Ratio of normal depth to bottom width

z = Side slope of trapezoidal section expressed aa a ratio of horizontal to vertical, ft/tt

ZL s Side alope of the le:tt bank at the ends of riprap structure, see SECTION A-A ot Figure l, ft/tt

ZR = Side slope of the right bank {looking downstream) at the ends of riprap structure, ft/ft

ZS = Side slope of trapezoidal section at the ends of riprap struc­ture, ft/ft

ZU s Side slope ot the prismatic channel of the riprap structure, ft/ft

., e Unit weight of water, lb/ft3

e T

T~V

• Tltl!:rA a Angle of repose ot the riprap, degrees

a Tractive a~ress, lb/ft2

• ?'rs •The average tractive stress, lb/ft2

TbC • ~ s The allowable tractive stress tor the riprap lining on

the bottom ot the trapezoidal channel, lb/:tt2

• C!!SO D50 a The critical tractive stress tor the riprap lining on the bottom ot the trapezo1dal challnel, lb/:tt2

a The ma.ximum. tractive stress along the riirap lining on the bottom ot the trapezoidal channel, lb/ft

• JC Tba • The allowable tractive stress tor the ripra~ lining on the aide slope ot the trapezoidal channel, lb/tt

• lt Tbc a The critic&l tractive stress tor the riprap lining on the aide slope ot the trapezoidal channel, lb/tt2

• ::e-::um.0;~!i~;a;;~:::ai al~~, ri~~2lining on the

J

j

Page 13: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

TP.rHNICAL RELEASE NUMBER 59

HYDRAULIC DESIGN OF RIPRAP GRADDm CONTROL ~TURE:l

Introduction ·

In some cases a riprap gradient control structure can be used economi­cally to dissipate excess energy and establish a stable gradient in a channel where the gradient without some such control would be too steep and would cause erosive velocities.

The riprap gradient control structure discussed herein consists of a riprap prismatic channel with a riprap transition at each end (see Figure 1). Its essential feature is that the specific energy of the flow at design discharge is constant throughout the structure and is equal to the specific energy of the t.lov in the channel immediately up­stream and downstream of the structure. Thus, for the design discharge, the dissipation of hydraulic energy in the structure is at the same rate as the energy gain due to the gradient. The structure, which is made steeper and narrower than the adjoining channel upstream and down­stream, maximizes energy dissipation.

For brevity, riprap gradient control structures will be referred to in this technical release as riprap structures or simply as structures. All channels and structures considered in this technical release have trapezoidal cross sections and subcritical slopes.

Report 108

The National Cooperative Highway Research Program Report 108 1 entitled "Tentative Design Procedure tor Riprap-Lined Channels" presents the analyses of experimental results, development of criteria, and design procedures tor the stability of riprap linings. Rereat'ter, this publica­tion is referred to as Report 108. It contains information useful in the design of trapezoidal channels constructed in noncohesive sand and gravel materials and of riprap linings which form the boundary of chan­nels and gradient control structures •. Report 108 also presents criteria and recommendations tor riprap layer thicknesses and tor required tilters. Report 108 states that laboratory experimental studies on linings de­signed in accordance with its procedures showed the linings did not tail until discharges reached values in excess ot the design discharges.

St. Anthony Falls Hydraulic Laboratory Project Report No. 146 entitled "Tentative Design Procedures tor Riprap-Lined Channels - Field Evalua­tion" by Alvin G. Anderson, June, 1973, tor National Cooperative High• way Research Program, presents the results of field evaluation studies of tour constructed riprap-lined channels designed in accordance with the procedures contained in Report 108. The studies showed that all four channels were performing satisfactorily, and two of the channels were without signs of erosion at'ter having been subjected to discharges that approach the design discharges.

1 Publication of the Transportation Research Board, National Research Council, National Academy of Sciences - National Academy of Engineer­ing, 1970

Page 14: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

2

Purpose of Tecbnica.1 Release

The purpose of this technical release is to present procedures for the design and proportioning of riprap gradient control structures. These procedures can also be used to obtain a riprap channel design. This technical release also documents the criteria and procedures used in the associated computer program.

Computer Program

A computer program, written in FORrRAN tor IBM equipment, determines di­mensions and parameters associated with the design of a riprap gradient control structure. The program operates in any ot tour modes. Mode l obtains only the design of a riprap prismatic channel. Modes 2, 3, and 4 obtain the design of a riprap structure including the prismatic channel and both transitions of the structure. Modes 3 and 4 perm.it greater flexibility of design.

Input and output data information 1a discussed under the "Computer Pro­gram" section. Computer design runs may be obtained by request to ·

Bead, Design Unit Engineering Division Soil Conservation Service Federal Center Building Hyattsville, Maryland 20782.

"

I

Page 15: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

I

I

'

3

Riprap Gradient Control Structure

A riprap gradient control structure is a riprap stru~ture consisting of a prismatic channel with a converging inlet transition at the upstream end and a diverging outlet transition at the downstream end of the pris­matic channel. The riprap structure as designed should have essentially a straight alignment as shown in Figure 1.

ll DS

DS B

ELIVATICli

SETIO?i B-B SETI:Cfi A-A

Figure 1. Riprap gradient control structure

Page 16: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

4

Riprap Structure Concept

The following discussion on energy dissipation will assist in the Under­standing of the principles used in the development of the riprap struc­ture concept and the reason for designing it to maintain a constant spe­cific energy head.

In a system of channels having mild slopes, i.e., flows are subcritical, the depth of flow for a given discharge is physically fixed by the down­stream characteristics of the channel system and upstream characteris­tics have no effect on this depth. Since flows are subcritical, water surface profile computations are usually required tor the channel down­stream of the riprap prismatic channel or structure. These water surface profile computations evaluate the starting depth at the downstream end of the structure. For the purpose of stability analyses, the lowest probable starting depth corresponding to the discharge should always be used.

Consider a riprap channel and its adjoining upstream and downstream earth channels, all having the same dimensions and bottom slopes, but the rip­rap channel having a larger coefficient of roughness. Since the normal depth corresponding to a discharge, Q, in a prismatic channel is a func­tion of the side slope, z, bottom slope, s0 , bottom width, b, and Manning's coefficient of' roughness, n, the normal depth of the riprap channel will be greater than the normal depth of' its adjoining channels. (See Figure 2a.) If' the bottom slope of' the riprap channel is increased sufficiently, the normal depth of the riprap channel, d0 , will be less than that of its ad­joining channels. If' the depth at the junction of the riprap channel and its adjoining channel downstream is equal to the normal depth of the down­stream channel, dn di then flow just upstream in the riprap channel is re­tarded flow. (See

1Figure 2b.) Thus the rate of friction loss is less

than the bottom slope, and the velocity is increasing and the specific energy head is decreasing in the upstream direction. The maximum tractive stresses occur at the junction of' the riprap channel and its adjoining up­stream channel. The velocity may become so great that the upstream channel is unstable. In this situation the riprap roughness has not been used ef­ficiently to dissipate energy.

If' the bottom slope of the riprap channel is adjusted such that the normal depth of the riprap channel equals the normal depth of the adjoining chan­nels, the flow is uniform. Therefore, the rate of' friction loss in the riprap channel is equal to its bottom slope and energy is dissipated uni­formly. In this situation the riprap roughness is used more efficiently to dissipate energy. Furthermore, the specific energy head at the upstream end of the atructure 1s equal to that at the downstream end. This is more compatible with a stable design of the upstream channel.

However, often the bottom slope of the riprap channel can be increased and the bottom width narrowed from a width, BS, to a width, BO, such that the specific energy head at normal depth in the riprap channel equals the spe­cific energy head at the junction of the riprap channel and the downstream channel. Then the rate of friction loss in the riprap channel equals its bottom slope, Sn· Since the bottom slope is increased and the rate of friction loss equals the bottom slope, more energy dissipation is obtained in the same length of riprap channel. Thus, the riprap roughness is used more efficiently than in any of the previously considered riprap channels.

I

r

Page 17: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

5

Also, since the bottom slope is increased and the bottom width is de­creased, less riprap is required. Of course, when the riprap channel has been narrowed to the width BU < BS, transitions of sufficient length are required to convert potential energy to kinetic energy, and vice versa, with acceptable distribution of velocities. This reasoning leads directly to the riprap structure shown in Figure 1.

Retarded :fl.aw+ w. s. Accelerated flow

-..c::: --. -- - -dn,u

!oughness .. n !oughness ot riprap channel > n

Upstream Channel Riprap Chamiel

Downstream Cbamlel

(a)· Riprap channel and its adjoining channels have same bottom slope and bottom width

Accelerated flow

-- Retarded flow

:~~~~-~=w.:s·!E::~ ---= dn,u

Boughness • n

0

----

Ji:::: !oughness ot riprap channel > n

Riprap Channel

(b). Riprap channel bas the same bottom width but steeper bottom slope than its adjoining channels

Figure 2. Development of riprap structure concept

Page 18: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

6

Hydraulic Design of Structure

The design procedures for stability in this technical release have been confined to clear water flows. The conveyance of bed loads presents a much more complex set of considerations. In the general stability prob­lem involving bed loads, the channel is designed for both clear water and bed load flows; each design fulfilling the capacity and stability re­quirements. Thus, such a design requires that the capacity of the chan­nel be sufficient in the fully aggraded state. In addition, the design requires that the banks will not slough, erode, or silt laterally and the bed will not aggrade or degrade beyond the design limits. Design for only clear water flows implies that the greatest degraded condition has occurred and that a certain amount of sediment may be carried in suspension, but there will be no future deposition of sediment to cause &ggradation on the bed or banks.

Design Discharge

For purposes of this technical release, design discharge means the largest discharge for which stability of the channel or structure is required. The design discharge is assumed to be wholly within the banks of the structure. The design discharge of the riprap structure is the same as the design dis­charge used in evaluating the stability of the channel at both ends of the structure.

Usually, structures that are stable for the design discharge will also be stable for all discharges less than the design discharge. However, if the structure tailwater decreases very rapidly with small decreases in dis­charge, theoretically discharges less than the design discharge may cause higher tractive stresses than the design discharge. In this case the lesser discharge would actually control the design. Thus where tailwater changes very rapidly with respect to discharge, designs should be obtained for the design discharge and several lesser discharges.

If a discharge occurs which is greater than the design discharge, the structure may not function properly. Therefore, it is important that the design discharge, Q, be selected sufficiently large to minimize the possi­bility of extensive damage during the design life of the channel and struc­ture.

Specific Energy Head

When the bottom slope is subcritical, the normal depth is greater than critical depth. If the depth of flow is normal, then the rate of friction loss is equal to the bottom slope. This implies th&t all energy gained by virtue of the drop through the riprap structure is dissipated by friction losses. Normal or uniform flow may be characterized as flow at a constant specific energy he&d. Specific energy head is given by

v2 Q2 H•d+-•d+ -

2g 2ga2 . . . . . . . . . . . . . . . . • ( 1)

Observe that a channel not flowing at critical depth h&s two depths corre­sponding to the same specific energy head; one depth is subcritical and the other is supercritical. All intervening depths have a smaller specific

J

Page 19: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

7 energy head. Therefore, if flow in the channel downstream of the struc­ture is subcritical, supercritical flow cannot occur anywhere in the rip­rap structure if the structure maintains constant specific energy head and slopes are subcritical.

Manning's Roughness Coefficient

The predetermination that a riprap channel will flow at a constant spe­cific energy head for a given discharge requires a careful evaluation of Manning's coefficient of roughness, n, for the channel and also the care­ful establishment of the tailwater elevation at the downstream end of the structure. The coefficient of roughness, n, for riprap has been experi­mentally evaluated as

where (from Report 108) en = 0.0395 EXPN = 1/6

Maximum Slope of Prismatic Channel

(2)

When the bottom slope of a channel is near the critical slope correspond­ing to a particular discharge, flow in the channel at this discharge is considered unstable, i.e., the depth of flow at a section is unpredict­able because the depth fluctuates rapidly with any change in boundary condition. For this reason the prismatic channel bottom slope, sn, is set equal to or less than 0.7 of the critical slope, Sc· The bottom slope, sn, will be expressed as a fl"action of the critical slope, i.e.,

(3)

where 0 < CS S 0.7

Prismatic Channel

The depth of flow in the prismatic channel of the riprap structure is set equal to the normal depth corresponding to the design discharge, Q. Therefore, the dissipation of hydraulic energy is at the same rate as the energy gain due to the gradient. The specific energy head, H, at every section of the riprap structure is set equal to the specific energy head of the downstream channel at the junction of the downstream transition and the downstream channel, Section A-A of Figure l.

The following development shows that there is a unique prismatic channel bottom width which will meet the above requirement for a given set of values of Q, H, z, and CS. However, this theoretical procedure is not. used directly in the computer program due to its obvious complexity. In­stead, a procedure involving a series of iterations is used as outlined in the "Computer Program" section.

The discharge, Q, flowing at normal depth, d0 , in a channel of bottom width, b, and bottom slope, sn, where Sn 2 CS(sc), is from Manning's formula

2 &nJ..0/3 Q2 • [ l.n486J CS(sc)

Pn '6/3 . . . . . . . . . . . . . . . (4)

Page 20: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

8

The discharge, Q, flowing at normal. depth dn = d0 , in a channel of bot­tom width, b, and bottom slope, s 0 , is

. [ ij86]2 a io /3 Q2 = l. C SC • • • • • • • • • • • • • • • • • (5)

n Pc 4/3

Equating equations ( 4) and ( 5)

&c io /s &n lo /3 ---= cs . . . . . . . . . . . . . . . . . . . Pc 4/3 Pn 4/3

de dn Let x0 = b' Xn = b' and z = the side slope of a trapezoidal. section,

and expand equation (6)

or

b2o/s [Cl + z Xe )xc] io/3 = b2o/s [ (l + z Xn)xnJl0/3 CS

b4/3 [ l + 2xc J z2 + l ]4/3 b4/S[1 + 2xn j z2 + l ]•/s

[(l + z Xchcc] 10

(1 + 2xc J z2 + l)" =

[(l + z Xn)XnJl.O ( )3 cs • • •• (1 + 2xn j z2 + l)"

Equation (7) gives the relation of the critical depth, de, and normal depth, dn 1 of a channel having a bottom slope, s 0 •Sn= CS(sc). Observe that the relation is independent of Manning's n value. The functional relationship of equation (7) is:

(6)

(7)

Xn. = f(xc, z, cs) • • • • • • • • • • • • • • • • • • • • (7a)

The discharge, Q, corresponding to the critical depth, d0 , is 3

Q2 s: g ~ • • • • • • • • • • • • • • • • • • • • Tc

de-. again let Xe e b and expand equation ( 8)

• • •

Q2 g [ (1 + Z Xclxc]3

;s e (1 + 2z Xe) • • • • • • • • • • • • • • • • •

or

(8)

(9)

Zc e t 1[ b~ 12' z J • • • • • • • • • • • • • • • • • • • • • ( 9a)

From equations (7a) and (9a) and tor a given value of CS

Xn = f 2 [-S...., z] . . . . . . . . . . . . . . . . . . . . (10) bS/2

The specific energy head, H, in the riprap structure is

Q2 1 H = 4n + 2g' 8.n2 • • • • • • • • • • • • • • • • • • • • • (11)

,-

Page 21: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

dn dividing by b, expanding, and letting Xxi = b

9

H dn Q2 Q2 [ l J (12) b = b + 2g 9n 2 b = xn + ;5 2g [ ( l + z Xn) Xn] 2 •

or ~ = f

3 [...s.._, z, Xn] . . . . . . . . . . . . . . . . . (12a)

b5/2

From equations (10) and (12a) and for a given value of CS

~ = r.., [bsQ;2' z J . . . . . . . . . . . . . . . . . . . (13)

Rearranging equation (12)

~ = [2g(~ - Xn)] [ (1 + z xn>~J2

[b]'5 /2 Taking the square root and multiplying by H

b'5/2 ...L = .....s_ = [2g (~ - xn>]J../2 [<1 + z :>cn>Xn] r~]'5/2 Jf5 12 bs 12 FF> 12 L

~ = fs[:; 12' z, Xn] ....... • . • . . . . . • . . (14)

Repeating equations (10) and (13)

- -f -11 [ Q b - . " b'5/21

Thus,· for a given value of CS

Xn = fe(~, z) •••

Combining equations (14) and (15)

. . . . . . . . . . . . . . . . . (15)

• • • ~ = f7[its~2, z] • . . . . . . . . . . . . . . . . . (16)

Thus, for a given design discharge, Q, flowing at normal depth, d.n' and for given values of H, z, and CS, there exists one unique bottom width, b. Hovever, it should be noted that a solution is not always possible.

The relation given in equation (16) is independent of the value of the parameter Dso· Hovever, the critical slope, sc, depends on the value of n, and n is a function of Ilse since from equation (2), n • Cn(Ds0 ) 1 16 •

Therefore, the slope of the prismatic channel, sn, depends on the Dso size of the riprap.

Page 22: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

10

Thus, from equation (5) n2 Q2 Pc 4/3

Be= c l.JK362 ac l.0/3

Cn2 Dsol./3 Q2 Pc"/3

l.JK362 a l.0/3 c . . . . . (17)

or

Ac [en Q ]2 Pc"/3 _D_l_/_s a 1. 486 l.O /3 so ac

or

Sc [ Cn ]a Q2 [ (l + 2xc,J z2 + 1)41

5 J Dsc1/s a l.486 ~ bl./3 [Jec(l + z Xc)Jl.0/3 •

• • (18)

and f'rom equation (3), sn = CS(sc)

Transitions

The f'unction of a transition is to convert potential energy to kinetic energy, or vice versa, in such a manner that an acceptable velocity dis­tribution is provided. Generall)r, transitions are designed to avoid ex­cessive energy losses in the tlova they convey. Thia tunction 1~ contrary to the goal of the designer of transitions tor these gradient control structures. However, the design tor either tunction leads to the same basic proportioning ot the transition. ~

Converging inlet transitions located at the upstream end of the riprap structures are designed with a rate of convergence of the bottom width, CONV. The length of the upstream transition, Im, is equal to

[BS - BU] CONV 2 • The inlet transition conveying the design discharge,

Q, at subcritic&l. now, converts potenti&l. energy to kinetic energy. The velocity increases and the depth decreases in the direction of flow. See Figure l.

Diverging outlet transitions located at the downstream end of the riprap structures are designed with a rate ot divergence ot the bottom width, DIV.

The length ot· the downstream transition, LDT, is equal to DIV [ BS ~ BU J .. Flows in diverging transitions are expanding. It the rate ot divergence is too rapid, the expanding tlows tend to separate f'rom the boundary and an uneven velocity distribution Jll81' occur. Therefore, a long transition is required to ensure an acceptable velocity distribution. The outlet transition converts kinetic energy to potential energy, and the velocity decreases and depth increases in the direction ot flow.

The transitions ·associated with the riprap structure are designed to convey the design discharge, Q, throughout the transitions at a constant specific energy head, H. To maintain a constant H when the bottom width is changing requires that the bottom slope ot the transition be variable, changing f'rom the slope ot the riprap prismatic channel to flatter slopes at the upstream and downstream ends of the structure. The instantaneous bottom slope at any section ot the transition is equal to the rate of friction head loss at that section when the design discharge, Q, is flow­ing at normal depth, dn• and at the design specit1c energy head, H.

Page 23: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

,,

The bottom width of the transition, bj, varies linearly from BS to BU through the length of transition, LT. The side slope, z, &lso varies linearly from ZS to ZU through the length, LT. Thus, at a particular section, j, of the transition

bj = BU + J(BS BU) and

z = ZU + J(ZS - ZU) where

11

D -.;;.i;;;;.st.;;.;an=c;;.;;e;....;;i;.;;n;....;;t.;;;;h.;;.e_t.;;.;r;;.;;an=s-i_t;.;;i;.;;o.;;;;n_· _rr.,o;;.;;m;;;....;;s_e_c;..;t;.;;i.-,o.-n_J_t....,o....._.s .... e .... c;..;t...,i.-.o.-n_o....,f....._wi........,d..,t .... h;;...;;;B-..U J = - -LT

Thus at a section j the constant specific energy head, H, is

H s d + Q2

2g [ (bj + zd)d] 2 • • • • • • • • • • • • • • • ( 19)

The rate of energy loss, s, at section J of the transition having a bottom slope, s0 , and conveying the design discharge, Q, at normal depth, do• is

where

Q 2 Q2 n2 Pn 4./3

S • Bo[~,·d] • (1.486)2 8.nl.0/3

Pn • b j + 2"-n ./ z2 + l

&n • (bj + zdn)dn

. . . • • • • • • • • ( 20)

The bottom slope ot the transition at section j is equal to the energy slope, s.

Conversion losses in the transitions are not considered in the design of the riprap structure since a more conservative design of the struc­ture is obtained by ignoring these losses. If the conversion losses were considered, the depth of flow in the structure would be increased slightly, the velocity decreased, and the tractive stress decreased. However, the conversion losses may be significant in the determination of an upper limit tor the water surface profile upstream of the riprap structure, particularly where structures are used in series and some accumulation of conversion losses ~ occur.

The approximate conversion losses a.re given in the computer output following the riprap structure design. The equations used to determine the conversion losses are taken tram Henderson2

Conversion head loss in diverging transition = 0.;3{VN-VS)2

2g

Conversion head loss

DR When BU~ l.0 ;

C(VN)2 in converging transition =

28

c = 0.04

Iii iU ;a: i.3 ; c = 0.11

DN In the computer program when l. 0 < BU < l. 3, linearly trom 0.04 to O.ll.

the coefficient, C, varies

2F. M.· Henderson. "Open Channel Fl.ow" (The MacMillan Company, New York; Collier-MacMillan, Canada, LTD., Toronto, Ontario, 1966), p. 237-238.

Page 24: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

12

Design of Riprap

Riprap as used in this technical release consists of loose rocks or granulars of rock having a unit weight of approximately 165 lbs/ft3

The individual rocks or granulars have no cohesive property nor are they cemented. The experimental results in Report 108 show the Dso size of the riprap varying approximately within the interval:

3.3 x 10-4 ft(=== 0.1 mm) ~ D50

s l.O ft ( === 305 mm)

where Dso = Size of rock in riprap of which 50 percent by weight is finer, ft.

Thus, channels constructed in granular noncohesive materials of suffi­cient size, such as loose sands and gravels, may be designed using the same procedures used for riprap channels.

The riprap is designed to prevent significant movement of the rock vhen the structure is conveying the design discharge, Q. The stability de­sign is accomplished by providing

l. riprap of sufficient size that no significant movement of the individual rocks or particles occurs due to the tractive stresses caused by the flow and

2. riprap lining of sufficient thickness or the combination ot riprap lining and filter layer to prevent leaching.

The following discussion defines the critical and allowable tractive stresses as related to riprap D90 size and describes haw to obtain the values of the actual maximum tractive stress on the aides and bottom ot a priamatic chamlel. Then, the criteria tor determining the minimum ac­ceptable riprap size 18 given along with other riprap requirements.

Critical. Tractive Stress

The critical. tractive stress is that tractive •treas vbich initiates movement of the riprap. For a given riprap size, the tractive stress required to initiate movement 18 less tor riprap placed on the side slopes of a trapezoidal channel than tor riprap placed on the bottom of the channel. The critical. tractive stress tor riprap on the bottom of the chamlel, Tbci u obtained tram mcper:1ment&tion is approximately a linear ~ction of the riprap size, Dso•

Tbc • Cso Dso • • • • • • • • • • • • • • • • • • • • • (21)

where C50 • 4.o (tram Report lo8)

Riprap placed on the side slopes of a trapezoidal. chamlel 1s subjected to the grav1tational. force, which tends to pull the riprap down the side slope, in addition to the tractive stress caused by the flow. The criti­cal. tractive stress tor riprap placed on the side slope of the trapezoi­dal channel, T c·i being somewhat less than Tbci 1s set equal to K times Tbc• The coefficient, X, depends chiefly on the angle of repose, e, ot the riprap and the aide slope, z, on which the riprap 1a placed. The angle of repose depends on the size, angularity, and shape ot the riprap. Approximate values of the angle ot repose are given by Figure 16 in Report 108. The relation ot K, a, and z 18 often taken as

J

Page 25: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

sin2 (cot-1 z)

sin2 e

13

• • • • • • (22)

The critical tractive stress for riprap placed on a side slope becomes . . • • • • ( 23)

Allowable Tractive Stress

As with many engineering calculations, a factor of safety, FS, is ap­plied to determine the allowable tractive stress. The allowable tractive stress is obtained by dividing the critical tractive stress by the fac­tor of safety. Thus, the allowable tractive stress for the channel bottom, Tbai and for the side slopes, Tsai becomes

Cso Dso Tba • FS . . . . . . . . . . . . . . . . . . . . . (24)

T K Cso Dso

sa • FS . . . . . . . . . . . . . . . . . . ;. .• (25)

Average Tractive Stress

The average tractive stress, Tavi may be analytically ascertained by the assumption that all frictional losses are caused by frictional forces on the boundary of the riprap lining. This frictional force, Fr, acting on a moving body of water in a direction opposite to that of the now is shown in Figure 3.

v2-------~~~---------------------------------------------....J------.-1

2g---- 8

v 2 2

2g

w ~ ...

y

~ d2

_._ _____ i...----------- l ________ _,;:..._ __ _;;:===~-...l.-L

1

Figure 3. Forces acting on a moving body of water

Page 26: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

14

Assumptions; Sin Cl! a tan Cl! = s 0 and cos Cl! = 1

F .l = 1 ba d1 2

where

2

V.l + v2 average velocity, Va a 2 di + d2

average f'low area, &a, • ba ( 2 )

v1 and v2 E average velocity at SectiollB 1 and 2 respectively ba 5 average width of' the channel

From Newton's second law of' motion dv

F = M dt

Where from Figure 3;

M • 7 Qdt = mass of body of' water between Sections l and 2 g dt =time interval. for flow to move from Section l to Section 2

dv a the change in velocity of' flow between Section l and Section 2

F • F - F +cos 1 2 cr(W sin a - Ff) s Summation of' all horizon­tal f'orces acting on the body' of moving water

t2 •Vi) dt

. . . . • • • • • • • (26)

The energy loss 1n tt-lb per pound ot water between sections l and 2 is equal to Ftl divided by the weight of' water, w, or

.Ftl Ff va dt Ft -- --w ., Q dt ., &a,

Substitute the values of F1 , F2 , and W s 0 into l!quation (26) and divide by ., &a

_!L. 1 ba (d 2 _ d 2) + z Q dt z + 7 Q (v _ v ) ., &a, 2., &a, 1 2 ., &a l ., Ba g i 2

Fr (di + d2) 'Cdi - d2) z (vi - V2 - • b 2 + va dt J. + va ) 78a a &a g

Fr -•a ., 8a a

Fr v 2 - v 2 --d -d +y+ l.

2 ., aa 1 2 2g • • • • • • • • • • • • (27)

J

' '

Page 27: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

15

From Bernoulli's equation of conservation of energy, the total energy at Section 1 is equal to the total energy at Section 2 plus the energy loss between Sections 1 and 2; refer to Figure 3.

Vl2 V22

y + dl + 2g = d2 + 2g + hr V12 - V22

h:r = dl - d2 + y + 2g . . . . . . . . . . . . . . (28)

Ff hr a - =total energy loss between Sections l and 2 in ft-lb 7 8a per pound of water

Or'

The average tractive stress, Tavi in pounds per unit area, of the riprap lining is equal to Fr divided by pl

on the boundary

where

Fr a h:r T av = - = 7 - - = 7 rs pl p l • • • • • • • • • • • • • • •

r = Unit weight of water = 62.4 lb/ft5

a r • p = :ftrdrauJ.ic radius, ft

a = Flow area, ft2

p e Wetted perimeter of riprap lining, ft

s = s0 (0 Q )2

5 Rate of triction loss, ft/ft ~,d

(29)

Distribution of Tractive Stress

Tractive stresses are not uniformly diatributed &long the boundary of the riprap lining, see Figt.n"e 4. The ma.ximum tractive stress depends on

l. the ratio ot the bottom Width, b1 to the depth of flow, d, and

2. the side slope of the channel, z.

b

d

Figure 4. Distribution of tractive stress &long the wetted perimeter of a riprap lining

Page 28: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

16

Usually the maximum tractive stress 1s on the bottom of the riprap sec­b

tion. For small values of d' the maximum tractive stress is on the side

slopes

tained

of the riprap section, see Figures 5 and 6. These figures, ob-Tsm Tbm

from Report 108, give the values of CTs • ;.-- and CTb • ;:--1 re-av av

spectively. T sm is the maximum tractive stress along the riprap lining on the side slopes of the channel and Tbm is the maximum tractive stress along the riprap lining on the bottom of the trapezoidal section.

Minimum Acceptable Riprap Size

The minimum acceptable riprap size is determined from one of the follow­ing two criteria, whichever controls:

l. the maximum tractive stress along the bottom, Tbmi must be equal to or less than the allowable tractive stress for the riprap on the bottom

where Tbm ~ Tba

Tbm • CTb 7 r s

C!So Dso Tba • FS

2. the maximum tractive stress along the sides, T81111 must be equal to or less than the allowable tractive stress· for the riprap on the sides.

Tams Tsa where

K c!SO Dso Tea•_.....,, ____ FS

Thus, to prevent movement of the 1ndiv1dml rocks or particles by the tractive stress caused by the flow, the above two conditions must be satisfied at every section in the r1prap structure.

Riprap Gradation

The riprap gradation should yield a &mooth size distribution curve and the riprap should not be skip graded. The recommended Gradation Index evaluated trom the distribution curves for the materials used in the channel stability experiments of Report 108 is

Gradation Index • [Des + Dso] s 5. 5 Dso Dis

The riprap gradation affects the required thickness of riprap lining. For well graded riprap, the interstices between larger rocks are filled with smaller rocks; thus the leaching potential is reduced and the re­quired riprap lining thickness is smaller than that for a more uniformly graded riprap. Theref.ore, as the gradation index increases, the riprap lining thickness may be decreased.

I LJ

Page 29: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

17

Filter

Leaching is the process by which the finer base materials beneath the riprap are picked up and carried away by the turbulence that penetrates the interstices of the riprap. Leaching is reduced to a negligible rate by using a properly designed filter under the riprap or by making the riprap layer thick enough and with fine enough interstices to keep erosive currents away from underlying soil.

Report 108 recommends the use of a filter layer if the following criteria are not met:

Dso Riprap ------< 40 Dso :Base

where D15, Ds01 and D85 a.re the sizes of riprap and base material. of

which 15, 50, and 85 percent a.re finer by weight.

Thickness of Riprap Lining

The required thickness of the riprap lining is based largely on exper­ience. Construction techniques, discharge, size of channel, sizes and gradation of riprap, etc., should be taken into consideration when determining the thickness of riprap lining. The following three cri­teria for thickness of riprap lining have been suggested:

1. a thickness of three times the D50 size if a filter layer is not used

2. a thickness of one and a half to two times the Dec size if a filter layer is used

3. a thickness at least one and a half times the maximum particle size it a tilter layer is used-.

Riprap Quantity in Prismatic Channel

The wetted perimeter, Pni and bottom slope, sn, associated with the design of a riprap structure &ffect the quantity of riprap. For a given design and amount of gradient control required in the prismatic channel,

the least amount of riprap is obtained when the value of ~ is minimum. Sn

A side slope, zu, in the range of 2, 2.5, or 3 usually yields a minimum

value of Pn. Sn

Page 30: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

18 2.0

1.9

1.8

1.7

1.6 el ~

t-m t- 1.5 II m 1.4 t-

0

1.3

1.2

1.1

1.0

0.9 0 l 2

----~1---·-----1

4 b er

5 6 7 8

Max:imum. tractive stress on sides of trapezoidal channels

2

b er

5 6 7 8

Maximum tractive stress on bottom of trapezoidal channels

J

Page 31: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

19

Summary of Design Criteria

The following basic criteria govern the design of the riprap structure:

1. The specific energy head, H, at every section of the rip­rap structure is set equal to the specific energy head at the Junction of the downstream transition and the downstream channel, Section A-A of Figure l. Specific energy bead is given by

H • d v2

+ - • d 2g Q2

+-2ga2

2. The prismatic channel bottom slope, sn, is set equal to or less than 0.7 or the critical slope, Be· The bottom slope, sn, is expressed as a traction or the critical slope, i.e.,

where 0 < cs ~ 0. 7

3. Manning's coefficient of roughness, n, is a function or the D so size of the riprap and has been evaluated to be

n • 0.0395 (Ds0 ) 1 / 8

4. The critical tractive stress is a linear function or the D5 o size of the riprap, i.e.,

Tbc • 4.0 D50

5. The riprap size and structure dimensions are selected so that for the design discharge the maximum tractive stress on the riprap does not exceed the allowable tractive stress. Either side or bottom tractive stress may control.

For a given design discharge, Q, specific energy head, H, and side slope, z, the variables that must be adjusted to meet these conditions are bottom width, b; bottom slope, s 0 ; and riprap size, D50 •

The length or the prismatic channel, LPC, is equal to the vertical drop of the prismatic channel divided by the bottom slope, Sn· The vertical drop of the prismatic channel depends on the amount of gradient control re­quired.

Page 32: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

20

Recommended Value for DIV

The outlet transition of a riprap gradient control structure has a rate of divergence of the bottom width of DIV. If this rate of divergence is too rapid, the flow in the transition tends to separate from the boundary and concentrate in the center of the transition and hence on into the exit channel. This flow condition causes eddies to form on the sides of the transition and causes an uneven velocity distribution throughout the transition and into the downstream channel. If the flow velocity is sufficiently high, scour will develop at the end of the structure.

The Corps of Engineers at the Waterways Experiment Station in Vicksburg, Mississippi conducted a series of prototype tests of the downstream transition to determine the minimum rate of divergence, DIV, that would produce a uniform distribution of flow in the downstream transition, thus minimizing scour downstream of the riprap structure. From the tests, the Corps concluded and recommended that a rate of divergence of DIV • 16 should be used in design.

(210-VI-TR-59, Amend. 1, March 1986)

_ •U.S. GoYoniaent Printiftl Office : 1916 • •tO·llll•OZ•S

Page 33: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

21

Computer Program

A computer program is available which determines dimensions and param­eters associated with the design of a riprap gradient control struc­ture. The structure is designed to flow at a constant specific energy head when conveying the design discharge, Q. The design is made for either the maximum D50 riprap size or for the maximum CS value, which­ever controls.

The parameters Q, ZU, and H (or the equivalent of H, in terms of two of the parameters BS, DS and VS) a.re always input to the program. The solution for each design is highly implicit. Two basica.lly different design approaches a.re used in the program. The applicable approach depends on whether or not D50 is specified by the user. These two approaches in simplified form are shown in the flow chart of Figure 7.

Default values are used for certain parameters. if their values are not specified by the user. These parameters are c&lled default parameters.

Modes

The computer program operates in one of four modes numbered 1 through 4. A mode must be specified for each design run. A computer job may contain one or more design runs consisting of the same or different modes.

Mode 1 obtains only the design of a riprap prismatic channel. Modes 2, 3, and 4 obtain the design of the prismatic channel and both tran­sitions of the riprap structure.

Mode 1 permits the specification of the default parameter, D50.

Mode 2 permits the specification of any or all of the three default parameters D50, CONV, and DIV. Mode 2 requires tbat two and only two of the four parameters H, BS, DS, and VS .be specified; otherwise, the computer prints an error code and the computations for this design run cease.

Mode 3 is the same as mode 2 except for an additional line of input which permita the user to specify values for any or a.11 of the default parameters CS, C50, FS, TBErA, CN, and ElCPN.

Mode 4 is the same as mode 3 except tor the parameter, ZS; instead of ZS mode 4 requires the specification of ZL and ZR for different side slopes at the ends of the riprap structure. Also, in mode 4 the param­eters BS and DS must be specified.

Page 34: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

22

I D50 specified ? I I 10 YES I

I Set Set

I CSO • (CS]&lloval>le I I [D50l&l.lavable • D50 I I

...- Aaame a value of b md detel'lline de md du a io AnlO ~ Aaaume a 'fal.ue ot b md detenune du

•uch tbat ~. -(csu)3 ~ Pc

4 Pn4 where dn•JI- 21

Cclllplte

I BB•Jlt I n a Pn <6js I 10 us I •n • [&] An~/s

Step bottcm ¥14th,~ b

~ Campite Obta1n C-ra md C-rb f'rom l'igurea 5 md 6

ObtaiD c.r. md C-rb trca P1gufta 5 md 6 Tbm • CTb 7 r •n

~ C Q a 1/s Js/a T n • c,.. 7 r •n (Dao]b • ~ 7 [1~Jl86] ~T/S ~

c.o~ Tba • :rs

[ C-re -., [CD Qr Pnl/s l'Sjs/a I: c.o ~ (~]. • -Y- i:W AnT/s ~ TO• FS I [D50)b s [D50J. ' Tea ill T- m4 Tha ill Thm f I

IO ?ES 10 us

l l Step bottcm,Y14th, b l Set Set + I CD501.in • c115o1b I I CD50l111n • CD501. l>etemiDe de trca equation ( 8)

i 1 ~ &cs I • f;'"

- ~ --(D50]111D > [D50] &llovable t

(~~b + 211c..Jr.• + i>]4'3

IO ?ES •c • (Cb + r. 4c)4c]J.O/s

Set i D50l1 • [IJ501111a. 8n cs. -•c JIU •b

S.t CS' [CSla11-·'-•- T I D50 • CD501&1.lovable I 10 m

Set I D50U. ~

CSU • cs lt1 •b

Page 35: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

xx

xx:

Mode Required

Linea

1 lat line

lat line 2

2nd line

lat line

3 2nd line

3rd line

lat line

4 2nd line

3rd line

23

Summary of Input Data

= Required parameters

= Default parameters, default values used unless values are specified by the user

= Two and only two of the four parameters, H, BS, DS, and VS are required

Order Of Parameters

- 1.0 Q zu I D50 I H - -

2.0 Q zu I D5° I rn=-=~ - .. :}I:::: - -llL.;~=iJ

- ZS - IT!~Sl rm-x;.s.mi (L::~:iliJ Im~] (iii········ lcONV I I DIV I

- 3.0 Q zu I D50 I r:TI(!:m - -E:..;;.;.:d

ZS r:m~m m?lJ.s.::!1 r:TiiSTI lcONV I I DIV I - - ='-:: :::· ~:~:~ t!i:..wiliJ till······~ ·-· - I cs I I c50 I I FS I I THEU'AI ~ - IEXPN I

- 4.0 Q zo I D50 I - - -- ZL ZR BS DS - lcONV I I DIV I - @] ~ []!] ~ Q!J - IEXPN I

Page 36: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

24

Input Data

The line a.rra.ngement of input de.ta and their locations for the four modes is given in the "Summary of Input Data" on the preceding page.

Required data common to all modes. Each computer job requires two lines of information. Each line consists of 80 or less alphanumeric charac­ters. This intormation must be placed ahead of the other input data and is generally tor identif'yi.ng and documenting the designs. Other required data common to &ll modes are:

1. Mode number (1.0, 2.0, 3.0, or 4.0)

2. Q, design disch&rge to be conveyed within the prismatic channel of the riprap structure

3. zu, side slopes of the prismatic channel of the riprap structure.

Other required data. 1. &de l requires the specific energy head, H, correspond­

ing to the design disch&rge.

2. Modes 2 and 3

a. Two, and only two, of the parameters H, BB, DS and VS are required.. The other two parameters are ascertained by the computer.

BS 11 Bottom width at the ends ot riprap structure, ft

DS 2 Depth o't :now at design discharge at the ends of riprap structure, tt

VS E Velocity at design discharge at the ends ot r1prap structure, tt/sec

b. ZS, the aide slope at the end.a of riprap structure ia required

,3. Mode 4 requ1.rea ZL, ZR, BS, and DS. The apecitic energy head, H, and the velocity, vs, are defined by the specified BS and DS.

Default Parameters

ZL • Side slope ot the left bank at the ends of r1prap structure, see SETICli A-A, Figure 1, tt/tt

ZR s Side slope of the r18ht bank (looking down­stream) at the ends of riprap structure, tt/tt

All other parameter values required for the design are obtained by default unless they are specified. The specified value of each parameter must be greater than zero. Default parameters D50, CONV, and DIV may be specified in modes 2, 3, and 4. The remaining default parameters may be specified only in modes 3 and 4. A value of 0.0 or a blank for a default parameter is interpreted to mean the default value is to be used.

J

Page 37: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

25

The default parameters D50 and CS have default values equal to their recommended maximum allowable values. These are:

where

D50 - 1.0 ft] cs - 0.7

Default values and recommended maxim.um allowable values

D50 = Size of' rock in riprap of' which 50 percent by weight is finer, ft (D50 > l.O ft may be specified)

CS = Ratio of' normal slope, SN, to critical slope, SC

The default parameters CONV and DIV have default values equal to their recommended minimum allowable values. These are:

where

CONV • 2.0 J DIV • 4.0

Default values and recommended minimum allowable values

CONV • Rate of convergence of' the bottom width of' the upstream transition, see Figure l, ft/ft

DIV = Rate of divergence of the bottom width of the downstream transition, ft/ft

The values of any of the following default parameters may be spec 1:f'1ed. The default values of' these default parameters are:

where

FS = 1.25

C50 • 4.0 TRmA a 35° CN • 0.0395 EXPN = 0.1667

FS = Factor of' safety

C50 5 Coefficient used in the equation, Tbc • Cso Dso

'l'RE?rA !i: Angle of repose of the riprap, degrees

CN a Coetf'icient used in the equation for computing

Manning's roughneH coetf'icient, n • On [Dso]EXFN

·EXPN s Value of the exponent in the equation for computing Manning's roughness coetf'icient, n.

Lim.1tat1ons

When the input data are not consistent or have exceeded the limita­tions set in the program, a message will be printed out indicating the reason computations cannot be continued and what the next course of action will be. For example:

''FOR CS = 0. 7000 THE COO't7l!ED VAWE OF D50 c 1.182 FT IS GRF.A.TER THAN THE SPEIFIED OR ALWWABLE D50. SOLUrION FOR CS WILL BE MADE USING SPED'IED OR A.LtmABLE D50 OF l.000 FT."

For details of maximum and minimum allowable values and lim.1tat1ons, refer to the discussions under ''Default Parameters 11 and the error codes under ''Messages. 11

Page 38: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

26

Output De.ta

The alphanumeric information in the first two lines of' input are printed by each design run. The printed alphanumeric information is followed by the data used for the design run.

The output data tor the dimensions and parameters ot the structure are given in the following order:

1. Transition at the downstream end

2. Prismatic channel

3. Transition at the upstream end

The output tor values ot KPS and FRIC SIDPE are given in an E format code containing an exponent. The exponent 1s the power of 10 by which the output value 1s multiplied to obtain its true value. For example:

3-72E-03 • 3.72 x 10-s • 0.00372

The headings used tor the output f'or the transitions are: IBGTR

Fl'

RISE Fl'

z

zur

ZRT

DEPTH Fl'

TOP WD Fl'

!!! Length from the downstream end of' the transition to any section J of' the transition, tt

a The vertical distance from the bottom of' the channel, at the downstream end of the transition,to the bottom of the channel at any section J in the transition, tt

a The bottom width at any section J 1n the transition, f't

a Modes 2 and 3 only; the side slope at any section J 1n the transition, -rt/f't

a Mode 4 only; the lett aide elope at any section j 1n the transition, tt/tt

a !t>de 4 only; the right side slope at any section J in the transition, tt/tt

a The depth at any sectionJ 1n the transition, tt

s Mode 4 only; the top width at any section J 1n the transition corresponding to DEPnl1 tt

TAU LB'SQ. Pr. • Modes 2 and 3 only; the mximum tractive stress at any

" aection J 1n the transition, lb/tt2

LB~ Fl' = !t>de 4 only;. the average tractive 1tres1 at any section 'I • • j 1n the transition. The maximum tractive stress cannot

be obtained, because the value of CTb or CT& 1s unknown tor trapezoidal cross sections having unequal aide slopes, lb/f't2

E The velocity at any section J of' the transition, f't/aec

Fm:C SIDPE a The instantaneous slope of' the energy grade line at any Fr/Fl' section J, tt/f't

Page 39: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

27

The symbols used :for output for the prismatic channel are:

D50U = The Dso size of riprap used in the design of riprap structure, ft

CSU

F.3U

BU

zu SN

BN

DN

VN

RN

SC

DC

N

K

KPS

CTAUB

= ~ = Ratio of bottom slope to critical. slope used in the design of riprap structure

= Factor of safety used in the design of riprap structure

= :Bottom width of the prismatic channel, ft

= Side slope of the prismatic channel, ft/ft

= :Bottom slope of the prismatic channel, ft/ft

= Normal specific energy head corresponding to the design discharge, Q, in the prismatic channel, ft

= Depth of flow corresponding to the design discharge, Q, in the prismatic channel, ft

= Velocity at normal depth corresponding to the design discharge, Q1 in the prismatic channel, ft/sec

= Hydraulic radius at normal depth in the prismatic channel, ft

= l.:ritical. slope corresponding to the design discharge, Q, in the prismatic channel, ft/tt

= Critical. specific energy head corresponding to the design discharge, Q, in the prismatic channel, tt

= Critical. depth corresponding to the design discharge, Q, in the prismatic channel, ft

= CN(D50U)m'B = Manning's coeff'icient of roughness

= :Ratio of critical. tractive stress on side slope to critical. tractive stress on bottom of the trapezoidal. channel

Pn = - a Ratio of wetted perimeter to bottom slope of the

Sn prismatic channel

= A coefficient used to determine the maximum tractive stress along the boundary of the riprap lining on the bottom of the prismatic channel

= (CTAUB)(7)(RN)(SN) I! The maximum tractive stress along the riprap lining on the bottom of the prismatic channel, lb/ft2

C50 x D50U TAUBA. s FSU a The allowable tractive stress for the riprap lining on the bottom of the prismatic channel, lb/tt2

CTAUS = A coefficient used to determine the maximum tractive stress along the boundary of the riprap lining on the side slope of the prismatic channel

TAUSM s (CTAUS)('r )(RN)(SN) = The maximum tractive 1treae along the riprap lining on the side slope of the pr1.8m&t1c channel, lb/ft2

C50 x D50U TAUSA = K FSU a The allowable tractive stress for the riprap

lining on the side slope of the prismatic channel, lb/tt2

Page 40: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

28

Messages When the computer detects an input error, it prints out i ~essage con­taining an error code. No computations are attemp~ed for this design. The error codes are as follows :

Code 1 = Value of 7th field of line l is not zero or blank

Code 2 = C50 < O

Code 3 = FS < 0 or 0 < FS < 1.0 Code 4 =cs< 0 Code 5 = TBE1'A < 20°

Code 6::CN<O Code 8::m!i<O Code 9=H<O Code 10 e BS < O

Code 11 = DS < O

Code 12 e VS < O

Code 13 = BS, DS, H are all zero or blank

Code 14 E DS, vs, H are all zero or blank

Code 15 e BS, DS, VS are all zero or blank

Code 16 = BS, vs, H are all zero or blank

Code 17 •BS, DS, Hare all apeciried

Code 18 • DS, vs, Hare all 1peciried

Code 19 E BS, vs, H are all 1peciried

Code 20 • BS, DS, VS are all 1peciried

Code 21 • ll = o.o or blank when design mode = 1.0 Code 22 iE Q s 0

Code 23 s ZU s l.O

Code 24 s ZS s 0

Code 25 • COBV < 0 Code 26 • DIV < 0 Code 27 • Value of 7th field of line l 11 not zero or blank

Code 28 e Delign mode 11 not l.O, 2.0, 3.0, or 4.o Code 29 • D50 < 0 Code 30 = DS :t ll

Code 31 =CS >0.7

Code 32 = CONV < l.O

Code 33 E DIV < 4.0 Code 34 E (VS)2/2g :t H, ••• DS $ 0

Code 35 e ZL s 0

Code 36 e ZR s 0 1

Code 44 s The value of •in:t~t~ z) ::t l.O, see equation (22)

,-

Page 41: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

Example No. l

Given: ~sign discharge, Q = 2500 cfs

Side slopes, ZU = 3.0 Specific energy head, H = 6.5 ft Riprap size, D50 = 1.25 ~

29

R~uired: Design a riprap trapezoidal channel having the steepest stable bottom slope consistent with the above conditions.

Solution: The design obtained from the computer using mode 1 is as follows:

•••••••••••••••••==•••••••cs•ca:asaaasaaaaa••••••••••••as:csaaaaaaa:aa:::::aaaF DESIGN OF RIPRAP PRISMATIC CHANNEL FOR A CONSTANT SPECIFIC ENERGY HEAD

SPECIAL DESIGN PREPARED BY THE DESIGN UNIT AT HYATTSVILLEt MOo FOR

EXAMPLE DESIGN NO. l JANUARY 23t 1976

CAUTION--THE SPECIFIED D~O• lo250 FT EXCEEDS THE EXPERIMENTAL DATA SHOwN IN REPORT 108. HOWEVERt THE SPECIFIED D~O WILL BE USED AS THE ALLOWABLE D50.

FOR cs.

DIMENSIONS ANO PARAMETERS OF THE RIPRAP CHANNEL

G• 2soo.oo CFS H• 60500 FT ZU• 3.00 FT/FT

ADDITIOlllAL DESIGN PARAMETERS EITHER SPECIFIED OR OBTAINED BY DEFAULT

D50• C50•

FS=

1.250 FT CS• 0.1000 •.oo LS/CU.FT. CN• 0.0395

THETA• 35.0 DEGREES

10250 EXPN• Ool667

D50c le2SO FT THE COMPUTED VALUE OF CS•0.7371 IS GREATER THAN THE ALLOWABLE SOLUTION FOR 050 ~ILL BE MADE USING THE ALLOWABLE VALUE CS•0.7000

DIMENSIONS A-.o PARAMETERS ASSOCIATED WITH THE PRISMATIC CHAN~EL

D50U• 1e176 FT SN• 0.011219 SC• 0.016113 CTAUB • 1.335 CSU• 0.1000 HN• 6.SOO FT HC= 6.429 FT TAU8M= 3.602 LB/SQ.FT. FSU• 1.25 Diii• Se 090 FT DC• 4.619 FT TAUBA• 3.764 Lit/SQ.FT.

BU• 36.30 FT VN8 9o52 FPS N• D.0406 CTAUS • 1.164 ZU• J.oo MN• J.83 FT K• o.&343 TAUSM• 3.141 LB/SQ.FT.

KPS• 6.07E•03 TAUSA• 3.141 LS/SQ.FT.

···············••CCCS•••c•••••=••••:c•CSllSS•S•&SSS&SSSSSSSSSSSS•acasss:&&:&l:&S:

Observe that the last output message indicates why the D50 • L25 ft riprap cannot be used 1n the design. Also observe that, although the maxilllum tractive stress occurs on the bottom of the channel, the con­trolling tractive stress occurs on the side slopes of the channel.

Page 42: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

-~ .....

30

Example No. 2

Given: Design discharge, Q = 2750 cfs Side slopes, ZU = 2.5 and ZS = 3.0 Riprap size, D50 = 1.0 ft Bottom width, BS = 100.0 ft Starting depth, DS = 7.0 ft Factor of safety, FS = l.25

Required: Design a riprap structure and determine the length of the structure if the total vertical drop desired for gradient control is 6.0 ft.

Solution: The design obtained from the computer using mode 2 is given on the next page.

The vertical drop in the prismatic channel is equal to the drop through the riprap structure minus the vertical drop contained in both transi­tions. The length of the prismatic channel, LFC, is equal to the verti­cal drop in the prismatic channel divided by the bottom slope of the prismatic channel, or

LPC s 6.0 - 0.2787 - 0.1394 • 711 •61 rt ~ 0.007844 ...

The total length of the structure is equal to the length of the prismatic channel plus the lengths of both transitions or

the total length • 711.61 + 126.04 + 63.02 • 900.67 rt

63.02' LFC • 711. 61 1 126.04'

. -t- t-11

=

ELEVATION

Page 43: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

31

•••zzsz:••••=•=•==••=a•••••:azzsss:s::szzz:====•=a••===•••=====z•••••==~•==•~•==

DESIGN OF RIPHA~ GRADIENT CONTHOL STRUCTUHE FOR A CONSTANT SPECIFIC ENERGY HEAD

SPECIAL DESIGN PREPARED BY THE DESIGN UNIT AT HYATTSVILLE• MD. FOR

EXAMPLE DESIGN NO. 2 JANUARY 23• 1976

DIMENSIONS ANO PARA~ETEAS UPSTREAM ANO DOWNSTREAM OF THE RIPRAP STRUCTURE

Q• 2750.00 CFS BS• 1000000 FT

H• 7.164 FT DSz 1.000 FT

ZS• 3.00 FT/FT VS• 3e247 FT/SEC

ADDITIONAL DESIGN PARAMETERS EITHEH SPECIFIED OR OBTAINED BY DEFAULT

D50• C50•

FS•

i.ooo FT CS• 0.1000 4e00 LB/CU.FT. CN• 000395 1.250 EXPN• Ool667

THETA• 35.0 DEGREES CONll• 2e000

DIV• 4e000

DIMENSIONS AND PARAMETERS ASSOCIATED WITH THE TRANSITION AT THE DOWNSTREAM ENO OF' THE RIPRAP PRISMATIC CHANNEL

LENGTH RISE WIDTH z DEPTH TAU VELOCITY FRIC SLOPE FT FT FT FT LB/SQ.FT. FT /SEC FT/FT

o.o o.o 100.00 3.00 1.000 0.278 3.247 7.03E•04 12.60 0.0095 93.70 2.95 6.979 0.322 30448 8.o3E•04 25.21 0.0204 87.40 2.90 6.954 o.377 3.677 9.27E•04 37.81 0.0331 81.09 2.e5 60923 0.446 3.940 l.08E•03 50.42 0.0480 74.79 2.eo 6.883 o.533 4e247 h28E•03 63.02 0.0658 6Ao49 2.75 6.833 o.646 4.611 l.55E-o3 75.62 0.0876 62.19 2.10 6.767 o.799 5.051 l.91E•03 88.23 0.1150 5!i.89 2.eis 6.677 lo 011 5.598 2o43E•03

100.83 0.1507 49.58 2.60 6.545 1.325 6.309 3.23E•o3 113.44 0.2002 43.213 2.55 6.334 1.838 7.305 4e62E•03 126.04 0.2787 36.98 2.50 5.904 2.910 9.003 7.84E-03

DIMENSIONS ANO PARAMETERS ASSOCIATED WITH THE PRISMATIC CHANNEL OF THE AIPRAP STRUCTURE

D50U• i.ooo FT Siii• 0.007844 SC• o.014965 CTAUB.• 1.339 csu .. o.5242 HN• 7el64 FT HC• 6.'1120 FT TAUBM• 2.910 LB/SQ.FT. FSU• 1.25 ON• 5e904 FT DC• 4.943 FT TAUB A• 3.200 LB/SQ.FT.

BU• 36.98 FT VN• 9.00 FPS N• 0.0395 CTAUS • 1.122 ZU• 2.50 RN• 4e44 FT K• 0.7621 TA USM• 2.439 LB/SQ.FT.

KPS• 8.77E•03 TAUSA• 2.439 LB/SQ.FT.

DIMENSIONS A~~ ~ARAMETERS ASSOCIATED WITH THE TRANSITION AT THE UPSTREAM END OF THE RtPRAP PRISMATIC CHANNEL.

LENGTH RISE WIDTH z DEPTH TAU VELOCITY FRIC SLOPE FT FT FT FT LB/SQ.FT. FT/SEC FT/FT

o.o o.o 36.98 2.50 S.904 2.910 9.003 7.84E•03 6.30 0.0393 43.28 2.55 6.334 1.838 7.305 4e62E·03

12.60 0.0640 49.58 2.60 6.545 1.325 6.309 3.23E•03 18.91 o.oe19 55.89 2.65 6.677 1.011 5.598 2.43E•03 25.21 0.0955 62.19 2.10 6.767 0.199 s.051 l.91E·03 31.51 0.1064 68.49 2.15 6.833 o.646 4.611 le55E•OJ 37.11 o.1154 74.79 2.110 6.1183 o.533 4.247 le28t:•03 44.ll 0.1228 81.09 2.e5 6.923 0.446 3.940 l.08E•03 50.42 0.1292 87.40 2.90 6.954 o.377 3.677 9.27E•04 56.72 o.1346 93.70 2.95 6.979 o.322 3.448 8.03E•04 63.02 o.1394 100.00 3.00 1.000 0.278 3.247 7.03E•04

·········································································•••&•=• TRANSITION CONVERSION LOSSES

THE CONVEPSION LOSS IN THE DOWNSTREAM TRANSITION MAY BE AS MUCH AS 0.15 FT

THE CONVE~SION LOSS IN TME UPSTREAM TRANSITION MAY BE AS MUCH AS 0.05 FT ..................................................................................

Page 44: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

32

Example No. 3

Given: Design discharge, Q = 2750 cfs Side slopes, ZU = 2.5, ZS = 3.0 Riprap size, D50 = 1.0 ft Bottom width, ~ = 100.0 ft Starting depth, DS = 7 .O ft Factor of safety, FS = 2.0 Value of CS = 0.6

Note that the given para.meters for this example are the same as Example No. 2 except for FS and CS values.

Required: Design the riprap structure.

Solution: The design obtained from the co111puter using mode 3 is given on the next page. Observe, although the value of CS was specified, it was not used in the design since CSU < CS.

ll2°59'

-- -=t' 0 \0 . ..... t'- •

I II t'-

1~ !

Sl!CTION B-B SJETION A-A

Page 45: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

33

•=asss2:s::s:====•z===•••=sz::2:z=====•======:ss:z::::•::s::zss:::s:::::======== OESIG~ OF RIPRAP GRADIENT CONTROL STRUCTURE

FOR A CONSTANT SPECIFIC ENERGY HEAD

SPECIAL DESIGN PREPARED ~y THE DESIGN UNIT AT HYATTSVILLE• MOo FOR

EXAMPLE OESIGN NO. 3 JANUARY 23• 1976

DIMENSIONS ANO PARAMETERS UPSTREAM ANO DOWNSTREAM OF THE RIPRAP STRUCTURE

0=·21so.oo cFs BS• '100.000 FT

1-4'!' 7ol64 FT OS:: 7.000 FT

ZS• 3.00 FT/FT VS• 3.247 FT/SEC

ADDITIONAL DESIGN PARAMETE~S EITHE~ SPECIFIED OR OBTAINED BY DEFAULT

050• C50•

F'S::

1.000 F'T CS• 0.6000 4o00 LB/CU.FT. CN• 0.0395 2.000 EXPN• 0.1667

THETA:: 35.0 DEGREES CO ... V• 20000

DIV• 40000

DIMENSIONS ANO PARAMETERS ASSOCIATED wITH THE TRANSITION AT THE DOWNSTREAM EMO OF' THE RIPRAP ~RLSMATIC CJo1ANNEL

LENGTH FT

o.o 11. 2fi 22.52 33.78 45.03 56.29 67.55 78.81 90.07

101.33 112.59

RISE FT

o.o 0.0084 0.0119 0.02811 o.0413 0.0559 0.0132 0.0941 0.1199 0.1529 o.1972

lllIOTH FT

100.00 94.37 88.74 83.11 77.48 11.85 66.22 60.59 54.97 49.34 43. 71

z

3.00 2.95 2.90 2.s5 2."o 2.75 2.10 2.65 2.60 2.s5 2.50

DEPTH FT

1.000 6.981 6.959 6.933 6.900 6.860 6.810 6.744 6.656 6.531 6.339

TAU LB/SQ.FT.

0.278 o.317 o.365 0.423 0.494 o.584 r>.699 0.850 1.057 1.354 1.819

VELOCITY FT/SEC

3.247 3.426 3.628 3.856 4.117 4.419 4.773 5.197 s. 717 6.381 7.285

DIMENSIONS ANO PARAMETERS ASSOCIATED WITH TME PRISMATIC CHANNEL OF THE RIPRAP STRUCTURE

1.316

FRIC SLOPE F'T /FT

7.03E•04 7.92E~04 8.99E•04 le03E•03 lel9E•03 le40E•03 lo67E•03 2o04E•03 2.55E-o3 3e31E•03 4e57E•03

D50U• CSU• FSU•

BU• ZU•

1.000 FT 0.3020 2.00

43. 71 FT 2.50

SN• 0000456!1 Miii• 7.164 FT ON• be339 FT VN• 7.28 FPS AN• 4o85 FT

SC:: 0.015123 HC• 6e422 FT DC• 4.540 FT

Ne 0.0395 K• 0.7621

Kt>S• l.70E•04

CTAUB • TAUBM• TAUB A•

CTAUS • TAUSM• TAUSA•

10819 LB/SQ.FT. 2.000 Lit/SQ.FT• 1.103 1.524 LB/SQ.FT. le524 LB/SQ.FT.

DIMENSIONS AND PARAMETERS ASSOCIATED WITH THE TRANSITION AT THE UPSTREAM END OF THE RIPRAP PRISMATIC CHANNEL

LENGTH FT

o.o 5.63

11.26 16.89 22.52 2a.1i; 33.78 39.41 45.03 50.66 56.29

•USE FT

o.o 0.0222 0.0387 0.0515 0.0620 0.0106 0.0119 o.0842 o.0896 0.0944 o.0986

WIDTH FT

43.71 49.34 54.97 60.59 66.22 n.85 77.48 830 ll 9!1.74 94.37

1011. 00

z

2.50 2.55 2.60 2.65 2.10 2.75 2.110 2.!15 2.'ilO 2.9i; 3.00

DEPTH FT

6.339 6.531 6.656 6.744 6.810 6.860 6.'100 6.933 60959 6.981 1.000

TAU LB/SO.FT.

1.819 1.354 1.057 o.850 o.699 o.584 0.494 0.423 o.365 o.317 0.278

VELOCITY FT/SEC

7.285 6.381 5. 717 S.197 4.773 4.419 4.117 3.856 3.628 3.426 3.247

FAIC SLOPE FT/FT

4o57E•03 3o31E·03 2.ssE-03 2o04E•03 l.67E•03 lo40E•03 lel9E•03 l.03E•03 8.99E•04 7o92E•04 7.03E•04

••••••••••=•~•••••••••••••••••••••••=•••••••••~••••••••••c•••••••••••••••••s•••• TRANSITIO~ CONVERSION LOSSES

THE CONVE~SION LOSS IN THE DOWNSTREA~ T~ANSITION MAY BE AS MUCH AS o.oa FT

"HE CONvEqSION LOSS IN THE UPSTREAM TRANSITION MAY BE AS MUCH AS 0.03 FT •••••••••••••casacaaaasa•••••••••••••••••••••••••••••••••••••••••••••••••••••a•

Page 46: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

Example No. 4

Given: Design discharge, Q = 2750 cfs Side slopes, ZU = 3.0, ZL = 4.0, and ZR= 3.0 Riprap size, D50 = 0.75 f't :Bottom width, :es = 100.0 f't Starting depth, DS = 7.0 f't Rate of convergence, CONV = 2.0 Factor of safety, FS = 2.0 Angle of repose, THE1'A = 420

Required: Design a riprap structure where the adjoining channels have side slopes ZL = 4.0 and ZR -= 3 .O (See S!CTION A-A).

Solution: The design obtained from the computer using mode 4 is given on the next page and the dimensions and parameters are outlined in the sketch below. Observe that both the ma.ximum tractive stress and the control­ling tractive stress occur on the bottom of the channel.

~A ~A

. "'. "'o r-4 • • £"-

. t'- II

~ !

:w.r = 56.72'

Drop through Riprap Structure

BU= 43.28'

PLAB

ELEVATION

Im = ll3.45'

--=--==ZR= DS • 7.0' 1 ;::::::.;.~~·r

l=:es - 1001

SETIOI A-A

=rT C::I~

II t'-

fg II

=

r

Page 47: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

35

ss::2sc:•s===•====z===~•=~•=•=•:zz:::s:za•••••a=•=•==•••=•••azssasz•••z••••••2aa

DESIG~ OF RIP~AP GRADIENT CONTROL STRUCTURE FOR A CONSTANT SPECIFIC ENERGY HEAO

SPECIAL DESIGN PREPARED BY THE DESIGN UNIT AT HYATTSVILLE• MO. FOR

EXAMPLE DESIGN NO. 4 JANUARY 23• 1976

DIMENSIONS ANO PARAMETERS UPSTREAM AND DO~NSTREAM OF THE RIPRAP STRUCTURE

ZL• 4e000 ZR• 3.000

Qs 2750.00 CFS OS• 7.000 FT t!S•l00.000 FT

M• 7.155 FT VS• 3.155 FT/SEC

ADDITIONAL DESIGN PARAMETERS EITHER SPECIFIED OR OBTAINED SY DEFAULT

050• C50•

FS•

0.750 FT CS• 0.7000 4e00 L~/CU.FT. CN• 0.0395 2.000 EXPN• Oel667

THETA• 42.0 DEGREES CONV• 2e000

l)IV• 4e000

LENGTH FT

o.o 11.34 22.69 34.03 45.38 56.72 68.07 79.41 90.76

102.10 113.45

DIMENSIONS AND PARAMETERS ASSOCIATED WITH THE TRANSITION AT THE OOWNSTRFAM END OF THE AIPRAP PRISMATIC CHANNEL

RISE FT

o.o 0.01 o.n2 0.03 o.n4 o.o5 0.06 0.08 0.10 0.13 0.11

iiiIOTH FT

100.00 94.33 88.66 82.98 77.31 71.64 65.97 60.29 54.62 4A.95 43.21J

ZLT

4.00 3.90 3.80 3.70 3.60 J.50 3.40 3.30 3.20 3.10 3.00

ZRT

3.00 3.oo 3.00 3.oo 3.00 3.00 3.oo 3.00 3.00 3.00 J.oo

DEPTH FT

1.000 6.983 6.963 6.938 6.909 6.873 6.8H 6.770 6.693 6.586 6.428

TOP WO FT

149.00 142.51 136.00 129.47 122.91 116.31 109.66 102.94 96.12 89.12 81.84

TAUO Lf:l/SlhFT •

0.222 0.248 0.278 0.314 0.358 o.413 0.481 0.571 0.690 0.858 1.111

VEL. FT/SEC

3.155 3.326 3.516 3.731 3.976 4.258 4.587 4.977 S.452 6.048 6.839

DIMENSIONS AND PARAMETERS ASSOCIATED iiiITH THE PRISMATIC CHANNEL OF THE RIPRAP STRUCTURE

1.350

FRIC SLOPE FT/FT

6. l 7E•04 6e94E•04 7.86E•04 8.98E•04 le04E•03 l.21E•03 le44E•03 1. 74E•03 2.15E•03 2.76E•03 3.72E•03

050U• CSU• F'SU•

SU• ZU•

0.750 FT 0.2692 2.00

43.28 FT 3.00

SN• 0.003718 Hllll• 7.155 FT ON• 6e428 FT Vllll• 6.84 FPS RN• 4e79 FT

SC• 0.013810 HC• 6.301 FT DC• 4e488 FT

N• 0.0377 K• 0.8813

KPS• 2.26E•04

CTAUB • TAUBM• TAUBA•

CTAUS • TAUSM• TAUSA•

1.500 LI/SQ.FT. 1~500 LB/SQ.FT. 1.177

LENGTH FT

o.o '5.67

11.34 17.02 22.69 28.36 34.03 39. 71 45.38 51.05 56.72

1.308 LB/SQ.FT. le322 LB/SQ.FT.

DIMFNSIONS ANO PARAMETERS ASSOCIATED WITH THE TRANSITION AT THE UPSTREAM END OF THE RIPRAP PRISMATIC CHANNEL

RISE FT

o.o 0.02 0.03 o.o• o.o5 0.06 0.01 0.01 0.08 o.oe 0.08

w1Dn~ FT

43.28 48.95 54.62 60.29 65.97 71.64 77.31 82.98 81J.66 94.33

lOo.oo

ZLT

3.00 3elC 3.20 3.30 3.40 3.so 3.60 3.70 3.80 3.90 4e00

ZRT

3.oo 3.00 3.00 3.oo 3.oo 3.00 3.oo 3.00 3.00 3.oo 3.00

DEPTH FT

6.428 ti.5116 6.693 6. 770 6.8?8 6.873 6.909 6.938 6.963 6.983 1.000

TOP •D FT

81.84 1)9.12 96.12

102.94 109.66 116.31 122.91 129.47 136.00 142.51 149.00

TAUO LB/SQ.FT.

1.111 0.858 0.690 0.571 0.481 o.413 o.358 0.314 0.218 0.248 0.222

VEL. FT/SEC

6.839 6.048 S.452 4.977 •.587 •.258 3.976 3.731 3.516 3.326 3.155

FRIC SLOPE FT/FT

3.72E•03 2e76E•03 2el5E•03 l.74E•03 le44E•03 le21E•03 le04E•03 8.98E•04 7.86E•04 6e94E•04 6.l7E•04

··=········=···································································· TRANSITION CONVERSION LOSSES

lHE CONVERSION LOSS IN THE DOWNSTREAM TRANSITION MAY BE AS MUCH AS Oe06 FT

THE CONVERSION LOSS IN THE UPSTQEAM TRANSITION MAY BE AS MUCH AS 0.03 FT ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

Page 48: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

/

Elcample No. 5

Given: Design discharge, Q = 2750 cfs Side slopes, ZU = 2.5, ZS = ;.o Riprap size, D50 = 1.0 ft Downstream bottom width, BS = 100.0 ft Upstream bottom width, BS = 150.0 ft Starting depth, DS = 7 .O ft Factor of safety, FS = 1.25

Note that the given parameters of this example are the same as Elcam­ple No. 2 except that the bottom width, BS, at the downstream end of the structure is not the same as the BS at the upstream end of the structure.

Required: Design the riprap structure where the adjoining ~hannels have dif'f'erent bottom widths.

Solution: Since the bottom widths at the upstream end and downstream end of the structure are not equal, two design runs are required. The first design run is for BS = 100 ft. The second design run is for 1 BS = 150 ft and it uses the same specific energy head, H, as was used in the first design run. The final design is composed of the following:

l. the design of the downstream transition from the first design run, i.e., for BS = 100 ft {The design of the upstream transition for this run is disregarded.)

2. the design of the prismatic channel from either design run (They are the same. )

;. the design of the upstream transition from the second design run, i.e., for BS • 150 ft (The design of the downstream transition for this run is disregarded.)

The composite design is given on the nert three pages.

Observe that the depths at the ends ot the structure are not equal. The larger depth occurs at the upstream end of the riprap structure because

l. the bottom width at the upstream end is larger than the bottom width at the downstream end and

2. the structure maintains a constant specific energy head at subcritical flow throughout the structure.

Since the depth at the upstream end is larger than the depth at the downstream end, the velocity at the upstream. end is small.er than the velocity at the downstream end at constant specific energy head.

'

Page 49: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

37

LPC 126.04'

PLAN

ELEVATION

l j:""»W EE 3 100' S!l::Tlllll' •

SETION A-A

Page 50: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

ssa:=•===•=•••=s••=•==•=======•=•===•••=•zssa::::z:aa::a~=•=•=z=••••=•===••s~s:s

DESIGN OF RIPRAP GRADIENT CONT~OL STRUCTURE FOR A CONSTANT S~ECIFIC ENERuY HEAD

SP~CIAL DESIGN PREPARFO gy THE DESIGN UNIT AT HYATTSVILLE, MO. FO~

EXA~PLE DESIGN NO. 5 JANUARY 23t 1976

DIMENSIONS ANO PAAA~ETERS UPSTREAM AND OOWNSTREAH OF THE AIPRAP STMUCTURE

Q: "7!11).00 CFS BS• 100.00li FT

H• 7.164 FT OS• 7.000 FT

ZS• 3.00 FT/FT VS• 3.247 FT/SEC

ADDITIONAL DESIGN PA~AMETE~S EITHE~ SPECIFIED OR OBTAINED SY DEFAULT

D50a C50•

FS•

1.000 FT CS• 0.1000 4e00 L~/CUeFT. CN• 0.0395 le250 EXPN• 0.1667

THETA• 35.0 DEGREES CONY• 2.000

DIV• 4e000

DIMF.NSIONS ANO PARAMETERS ASSOCIATED WITH THE TRANSITION AT THE OOwNSTREA~ ENO OF THE AIPRAP PRISMATIC CHANNEL

LENGTH SUSE WIDTH z DEPTH TAU VELOCITY FRIC SLOPE FT FT FT FT LB/SQ.FT. FT/SEC FT/FT

o.o o.o 101).00 3.00 1.000 1).278 3.247 7.03E•04 12.60 0.0095 93.70 2.95 6.979 0.322 3.448 a.o3E•04 25.21 o.0204 87.40 2.90 6.954 o.377 3.677 '9.27E-04 37.81 'l.0331 81.09 2.85 6.923 0.446 3.940 l.08E•03 50.42 0.0480 74.79 2.ao 6•883 o.533 4.247 l.28E•03 63.02 o.o6s8 6~.49 2.75 6.833 o.646 4.611 l.55E•03 75.62 o.0876 62.19 2.10 6.767 o.799 5.os1 l.91E•03 88.23 o.uso 55.tt9 2.6i; 6.t.77 1.011 5.59tl 2e43E•03

lOOe83 o.1so1 4Qe58 2.60 6.545 1.325 6.309 3.23E•03 113.44 0.2002 43.28 2.55 6.334 1.838 7.305 4.62E-03 126.04 o.21a1 3fl.98 2.50 5.904 2.910 9.003 7.84E•03

DIMENSIONS AND PARAMETERS ASSOCIATED wITH THE PRISMATIC CHANNEL OF THE AIPRAP STRUCTURE

D50U• i.ooo FT SN• 0.007844 SC• 0.014965 CTAUI • 1.339 CSU• 0.5242 HN• 7.164 FT HC• 6.920 FT TAU8M• 2.910 LB/SQ.FT. FSU• lell'5 ON• 5e904 FT DC• 4e'il43 FT TAUBA• 3.200 LB/SQ.FT.

BU• 36.98 FT VIII• 9.oo FPS N• o.on5 CTAUS • 1.122 ZU• 2.50 AN• 4e44 FT K• o.7621 TAUSM• 2.439 LB/SQ.FT.

KPS• 8.77E•03 TAUSA• 2.439 LB/SQ.FT.

ENSIONS AND PARAMETERS ASSOCIATED wITH THE UPSTREAM END OF THE RIPRAP PRlSMA.TIC

LENGTH z DEPTH FAIC SLOPE FT FT FT/FT

o.o o.o 9.003 7.84E•03 6.30 0.0393 7.305 4.62E•03

12.60 o.0640 6.309 3e23E•03 11.91 0.0819 5.591 2.43E•03 25.21 0.0955 S.051 le91E•03 31.51 o.1064 4e6ll 1.5sE-OJ 37.11 o.1154 .247 le28E-03 44.11 3. 1.08E-03 50.42 3.617 9.27E-04 56. 3.441 -04

.02 3.247 ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

TRANSITION CONVERSION LOSSES

THE CONVERSION LOSS IN THE DO•NSTAElM TRANSITION MAY BE AS MUCH AS 0.15 FT

THE CONVERSION LOS~ IN THE UPSTREAM TRANSITION MAY BE AS MUCH AS D.05 FT ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

-

Page 51: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

39

••••••••••••=••••=z•=••••===•s•=~•==:z:sa:s•~•~c••••:•asa•m•••••••••••z•••••••=•

DESIGN OF RIPRAP GRADIENT CONTROL STRUCTURE FOR A CONSTANT SPECIFIC ENERGY HEAD

SPECIAL DESIGN PREPARED eY THE DESIGN UNIT AT HYATTSVILLEt MOo FOR

EXA~PLE DESIGN NO. ~ JANUARY 23t 1976

DIMENSIONS ANO PARAMETERS UPSTREA~ AND DOWNSTREAM OF THE RIPRAP STRUCTURE

Q• 2750.00 CFS BS• 1so.ooo FT

H• 7.164 FT OSa 7.084 FT

ZS• 3o00 FT/FT VS• 20267 FT/SEC

ADDITIONAL DESIGN PARAMETERS EITHER SPECIFIED OR OBTAINED BY DEFAULT

DSOa C50a

FS•

LENGTH FT

o.o 22.60 45.21 67081 90.42

113.02 135.63 158.23 180.83 203

loOOO FT CS• 0.7000 4o00 LB/CU.FT. CN• 000395 lo250 EXPN• 0.1667

THETA• 35o0 DEGREES CONY• 2.000

DIV• 40000

ASSOCIATED WITH THE TRANSITION THE RIPRAP PRISMATIC CHANNEL

o.o 000078 000169 0.0279 000412 Oo057~ 0.079 0 8

ol484 0.2119 0.3399

z

N• K•

KPS•

DEPTH FT

DIMFNSIONS ANO PARAMETERS ASSOCIATED WITH THE TR~NSITION AT THE UPSTREAM END OF TH£ RIPRAP PRISMATIC CHANNEL

LENGTH RISE WIDTH z DEPTH TAU VELOCITY FT FT FT FT LB/SQ.FT. FT/SEC

o.o o.o 36.9R 2.so S.904 20910 90003 11.30 0.0640 4Bo28 2.ss 60503 lo422 60519 22060 0.0958 59.58 2o60 6.727 o.888 So305 33.91 0.1161 70.88 2.65 60848 0.608 4o51l 45.21 0.1304 82.19 2.10 6.923 0.439 3.938 56.51 Ool410 93.49 2.75 6.974 o.328 3.500 67.11 Ool494 104.79 2.80 7.009 0.252 3.153 79.11 o.1560 llfl.09 2.8s 7.036 0.200 2.111 90.42 0.1615 127.40 2.90 7.056 0.168 2.636

101.72 o.1661 138. 70 2.95 7.072 0.143 2.437 113.02 o. uoo 150.00 3.00 7.084 0.123 2.267

FRIC SLOPE FT/FT

3o l 7E•04 lo 71E•04 4o39E•04 5o29E•04 6o51E•04 8o21E•04 lo07E•03 lo46E•03 2.13E•03

•03 7o84E•

FRIC SLOPE FT/FT

7o84E•03 3.49E•03 2o13E•03 lo46E•03 le07E•03 8.21E•04 6.51E•04 5.29E•04 4e39E•04 3. 71E•04 3.l7E•04

••aaaaaaa.maaaaaaaaaaaaaaaaasaaaaaaaaaaaaaaaaacaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa TRANSITION CONVERSION LOSSES

THE CONVERSION LOSS IN THE DOWNSTREAM TRANSITION MAY BE AS MUCH AS Oo2l FT

THE CONVERSION LOS~ IN THE UPSTREAM TMANSITION MAY BE AS MUCH AS 0.05 FT ••••••&•••••••••••••••••••••••••s••••••=•••••••=••••••••••••••••••••••••••••••••

Page 52: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res
Page 53: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res
Page 54: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res
Page 55: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

I

I

PREFACE NOMENCLATI.JRE

TECHNICAL RELEASE NO. 59, SUPPLEMENT 1

GRAPHICAL SOLUTION FOR THE HYDRAULIC DESIGN OF RIPRAP GRADIENT CONTROL STRUCTI.JRES

Contents

Introduction - - - - - - -Technical Release No. 59 Purpose of Supplement

Riprap Gradient Control Structure

1 1 1

2

Prismatic Channel Design - - - - - - - - - 3 Charts - - - - - - - - - - - - 3 Procedure Flow Charts - - - - 4

Transition Design - - - - - - - - - - - - - - - 7 Charts - - - - - - - - - - - 7 Procedure Flow Chart - - - - - - - - - - - - 7

Summary of Design Criteria - - - - - 9

Examples - - - - - - - - - - 11

Figures

Figure 1. Riprap gradient control structure 2

Figure 2. Riprap angle of repose for riprap shape and D 50 size - - - - - - - - - - _ _ 4

Figure 3. Flow chart for graphical solution of prismatic channel- S

Figure 4. Flow chart for graphical solution of prismatic channel with rounding of BU and/or D90 - - - - - - - - - - 6

Figure 5. Flow chart for graphical solution of transitions 8

Page 56: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

Drawing No.

ES-208

ES-209

ES-210

ES-211

ES- SS

Engineering Standard Drawings

Title or Description

RIPRAP GRADIENT CONTROL STRUCnJRES: Determination of K and Determination of Whether Sides or Bottom Controls the Design

RIPRAP GRADIENT CONTROL STRUCnJRES: Prismatic Channels (ZU = 2)

RIPRAP GRADIENT CONTROL STRUCnJRES: Prismatic Channels (ZU = 3)

RIPRAP GRADIENT CONTROL STRUCnJRES: Transitions

HYDRAULICS: Uniform Depths and Discharges in Trapezoidal and Rectangular Channels

Page 57: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

PREFACE

Mr. Paul D. Doubt, former Head of the Design Unit, Design Branch, Engineering Division, did the theoretical work and much of the com­puter programming necessary for preparing the charts used in the graphical solution of riprap gradient control structures. Technical Release No. 59, "Hydraulic Design of Riprap Gradient Control Struc­tures," contains a detailed discussion of the riprap gradient control structure and is referenced frequently in this supplement.

A draft of this supplement dated April 7, 1976, was circulated through the Engineering Division and sent to the Engineering and Watershed Planning Unit Design Engineers for review and comment.

Mr. John A. Brevard of the Engineering Division Design Unit, Hyattsville, Maryland prepared this supplement. Mrs. Joan Robison and Mr. Stanley E. · Smith assisted in the preparation of the charts.

Page 58: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res
Page 59: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

\

( J

) ' I

ii

g : Acceleration of gravity, ft/sec 2

H : Specific energy head corresponding to the design discharge, Q,

K

LDT

LPC

WT

m

n

Q

RISE

RISE]. J

ft

z) _ Ratio of critical tractive stress on side slope to critical tractive stress on bottom of the trapezoidal channel

: Length of downstream transition, ft

: Length of prismatic channel, ft

: Length of upstream transition, ft

: Number of equal parts that the transition length is divided into for computational purposes

: Manning's coefficien-t of roughness.

: Design discharge through the riprap structure, cfs

: The vertical distance from the bottom of the channel at the down­stream end of the transition to the bottom of the channel at the · upstream end of the transition, ft

: The vertical distance from the bottom of the channel at the down­stream end of the transition to the bottom of the channel at any section j in the transition·, ft

s : .Energy gradient, tt/ ft

sc : Critical slope corresponding to the design discharge, Q, in the prismatic channel· of the riprap structure, ft/ft

- Energy gradient at any section j in the transition, ft/ft

Sn - Bottom slope of the prismatic channel of the riprap structure and also normal slope corresponding to the design·discharge, Q, ft/ft

s0 - Slope of channel bottom, ft/ft

v : Velocity corresponding to the design discharge, Q, ft/sec

z - Side slope of trapezoidal section expressed as a ratio of hori-

ZS

zontal to vertical, ft/ft

_ Side slope of trapezoidal section at the ends of riprap struc­ture, ft/ft

Page 60: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

NOME NC LA 1URE

This supplement uses almost exclusively the nomenclature of TR-59. Only four symbols are used which are not included in the nomenclature .• for TR-59. These are m, RISE, RISE]j, and sj.

a _ Flow area, ft 2

b _ Bottom width of trapezoidal section, ft

BS _ Bottom width at the ends of the riprap structure, ft

BU _ Bottom width of the prismatic channel of riprap structure, ft

CSO _ Coefficient relating critical tractive stress to riprap D5 o size, Tbc = CSO 090

CN _ Coefficient relating Manning's n to riprap 090 size,

n = CN[DsoJEXPN

CONY - Rate of convergence of the bottom width of the upstream transi­tion, ft/ft

cs

~s

d

DIV

ON

• Sn : Maximum allowable Sc T

bm - Ra . f . • z- = t10 o maximum av average tractive

ratio of bottom slope to critical slope

tractive stress on bottom of channel to stress

,. sm -= ---- - Ratio of maximum tractive stress on side slope of channel Tav .- to average tractive stress

_ Depth of flow, ft

_ Size of rock in riprap of which SO percent by weight is finer, ft

_ Rate of divergence of the bottom width of the downstream transi­tion. ft/ft

_ Normal depth corresponding to design discharge, Q, ft

_ Normal depth corresponding to the design discharge, Q, in the prismatic channel of riprap structure, ft

OS _ Depth of flow corresponding to the design discharge, Q, at the ends of the riprap structure, ft

EXPN _ Value of the exponent in the equation for computing Manning's

ff . . n • CN[n_0

]EXPN roughness coe ic1ent, ~

FS _ Factor of safety

)

\ i

Page 61: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

I.

: i

zu _ Side slope of the prismatic channel of the riprap structure, ft/ft

e : Angle of repose of the riprap, degrees

Tav : The average tractive stress, lb/ft2

iii

Tbc ~ CSO Deo : The critical tractive stress for the riprap lining on the bottom of the trapezoidal channel, lb/ft2

Tbm : The maximum tractive stress along the ri~rap lining on the bottom of the trapezoidal channel, lb/ft

Tse s K Tbc : The critical tractive stress for the riprap lining on the side slope of the trapezoidal channel, lb/ft2

- The maximum tractive stress along the riprap lining on the side slope of the trapezoidal channel, lb/ft2

Page 62: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res
Page 63: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

I 1

\ }

' I

TECHNICAL RELEASE NO. 59, SUPPLEMENT 1

GRAPHICAL SOUJTION FOR THE HYDRAULIC DESIGN OF RIPRAP GRADIENT CONTROL STRUCnJRES

Introduction

In some cases a riprap gradient control structure can be used economi­cally to dissipate excess energy and establish a stable gradient in a channel where the gradient without such control would be too steep and would cause erosive velocities.

The riprap gradient control structure discussed in this supplement consists of a riprap prismatic channel with a riprap transition at each end (see Figure 1). The structure's essential feature is that the speci­fic energy of the flow at design discharge is constant throughout the structure and is equal to the specific energy of the flow in the channel immediately upstream and downstream of the structure. Thus, for the de­sign discharge, the dissipation of hydraulic energy in the structure is at the same rate as the energy gain due to the gradient. The structure, which is steeper and narrower than the adjoining upstream and downstream channels, maximizes energy dissipation.

For brevity, this supplement refers to the riprap gradient control struc­ture as riprap structure or simply as structure. All channels and struc­tures considered in this supplement have trapezoidal cross sections and subcritical slopes.

Technical Release No. 59 · Technical Release No. 59, "Hydraulic Design of Riprap Gradient Control Structures," presents a detailed discussion of the concept of the riprap gradient control structure, the hydraulic design of the structure, and the design of the riprap. TR-59 also contains the information needed to use the available computer program for the riprap structure design.

Purpose of Supplement The purpose of this supplement is to present the graphical procedures for the design of riprap gradient control structures. The procedures may also be used to obtain a riprap prismatic channel design. This supplement presumes the user is familiar with TR-59.

The graphical solution as contained in this supplement is limited since the prismatic channel design charts are only for side slopes of 2:1 and 3:1. Structures with other prismatic channel side slopes may be de­signed using.the computer program described in TR-59.

Page 64: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

2

Riprap Gradient Control Structure

A riprap gradient control structure is a riprap structure consisting of a prismatic channel with a converging inlet transition at the upstream end and a diverging outlet transition at the downstream end of the pris­matic channel. The riprap structure should have an essentially straight alignment as shown in Figure 1.

M

c ID

SIL'TICli A-A SIL'TIOR B-B

Figure l. Riprap gradient control structure

"\

Page 65: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

I

Prismatic Channel Design

The depth of flow in the prismatic channel of the riprap structure is set equal to the normal depth corresponding to the design discharge, Q. Therefore, the dissipation of hydraulic energy is at the same rate as

3

the energy gain due to the gradient. The specific energy head, H, at every section of the riprap structure is set equal to the specific energy head at the junction of the downstream transition and the downstream channel, Section A-A of Figure 1.

As shown in TR-59, a unique prismatic channel bottom width meets the above requirement for a given set of Q, ff, ZU, and CS values. However, a solution is not possible if the above parameters are not compatible.

The graphical solution for the prismatic channel design uses the same design criteria used in the computer program described in TR-59.

Charts For a side slope, ZU, a set of three basic charts is used for the pris­matic channel design. A set of charts for ZU = 2 is contained in ES-209 and a set of charts for ZU s 3 is in ES-210. Each of the three

basic charts is plotted with ~vs. Dso IC l.•!5 K O·!S H

of -(-) s (-) or CS curves. H FS ' n FS '

H BU and contains either a family

Where ZU = 2, the maximl.DD tractive stress on the sides, T~m· always con­trols the design; therefore, only a set of charts where sides control is required for the graphical solution. However, where ZU = 3, the maximum tractive stress on the sides, Tsm• or the maximum tractive stress on the bottom, Tbm• may control. Thus, a set of charts for each condition is provided.

When ZU = 3, ES-208 may be used to determine if side or bottom controls BU for values of the angle of repose,e, and ON' (Approximate values for

the angle of repose may be obtained from Figure 2.) From ES-208, where

9is less than 38.8 degrees, the sides control for all values of~~· The

tractive stress on the sides often controls the design; therefore, it is suggested that the charts for side control be used for the initial design attempt.

The charts are for particular values of the coefficients CSO, CN, and EXPN. In the computations for the charts, these coefficients have the following values:

cso • 4.0

CN :i: 0.0395

EXPN • 1/6.

Page 66: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

4

.. CD G .. Ill

43

41

v 0 31 ~

ci::

.... 0

G)

~ 35 ~

33

31 0.02

L..---~ Lo- L-o ~-

~"""· ~ l...-- i....--~~~.. ~

~,,~.,,,,...... . ~~ c ~ ~"i 1/

v ~ ~ --/ :,..~

c...

1/' ~v ~ ..

ll I

~'b/ v

) ,, ~~ o~

) ~ ~"\ .. )

I ~~"i/

J )

I I

j

I

j

) 0.04 0.06 0.1 0.2 o. 4 o. 6 1

Riprap Dso Size, Ft.

Figure 2. Riprap angle of repose for riprap shape and 090

size (taken from Figure 24 of NCHRP Report 108 1)

2

For the same input information, the graphical solution will not always produce precisely the same answers as given by the computer program solution. The differences occur because the research data is approxi­mated by slightly different techniques in the computations for the charts and in the collpUter proll"am.

Where the intersection of the ~ and -808 values is above the top curve

82.s

..

-

-~

plotted, the corresponding CS value exceeds the maximum allowable CS value f.

of 0.7.

Procedure Flow Charts The procedure for determining the prismatic channel design is given in 1· the flow charts of Figure 3 and Figure 4. Figure 3 contains the flow chart for the basic graphical solution of the riprap prismatic channel. Figure 4 is the same as Figure 3 except that the flow chart includes the procedure for rounding the values of BU and/or 090•

1 Publication of the Transportation Research Board, National Research Council, National Academy of Sciences - National Academy of Engineer­ing, 1970

Page 67: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

ColculHe Q jjD fr- ES·JOI, .. lenl•e I f•r 1 ... val ... 1 •f. JU ... 8.

A11.-e ...... lr1c1lwe nre11 • 1l .. 1, " ... <•lrola.

...

fr- ES· Ill, •1enlM -£ for Ille

••l ... 1 of ;1:. ... CS.

Sri cs ••. 7

Colcul•I• II.I.

D.., I •·• fr- ES·lll, ••••nine -In> for 1 ... voluu

.Jl_ .IL " of H•·• en• 111 .

CelcuhU ~ ...

.. , .. S.1 D•o • 1.0

fr• ES-JOI, 4uen1H If Mii• c011lrol1 or "J II.I u et <•lrol rur lllN' ••••• of ii .....

Iott• cott1rol1 SIJu c•Uol

Sri I • I Sri fS • orl11HI FS

cllietl? Yn

START

h•

Note: Where ZU • z. ES-XIX is ES-209.

CelculeH II • 4 • ~Ill •• 11 lfhere ZU • ], ES-111 is ES-210.

. .. , , .. °-o I a.e

Celcul•I• -1-) II fl II n

.... ES· 111, •ae,.IM ii for ... HI•• ef ~ ...

'°1.!.11"8 ( .. Mlutl .. ••H CS• O.J.) II fl . Slip te Hal lliloc•.

C.lcul•H •· fr• U·lll, •••,.IM Cl for 1 .. HI•• of ..La 8 ... II H" Iii.

hCS•O.Jf YH I llD

• •• fr• ES- 111, .. ,.,., .. •.1f-1 for , .. ••I ... •

Q " 5 of jiT.' ... ii"

Celc11le10 '•·

fr• ES·U or IS·lll (lr•tltl• •alp cherttl, •1eroi1M ....

[elculHo iii·

hJU•lorJT JU. l

.. , I .. tlula• _.. for •al- treclho Hren oe Ille tl4H or • IM Mii• coelroht

514H Coatrol I loll• C.lroh

Dula• c...,1e1e4

Figure 3. l'low chart for graphical solution of pris1113tic channel

- ... - t' \

..

s

Page 68: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res
Page 69: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

__ [ ____ =l f1lculll• H~:. fr.,. lS·ZOI. •1t'r•6Rt' I for lht> ••h.r• of zu ... e A'ISUM' -··-- 1r•r• ." .. ,,,,,.\\ 011 Ii ...... T, •• ronlrols. -----------.----~~~~~~-'

Yu

fr.,. ES-Ill. ••n•ln• £ for th

••hw• of ~ 1...i CS.

kl cs. 9.7 ~

Celcul•le Ill.

0.., I •·• Fr.,. 1s-111, ""•or•IRe -tnl for tile ••11111

Q .!l H of 3:i •nd .

II IU

C1lculll• O.o·

> I. O? ...

.. Y••

~• ".o • 1.0

....... o...--·· ...... ,_

fr .. ES·lOI ... ,.,., .. If ....... c•lrol• or IU

...... CORI rol for IM ........ of ii .......

lollom control• Sltlu contr"I

kl I• I kl fS • orl1l111I fS

... elf INT Ha Yu

STAii r h II •1~clfi•J' ]

Y~• I ~---

C1lcul1U II ••• ~ • .L, .~ 11

_o .,..clfid?

Ye•

Note: Where Zll

Where Zll

2, ES-XXX Is r:s-209.

1, ES·XXX is ES-210.

n,.., I 1.9 C1lcul1l1 --f-1

H f5 II n fr• lS·lll, •ter9IH - for IM •llftt of ~.-. 1...i

IU H •

llso1.!_

11·• ( llo to hit loft ..-1n• CS > O. 7-)

H rs · sur 10 11u1 111od.

C1lc11l1te 111. fr• ES-Ill, ftlfr•IH cs for IM ••luH of ..L ....... 11 H'

ii.

11 cs> e.n Yu I 11D

r-'-•?

'" I O·•

,, .. ES·lll ......... ft. '•'rs' fir IM ....... .

of ;\a•""~-1'.•lculate 111 .

Jr .. f~·SS or lS·lll flr111lll011 ••Ip c"'rlll, ............ Cllcullt• ill·

II ZU • 1 or S?

zu • '

.. , IM ... 111 .... for ••I- tr1<lh1 1tre11 lft '"' 11•1 or• I ......... c011trohT

SI*• r.11011rol I loll• C•Uoh

h•lp·c....,111e•

....... IU. H

Cllcul111 iii· fr- ES·lll, .. 1 ... 1 .. CS

for , .. w1l1111 of :-};. .... ~ ---- " ., > 0. 7T ..

._. IU .. rether ............

Deo •·• ,,_ lS·lll, .. 1 ... 1 .. _,.1.., II fS

for Ill• ••I•• of ..L ... .&. 11•·• IU

C1lcullle fS.

Figure 4. Flow chart for 1raphical solution of pris11atic channel with rounding of llU and/or D50

.. ,. j \

Page 70: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res
Page 71: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

·-

7

Transition Design

The transitions associated with the riprap structure are designed to convey the design discharge, Q, through the transitions at a constant specific energy head, H. To maintain a constant H when the bottom width is changing requires that the bottom slope of the transition be variable, changing from the slope of the riprap prismatic channel to flatter slopes at the upstream and downstream ends of the structure. The instantaneous bottom slope of the transition equals the rate of friction head loss at that section when the design discharge, Q, flows at normal depth, dn· and at the design specific energy head, H.

The bottom width of the transition, b, varies linearly from the bottom width of the channel, BS, inanediately upstream or downstream of the structure to the bottom width of the prismatic channel, BU. The side slope of the transition, z, also varies linearly from the side slope of the channel, ZS, immediately upstream or downstream of the structure to the side slope of the prismatic channel, ZU.

The recommended minimum allowable value of the rate of convergence, CONV, of the bottom width of the upstream transition is two. The length

of the upstream transition, LUT, is equal to CONV(BS-BU). The recom-2

mended minimum allowable value for the rate of divergence, DIV, of the bottom width of the downstream transition is four. The length of the

downstream transition, LDT, is equal to DIV(BS-BU). 2

Charts The charts used for the transition design are contained in ES-211.

ES-211 is zd b'!!J zH plotted with ~ vs. z3 rf for a family of "b"" curves and with

zd bs b 1 13

-b vs. s c--)(-) for a family of z curves. z3 rf Dso

The conversion losses in the transition are not considered in the design of the riprap structure since a more conservative design of the structure is obtained by ignoring these losses. However, the conversion losses may be significant in determining an upper limit for the water surface pro­file upstream of the riprap structure. TR-59 gives two equations that may be used to determine conversion losse~ in transitions.

Procedure Flow Chart The procedure for determining the transition design is given in the flow chart of Figure S.

Page 72: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

8

The transition bottom width, b, varies linearly from BS to BU. The transition side slope, z, varies linearly from ZS to zu.

Calculate LUT • CONV(BS - BU) 2

Calculate LDT -= DIV (BS - BU) 2

For computational purposes, divide the length of the transition into m equal parts; thus, there are m + 1 sections in the transition.

Determine b and z at each section.

b5 zH Calculate ~ and b at

z Q each section.

'

From ES-211. determine zd for the values b5 zH of " and b at each

section. b

Calculate d at each section.

'

From ES-211. determine b15 b 1. /S

for the values of¥ and z s(--7(-)

at each section. z~ Dso

Calculate s at each section.

Calculate the total rise at each section. At any section j.

the total rise is RISE]j 1

• ~(sj WT LDT

+ sj_-l) (m or m) + RISE]j-l

Figure S. Flow chart for graphical solution of transitions

.•

Page 73: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

I

9

Sununary of Design Criteria

The following basic criteria govern the design of the riprap structure:

1. The specific energy head, H. at every section of the rip­rap structure is set equal to the specific energy head at the junction of the downstream transition and the down­stream channel, Section A-A of Figure 1. Specific energy head is given by

H = d v2

+ -= 2g

2 d +JC..

2 2ga

2. The prismatic channel bottom slope, sn• is set equal to or less than 0.7 of the critical slope, sc. The bottom slope Sn• is expressed as a fraction of the critical slope. i.e .•

where 0 <cs ~ 0. 7

3. Manning's coefficient of roughness, n, is a function of the D90 size of the riprap and has been evaluated to be

n = 0.0395 CDso)i/e

4. The critical tractive stress is a linear function of the D90 size of the riprap, i.e ••

Tbc = 4.0 Dso

Tse= K(4.0 Dso)

S. The riprap size and structure dimensions are selected so that for the design discharge the maximum tractive stress on the riprap does not exceed the allowable tractive stress. Either side or.bottom tractive stress may control.

For a given design discharge, Q, specific energy head, H, and side slope. zu. the variables that must be adjusted to meet these conditions are bottom width, BU; bottom slope, s0 ; and riprap size, D90 •

The length of the prismatic channel, LPC, is equal to the vertical drop of the prismatic channel divided by the bottom slope, sn· The vertical drop of the prismatic channel depends on the amount of gradient control required.

Page 74: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res
Page 75: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

t

Given:

Q • 1000 cfs H s 4.8 ft zu • 2

Required:

Example No. 1

cs. 0.7 e • 39o FS • 1. S

11

Design a riprap trapezoidal channel with D90 not exceeding 1.0 ft.

Solution:

I. Determine the values of~ and K .

..JL.. 1000 • 19.8 H2·15 (4• 8) 2.s

Use ES-208, plot for K vs. 9.

For ZU • 2 and e • 39°, read K • O. 704.

II. Determine the bottom width of the prismatic channel, BU.

Use ES-209, sheet 5.

For __g_, • 19.8 and CS• 0.7, read Ji.• 0.194. Ha.s BU

Then 4.8

BU• 0. 194 • 24.7 ft

III. Determine the riprap Dso size.

Use ES-209, sheet 1.

For ;'t:s • 19.8 and i; 1ben

Dso K i.s • 0.194, read ~(Fi) • 0.085.

FS i.s 1 5 109 Dso. (0.085)H(~) • (0.085)(4.8)(0.;04) • 1.27 ft

Set 090 to 1.0 ft.

Then

DSOK 1 "9 1.0 0.704 l.!5 -c-> • -c l • 0.061 H FS 4.8 1.5

Page 76: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

12

IV. Determine the bottom width of the prismatic channel, BU.

Use ES-209, sheet l.

For~• 19.8 and 090{~)i.s = H2·9 H FS

H 0.067, read~• 0.188. BU

Then

BU • 4

·8 • 25.S ft

0.188

V. Determine CS.

Use ES-209, sheet S.

For~• 19.8 and 1L • 0.188, read CS • 0.60 H2·!S BU

VI. Determine the bottom slope of the prismatic channel, sn.

Use ES-209, sheet 3. ~ H K o.s

For t(!•!S • 19.8 and iU • 0.188, read snCFS) • 0.0069.

Then FS 0•9 1 S 0•9

(0.0069)(-y:) • (0.0069)(0.704) • 0.010

VII. Determine the depth of flow in the prismatic channel, ON.

Use ES-SS.

n Q • 0.0395(1.0) 1 18 (1000) • 0.070 BU813 s'n l./2 (25.5) 8 / 3 (0.010) l./2

Use ES-SS, sheet 2.

n Q ON For - • 0.070 and ZU • 2, read-• O.lSl. eu• /S 5n l/2 BU

DN • (0.151)(25.5) • 3.8S ft

Page 77: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

Example No. 2

Given:

Q • 2500 cfs zu = 3

090 • 1.25 ft (trial value) e • 350

H • 6. 5 ft FS • 1. 25

Required:

Design a riprap trapezoidal channel having the steepest stable bottom slope consistent with the above conditions. (Notice that this example is the same as Example No. 1 in TR-59.)

Solution:

I. n 090 IC l.·9

Determine the values of -Ts and-(-) . H • H FS .

_L • _2_5_00 __ • 23 2 2 .5 •

H205

(6.5)

Use ES-208, plot of IC vs. e. For ZU • 3 and e • 350, read K • 0.834. Then

D90 JC lo!S 1. 25 O. 834 l.o!S

H(FS) • 6.'S( 1.25) • 0 · 105

II. Determine the bottom width of the prismatic channel.

Use ES-208, plot of BU vs. e ON

13

For e • 35° and any value of ~~· tractive stress on the sides

controls. Thus, use ES-210 and charts where tractive stress on the sides, Tsm• controls.

Use ES-210, sheet 1. _g__ 090 L; 1•9

For Ha.s • 23.2 and ~CFS) • 0.105, the intersection is

above the plotted values indicatina that CS is greater than the maximum allowable CS of 0.7. Therefore, CS is set equal to 0.7.

Use ES-210, sheet 9.

For _g__ • 23.2 and CS• 0.7, read Ji.• 0.179. H 2.s BU

Page 78: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

14

Then

BU = 6'5 = 36.3 ft

0.179 III. Determine the riprap 090 size corresponding to CS= 0.7.

Use ES-210, sheet 1. Q H D IC i.s

For~• 23.2 and - • 0.179, read~(-) • 0.095. H 2.s BU H FS

Then FS 1 •5 1 2S 1 • 9

D90 • (0.09S) H (-) • (0.095)(6.S)( . ) • 1.1 ft l 0.834

The recommended maximum all0trable Oso is 1.0 ft (this is the uppel' limit af the experimental data), but the calculated Dso will be used. ..

IV. Determine the bottom slope of the prismatic channel, sn.

Use ES-210, sheet 3. _g_ H JC 0.11

For H2 •9 • 23.2 and BU• 0.179, read sn(F"S) • 0.0090.

Then

s = n

o.s co. 0090> c.E!J

IC • (0.0090) ( l. 2S)O.S • 0.011

0.834

V. Determine the depth of flow in the prismatic channel, ON.

Use ES-SS.

nQ • 0.039S(l.1)11,2soo) • 0.066 eue/s sn 112 (36.3)a/s(0.011)1/2

Use ES-SS, sheet 2.

For n Q • 0.066 and ZU • 3, read !L.BUN • 0.14. BlJe /S 5n 1 /2

Then ON• (0.14)(36.3) • S.l ft

Note: If the 090 • 1.25 ft is used, the factor of safety, FS, will be increased. The FS associated with D90 • 1.25 ft and CS• 0.7

Dso K l.S may be obtained from step III, where~(-) • 0.095. Solv­

H FS ing for FS, obtain FS • 1.33. Of course, the associated values of sn and ON must be computed.

1,

Page 79: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

Example No. 3

Given:

Q • 2750 cfs OS • 1. 0 ft BS • 100 ft ZS • 3

zu • 3 090 • 0. 75 ft a • 420 FS II 2.0

Required:

Design a riprap trapezoidal channel having the steepest stable bottom slope consistent with the above conditions ..

Solution:

I. Determine the specific energy head, H, and the values of

. _q_ 090 IC i .s H2·9 and H(FS) .

H • DS v2

+ -· 2g <f_ 1

OS + a2 C2g).

a • (BS + ZS(DS))DS • (100 + 3(7))7 • 847 ft 2

Then

H 2

• 1 0 + c2750) { 1 ) • 7. 0 + 0.16 • 7 .16 ft • 847 64. 32

2750 ----. 20.0 {7 .16) a.s

Use ES-208, plot of K vs. a.

For ZU • 3 and a• 42°, read K • 0.881.

Then

Dso IC i.s H(FS) •

l•S (2.75)(0.881) • 0.031 7.16 2.0

II. Determine the bottom width of the prismatic channel, BU.

15

Use ES-210, sheet ~ assuming that the maximum tractive stress on the sides, Tsm' controls.

Page 80: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

16

n D!SO K l•!S For~= 20.0 and~(~) =

H 2.s H FS

Then

BU • 7· 16 • 42.6 ft 0.168

H 0.031, read BU• 0.168.

III. Determine CS

Use ES-210, sheet 9.

For _g__ • 20.0 and 1L • 0.168, read CS = 0.275 H 2.s BU

IV. Determine the bottom slope of the prismatic channel, sn.

Use ES-210, sheet 3.

_.9._ H IC o.s For H

2•9

• 20.0 and BU• 0.168, read sn(FS) • 0.0025.

Then

s • n fc.o.s 2 0 o.s

(0. 0025) (.!..¥.) • (0. 0025) ( . ) • 0. 0038 K -0.881

V. Determine the depth of flow in the prismatic channel, ON.

Use ES-SS.

n Q • 0. 039S (0. 7S) l./9(27SO) •

BU 813 Sn J./a {42.6) 813 {0.0038) l/2 0.0(6

Use ES-SS, sheet 2.

For n Q • 0.076 and ZU • 3, read!!!• O.lSl. aue/s s i.12 BU

n

ON• (0.151)(42.6) • 6.43 ft

VI. Determine whether maximum tractive stress on sides or on bottom controls.

Use ES-208, plot of ~vs e. w l 0 For ON• O.lSl • 6.6 and e • 42 , maximum tractive stress on

the bottom controls. Therefore, the charts for maximum trac­tive stress on the bottom, "'bm• controls must be used to de-

Page 81: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

termine the values of BU, CS, and sn. Set K • 1.

VII. Determine bottom width, BU.

Use ES-210, sheet 5. n 090 K l•9 H

For~• 20.0 and ~H (~) • 0.037, read~• 0.165. H2·9 r~ BU

Then

BU= 7· 16 • 43.4 ft 0.165

VIII. Determine CS.

Use ES-210, sheet 9.

For~ • 20.0 and J!. • 0.165, read CS • 0.265. H2 • 5 BU

IX. Determine the bottom slope, sn.

Use ES-210, sheet 7. n H K o.s

For~• 20.0 and~• 0.165, read sn(~) • 0.0026. Ha.s BU FS

Then FS o.s 2 0 o.s

Sn• (0.0026)(~) • (0.0026)(~) • 0.0037

X. Determine the depth of flow, ON.

Use ES-SS.

n Q • 0.0395(0.7S) 1 18 (27SO) • 0

_073 BU 8 /S5n J./2 (43. 4)8 /S (0. 0037)1/2

Use ES-SS, sheet 2.

For n Q • 0.073 and ZU • 3, read!!!!• 0.148. BU

Then

au•/s s i12 n

ON• (0.148)(43.4) • 6.42 ft

17

Page 82: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res
Page 83: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

Example No. 4

Given:

Q = 1200 cfs 9 :!: 35o OS a 6. 0 ft FS • 1. 2 BS = 30 ft CONY • 2 ZS a 3 DIV a 4 zu = 3 Total drop in grade through Dso • 0.75 ft structure • 3.0 ft

Required:

The riprap structure required if the determined bottom width is rounded to the next.higher even foot.

Solution:

I. Determine the specific energy head, H, and the values of

__q_ and Q,ag(.!..)l • s H2·5 H FS

H • OS + ya • OS + ~(J...) 2g a 2 2g

a • (BS + ZS(DS))DS • (30 + 3(6))6 • 288 ft 2

Then 1200 2 1

H • 6.0 + (-) ( ) • 6.0 + 0.27 • 6.27 ft 288 64.32

~. 1200 • 12.2 Ha.s (6.27)2.s

Use ES-208, plot of K vs.e. For ZU • 3 and e • 35°, read K • 0.834.

Then 0110 .L l.S • ~ 0. 834 l.•S

ff CFS) 6.27( 1.2 ) • 0.06g

II. Determine the bottom width of the prismatic channel of the riprap structure.

BU Use ES-208; plot of DN vs. 9.

19

BU For e • 35° and any value of ON' tractive stress on the sides

controls. Thus, use ES-210 and charts where tractive stress on the sides, Tsm• controls.

Page 84: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

20

Use ES-210, sheet 1. D i.s

F Q 12 2 and ...!5!c.£) ,. or H2·9 • . H 0.069, read~= 0.47.

H FS

Then

BU•~•~• 13.3 ft 0.47 0.47

III. Determine CS. Use ES-210, sheet 9.

BU

For~• 12.2and1L • 0.47, read CS• 0.48. H2.s BU

CS is less than maximum allowable CS of 0.7. Round BU to 14 ft. Then

H 6.27 BU • 14""" • 0. 448.

Then, for ~ • 12.2 and~• 0.448, read CS • 0.43.

IV. Determine revised factor of safety, FS. Use ES-210, sheet 1.

For n • H D K i.s ~ 12.2 and - • 0.448, read~-) • 0.06 H2 • 9 BU H FS

Then

FS •

l

D O' 90 K (H(O. 06))

l !":"!'

0 75 • (O.ll4)(6.27(0.06))

FS • 1.32

v. Determine the bottom slope of the prismatic channel of the riprap structure, sn. Use ES-210, sheet 3.

JL H For ff2•• • 12.2 and iU • 0.448, read

I o.s Sn(J'S) • 0.0053.

FS o.s o.s Sn • 0.0053(-) • 0.0053( 1· 32) • 0.0067

K 0.834

VI. Determine the depth of flow in the prismatic channel of the riprap structure, DN. · Use ES-SS.

,.

Page 85: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

21

nQ i /e

0.0395(0.75) (1200) S/ • 0.485

(14) 3

(0. 0067) l 12 a /3 l/2

BU Sn

Use ES-SS, sheet 3.

For n Q • 0.485 e /3 l/2

BU Sn

DN and ZU • 3, read~• 0.387 BU

ON = 0.387(14) • 5.42 ft

VII. Determine the parameters for the design of the transitions. At the junction of the upstream transition and the prismatic channel of the riprap structure, the bottom width of the transi­tion is 14 ft. Thus

• __ (._l_4.._) 9-- • o. 0138 • 1. 38 x 10 -

2

z3 Q2 (3) 3 (1200f

zH • 3(6.27) • l. 34 b 14

Use ES-211, sheet 2.

b 9 -z H d For -- • 1.38 x 10 and .L • 1.34, read .L • 1.16.

z 3 g2 b b

d • 1.16(14)

3 • 5.41 ft

Use ES-211, sheet 4.

zd b 9 b l/3 -4 For - • 1.16 and z • 3, read Y • s (

3 92) c-

0 ) • 2.S x 10 .

b z 90

Then -· s • _ ___.2 ..... ....,s.......,.x.......,1 o;:;_ __ • o. 0068 l/S

c..l!..> co. 013sJ 0.75

Knowing that the bottom width in the transition varies linearly from BS • 30 ft to BU • 14 ft and usin1 the computational steps above, the parameters for the desiin of the transitions can be determined.

In the tables shown below, the transitions are divided into four equal parts for computations; however, any number of divisions may be used. The rise for each section of the transition is calculated from the average friction slope for the section times the length between sections. The accumulation of the rise values or the total rise to a section appears in the ''llISE" column.

Page 86: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

Length Width, b bs zH (ft) (ft) ZS Q2 b

0 14 0.0138 l. 34

4 18 0.0486 1.045

8 22 0.1326 0.855

12 26 0.3056 0.723

16 30 0.6250 0.627

Length Width, b bs zH (ft) (ft) b ZS Q2

0 14 .. .. 1.

> 8 18 0

A .. 16 22 "' "' .. .. .. .. 24 26 a a

Cl> Cl>

32 30

/

Upstrea• Transition

zd . Depth, d 5 1/3 s (-b-)( J!_) b (ft)

z5 C'f Dso

l.16 5.41 2. 5 x 10 -·

0.947 5.68 5. 7 x 10 - 4

0.795 5.83 1. l ]( 10 -s

0.682 5.91 2.1 x 10 - 3

0.598 5.98 3. 5 x 10 -3

Downstreaa Transition

zd Depth, d !5 1/3

b (ft) s (-b-) ( _!_)

i5rf °'50

.. .. .. > > > 0 0 0

~ ~ ~

"' "' "' .. .. .. .. i u a ~ Cl> Cl> Cl)

(J!_) 1/3 Friction

0so Slope, s (ft/ft)

2.65 0.0068

2.88 0.0041

3.08 0~0027

3.26 0.0021

3.42 0.0016

b 1/3 Friction (-) Slope, s Dso (ft/ft)

.. u > > 0 0

~ A • "' "' • .. .. .. ~ ~ V) Cl)

RISE (ft)

0

0.022

0.036

0.046

0.053

RISE (ft)

0

0.044

0.071

0.090

0. 105

N N

- '!

Page 87: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

VIII. Determine the total length of the riprap structure. The total drop in grade through the structure is 3.0 ft. Drop through prismatic channel of the riprap structure

• 3.0 - (rise in upstream transition) - (rise in downstream transition)

• 3.0 - 0.05 - 0.11

• 2.84 ft

Length of prismatic channel, LPC • ~ ~

2.84 • 0.0067

• 424 ft Total length of riprap structure • Length of upstream transition + Length of downstream transition + LPC

Total len1th • 16 + 32 + 424 • 472 ft

23

Page 88: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res
Page 89: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

- : ·-· - __ :_. ~ . - . - . - ---

- . - ~-___:_:_ __ --

. --fl'I ..

-:. _,,, •

I

. . . ~: -~-- .""'-1:-=~~--. --.-:----.~~

- -- . - -- • - .. -- -i -- - -!

.!,· 0

I

Page 90: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res
Page 91: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

RIPRAP GRADIENT CONTROL STRUCTURES: PRISMATIC CHANNELS; ~ vs l!. with 1?..(..!L)'·' curves H1 · 1 BU H FS

lU ~ 2

~,

oii '&

' ~

0.01 0.02 0.03

llfftMllCI

0.04

Values of Jl.. " ...

: I I I I i0009

!

/I i ~(;\)· ·-0001.

0.05 0.06 0.07 0.08 0.09 0.1

Values of .1l. BU

~

" oti

0.2

Vil

I i. l : . 'if . , I! , : r·· :' .·I: ·' /.,.,/I f: ·.: . . ,: I ,: ...

. i II i ' I ' ';. ..t 1' ..-.. , I,,.. :, :" . : i:· . I : i I

IO

~

1/

/ j/ l

I• r i I

0.3 0.4 0.5 0.6

U. a NPAllnmfr OP AOlllCUl.'l'UU 800. ootf8ERYA110N llnVICB

,, __ "° ES-209 -n_!_or ~--DA•l ___!_26 __ _

-0

= :J ... >

Page 92: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res
Page 93: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

RIPRAP GRADIENT CONTROL STRUCTURES: PRISMATIC CHANHELS;~ vs~8.H..Uwith ~ H1 ·1 H -- curves

ofi ~

' ~

..

llPtllllQ

~"

.. , ' I;·

0.8 0.9 I 2

. . : ,;.··

.. >t .

;

i j • !

; ;

Li-··( •. •!'"

l ;.:

3

..... . : : ; ! .

..

... :L: : : ~

~ : : : ..

~ ~ '. ~

; : . . ~ ~ : ~ .) ;

:::{:

~ . : ;

k~;:

4

Y.tuesof Jl_ H''

5

Values of ..H.. BU

6 7 8 9 10 20

U. ll ~AJl'lllDft' OP AOlllCULTUU

BOIL CJON8ERVA110N BUVICB

llMOflfSlllUtlO °"""°" . llalO" """

zu - 2

I ! ..

~ i I i i I

!

i i i i j ! i

I

i I

I ! ! i i I

i I

. '

oii

~

0

= :I .. >

1.~

30 32

.. __ "° ES-209 -n...l..Of _!__ DAll _L!!

Page 94: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res
Page 95: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

,..

RIPRAP GRADIENT CONTROL STRUCTURES: PRISMATIC CHANNELS: _q_ vs.!! with SnlA)•·• curves Hu BU \FS

~'

oti '&

J ~

!

0.01 0.02

lllAIDI:(

I 0.03

Yelunof JL H"

0.07 0.08 0.09 0.1

ll Yelues of BU

02 0.4

u .•. 19All'nlllfl' «W MmCUI.,,,.. ROIL a>NBBRVA'l10H 8DVICB

IMOtM-llO orv-. . - UMn

IU ~ 2

°'

'.'

oi

j ! ;· I !

i.' I 0.5

IC>

., I

I

0.6

St--1111 ES-209 -n.Lor_i_

°"" __j_lL __

c " ! .. :>

Page 96: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res
Page 97: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

RIPRAP GRADIENT CONTROL STRUCTURES: PRISMATIC CHANNELS:~ vs.::, with Sn(A)•·• curves

., I

! ~ i i.

'I 0.6

.. ltlllll:f

ct.,

I i i

i· .1. 0.7

I ! j· i i i !.

0.8

.j I

I : i f. ; I

0.9 I

:

..

.. ! ,.

2 3

Y•lues of Jl.. H' I

.. . o.GOI.:

. oOol

o:OOI

: . o:.-00on'

· oOOJ ~:

I : .o.oOn L

0'0011l

o.oo••: ·

o.ooaz ~

0.001

I l o.OOoll· ·

H V•tues of BU

5 7 8 9 10 20

u ... .,..~ - AOlllCUI.,,,.. BOIL a>NBERVA110H SERVICE

lllOINllDIMO lllYllllON · IJllllON UMn'

lU ~ 2

\ ..

ofi -0 .. • ::I .. >

~

'1.,

30 33

"-- "° ES-209 -n~or_t__ OAQ I 75

Page 98: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

·.

Page 99: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

RIPRAP GRADIENT CONTROL STRUCTURES: PRISMATIC CHANNELS: 0 vs ..H. with cs curves 11" BU

Valuetof ~ H'·'

lU r 2

of 0

~ihJ~: f .

lkt7;,ILYJ1 § ; ii

>

I .. >

0.01 0.02 .,, .. 0.04

Y•lunof .It. BU ........ 0.2 03 0.4

u ..... ~ - .-:ul.'ftlllll BOIL aJHBDYATION llDYICB

WWW..._... - UMrl'

,.

I

I 0.5 0.6

" __ .., ES-209 "n_!_or_f__ 0"'1 1-76

Page 100: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res
Page 101: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

----RIPRAP GRADIENT CONTROL STRUCTURES: PRISMATIC CHANNELS: Jl_ vs J! with CS curves

H1 · 1 BU

1

ofi t;

I 1i >

ft

.,,

... 'I :11 lL[

... .... , , ..

1. 0 ··1 ... • ,. , .. ~·1 ·. · ,. I I I. I I I I

O.fi 0.7 0.8 0.9 I

.......

i

2 3

Veluesof JI.. H•·•

i I!

I;

. cs• 0.10

4

Values of Jl BU

5 fi 7 8 9 10 20

U. II. MPAlmlllfl' Gr AOlllCUl.'1\19&

800. OOfl8uVATION HRVICB

a.JIMISlllllO lllY-* · DlaOll UMIT

zu ~ 2

t.

ofi

~

0 I ::J .. >

1.~

3012

.,,..__.., ES-209 -n..§_or_f_ IMtt--1..l!

Page 102: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res
Page 103: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

RIPRAP GRADIENT CONTROL STRUCTURES: PRISMATIC CHANNELS; ~ vs Ji with Qa(Jl)'·' c~s H1 · 1 BU H FS

lU ~ l

T sm controft

. oli:

'&

' .. >

~

O.DI

•FPllltl

J I I

/ I ,, I / . /

Ii ' 0.02

i , I I / . I 0.03 0.04

''I , 11 I

Y•lues ol .2.. H'·'

0.05 0.06 0.07 0.080.09 0.1

H Values ol BU

0.2 0.4

U. 8. Da'All'nnNI' .W AoaJCUl.TUIUI

BOIL <X>H8ERVA110N SERVICE

llNOIMllUJllO DIV18IOM · DlllllON UNIT

ofi 0 ; :J ii >

0.5 0.6

Sl--NO ES-210 SHfl t _!_ OI _!Q__

°"''~

Page 104: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res
Page 105: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

---··-- --- --- ·--------

RIPRAP GRADIENT CONTROL STRUCTURES: PRISMATIC CHANNELS:

\l

\1

Veluesof .th

oti t;

I I

ii >

:.·!

... l··>·r··-rr'" ~ ~ ~

_9._ vs 8Ji.U with

H•·• Q.. H

A)'·' curves

.~.-~ .. ~ .. ~·· , .... ·-··

ZU e]

T1111 controls

c;, ofi -0

I ::J ti >

A

.. ~.., ······•·

~.\.,

O.& I :.•1;··r·· .......

............ ·················"

2 3

•rt•lltt

4 5

Values of lt BU

& 7 8 9 10 20

u. a ._..,._., OI' A~'IUD

BOIL OONBDVATION BDVICB

llltJDllW lllYaoM. _,..Ulm'

30 33

"--!Ill ES-210 -.tlOf~ llArt ---1.:.!_6 __ _

Page 106: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res
Page 107: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

-· --· ~~----RIPRAP GRADIENT CONTROL STRUCTURES: PRISMATIC CHANNELS;~ vs .H..U with Sn(1t)0

·' curves H1 · 1 B FS

ofi li

' ii >

~ ....

O.ol

•UtlllllCl

Values of Jl H'·'

Values of l!. BU

I -J

,

0.2

U. 8. 19Aln1fllft' OP AOlllCUL'TUllS

800. ~VA'nON 8DVICB

DtODfUllDIO IJIVBON · lllmOte UNIT

zu ~] Tsm control

of: -0 ., • ::J .. >

0.6

,. __ llO

ES-210 _,,...!_Of~

DAn _1_7_6 __

Page 108: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res
Page 109: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

RIPRAP GRADIENT CONTROL STRUCTURES: PRISMATIC CHANNELS: Jl. vs J! with Sn(A)0·' curves

H1 ·• BU FS

\'1

\'1

ofi .. 0

I ~

'

2

.......

Y•lun of Jl... H'·'

• : .... •

.. -·· !

...

i i

-....

; _i.)··t 3

·I , i. I <.

4

Y•lues of .H. BU

!

,.

.j

· ·__,..--rr··1· , .. 1·· ·1-1 1 I.:. . . ' . .". 1 •• " •. ,.1 .. ;,• . ···: . 9 10 .• !:·: .

5 6 8 ~·····················r·

20

U. I. 19UTM9fl' «W AOlllCUI.,,,_.

BOIL OON8ERVA110N BERVICE

INO'INDlllNO IJlftllOlf · IWll UNIT

lU = l

T sm controls

ofi 0

! ti >

..

-~~

-!•

30 32

.. __ llO

ES·210 -n...!_or~ DAR I 76

Page 110: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res
Page 111: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

RIPRAP GRADIENT CONTROL STRUCTURES: PRISMATIC CHANNELS; Jl_ vs Ji with l!H(A.)'·' curves zu ~ 3

H1 · 1 BU H r;:, Tbm contrf

ofi 0 I ::J ii >

llUlMllCt

~

~

OOI

I !;'

I I I

// ·; / I I ,

/: // / I . I •

0.02

I

I 1:

I

!

I

0.03

;, " j

F /,

I 0.04

Y•lues of J2_ H'·'

I' 0.05 0.06 0.07 0.08 0.09 0.1

Values of UtJ

I

i

' 0.2 0.3 0.4

U. II. llr.PARnnlfl' Of' AOIUCUL11JU

SOIL 00ff8ERVA110N SERVICE

EflOl!qllUNO blV18IOtl · Dl!lllON lJHIT

I

' I , I './ I

/:

OI

0.5 06

Sl-.ODWG NO

ES-210

o! (

~HU I 2_ Of _ _!Q_ _

""" __!__!_~----

Page 112: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res
Page 113: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

RIPRAP GRADIENT CONTROL STRUCTURES: PRISMATIC CHANNELS; JL vs.!!. wtth Q..(~)'·' curves H1 · 1 BU H r0>

oli t;

' ~

\'l

1

... t;.\

0.6

•nJIOICl

\'l

2

• . : ..: .. : .. t ~·, ' .

.•.•... ·

Yelues of JL H•·•

..

.............

I i·

O.Dl2

........ ..... 0010

... · . i . .... ···'"' I

! •..

3 4 5

Yelues of ..ft. BU

-- ··--~--

i I !

7 8 9 10

--- --

···•··· ..·

~ ...... 20

U. I. .,_AlmlDl'I' «W AOlllCUL'nJllll

80IL OONBBllVA'l10tt BDVICll

llNODfDllllti °'""'°" . DlllllON """'

lU - 3

T bm contro"

-----11

'!>

of -0 .. • .:! • >

~

~.&

j .·· ....... :

30 32

SI--"° ES-210 -lf. . .!.. or_IO __

°"" _!.l!

Page 114: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res
Page 115: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

.I

RIPRAP GRADIENT CONTROL STRUCTURES: PRISMATIC CHANNELS:~. vs fu with Sn(~\•·• curves

<>ti 0

I .. >

lllftlllllCI

,,

~

o.oi

I !

~ / 11

I

I .. 0.02

/

j /I .. I '

0.03

Y•luesof Jl H"'

·; f/i I ' 0.05 0.06 0.07 0.08 0.09 O.l

V•lues ol ..H.. BU

02 0.3

U. 8. Da'Aa'l'llDn' OP MJlllCULTUIUI

BOIL OONSBRVA'l10N 8ERVICll:

IMOlltmlNO lllY1lllOM . llllllllOH """

zu ~ 3

Tbm conlr

of -() ,,, • :i ii >

0.5 0.6

"--"" ES-210 _1,_J_01_!Q_ MH_l.!6 __

Page 116: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res
Page 117: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

RIPRAP GRADIENT CONTROL STRUCTURES: PRISMATIC CHANNELS; ~-vs 8HU-~ith Sn(~ 0·1

curves - L zu -3 . · H1 ·1 r;, Tbm controls

. - . ---·· -- --

oti l;

I ~

\'l

\'l

1

6 ,1·"

j ... , .... .... ... ··

\ .,, , ... !>-0.6

MflMllCI

.J ... -····-' : j ..

t, I _i

Values of Jl. H' •

' ..

Values of .ll BU

·! ' '

• l ··I. I· •. 1·· I 1 _L. - - 9 io 7 8

. .. ··( -·· . _L .. 20

U. 9. llllPAa1WDll' OP AOlllCUl.1"1118

80fL OONSERYA110N 81RVICE

INOINmlNO IJIYllllOlt . DmOM UNn'

ofi

i t . j

I . • - ~ J

..

30 32

Sl--MO

ES-210 -n-~or __ !!)_ DAii __!_!!

Q .,. • :I ii >

Page 118: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res
Page 119: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

RIPRAP GRADIENT CONTROL STRUCTURES: PRISMATIC CHA~NELS; .9_ vs !twith cs curves H1

·' BU

Y1lues ol ..2_ H'·'

zu ~ l

ofi t;

I ~

ofi

~

J

~ I

O.ol

11n1111tt

.1

I

I I . 0.02

I

I v .' I

0.03 0.04 /I 1 1· 1 I 1 I/

0.05 0.06 0.07 0.08.0.090.1

Y1lues ol ..H. eu

I :

I I

. I

I

'

4o

ii I 11· ... ! . 0.2 0.4 0.5 0.6

U. II. DllPAllTlltarr OP AOlllCUL 'l'Ullll BOIL OON8ERVA110N 8ERVIC£

....... lllllNO DIVBfJtt DlllllOH UMn'

··---- "° ES-210 Slt(O __!_Of _!CL_ DAff I 76

-0 .. • :I .. >

Page 120: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res
Page 121: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

-- .. -'

RIPRAP GRADIENT CONTROL STRUCTURES: PRISMATIC CHANNELS: JL vs 1l with cs curves H1 ·• BU

\'l

\'l \\

'&

I ti >

1 I -,,. I I - I I .1 ···ro..._ · --.._I

6

~~

0.6 I

•n•lllCI

V•luesof JL H'·'

cs - 0.7 r-·1'

71 · tttT r.1..n:

! ' . I , ... • . ' .•"'

~I .

µ.1•

. ~ : .

:~· .,. i· , ....... · . ; . ~ .. ' . ; ,.:•!'

_;'.:. . .. ... ·'

I o.t• ! I'' ·1 .l·'"l~ I· I.~: -~ I

I. 'I ·J I .. • O.l:I! • ~···

cs-o.to.

2 3 4 5 6

V•lues ol Jl BU

7 8 9 10

... ·""

..-20

U. I WP~ «W AOlllCULTUU ROIL OOMIDVA110N BnVlCK

... "" ..... "° DIYllllOll . Dll8IOll trim'

zu ~]

" ofi -0

= ::J .. >

i -...-r-A

i I

· 1- · I . 3"

.l 30 32

"---"° ES-210 -n .1Sl. Of .....!.Q__ 1Mll-1.2i

Page 122: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res
Page 123: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

... ...- _...__ RIPRAP GRADIENT CONTROL STRUCTURES: TRANSITIONS: ~vs b• with .!I! curves

u i'01' b

l!f.a 0 I :I .. >

llflllJICI

Cur.,." tor eo vetocity - t n1wc

.a..-,.;.+ .... ....,. • ..HH-t+++l+fftriii--tTrlfr+~H+!~i-f.f.Uflf+H-~~f+fflH++t~l-+-H-H~~f+H-+"'"1~~~! · ·: : : 8"d I • 0 005 r •·' b !: !;:; :_ I I ~ !IO ... . rti: 1· . . · 1: . . : . : 1' ! . :1'.ll:,·:1 .. "'!'T I. ... : ·;: :m rr:-,; .. ;r;: , .. N.

~1·,!.:l:i.: li11 •":,j; '.''.I .. ::.11:· :''.i :::::"' .: ... : .:r :;.I r-.....1

J ·1· .. I. I I 'I .:,11:1 · 1 ·I " :1 ' • . • • • I I I 11' l; '. 1 : ; ! • · Jr; I : ; i I• ~ :r. i j I : i : 11: :i ' ' ; 't: I 'j:. ' .

il'..~::::J,i,4.... 'l': :ii i.: :1.i ,·,:;.:JI ·Ii! 1:·:!-,:L·,: ·:1. Ii~· i:>. II u .. ' I • . •. ' I • . I I ' . 1:1. JI I I ! . . I I • I I . I • • I •

:M '. •. : I • • • •• • . I 111 .. ·' · 1 I .. I . I II • :.:'!II ~~ ~ ·:-.. ! ,· .. , I J:'. I"·!· i:I: II ,.'I::•:(!!'.,

t.:1 ': ·•··... J. .. .. J; ... .... • 1:1111 11

ITT 40 .,

.. ,. JO

lll ij'~:~~~.. ~1· :iU 1·1,.:i i:1· ·1·:: ·. :·1 ~.

11111:::1·1 i :ii: II II ! 'I' ~ ~ . I. • 1 l1.: I : .. ' ., . :. lnl ' I . . . " I :I I I I I 1111111111

• .• ~ ...... I .J '"1 ··1 - . tlW~lm~~t-~1:r.'H'"HH"lit1ttt 'ill·:.:'· ,;·1 :I'"~...... . ; 1.1 .. 1'.. ii:•' 11 ;.•· :c," . .. 1

111

~I li"'."" ;·I ., ,1., j!· t•

Ill . I •'" . I I 11 , .. . . I • . ... 1" I 'Ii -· i .. '

i illil

20i.:::"' I Ill· ,· '- ~.... I • . I • .

1111 I !I 1·11··_'"' ' ...... ~. '' 1111 I .• ·I .•. ·•· 11 I ,: 1 ,.: "' . I .. II o .I..'· 1111111111111

!!1;;1 .,;!.! :,' ':. r-."'"~~ ~._: 1!:i :111 II :1ill :;, 1111111111

I' I I 11· . . ':ri· ;I Ill 1--r11111111111 :'''.~!· II' ,1 ! .~ .. ; ··-·· . ·•·:!• ·t-i ·- p'-,... ·1··1 I ~,!· ·····11 .1:h _1, l.i! 0 ; ;.. -I; / ! '( Iii 100

1 H .' I , 1 111

11:•r 1:1•1 .. 1. "' ··I· c-1e•cr111t1t1DwK _ 1:1, ·: .. ·.! II .. 1. 1!1:!

,!•, I! ;.!, ! .:1j . . . ... ~ 1lii ::11i;.: II 111111111111111

·1 :i 11 . ! II I • '"4&/' u... II 1111 I 11111111111111 I '1 ; 11· ':j '. .. ,: . 11 '~ .,..-1 • l:,1,·1·1

10 ·•· ' ' ' '- 1j I• I 1e 1 •

:I' i.' I . ~111: '!I·· '111'- '.. " ,,;111 ·1 t · '1C1o'• ! i! ;!r'i!:, :1', ,•·····p; 1 11'f

I' ' ' '· · ' f I r' · · · ' ·.. · · ~tlW!Wml!~tffinftttttfffllt-tttttttttftffl . i :,.:.. r' '! i·•=''" ;,• .. _ .. ,~; ~~ ;' 1 , , 11

; i,· • I • ; " '. .j ::·>I! '., ! .: .f!: . '-" j ! o.

t1 i;I': ~~t,;,;... .!.!:;" ' 1:!• ~· t1•11.:.'•:,;;.; 1 = 1 • = • : j · , , l ! 11r 11:: ,;

! J• ,;• .,. .:: ; . ,I·: i ' iii· 11: ~u...! i:ii I rl r;:• ;!·· :·: .:.:.. ···: .. : .. / j-tl' II ... ~ ~ 'j!I''.'.::.::

•. I.: I:· .. ;··. ·:I ·: i:.. ~ 1,· ··I;;• . .tt.11 II ..

:l1ili!. 11:::1111··: 11111-::::.. , .. :: :T1i~:'.11· ~i:::::!~~mi 1 i1111lllll 5.. · ... · :··:1111 ~. j .. 11.J..\\ ~ 11111

.ii!:. ! I ::i · · · ! I · 'LJ' · r;-

: l ... : •. ' I : i' ;11 1: jijl I !lllllR ' I~ . j \ . , ..... i 1: :1

41~ 1. -H·-l

:1: :':; ii; ! ", I Ii I

:1•'11! 1. 2w1Ct'"

'I. l'.'. ' .... ... • ::: ::,Jg :.: . ·~ . . j: I _._. t~ .. ; ,:·1(1 ,.

... . i .... : I

'" i•lo-4

· I . : · 11 I' :a . "': ' . .1. ··'i .. I ij 1· 1 · : ! : : : ~ I : ;'. . . ',:. ,.

l•lo-4 1•10-'

,. ·:-, : : : .... ·1' ·lr.1 '' I ,

l•lo-4

Values of z~Q•

I i ' t ~ " I: I Ii

l•lo-4

U. II. MPAJmlDIT CW AORICUL'IUU 801L OONSKRVA110N BDVJCB llHOll4UIUNO lllVllllON · DmOM UMrT

l;lkf ... Ni

~·-

Sf--IOO

ES-211 -u....l._~~

°"" I· 76

I •10 4

Page 124: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res
Page 125: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

P~ JO sen11A 2

j_ ~~ • I ~ ~ V) i I:'

; "" I

.. ,

Iii i~I JI

= "1

~

' it !

~ • >

111.a '21-o en 0 , .. z J 0 - ~ ~ -'2 c a: ~ .. en LLI a: ::> ~ u ::> a: t; .....

_, 2 0 . -·-- -- -a: :::-- J _~_:--~:-~ z ~1==-=-0 --- -~~ C.>

,·-,-- .... __ ~ -~~--

z .-f~ LLI - • CJ ....

Q c a:

" ~ ~ • :. •

~ Clo .. ~ • ... c a: ~ - • JOUllllA a: I

Page 126: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res
Page 127: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

-" __.:.,_ -..... <-... L.

RIPRAP GRADIENT CONTROL STRUCTURES: TRANSITIONS: zd vs b' with zH curves I- b i'"O' b - ---

ul () .. ... ,.o 0 I :J

~

,,., ()

l•IO"

1111111111

critlall llDw

o o111 ~ o" " ., -" - () () .. o

/ 1•10'

·1· il 1 !lit .... 1•10"

Values ol zd b

Values of .Jt... z'Q'

/ 1•10"

c-1s~ ....., •• fl!_

.... -t •0005

I of!>"# ... () cY !\

1•10"

U. I. llSP~ CW AOlllall.'IUllS 80IL VON9ZRVA110N 8ERVICIC DIOINDlllHO DIV1lllOll - DlllllON UNrr

. - _() ()I§> # ()

:1()#

·•# ()

6•10'

./

., __ .., ES-211 _,,_,)_"'~

""" ___J___!_6 --

Page 128: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res
Page 129: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

,...._

"' ~ ~

= ~ ... ~

c'°\ i ~

"' >

13l-a U)

z 0 -c: U)

z c a: ~

U) Iii.I a: :> . :J .... (,,) :> a: .... U)

-' 0 a: .... z ...... 0 (,,)

JI /I

/, , I

.... z Iii.I -Q c a:

" ~ c a: ~ -a:

.. ·-

I

I II II II

•. 'I'.. -.: j

; . f.

: . '' . .:..

I-· - ·-- - -- ··-·-- .._ -~-- .::_-__ --:: t,

~::

-. - .

- . . . - -- . . -. --··· -- --·-__ _,...._. _______ -

.._...._+----- ·- I ·-------- 0

- -::> T- o -~~': i

.. i I

I

- . - - ··- -· .... .. -- . - :--:-"!--: :=:.::=..:.=·--:- ·:.. . : : :-7~-- ~-··--·--·. - ----- . - .

I

I

I

I

··-

.71 ·-_,. ~----.-:-

• - ... :.- I ..

-= -= --:- . - ... -r-

t· ·- ~

I

I

I I I I

' i

I

! 2 • -

> -0

"' I i

! i

I I

i ~ :

K- e f'

I t;~ -1

;; ~ i i

Page 130: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res
Page 131: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

------------------:--------------

••

"ill

.. : Cl) ,z -,_I S? -~ . c;;

z . c 11 f: ..

(/)

""' 1! = _.; ~ ~

; (.)

""1i ~ , I~

. I "' I~ 1

11~ i 01

I~ ! I~ I I'~ = " 11~ I e:

~

~-.a

I

, I

J I i j I

i

/, i //I!! !! :.

,, I I

I I I I I

I I I . I

'II I : I I ,, I I I -

·1 i I I

:/ Irr //, I I I . ; ~ I I I . • - ----• --• •, -~---

I .... I -.. I

,-ft-:. I i 1-I ;

I

/./ ; i Ii i I 'I i !

-I i I

J I I I 111 L

I It j 1 I ~ I I i - . - - ·- -~ - :.

--- +- - ··-·--I- --- --· --- -~ ..; f - -

-··:1 J' --- - ~~-

r- J-t...~ ... : I

:

'" I ~ Ir . I ! l., t-~-~ I I i I

I ! ! ! I

I · / ; :

I I I ! I I -·· ... _l,_. I I

I 11·1 I I I I

I I

I ! ' I I I· : I ~ : ' I :.

- -

>" I i:: ;

~ J I

I ,,,,,..... I '

~e /:

'-""' _; i/ I .. I.

I . ,.. ~ . I j - .,

'- I

f. -. ~

j - . -M' , -i

I I ' I

I ' II I I

_; II : . i : !

II I ~ I I ---r-;

!

II I I i -- : ! I I - I '

,.. !~/ r~ I I : . - I I ; I i I

0

j ~ -"' I I "i

I • I

I ' I

I II I

i II I ! I ! I

!Ii~ . . i ! '. ! I I

It : j ' : i : I I ' : I

:/ /_ jl-i I

I I ' ! I I : i I I

---

. I

I I I J

I I ___, I I I: I

/I ! : I I I

: lJ I I : : : i !

I: ~J .. l I I l ! I : ~ . : ' : I I

t

/j t 1 ' I

j j I I

-·. J' ·1 I I - -·· ,-1 I ' .

i --· I I i

0 0

~ i ~ I I .I • - a .. I .., IN "'1--

~ ,;, c : ;; YJ I I :.

Iii ,~I

!! !II

:.

!a .

'= ' J.___ ________ ......1..-_______ __J_!,_' ___J

1

Page 132: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res
Page 133: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

' I

.I

__I

en ~

"' z z c : u

a: c ~

= c:> z c ~ u

"' a:

Q z c

z

en

"' c:> a: c % u en -Q

Q z c en % ~ ~

"' Q

: 2 .. .; ~ .. • • . i .. . . '

1~· ! .,, .... ..:.. I . ;i !

~ llO'O

, .... ....;.. oao·o

-11o·c

c '!i : E

I .. ;

I f

I i

g iii 0

~ - '? •

.. i :;;

! • ... ~ r c .. .. ~ r. ; t ! i ..

Page 134: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res
Page 135: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

-•.

.,, -' "" z z c % u

Q z c

-' c Q

s N

"' A. c a: ~

z .,, "' c a: c : C,) .,, -Q

Q z c

2 a: 0 .. i ~

.coo­"'\

OPC"O­

-t 1•0·0-

"" uoo-

' . , ~

0

-trt'C

I I

.. ; E

j c

... i = ! • c ::> & c t i & & i ~

Page 136: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res
Page 137: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

~

HYDRAULICS: UNIFORM DEPTHS ANO DISCHARGES IN TRAPEZOIDAL ANO RECTANGULAR CHANNELS

~n-. V-'uff <ti if11 a/I

~ g --+• i !>~ 00 .: ~ il =a I·•} / ,i.9••J,hlj.l.<'(, Lo I L • . fl . /;>:..~~//-::/:"~)J.11 tlJ.l~-~~0- ~ ~ ,..\~;::::::// _,· ;/~%~>··

~ 0

3 fS

"' .. 0

i 0

<;:~~:';~~~ .(,~~ / ~~,,..c..,.4-;;~_,.,.-,,,..-..r-~ ~ ~~-------~

N-NCl•"Utt , . ...._ ........ ~ '''''· ... -...-. .. .....,_ ... ..,,. ........

......

.. • sa.p. ""·'.,, ~· ..... _ I • ~ ....... rello "«/~ ' . .,.,... ., ,._ ( "' .... ii __ ..,.,..,,,,._ ........ '"'

F<D.U.A

O,.• '-!'~or 'I•,~• or

!'O - ••• " ~ .. ~ .. i •''• . '" il frTfi ,,.

, ............. , Glv- • I •0.!I, II• S.0 ft, 4• ).It ti.

ftO "' .... -~v. . o.mo II I e I

f_,.le .... ,.

"-•~ •s.o•.••O.n,•·sn • • ,....,. • f •I. JS or 4'•IO.M

0.

.to.~ · ... ,

"·•·- . '""'Ir • .,~

..... •!of

• • 0

n ... ......,...m -• IM...i-d i., Peul 0 ~ of the Oet1p Sectlool. II ,. P•P""TMFNT or AOfltc:ll .. TU•• aoi . CON8F.RVATION RF.RV ICE

R..•tw.t 11 n.u llft01flalllfl9 91'AflDAllN UlllT

~ 0

.. • 0

.. .. 0

ES-55

I J

.,.

_.. ' ... M11 '~O-tt _

Page 138: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res
Page 139: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

------------------ --------------

~ ~~ "' z z

c ~ a: c

J ; " z

~! .c

1; 0 N

1 $ a: ~

~ !

li ,:

u

.l s Q

t : : ~ IL

"' Q

2 a: 0 ~

i "' = ~ .&I~ ., ... ,,, "'

Cl) . ,,;

0 Al •

~ ::r - -,,, r -' t~J/ = "." :! ,6:J c ~ -~ j a: Q " ..

.. ; E

i !

> : I

Page 140: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res
Page 141: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

TECHNICAL RELEASE NO. 59, SUPPLe.tENT 2

WATER SURFACE PROFILES AND TRACTIVE STRESSES FOR RIPRAP GRADIENT COITTROL STRUCnJRES

Contents

PREFACE

NOMENC LA nJRE

Introduction - - - - - - -Technical Release No. 59 Purpose of Supplement -Computer Program - -

Riprap Gradient Control Structure Discharges and Starting Depths Size of Riprap, 050 - - - - - -Manning's Roughness Coefficient -Prismatic Channel -

Water Surface Profile Hydraulic Theory Computations

Computer Program -Input Data -Output Data -

Example - - - - - -

Fi cures

l l l 1

2 2 2 3 3

3 4 5

9 9

10

13

Figure 1. Energy in varied flow - - - - - - - - - - - - - - - - 4

Figure 2. Flow chart of procedure used in computer proSTam to compute WSP - - - - - - - - - - - - - - - - - - - - - 7

Page 142: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

NOMENCLAnJRE

This supplement uses the same nomenclature as contained in Technical Release No. 59. Usually, each new term used in the supplement is de­fined where it first appears in the text. Not all nomenclature is listed. For any nomenclature or symbols not listed, the meaning may be ascertained from .this supplement or Technical Release No. 59. The symbols used for input and output data are defined in the "Computer Program" section of this supplement.

a : Flow area, ft 2

Cn • CN: Coefficient relating Manning's n to riprap 050 siie,

[ ]EXPN n • Cn Ds·o

d - Depth of flow, ft

0 50 • DSO : Siie of rock in riprap of which SO percent by weight is finer, ft

OS - Depth of flow corresponding to the discharge, Q, at the ends of the riprap structure, ~

EXPN: Value of the exponent in the equation for computing Manning's

roughness coefficient, n • Cn[D 50 ]EXPN

- Factor of safety

: Acceleration of aravity, ft/sec 2

- Friction head loss, ftigb

- Horizontal len1th of a portion of a channel or length of a computational reach, ft

n • N : Manning's coefficient of rou1hness

P : Wetted perimeter, ft

Q : Discharge throu1h the riprap structure, cfs

s = Eneray aradient, ft/ft v : Velocity correspondin1 to the discharge, Q, ft/sec

"'

Page 143: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

PREFACE

TR-59 procedure may be used as a design tool to design a riprap gradient control structure for a design discharge and a tailwater condition. The structure will satisfy both capacity and stability requirements. However, an analytical procedure is needed to in­vestigate the effects, if any, of other discharge-tailwater condi­tions or other parameters on the structure. This supplement con­tains such a procedure.

This supplement was prepared by Mr. H. J. Goon, Civil Engineer, Engineering Division, Design Unit, Hyattsville, Maryland.

Page 144: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res
Page 145: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

TECHNICAL RELEASE NO. 59, SUPPLEMENT 2

WATER SURFACE PROFILES AND TRACTIVE STRESSES FOR RIPRAP GRADIENT CONTROL STRUCTURES

Introduction

A riprap gradient control structure can be used to dissipate excess energy and establish a stable gradient in a channel where the gradient without some such control would be too steep and would cause erosive velocities. The procedures for the hydraulic design and proportioning of such structures are given in TR-59.

Technical Release No. 59

Technical Release No. 59, "Hydraulic Design of Riprap Gradient Control Structures," presents a detailed discussion of the concept of the riprap gradient control structure, procedures for the hydraulic design and pro­portioning of the structures, and procedures used in the associated com­puter program to obtain the design of the structure.

Purpose of Supplement

Technical Release No. 59 procedure provides the design of a riprap struc­ture for a given design discharge and tailwater condition. However, by use of this technical release, the capacity and stability of the riprap structure are not investigated for discharges other than the design dis­charge nor for other tailwater conditions. A water surface profile pro­gram is needed which will evaluate the depth of flow and tractive stress at various locations throughout the structure for any combination of dis­charge and downstream starting depth. 11\erefore, the purpose of this sup­plement is to: (1) present procedures for the computation of water surface profiles for various parameters, and (2) investigate the effect of various parameters on the capacity and stability of the riprap structure.

Computer Program

A computer program, written in FORTRAN for IBM equipment, determines the water surface profile, maximum tractive stresses, and various other hy­draulic parameters associated with the riprap structure under investiga­tion.

Input and output data information is discussed under the "Computer Pro­gram" section. Computer runs may be obtained by request to

Head, Design Unit Engineering Division Soil Conservation Service Hyattsville, Maryland 20782

Page 146: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

2

Riprap Gradient Control Structure

The purpose of a riprap gradient control structure is channel gradient con­trol. The concept and the hydraulic design of the riprap gradient control structure are contained in TR-59. For brevity, riprap gradient control structures will be referred to in this supplement as riprap structures or simply as structures.

Discharges and Starting Depths

The design of a riprap structure obtained from TR-59 procedure is for a design discharge and tailwater condition; in the design, both capacity and stability of the structure are-satisfied. The design discharge is equal to the discharge used in evaluating the stability of both the upstream and downstream channels adjacent to the structure.

Generally, riprap structures that are stable for the design discharge will also be stable for all discharges less than the design discharge. However, if a rating curve is such that the tailwater decreases very rapidly with small decreases in discharge, such a discharge-tailwater combination may cause tractive stress greater than those associated with the design dis­charge. Further, if the actual tailwater depth cort"esponding to the design discharge is subsequently determined to be less than the starting depth, OS, used in the riprap structure design, the water depth in the structure, especially in the downstream transition, will be lower than normal depth. Thus, velocity and tractive stress in the structure will be increased.

The procedure in this supplement may be used to compute water surface pro­files and tractive stresses at various locations throughout the riprap structure for any combination of discharge-tailwater conditions. If the tractive stress at any location in the structure is greater than the allow­able tractive stress, the riprap structure should be redesigned using TR-59 procedures for the controlling discharge-tailwater condition. Locations most likely to experience tractive stresses that are larger than the allow­able value are usually the most downstream end of the prismatic channel and the upstream half of the downstream transition.

If a discharge greater than the design dischar1e occurs, the structure may not function properly; the structure may be overtopped and tractive stress greater than allowable may occur. Therefore, as stated in TR-59, the de­sign discharge should be selected sufficiently large and the lowest tail­water depth correspondin1 to the design discharge should always be used.

Size of Riprap, Dso

Since the value of the roughness coefficient, n, and the critical tractive stress, rbc or Ts' are functions of the size of riprap, Dso. any variation of 0 50 size will nave some effect on the performance of the riprap struc­ture. The procedures in this supplement may be used to check the capacity and stability of the structure if the actual Dso size used in the construc­tion differs somewhat from the design value of Dso·

Page 147: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

•• ,'I ... ·.-·.•

3

Manning's Roughness Coefficient

The coefficient of roughness, n, for the riprap has been experimentally evaluated as

n = Cn (D s o) EX PN

where (from Report 108 and used as default values in TR-59)

Cn = 0.0395

EXPN = 1/6 A constant n value based on the above equation was used in the design procedure of TR-59. However. the procedure in this supplement may be used to investigate what effects the various roughness coefficients may have on the capacity and stability of the riprap structure. Water depths and tractive stresses at various preselected sections of the riprap structure will be computed corresponding to the desired n value.

Prismatic Channel

Generally, the most critical section for stabiiity is that section where the velocity and tractive stress are the .greatest. For flow conditions other than the discharge-tailwater condition used in the riprap struc­ture design, the most critical section is usually at the most downstream end of the prismatic channel. However, if supercritical flow exists in the downstream transition, the most critical section may be in the transi-tion. ·

For a discharge less than the design discharge and/or a starting depth less than the OS used in the design, the depth at the most downstream end of the prismatic channel could be as low as critical depth; and the water surface profile in the structure upstream from this section will approach normal depth. For a discharge greatly exceeding the design dis­charge, it is theoretically possible to have supercritical flow in the prismatic channel.

Water Surface Profile

The water surface profile (WSP) in a riprap structure depends on the dis­charge and the starting depth. Thus, for every discharge-starting depth combination, there is a corresponding water surface profile which can be used to obtain the capacity and maximum tractive stress values in the rip­rap structure. The starting depth at the most downstream section of the riprap structure must be predetermined before profile computations can be started. The water surface profile is merely the determination of the depth of flow at preselected sections throughout the structure. These preselected sections are the ten equally spaced sections within each ele­ment of the structure. These elements are the downstream transition, up­stream transition, and the prismatic channel. The preselected sections in the transitions may be obtained from the computer output of TR-59.

Page 148: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

4

Hydraulic Theory

The theory and asswnptions used 1n the determination of water surface profiles are taken from NEH-5, Hydraulics. It is assumed that the law of conservation of energy (Bernoulli's Theorem) is valid for varied flow and that Manning's formula defines the slope of the energy line.

(1) (2)

Figure 1. Energy in varied flow

v 2 2

ii

From Figure 1.

The of

v 2 v 2

RISE + d1 + ~ • d2 + 2: + hf

total head loss, hf, between sections 1 and 2 is equal to the rate friction loss, s, times the distance, 1, between sections l and 2 or

hf• st

s • t [ (dl nz 1 1

- ~2) + ~(:-2' - :-2') + RISE] - - - - - - - - - -21 al a2 (1)

It is further assumed that conversion losses in the transitions and the correction for non-uniform velocity distribution are negligible; thus they are ignored. The rate of friction loss, s, .between sections 1 and 2 is taken as the arithmetical average of the instantaneous rate of fric­tion loss of section 1, (si), and section 2, (s 2 ), or

s • !. (s + s ) 2 l 2

'

Page 149: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

From Manning's Formula it/ 1

nQ 2 P1 S1 = ( ) -----1.486 10/3 ai

.. / 3 nQ 2 P2

52 = (l.486) _a_l_0_/_3 2

s

Setting equation (1) equal to equation (2)

Computations

s

(2)

(3)

The computation of the water surface profile merely determines the depth of flow at one end of a computational reach when the depth of the other end is known. Thus, the length of a computational reach is equal to the distance between any two consecutive sections. In the case of subcriti­cal flow where computation of WSP is in an upstream direction, the depth at section 2 (see Figure 1) is known; thus, every term on the right hand side of equation (3) is known. The depth at section 1, d1 , is determined by assuming a depth, d1 , and stepping d1 until equation (3) is balanced within the degree of accuracy desired. The degree of accuracy may be achieved when the computational reaches are "sufficiently short." The lengths of computational reaches used in the computer program are set equal to the distance between preselected consecutive sections of the riprap structure divided by ten. In other words, the length between any two preselected consecutive sections is divided into ten equal sub­lengths; each sub-length contains two subsections where WSP is computed. The depths at these subsections are computed to an accuracy of! 0.001 ft, but they are not part of the output. Only depths at preselected sections are output.

A flow chart of the procedure used in the WSP computer program is given in Figure 2. Water surface profile computation commences at the most downstream section of the riprap structure. The program examines to see if the starting depth, OS, is equal to or greater than critical depth corresponding to the discharge, Q. If the starting depth is less than critical depth, critical depth will be used as the starting depth. Compu­tations proceed in an upstream direction. The computer examines whether subcritical flows exist. When the flow is critical or supercritical, com­putation ceases and a message, "CRITICAL DEPTH," will be printed to indi­cate that critical depth will be used as the starting depth for the next upstream computational reach. This process continues upstream until flow

Page 150: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

6

changes back to subcritical at some section of the downstream transi­tion or until the most downstream section of the prismatic channel has been reached.

If the flow changes back to subcritical before reaching the prismatic channel, both of the following computations occur:

1. Computation of WSP continues upstream for subcritical flow and

2. A message, "SUPERCRICAL FLOW," will be printed to indicate that computation of WSP is in a downstream direction for supercritical flow; using critical depth as the starting depth and commencing at the last preselected section where flow changes b~ck to subcritical flow to the preselected section where supercritical flow first occurred.

However, if the flow did not change back to subcritical flow when the prismatic channel is reached, both of the followina computations occur:

1. A messaae, "SUPERCRITICAL FLOW," will be printed to indicate that computation of WSP is in a downstream direction for supercritical flow. Using critical depth as the starting depth and commencing at the most downstream section of the prismatic channel, compute WSP to the preselected section in the downstream transition where supercritical flow first occurred and

2. Compute the WSP in an upstream direction comencina at the most downstream section of the prismatic channel usin1 criti­cal depth as the startina depth. Flow will approach normal depth in the prismatic channel.

:7

The critical slope, sc,Q• is associated with a discharge, Q, and when the discharge is changed, the critical slope is changed. The critical slope usually increases as the discharae decreases. Therefore, for dis­charges less than or equal to the desian discharae, the lowest possible depth at the most downstr ... section of the prismatic channel is critical depth; flow in the prismatic channel will never be supercritical. The WSP in the prismatic channel and the upstream transition will approach normal depth in an upstream direction.

Page 151: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

·;f :.

7

Start at the downstream end of structure

l I OS < de' I r No I Yu I

' Set

r d2 • OS I OS • de

t ! I

Compute ri&ht hand side of equation (l) I

Rl •dz· RISE• ...s.:..[ l. l(r.in-) 2(1!6,)-/j

I

'

I 2a22 I .4 az I

' I I Assuae a value of d1 • dz 0.001 I : I !

' I I

d, > de:~ I : ' I No I Yes I '

~ '

I Coapuuna for I I Subcritic:al ISupercritic:all '

( Co11pUte left hand side of equation (3) '

Set i..[l n 2 p -11] c:

Ll • d1 • - • l(i"."iS6) (~) 0

d2 • de I . 2a 1 2 I l . 4 6 a 1 .. " ' " ' !::: I

Does RJ lie betWHn Ll d1 and LJ]d, ! . "':I I

o.oo: • '

No Yes . " .. .. "' step d, T .,. ;

,/ Int9ti>0late for d1 ! .;

LJ]d1

• RJ

0.001} ..

d, • d, : 0.001{ Ll] -- U]d, : ·- ~ d1 JI

dz • d, ::l ~· -._

.... ' - ... ' .. -"' :: a ,

l .. -

Is this the llOlt upstreaa section of the downstr ... transition? "' .. -· No Yes l ~ ..

;;; .::. !

' I -" ; -

Computin1 for ' i" ~

Subcritical T Supercritical Hal superc:ritic:al flow occurred• ::l :a ;.. ..

T t I No Yes

Is this th• llOlt upstr ... I r

section of the structure? -No r Yes

I Finis

r 1s this th• section where subcri t ical flow last oc:c:urred? I I No Yes I

' /' "

Fisure 2. Flow chart of procedure used in c:oaputer procru to c:oapute WSP

Page 152: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res
Page 153: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

I

9 Computer Program

A computer program has been prepared which computes water surface pro­files, maximum tractive stresses and other. hydraulic parameters for the purpose of comparing and analyzing the design of a riprap gradient con­trol structure obtained from TR-59. The program examines if the flow is subcritical, critical, or supercritical. The water surface profile corresponding to a discharge will be computed for subcritical as well as supercritical flow. It will readily show the effect on the profile and tractive stress of changes in: the tailwater condition, 0 50 si:e of riprap, or Manning's roughness coefficient.

Input Data

Each computer job requires two lines of heading information. Each line consists of 80 or less alphanumeric characters. This information must be placed ahead of the other input data and is used for identification.

The line arrangement of input data and their order are given in Table 1. All values indicated must be included except the value of n, see below.

1Line No.: Order of Input Parameters I

! ' i

I I I I 0 Q n 05 0 DIV CONV ZL I ZR ' I I

1 i

OS I BSD R1 I Rz I R, R .. Rs ' I I I

2 Rg R1 Re R, R 1 o ! I I - -

r I '

3 zu BU LPC SN THETA - - I '

I I

4 I BSU R11 Ri z I R11 R1" R1 5 R16 ;

5 I R11 Ru Ru I I Rzo - - - I

Table 1. Input Data

Line O

Q _ Discharge for which WSP is desired, cfs

n _ Manning's coefficient of roughness. n • 0.0395 0501

/6 unless

user specified

050 - Size of rock in riprap of which SO percent by weight .is finer, ft

DIV _ Rate of divergence of the bottom width of the downstream transi­tion, ft/ft

CONV : Rate of conver .· "tce of the bottom width of the downstream transi­tion, ft/ft

ZL - Side slope of the left bank at the ends of riprap structure (look­ing downstream), ft/ft

ZR _ Side slope of the ri&ht bank of the ends of riprap structure, ft/ft

Page 154: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

10

Lines 1 and 2

OS

BSD

Line .3

zu BU

LPC

SN

niETA

Lines 4 and S

BSU

Output Data

- Starting depth at the most downstream end of the riprap structure, ft

_ Bottom width at the most downstream end of the riprap structure, ft

The vertical distance from the bottom of the channel, at the downstream end of the transition, to the bottom of the channel at any section j in the transition, ft. The subscript, j, is numbered from 1 to 10 inclusive; 1 being the first preselected section upstream from the most downstream end section of the transition and 10 be­ing the 10th or the last section (most upstream end sec­tion) of the transition. The values of (RISE)j are ob-tained from the computer output design of TR-59.

- Side slope of the prismatic channel, ft/ft

- Bottom width of the prismatic channel, ft

- Length of the prismatic channel, ft

- Slope of the prismatic channel, ft/ft

E Anale of repose of the riprap, dearees

- Bottom width of the most upstreaJil end of the.riprap struc­ture, ft

- See definition above; except that j is numbered from 11 to 20 for the upstream transition, ft

The alphanumeric heading information in the first two lines of input is printed in each computer run. The printed alphanumeric information is followed by the data used for analyzin1 the design.

The output data for the WSP, parameters, and dimensions of the structure are given in the followin1 order:

l. Downstreaa Transition

2. Prismatic Channel

3. Upstreaa Transition.

The headinas used for the output for the transitions and prismatic channel are:

LENGTH FT.

RISE FT

• Lenath from the downstream end of the transition/prismatic channel to any section j of the transition/prismatic chan­nel, ft

s The vertical distance from the bottom of the channel, at the downstream end of the transition/prismatic channel, to the bottom of the channel at any section j in the transi­tion/prismatic channel, ft

I

Page 155: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

WIDTH FT

ZL

ZR

DEPTH FT

NORMAL DEPTH

CRITICAL DEPTH

VELOCITY FT/SEC

l l

_The bottom width at any section j, ft

_ The left side slope (looking downstream) at any sec­tion j, ft/ft

- The right side slope at any section j, ft/ft

: The depth at any section j, ft

- The normal depth at any section j, ft

- The critical depth at any section j, ft

- The velocity at any section j, ft/sec

FRIC SLOPE -FT/FT

The instantaneous slope of the energy grade line at any section j, ft/ft

TAUBM LB/SQ.FT

FS BOTTCJ.f

TAU SM LB/SQ.FT

FS SIDES

TAUO LB/SQ.FT

• (CTAUB)(y)(RN)(SN) : The maximum tractive stress along the riprap lining on the bottom of any section j, lb/ft 2

4 050 • TAUBM : Factor of safety of the riprap lining on the

bottom of any section j

• (CTAUS)(y)(RN)(SN): The maximum tractive stress along the riprap lining on the side slope of any section j, lb/ft 2

IC 4 0 50 = TAUSM : Factor of safety of the riprap lining on the side slope of any section j

: Mode 4 type structure only (see TR-59); the average tractive stress at any section j in the transition. The maximum tractive stress cannot be obtained, be­cause the value of CTb or ~s is unknown for trape­zoidal cross sections having unequal side slopes, lb/ft 2

In computing the normal depth of flow in the various sections of the rip­rap structure, the bottom slope, s0 , used in the computations are as follows:

1. Downstream Transition

a. the slope of the most downstream section has not been defined, therefore normal depth cannot be computed

b. the average slope of the upstream and downstream compu­tational reach is used to compute ON for all sections except end sections

c. the slope of the prismatic channel is used to compute ON for the most upstream section

2. Prismatic Channel - the slope of the prismatic channel is used to compute ON for all sections of the prismatic channel

Page 156: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

12

3. Upstream Transition

a. the slope of the prismatic channel is used to compute DN for the most downstream section

b. the average slope of the upstream and downstream compu­tational reach is used to compute DN for all sections except end sections

c. the slope of the most upstream section has not been de­fined, therefore normal depth cannot be computed.

'

Page 157: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

13

Example

Given: The riprap structure design used in this example is taken from Example No. 2 of TR-59. This example is repeated in this sup­plement on pages 14 and 15.

Required:

1. Determine the stability and factor of safety of the riprap structure for the design discharge if the tailwater depth was 6.7 ft instead of 7.0 ft.

2. Determine the stability of the riprap structure for the following discharge-tailwater conditions:

a. Q • 2600 cfs, OS= 6.75 ft

b.

c.

Q = 2400 cfs,

Q • 2000 cfs,

OS • 6.50 ft

OS • 6.00 ft.

3. Determine the stability, factor of safety, and capacity of the riprap structure if the design Dso • 1.0' was not used in the construction, but the following Dso sizes were used.

a. Dso • 1.25 ft

b. Dso • 0.75 ft.

4. Determine the stability, factor of safety, and capacity of the riprap structure if the following CN values were used instead of 0.0395 in the equation n • CN(Dso) 116

a. CN • 0.042

b. CN • 0.035.

5. Determine if the following discharge-tailwater combinations would actually control the design

a. Q • 2650 cfs, OS • 5.5 ft

b. Q • 2550 cfs, OS• 6.75 ft.

Solution:

1. The water surface profile elevation, corresponding to the design discharge and a lower startin1 depth of 6.7 ft, will be lower than the original desisn where OS• 7.0 ft was used. Therefore, the velocity and tractive stresses will be increased in the downstream transition and the downstream end of the prismatic channel. From the WSP computer·output (paae 20):

TAUBM • 4.046 lb/ft 2

TAUSM • 3,3g1 lb/ft 2

Page 158: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

-\i) ~

14

Example No. 2 (From TR-59)

Gi•1en: Design discharge, Q • 2750 ct1 Side slopes, ZU • 2.5 and ZS • 3.0 Riprap size, D50 • 1.0 tt Bottom width, B.5 • 100.0 tt Starting depth, DS = 7 .O tt Factor of satety, FS = l. 25

Required: Design a riprap structure and determine the length ot the structure it the total vertical drop de1:1red tor gradient control is 6.0 tt.

Solution: The design obtained trom the ccmputer u.ing mode 2 19 given on the next page.

The vertical drop in the prin&tic channel 11 equal to the drop through .the riprap 1tructure mi.nu. the vertical drop contained in both transi­tiona. The length ot the prumtic channel, LPC, u equal to the verti­cal drop in the prismtic channel divided by the bottcm elope ot the priamatic channel, or

LPC • 6.0 - 0.2787 - 0.1394 • 7ll.6l tt 0.007844

The tot&l length of the 1tructure 11 equal to the length ot the prismatic channel plus the lengths ot both tran1ition1 or

the total length • Tll.61 + 126.04 + 63.02 • 900.67 tt

63.02' LPC • 711. 61' 126.04•

. -r- to-

ll

=

'~

Page 159: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

I

15

···································~············································ OESIGN OF ~IPAAP GAAOIENT CONT~OL STRUCTUHE FOA A CONSTANT SPECIFIC ENERGY HEAO

SPECIAL OESIGN PAEPAAEO SY TME OESl~N UNIT AT HYATTSVILLE• MOo i:'OA

EXAMPLE OESIGN NO. 2 JANUAAY 23• 1976

OIMENSl~N~ ANO PARA~ETEAS UPSTREAM ANO OOWNSTREAM OF T~E RlPAAP STRUCTURE

O• ?.750.00 CFS BS• 100.000 FT

H• 7.164 FT OS• 1.000 FT

ZS• 3.00 FT/FT VS• 3.2•7 FT/SEC

ADDITIONAL DESIGN PARAMETERS EITHEM SPECIFIED OA OBTAINED BY OEFAULT

050• C50•

FS•

J.000 FT CS• 0.7000 •.oo LB/CU.FT. CN• 0.0395 1.250 EXPN• 0.1667

THETA• 35.0 DEGAEES CONY• 2e000

DIV• •.OOO

OYMENSIONS ANO PAAAMETEAS ASSOCIATEO wITH THE TRANSITION AT THE DOWNSTREAM ENO OF THE AIPAAP PRISMATIC CHANNEL

1.E~GTH IHSE WIDTH z DEPTH TAU VEL.OCITY FAIC SLOPE '1'T FT FT FT LB/SQ.FT, FT/SEC FT/FT

o.o o.o 100.00 3.00 1.000 0.211 3.2•7 ·7.03E·O• 12.60 0.0095 9],70 2.95 6,979 o.322 3 ..... a •. o3E•04 25.21 0.0204 81.•0 2.91) 6.954 0.311 3.617 9.27£-0• J1 .11 0.0331 a1.09 2oR5 6,fil23 11.••6 3e'i40· loORE•03 50,4i! o.o•"o 7•.79 2.ao IJ.883 0.533 •·2•7 l o2l'E•03 63.02 0.0658 6R,49 2.15 6.1133 11.11•6 •·611 l.55E•03 75.62 0.0876 62.19 2.10 6.767 o,799 5,051 le9lE•03 "" .23 o.11so sc.e9 2.115 6.617 l .o 11 5.598 2e•3E•OJ

100.13 o.1so1 •ca.Se 2e60 60545 1.325 6.309 J.23E•OJ 113.•4 0.2002 •l.2it 2.55 ,,,334 lo83R 7 .30!» •.62E•03 126.04 0.2787 3111.91) 2.sn S.904 2 .91.0 9.003 7.8•E•OJ

DIMENSIONS ANO PARAMETERS ASSOCIATED WITH TM[ PRISMATIC CHANNEL OF THF AIPAAP STRUCTURE

050U• 1.000 FT SN• 0.00184• SC• o.Oh96S CTA'-'I • 1.339 CSU• 11.5242 ...... 7,164 FT HC• 6,920 FT TAUBM• 2.910 LB/SQ.FT • FSU• 1.2s ON• 5,904 FT DC• 4,943 FT UUIA• J.200 Li/SQ.FT.

BU• 36.91 FT VN• 9.oo FPS N• 0.0395 cuus • 1.122 ZU• 2.so AN• 4,44 FT IC• 0.1621 TAUSM• z.•39 LB/SQ, FT.

KPS• le 11E•Ol UUSA• 2.439 LB/SQ.FT.

OIMF.NSIONS ANO PARAMETERS ASSOCIATED WIT'4 THE TRANSITION AT THE UPSTltEAM END OF THE RIPAaP PRISMATIC CHANNEL.

LENGTH AISE lllIDTH z OEPT'4 TAU VEL.OC ITY FAIC SLOPE FT FT FT FT LB/SO.FT. FT/SEC FT/FT

o.o o.o 36.91 2.so 5.904 z.910 9.003 7.84E•03 6.30 o.0393 •3.28 z.ss 6.334 lelli 7.305 •.62E•03

Ue60 0.06•0 ••.SR 2.60 6,545 1.325 6.309 3.23E•03 18.91 o.oa19 ss.19 2e65 6.671 1.011 S.591 2.•JE-03 25.21 o.Hss 62.19 2.10 6.767 o.799 5.051 lo91E•03 31.51 0.106• 68.49 2.15 6.133 1),646 •.611 lo55E•03 37 .11 o.11s• 74.79 2.110 ~toil3 11.533 •.247 l.zet::-oJ 4•.11 0.1221 81.09 2.85 6.923 o.••6 3.940 1.oeE-oJ so.42 Oel29Z 17.40 z.90 6.95• n.371 3.677 9,21E·O• 56.72 o.13•6 93.70 z.95 6,979 n.3ZZ 3.441 11.0JE•O• 63.02 o.139• lOo.oo 3.00 T.ooo 0.211 J.Z47 7.0JE•O•

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• TA&NSITION CD~VEASION L.OSSES

TH[ CDNVEOSION L.OSS IN THE OOWNSTAEAN TAANSITIO~ MA~ I[ AS MUCH AS o.1s FT ·-·~'

TH[ CONVEDSION LOSS IN TM[ UPSTAEA• TAANSITlON ~ay IE as MUCH AS o.os FT ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

Page 160: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

16

From the original design (page 15):

TAUBA • 3. 200 lb/ft 2

TAUSA = 2.439 lb/ft 2

The maximum tractive stress for both the bottom and side slopes of the channel is greater than their allowable trac­tive stress, i.e.,

TAUBM > TAUBA

TAUSM > TAUSA

Factor of safety: From the computer output (page 20) or may be computed as follows:

bottom; FS • ~~~o • 44~6!60)= 0.99 < 1.25 S.G.

K C50D50 0.7621(4.0)(1.0) side slopes; FS = TAUSM = 3.391 • 0.90 < 1.25 N.G.

For the design discharge, the lowest tailwater condition should be used for the design. Therefore, the structure should be redesigned using the lower starting depth. The redesign is given on page 21.

2. a. The computer output is given on page 22.

TAUBM • 2. 922 < 3. 2 • TAUBA

FS • 1.37 > 1.25

TAUSM = 2.449 = 2.439 • TAUSA FS • 1. 24 = 1.25

b. The computer output is given on page 23.

TAUBM • 2. 701 < 3. 2 • TAU BA

TAUSM • 2.263 < 2.439 • TAUSA

FS > 1.25

c. The computer output is given on page 24.

TAUBM • 2.436 < 3.2 • TAUBA

TAUSM • 2.042 < 2.439 • TAUSA

FS > 1. 25

The ori1inal desi1n is considered stable for this rating curve.

OK

OK

OK

01<

OK

OK

OK

OK

OK

OK

3. a. Since the riprap size Dso • 1.25' was used instead of the de­sign 050 • 1.0 ft, Manning's roughness coefficient, n, is in­creased. Thus, the water surface elevation throughout the en­tire structure will be higher. However, the increase in depths are considered small in this case, and the usual freeboard pro­vided will be adequate.

I

Page 161: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

Since a larger riprap size was used, stability will not be a problem. From WSP computer output (page 25):

TAUBf.f = 3.092 lb/ft 2

TAUSM = 2.591 lb/ft 2

TA.USA 4 Cl· 25 ) • 4 > 3.092 = TAUBf.f 1. 25

17

OK

K CsoDso TAUSA • FS = 0.7621(4) • 3.05 > 2.591 = TAUSM OK

Factor of safety for bottom

FS • 1. 62 > 1. 25

Factor of safety for side slopes

FS • 1~47 > 1.25

OK

OK

b. Since the smaller size riprap Dso • 0.75' was used, the value of n is decreased. Thus, the water surface profile elevation throughout the entire structure will be lower so that capacity will not be a problem.

Since a smaller riprap size was used, stability may be a prob­lem and the factor of safety will be decreased. From WSP com­puter output (page 26):

TAUBM = 2.835 lb/ft 2

TAUSM = 2.376 lb/ft 2

Cs oD so TAUBA • FS • 4 (0. 75 ) = 2.4 < 2.835 • TAUBM

l.25 S.G.

K CsoDso. 0.7621(4)(0.75) TAUSA • -- • 1.83 < 2.376 • TAUSM S.G. FS 1.25

Factor of safety for bottom

FS • 1.06 < 1.25

Factor of safety for side slopes

FS • 0.96 < 1.25

~.G.

~.G.

4. a. Since the value of CN • 0.042 was used instead of 0.0395, Manning's roughness coefficient is increased. Thus the water surface ·profile elevation throughout the entire structure wi 11 be higher. (See DEPTH column of WSP computer output, page 27).

From Example Desian No. 2 (page 15) the maximum allowable trac­tive stress for the bottom and side slopes are:

TAUBA • 3.200 lb/ft 2

TAUSA • 2.439 lb/ft 2

Page 162: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

13

From the WSP computer output (page 27) the maximum tractive stress occurred at the most downstream end of the prismatic channel.

TAUBM • 3.260 > 3. 200 • TAUBA

TAUSM • 2.686 > 2.439 • TAUSA Factor of safety at bottom

FS • 1.25

Factor of safety at side slopes FS < 1.25

N.G.

If the factor of safety • 1.25 is desired, the structure should be redesigned using the higher CN value.

b. The smaller value of CN • 0.035 would result in a smaller value of n. Thus, the water surface profile elevation throughout the entire structure will be lower. (See DEPTH column of WSP computer output, page 28). The maximum tractive stress occurred at the upstream end of the prismatic channel.

TAUBM • 2. 724 < 3. 200 • TAU BA OK

TAUSM • 2.282 < 2.439 • TAUSA OK

Factor of safety at the bottom

FS • 1.47 > 1.25 OK

Factor of safety at the side slopes FS • 1. 34 > 1.25 OK

5. a. The WSP computer output is given on page 29. Computation of water surface profile commences at the most downstream section, Sta. 0.0, in an upstream direction with a starting depth of S.S ft. Flow remains subcritical to Sta. 100.83, but supercriti­cal flow occurred before reaching Sta. 113.44. Therefore, com­putation ceases and critical depth of 4.454 ft was used as the startin1 depth for the next computational reach. However, flow remains supercritical to the most upstream section (Sta. 126.04) of the downstream transition.

Computation of water surface profile for supercritical flow in a downstream direction usin1 de • 4.835 ft as the starting depth co1111encin1 at Sta. 126.04 to Sta. 100.83 where subcritical flow last occurred. Note that actually a hydraulic jump occurs be­tween Sta. 113.44 and Sta. 100.83.

Computation of water surface profile in an upstream direction resumes commencing at Sta. 126.04 using critical depth as the startin1 depth. The WSP approaches normal depth in the prismatic channel and the upstream transition.

In this case, the tailwater is considered to be decreasing very rapidly with a small decrease in discharge. The lesser discharge

4

Page 163: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

19

causes higher tractive stresses than the design discharge. For ex­ample, at Sta. 113.4"._;

TAUBM • 6.304 > 1.838 = TAU

TAUSM • S.304 > 1.838 • TAU

where TAU is the maximum tractive stress at Sta. 113.44 for the design discharge-tailwater condition (see page 15).

Thus, the lesser discharge actually controls the design.

b. As can be seen from the WSP computer output given on page 30, this discharge-tailwater condition does not control the design and the original design is good for this condition.

Page 164: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

,

20

• • • • • • • • • • I • • ,,,,,, ............... ~ ...... -...... "' ... : • .. Ill =~~:::::c:c:c:cx::c Ill • .. Ill. .,. .. _ ........ -~··· • • ..~ . ............. • ... . . . . . . . . . . . . . . . . . . . . . . ............ • ... ·- 111 ............. 111-• ·- ·---------- ·- ---"' . .,. ........... I "' -- "' "' l!I .. .. .. ... .11; ... • lei ··-·••111111••- -•t11•••t11•••• s • .................. ._. . . ...... _ ......... 111• •111111 ... 111 ............ 111• ....... .,..111,,. ......

"' =- ........... ,,, ..... -.... =· .... Ill•• •••••• =111 . ................. "'"'-... c' . . . . . . . . . . . c' . . . . . . . . . . . C' ........... ... ............... ... f'INNNNNNNNNN ... ---········ I - - -.. c ... .. I I I I I -.................. =========== =======:=:= .,. .. --··"""'····· ... .,. .. .. .. '"'i . . . . . . . . . . . •; . . . . . . . . . . . ... .. ........... I ""-•••lll•f'IN-e ·---------- : ......................... -- • ---.. • .. . • .. .. .. • I •

·~ "'"' ........... -.. . ... ..... 111••·--·· ll ....... "' ..........

I ... •111-••t11••111 .... ! . . ..... .,. ............... ... "' .......... "' .... • "'""••"' ..... "' ... ·-········· . ......... "'."'"'"' . • 4411 . . . . . . . . . . . cS . . . . . . . . . . . Clll . .......... .. ... 1: . .. .... ........... ._.. ..... •"'"'Nfllf\llllNlllNN .. ... --.---······· I - • • • • -c• - - -" - -- • .. .. i .. i .. . .. .. ... • • I .................. eN•N•••-••111 111••111••111••111• s .. cf'I lllf'le••N••f'IN"" .. .............. "' ... •N11t11t-111eeNee ... .. SN -· ::~::~~=:t=== ;;(~ ... ............ ~~ ••111••111111••• ... - c "'' .......................... .......................

0 .. ... "' .. ··········- .. -·········· .. • •••••••••• c z .... - • ~· ••••••••••• " ... • •••••••••• " ... • •••••••••• I ~i "' • . . . . . . . . . . . - . . . . . . . . . . . - . . . . . . . . . . . .. .. . • ••••••••••• • ••••••••••• • • •••••••••• c "' Ill ... ... ... .. »C I c .. .,., • f - .. c ! .. .. .. ! .. i .. ..,

~;:;f:;;::::=w:~: .. " ·--.............. I .. " 11t•N-fltflt•N• ee - c I • -=i - -= ................... -· ··-·--··-·· • .. .. ···-·· ......... I ,,. ... _ ........ - ef'l11t•••N•••N

I Z I • " - ¥ .... . . . . . . . . . . . ¥ .... . . . . . . . . . . . .. ¥ .... . . . . . . . . . . . I .. ... ............... 111 .... : ... :·········· - ~-

..... ,,, ................. - • I I s ...... i ... ... I ~ ... ... ; 1. c .. .. .. • • I.I c • .. 1:; I • .. ~ ~ • ~ = • . " .. • , .... - • I uz ....... _ ..... "' ... - ". ... .............................. "s .................... .. JI> I ... ........... __ "'"'"'• .. ... :.:.::.:.:.:.:.:.:.:. • ... . .,. .. .,. __ ,., .... "' .. • .. - 0 • • .... ""••-f'llll""•Nt11• c .. .. c .... . _,.._. ..... "' ..........

01 l:C ;1 . . . . . . . . . . . 5 ;1 . . . . . . . . . . . • ;1 ;;i..;..;..;,.;..;,.;~~ .. .. .. .. NNf'lllllltlll11t11t••• ••••••••••• "' • I' :I - i " - " .. " 0 f "' ... • -· .. ~ .. ... • • "'z • ••-Nlll""lltlllfll• Ii ••••••••••• 9'Z . ._..,. . .,. ....... - = ..,_ ... c• • ....... ._. ...... • •••••••••• C• • .... ._.119t.flf'l•""•• .. I • .. .. ... • .......... _ . • •••••••••• Ii ·-·· ........... " .. w ... 1• • . . . . . . . . . . . . . . . . . . . . . . ...........

c ... -1 • ·········- 111111111111111111111111111111111 ,,. .......... • f I c • • • .. • • "'I c . I .. .. z ........ -.. .... .,. .. z ............... ._. ....... z ·--· ........... - ·- .... .... .,. ..... ,_."'"'. ·- .... __ "' .......... .. .. .............. "'"' ..... c .. """' • ..... ................ "'."' .. ... "' ............ .. ... .... 111 .......... ... -· I . . . . . . . . . . . I . . . . . . . . . . . g . . . . . . . . . . . .. - • ......... ,,, ... 111111111111111111111111111111111 ............. ... c ! g "' • ... - c !f :i:::::::::: ••••••••••• ::::::f ::::: ~ • • 111111111111111111111111111111111 •

~ ... . . . . . . . . . . . ... . . . . . . . . . . . ... . . . . . . . . . . . • Ill fltNNNNfllNNNNfll NNNllllNNNNNNN NNNNNNNNNl\lllt e .. - 1: • " ... ... r • :::::::::::: ••••••••••• •t11•lll•t11•lll•"'•

"" . - "' 111111111111111111111111111111111 ~ ,,,,,. ............. c • ... . . . . . . . . . . . ... . . . . . . . . . . . ... . . . . . . . . . . .

' f'INNNNNNNNNN fllNfllNNNNNNNN NNNNfllfllfllfllfllfllllt

• .. • z ::::::!:::: z ::::::::::: z • •••••••••• .. .. .. . ................... • ... . . . . . . . . . . . o .. . . . . . . . . . . . o .. . . . . . . . . . . . ... .... ....... -.. -........ -· =========== -· •"'•"'"'··- ... ~-.. .. • ................. • • ... .. ,,. ......... c ... - -• " • s•-••••"""'"" -==·:::::• 11te•lll•••N•• • =c .. ..... ,,, ......... ::c .. =-... ~·-··-! ::c .. ··-111•111111••• . ·- ... ···--· ... f'l•e•e-1\0f\llltllt

• _., ·······---- -... ·--·-......... -· ·····------· • • . . . . . . . . . . . • . . . . . . . . . . . • . . . . . . . . . . . ... ••••••••••• _____ ., ............. • ••••••••••

N

I z ·-~-. ............ z •••••••••• z ··-----"'"'"' .. ............. .. •"'••••N•••• .. -~··---"'·-· ... · • 1: . . . . . . . . . . . 1: .:.:.;~;.:..:•••.: 1: ......... . . __ .,. ....... "' ...... e•N•lfl-"" •• ....

"' . ._. ......... ::~ ... ... :::=-=~=:;:: ... __ ,..,..,..."'.,.. . - ~ -

Page 165: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

21

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••:&aaaaaaa::z DESIGN OF RIPRAP GRADIENT CONTROL STRUCTURE

FOR A CONSTANT SPECIFIC ENERGY HEAD

SPECIAL DESIGN PREPARED BY THE DESIGN UNIT AT HYATTSVILLE• MO, FOR

DESIGN UNIT• ENGINEERING DIVISION• MYATTSVILLE• MARYLAND EXAMPLE DESIGN NO. l • • JANUARY 23• 1978

DIMENSIONS ANO PARANETERS UPSTREAM ANO DOWNSTREAM OF THE RIPRAP STRUCTURE

Q• 2750.00 CFS BS• 100.000 FT

H• 60182 FT OS• 60700 FT

ZS• J.OO FT/FT VS• J.•18 FT/SEC

AD~ITIONAL DESIGN PARAMETERS EITHER SPECIFIED OA OBTAINED BY DEFAULT

050. C50a

ll'S•

1.000 FT CS• 0.7000 •.oo LB/CU.FT. CN• o.0395 1.250 EXPN• o.1667

THETA• 35.0 DEGREES COlllYa 2.000

DIV• 40000

DIMENSIONS ANO PARANETERS ASSOCIATED WITH THE TRANSITION AT THE DOWNSTREAM END OF THE RIPRAP PRISMATIC CHANNEL

LENGTH RISE WIDTH z O!'PTM TAU VELOCITY FAIC SLOPE ll'T ll'T FT FT LB/SQ;FT. FT/SEC i:'T/FT

o.o o.o 100.00 3.oo 6.700 0.305 3·•11. a.20E-o• 11. 98 o.01os 94e0l 2.95 6.611 o.353 30622 9e32E•O• 23.95 0.0225 u.02 2.90 6.651 o.•11 3.153 lo07E•03 35.93 Oe0363 82.0l 2.15 '.t.619 o.•83 •·l 18 le2•E•03 •7.91 0.0525 76.05 2.10 6.571 o.57• •·•26 l.•6E•03 59.89 0.0111 70.06 2.75 6.525 o.691 •• 1119 l.75E•03 71.16 0.0951 6•.07 2.70 6.•57 0.1•1 5.226 2el4E•03 83.14 0.12•1 58.0I 2.65 6.365 1.061 So765 2.70£•03 95.82 Ool615 52.09 2.60 6.233 1.314 6.•61 3.s•E•03

107.80 0.2125 •6.10 2.ss 6.02• 1.111 7.•21 •• 98E•03 119.71 1).2919 •0.11 2.50 5.603 2.910 9.069 8.27E•03

OIMENSIONS AND PARAMETERS ASSOCIATED WITH TH! PRISMATIC CHANNEL OF THE RIPRAP STRUCTURE

D50U• 1.000 FT SN• 0.008215 SC• 0.015036 CTAUB • lo306 CSU• 0.5503 HN• 60112 ll'T HC• 60678 FT TAUBM• 2.910 LB/SQ.FT. ll'SU• 1.2s ON• 5.603 ll'T DC• •.746 ll'T TAUIA• J.200 LB/SQ.FT.

BU• •O.ll ll'T YN• 9.07 FPS N• 0.0395 CTAUS. 1.095 ZU• 2.50 RN• 4.31 FT IC• o.7621 TAU SM• 2.•31 LB/SQ.FT.

ICPS• 1.•9!•03 TAUSA• 2·•39 LI/SQ.FT.

DtM!NSIONS ANO PARAMETERS ASSOCIATED WITH TH! TRANSITION AT THE UPSTREAM ENO OF THE RIPRAP PRISMATIC CHANN(L

LENGTH ltlSE WIDTH z DEPTH TAU VELOCITY FRIC SLOPE ll'T '1 FT FT LI/SQ.FT. FT/SEC FT/FT

o.o o.o 40.ll 2.50 5.603 2.910 9.069 le27E•Ol 5.99 o.nt? ••• 10 2.55 6.H• 1.111 1.•21 •.HE•03

11.ta o.0652 52.09 2.60 6.233 1.374 6.•61 3.5•E•03 11.97 o.H39 s1.oa 2.65 6.365 1.061 s.765 2. 'POE•03 U.95 o.OH4 64e0T 2.10 6.457 0.141 50226 2.1•[•03 Z9.9• 0.1100 T0.06 2.15 6.525 0.691 •• 119 le'P5E•Ol 35.93 0.11•1 76.0S 2.10 6.STT o.574 •·•26 le46E•Ol •l.92 0.1211 az.03 2.15 6.611 o.•13 •·111 1.2•£•03 41.91 o.un Ho OZ 2.90 6.651 0.411 3.153 le07E•03 53.90 0.1401 94.0l 2.95 6.611 0.353 3o6Z2 9.32£•0• '9··· o.1459 100.00 :s.oo 6. TOO 0.305 3·•11 le20E•O•

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• TRANSITION CONVERSION LOSS£S

TH£ CONVERSION LOSS IN TW[ 00WNSTA£A• TRANSITION MAY IE AS MUCH as 0.15 FT

TH! CONVERSION LOSS IN TH£ UPSTREAM TAANSITION NAY 8£ AS MUCH AS 0.05 FT ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

Page 166: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

I

22

• • • • • • • =:::=~t==~==~ ............. .. . ........ .,._._ • ... ..

• ... -= ·* 111111111-.111111111111-.-.111 .. ~ N•••••"'•"'"'• • .., . . . . . . . . . . . . . . . . . . . . . . . .......... • .., .... .-. ........... ,_,,_,_ .... ----------- ... . .................... • I ... --- .. Ill ---• • l!j .. .. .. ... ... ... • • • ................... • • ·--......... ,,.,,. .. 5.i "' ................... . .,.. ... ...................

~= ::===:1i==oc== i:::~::~:=;j=::: "' ~"' ........... "'··-"'· ~"' "' c .... . . . . . . . . . . . c .... . . . . . . . . . . . C' ........... ... ·······----. ... .. -. .... -. ............. .. . .............. • .. .. .. "' c • .., .. I I I ! w ........................... ..................... N•Ao••"-••lfl•"" .,. .. ... "' .............. .,. .. ............. .,. .. . ................. .. .. ..... . . . . . . . . . . . ..... . . . . . . . . . . . ... .. . . . . . . . . . . . ~ 0 •Ao•• .. •"'•"'111• I ----------- I .. ._. .... .,. .......... .,. c • --- ---.. • ... . • .. .. ..

I • I'"- ................ ·~

.......................... ll ........ -....... "'."' g ... ................... ::::======= ................ ,._. ... • • cS .. ....... "' .......... ......... Ill•"'"'"' • . • . . . . . . . . . . . Ctll . . . . . . . . . . . c• ........... .. .., 1: . ...... . .............. .. .... NNNNNNNNNNN ...... .. ............

I .. • • • • = c• .. .. .. lo.I -'- • :lo .. E ..

.., .., .. ... • • z ••111-111••"'•"'"" ... ..................... ,_ .............. "'"'"' z .. c"' ... .. ............. fW ::::;;::::::: ..................... .., .. SN ;Ct ...................... ;Ct ;Ct . ..... ,,. ........ - c ................... ............................ ... ................. a .. ... .. .. • •••••••••• .. ••••••••••• .. • •••••••••• c z .... - • "''"' • •••••••••• ...... • •••••••••• .., ... ••••••••••• I .-c Ill • - . . . . . . . . . . . - . . . . . . . . . . . - . . . . . . . . . . .. .. =i .. . • ••••••••••• • ••••••••••• • ••••••••••• c -' N ... ... ... .. lloC c c .. .. ., • • • i

.. c I .. .. .. .. .. :lo •u ===•===•-:: •U • ..... !."':"'"'"'"' I •U ... ,,. .... ._. ......... "' - C I ~ I - -· -' -- -1 =~====:===~ • .. .. ...... ,,.."'.: ... I :;: ==·==== -I Z I • u - ¥ .... . . . . . . . . . . . ¥ .... . . . . . . . . . . . .. ¥ .... . . . . . . . . . ..

I Ill ..... ..................... .. .. ••••••••••• - .. .. ....................... - • I r I .., ... =· ! •• ... ... ; .. :lo .. • • lo.I ' Ill I;; I • .. ~ ~ • ~ = • . u ..

i·- - • = us ........... Ne - us ••••••••••• us ===~===:t=:~ Ill :lo I ... .... "'·-··-··· .. -- ••••••••••• • . .. .., .. - a • • .. .. ..... N"IWI•••"" ; .. .. ................................... c .... ..... 111,..N••"".: • 0 I

= •• . . . . . . . . . . . •• • •••••••••• • •• . . . . . . . . . . . .. .. :lo .. 'lffWN"'"'"'"'"'••• Ill ••••••••••• ...................... "' "' • I' ~ - ... u - u .. u a I f Ill

~ a -· Ill

' ... • • ..IZ ...... "'·:·· ... ,,.· .-z ••••••••••• ... . .,. ... ._. ............. "' . - • Ill• Ill a c .. ::::: ;;::: c• NNNNNNNNNtlltll Ii Ne•NN•••••• .. c w • .. .. IQ Ii ................................ ... N•Wllfl••""""•

"' .. 'I! ... • . . . . . . . . . . . . . . . . . . . . . . ........... c .., -1 ......... .,..,. .,..,. ....... .,.,,..,..,. .,..,. ......... • I I c • • • • .. • • .... c . I Ill .. z ................... z ==:!::::::: z . ................. - ·- .... ~=:::::=:=:: .. .. .... ::::::=;:::: c .. •Ill • ..... .. ... ............................. .. ... .. i• • . . . . . . . . . . . • . . . . . . . . . . . • . . . . . . . . . . . "' .. • ········••Ill "'"'"'"'"' .. "'"'"'"'"' ............. .., c "' ... z .., a .,,. . .,. ..... "' ..... - c !i :s:::::::::: ::::::::::: ' • • • .. 111 ............

~ ... . . . . . . . . . . . ... . . . . . . . . . . . ... . . . . . . . . . . . • lllC "' ........... -. .......... ...................... NNNlllNNtllNNN"I .. - :K: • lo.I ... .., Ill • ::::::::::: ••••••••••• :::::::::::: u a . -' -' "'"'"'"'"'"'"'"'"' .. "' -' c • ... . . . . . . . . . . . ... . . . . . . . . . . . ... . . . . . . . . . . . ! "'tlltllNtlllllNNNNN NNNNNtllNNNN'lf NNNNNN'lf'lf NN"I

• • "' • z ::::::!:::1 z ::::::::::: z ::::!:::::: ... .. .. • G• . . . . . . . . . . . a• . . . . . . . . . . . a• . . . . . . . . . . . .., -· :::;:::::::• -· ··======·==

.... ..... 111 ........... .. Ill • • • ................ ~ c ... -• u

• s•••••• ... N• 111•111•1:····· 11te•-•••N•• • ... . :::::~::: =- :::~.-·::: :ii .. •••lll•lllN• •• • . ,,. ........ : .. .,. ... .... _._. ........ • -· ·······---.. . ... .... ·····------• • . . . . . . . . . . . • . . . . . . . . . . . • . . . . . . . . . . . • ••••••••••• . .............. ,,. ... • ••••••••••• Ill • • I z

______ ........ s •••••••••• s ··-----"""""' . • ............. .. ............. .. . ..... ._. .... _ ......

• 1: . . . . . . . . . . . 1: . . . . . . . . . . . 1: . . . . . . . . . ... __ .,. ................ . ................ ••Netft•••••"' • .., •N"'lfl•""•••'ll .., "':.::=i::is: .., __ ,.._.,..."'"'·· ... --- .. -' • • • • •

Page 167: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

• • • • • • I I

tll

i i ... Ill

8 • ... I u ... ~ ; c I .. c • .. -• I .. Ill

"' tll Ill • ... tll .., > -... u c

= ! tit ... --I

. I . ~ 1: = ~~ > ... tll •• ... .... • SN c .. z ... c ... i I

... .... -· ;1 .,., ... ... C I .. Z I - . ' ; 1.

1;; I r•; I ... -DI .. • 0

I c .. r "' -Ill .. ; c

~ -u

I' -· • ..,_ w • -1 I "'I ·­..... -1 I ... !I tllC 1: ; .s

! "' • .., ... c •

tll -tll .. ~ • c

r ... ! D lie ~

tll • ... ... • c • c ..

"' "' ... : I • . =: • c ... w ... • • • ... • • . • • 5

• • . N

• i u

• • . • • > -D

... .. • • . • • I

! • • • • • • .. " • • • • • • .. • •

I -... -.. I • ... I • ... tll

I z

tll ... tltD ...

tll

I ...... ..... 0 •

.~ .s ....... • -.... ~!:: ... "'""' .. • ..

-c UZ .... ..... •• "

z ...... .... I

• ...

z .... .... -· • ... -· • ! It ... -

•"'"'"'"'•"'·"'•"' ... ""···-··-.. . . . . . . . . . . . :::•-•tft• ..... -

•-"'· •N•t11••N ~x:=~:=~:::i: . . . . . . . . . . . ········---!:.:i:;::::.c: . . . . . . . . . . . •11t-•e•lfl•11tN­---:·=====i!.:: .. : ..... .,, ........... . . . . . . . . . . . ········---..................... ..................... ·-••Nt1t••N•• •••-•-•N .... ,.., • •••••••••• ••••••••••• . . . . . . . . . . . • ••••••••••

e11tNt1te••--•• ::::::==:::: . . . . . . . . . . . ............... ,,, ... :::::!~::;=== t11••••N•••-t11 . . . . . . . . . . . NNNNPlllt"'PI"'••

. .................. .. :::=~~====: . . . . . . . . . . . ............ :s::::::::: . . . . . . . . . . . ....................... :::::::::::: . . . . . . . . . . . ....................... ::::::!:::: -~.:.:;:·.:.:•~· ....... ....... -=·-·····-· • :::;:::.:!!::: ·······--·­. . . . . . . . . . . ••••••••••• . :;::;::::::: . . . . . . . . . . . •!:::=:::::::= ---

i z "" "" -i -• ..

... • Is ..... .... .. I

"'"" ... I

I~ .: ... ....

... • ~ . ...

;It ... ~· • ...

i uz . ... . .. -1 8

z ... ... .... I

z ... . .. -· •

z ... 1: ... ~

"'"' "'"'"' ''"''"' "'"'"' ~"""'"'"'fl'tfl'tfl'tflttlllfll . . . . . . . . . . . -----------................................. .............. NNNNNNNNftlllOlll . ......... . NNNlllNlllNNNNN

••••••••••• ••••••••••• . . . . . . . . . . . .. _________ _

··--------­• •••••••••• ................................. . . . . . . . . . . . NNNNNNNNNNN

•"-"'••••• .. . ... ......... . ••••••••••• ................................ • •••••••••• • •••••••••• . . . . . . . . . . . • ••••••••••

•-•NNNNNNNN ::::::::::: . . . . . . . . . . . •••••••••••

=========== tll lfl tll tll lfl "'tll tll "'"'"' . . . . . . . . . . . ••••••••••• ••••••••••• ••••••••••• ••••••••••• . . . . . . . . . . . "'"' "'"'"' tll lfl"' "'tll tll

-·········· ••••••••••• • •••••••••• . . . . . . . . . . . lfllfltlltlllfllfl"'"'"'"'"'

••••••••••• "'"'"'"'"'"'"'"'"'"'"' . . . . . . . . . . . •NNNNNNNNNN

••••••••••• ... "'"'"'"'"'"'"'"'"' . . . . . . . . . . . ______ .. ___ _

••••••••••• ••••••••••• =========.c= ::::=:!:::: .::::::=::::: . . . . . . . . . . .

• ....... Pt ... •llllfl •••••••••• •t11••••N•••• . . . . . . . . . . . ............... -... :.;:=-=~=:=

I -... -"' I • ... I "' • ... "'

'

"' 111:!1: ... .. "' ... ... s • .,. .

~Ill . .... .... .. g ,,. ... ... ... 0 •

"' . ... ;I!:: ... ~· • ..

z ...... .. .. g

• ...

-... z ... D• -... •

"' .,. ... -· • z ... 1: "' ~

23

• . • . • . . "'"'"'·-·· ···-. ............... ,... ...... ............ -"'"'•"' .......... "' . --- · " • . . .................... • ........ 11it•-••ll'- .. "" ...... "'."'"""'"'. . .......... . ... ............ . . . ,, . •llft,..•,.••••flilo • ................ "' ........

••••••••••• w ..._. .... "' ••• ::!:

-···-······ .."' ... .., ..... . ... .......... ., .. •"'"'"' . ......... . ,.. ........... . . ........ "'"' .......... . . .................. "' .. ••N••lflN••""-co ,.. •"'ftl••--••o • •••••••••• ••••••••••• . ......... . • ••••••••••

NN•N11t••"'•• • :;:=;:::::: ........... .... ·-···"'"'"'"' •11t1•-••ftit•"'ll'I .. .n••"'--ll'l•-111• .n-•••f'il•• ..... 11\ . ......... . ...... ,..,..,..,..ftitf\tftitl\t

···-···· .... ·· ::::~:::=::: . ......... . ,,.,,,,,. ....... .

. .

. . ."'.-"' ....... . ................... _ ..... . ... _ ............ . -·········· ."'.,,, .... ,,..,,.. . "',,. ............ . ........... NNNNtllNNNlllN"'

.,,,."" .... ,,..,,.. "'"" ............ . . . . . . . . . . . . llONNllONNllONllllll"'

••••••••••• ..-. .............. . ........... ..... _,. .... _ ........ ................ ..... "' ....... . ··-"'·"'"' .. . ....... _"'"'"'"' ·····------. ......... .

••••••••••• ________ ,.., .... ._.. . ..... """'·-· .... . . ......... . . . .-..-......... ""' --"""'"'•"'-"•

Page 168: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

• I I • • I

Ill ·-··-· ....... "' Ill "' ... ..,_ ....... "' ........ .,._ .. .,..,.. Ill

Ill. ...... ,., .. _ ... .,..

Ill. •lllllllfltlllfl••••• 111:!: •"'"'"' .... "-'•••"'• ... . . . . . . . . . . . . . . . . . . . . . . ........... ... ·- .................. - ·- ----------- ·- _"' .... "' ... ••f'illf'• I "' ---- Ill "' ...

0 - - -... ;j ... • Ii .................. .. ................. ._. 2 • flit••-- .... .-. ••• . ::::::;=:::: :::=::::::: lllG ••f'W•tl't•••"'-· "' ~"' ........ "'."'"'ftlftl• ... ., . . . . . . . . . . . ., . . . . . . . . . . . c ... . .......... -· ·········-- -· .............................. -· "'-········· • ~ ~ ~

Ill c

I - I I I I ................... ;:::::::::: ·-···-"'·-·"' ·- ....... _"'-··· ... ..... . ............. ... .. .. ...... . . . . . . . . . . . ... ... . . . . . . . . . . . ... ... . .......... ! : •••111•••111 ...... - 0 ----------- I _ ................... ---- • ----I - • .. • • .. • - • I •

·~ ..... ..,_ ......... 1-: ::1:::u:1u1:a:a 1~

.,., .................... i ... .......... _ ... .,., . "'"'•"'•-fllilW"•··-. • NNN ........... 111 ............. •lfl•••"'•"'lllllollo• . • Clll . . . . . . . . . . . cl . . . . . . . . . . . .: . ........... .. .. !E . ... , .............. ..., NNlllNNlllNNllllllN ... , ._. ............. I ~ • • • • • ~ ~ ~ ~ • "' - ~- • • .. ,.. s .. 1 .. i .. • .. "' • • I ..................... =·:::1:=·-=·· ::=~==::::;: • - .... ... ................. .. .. SN ;ft ...... _ ...... =-: ;ft .~ ......... :: ;f ~ ••N•e"'111e• ... •I - • ····---... . ................................... ... .-. ..... ---···. t ,.. . ,.. .. • •••••••••• .. • •••••••••• ... • ••••••••••• • .... - • ..,, . ••••••••••• u• ••••••••••• ..,, ... ••••••••••• I jC .. • - . . . . . . . . . . . - . . . . . . . . . . . - ........... .. :I

,.. . • • •••••••••• • • •••••••••• • ••••••••••• I c

i .. ... ... ... • c • I

f - .. I ,.. ,.. .. .. ! .. I •u ........... -.. , •U :·:===~=::: !

.. ..,, ••-011N•011••011"' - CI • - -· ~ -· -= ,..,_, ____ ·---··· • ,.. .. =::::::::x ... I ....=·-------- _ ...... .,._ . .,.,.. .. I Z I • "' - ¥, . . . . . . . . . . . ¥, . . . . . . . . . . . • ¥ ... . . . . . . . . . . .

I I ~- ..... Pi ...... •->•111• ... -- ... ............ - ~- .......... "'"'"'"'"' - •I I =· ! ...... I ~· ... : 1 • .. .. • • c Ill 0 1:; I • ..

~ ~ • ~ • • • "' • c r•- - • I us :•:N~lll===:; - ..,,. ----------- yz .. _ ......... .,."'ftl••• Ill .. I -· .. 11:.: ... a ........ .. -- ••••••••••• • -- ........... •-••t1t• I .. - a • I ... ! =i • •••••••••• c .. . ..... Ne• ... tlt•fllllftiil

GI • •• . . . . . . . . . . . • • • • • • • • • • • r ;1 ........... • .. .. .. .... 111 ................... • •••••••••• ............. 111111111111111111

"' • I' :t - Ill "' - 8 ... "' a I f Ill .., a -· Ill

' • r • • Ii ··-==·"'···1 ~! !li!l!!f !f I ~· ... -. ...... -.. - ..,_ ... : :: ...... :=:;:: .... : ...... fW .... fWll'••• .. c • • .. • Ii I* -................... "' • • ... • . . . . . . . . . . . . . . . . . . . . . ........... c i -1 . .................... ••••••••••• •111111,,.111111 "'"'"'"'. • I· c • • • - • • .... • . ! "' • - • .... ; ... ··-=i·· • .......... ·:·· z ..... .,. .. ,,. .......... - ·- .... :: :::; .... :: -- :::;:ss: ss ..... "'-·· .... ~··"'·· . Ill •Ill • •• •• . ... ..... Ill .......... ,.. -· I . . . . . . . . . . . I . . . . . . . . . . .

* . . . . . . . . . . .

• .. ~ I • •lflllllfllfllflllllfllflllllfl 111111•••······ •llllllOll"'lll"'"'"'"'"' ... s ~ s 1"' :r:s:::::s: - ::::::::::: ::::$:~:::r: 1· ;;f • • • ~ ... • • • • • • • • • • • ... . . . . . . . . . . . ... . .......... "' Pl .................... .... 111 .. lllllllllllllllllt .. lllfllNflltlolllfllflllllN"' - •: • "' ... ... I • :s:s:::::s: ::::::::::: •"'•lll•Oll•"'•"'•

"' • ~ G ~ 111111 ............. c • ... • • • • • • • • • • • . . . . . . . . . . . ... . . . . . . . . . . . I

............. lltlltlllllllll ....................... fllfllfllfllfllllllllfllfllfll"' • a • ::::t:::s:1 • 1:1:::::::1 z ::::::::::: .. .. ..

• ... • • • • • • • • • • • . .. • • • • • • • • • • • 0 ... . . . . . . . . . . . .., ;• ::::::::::• -· •••••=••iuta -· ="'·--··--"'· .. • • • ..,,. ......... c • -• u • • s•:;::::"":: 1···=·1·:· ..... 111. ••Ill•. • ... •=Pi•:·-=· ... . .. ::a.- ~ ! :ii .. =:•==~~t~= • ··-·-... =··· • ;• ..... . ...... -· -· ·····------• • • • • • • • • • • • • • • • • • • • • • • • • . . . . . . . . . . .

• ••••••••••• ••-•llllllP!Pi•lfl• ••••••••••• .. • • .::;::::::: • •••••••••• z ··-----"'""'""' .. .. ·-····-···· ... •"'••Niii•-• .. e • 1:: • • • • • • • • • • • 1: • • • • • • • • • • • 1:: . . . . . . . . . . .

......... _.111 ...... __ ...... = ... =··- ...................... .. _ ............. -- ... ·~;: ~.::: ... .............. .,."'. - --- - ~

Page 169: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

• • • • •

Ill

i i .. Ill

• .. I I.I .. • Ill

i I .. c • .. -• I ... Ill

Ill Ill • .. Ill

I Ill Ill ~ -I Ill I.I c ... ! • Ill .. :

i . Ill

:I -» Ill .. .. c .. z .. c .. i I

... ~t

i~ .. .. c .. z

• •I

; 1 • 1;, .... ;, .. -01 .. •

0

! .. ~ .. Ill -Ill .. I ~ -I.I Ill .. ..

I' •I • Ill• w • ii .... ·­.... ii

Ill

!~ tltC

1:

.. -Ill .. ~ c I

• •

• -0 Ill ~

Ill • ... .. w c • c ..

• . =: • c .. w .. • • • ... • • . • • a Ill

• • . .. • » I I.I

• • . • • » -0

.. ... =: • • • = • -• • • • • • • ... I.I

• • . • : "' • •

I -.. -i • .. 5 • i

;, I

.. •I.I

~-o ... ~-~ ... ~ I.IS ... .... ;1 I.I

z .... ..... I

• ...

z .. ... ; ... . .. . ... • z .. 1: ... ~

- ,.- j

::=;:::::x:=: . . . . . . . . . . . _ ........ .,. ....... _ ---...... ,_.. ...... . .. ,,._ ........ ,,.. .......... ,,. ....... .. . . . . . . . . . . . ········---Ne•fllil._. .... ._. .... ........ _ .. .,..,.. . . . . . . . . . . . ••111 ..... ,,. .... .,_ ----!!••·"'~·"'·"'"' ;;;c:::;.::::: . . . . . . . . . . . ·······---"" .,,..,,. .......... ,,. . ,,. ••••• ,,. ... 111. ..... _ ........ .. ______ ,_, ...... . ••••••••••• • •••••••••• . . . . . . . . . . . • ••••••••••

:::~:::::::: 111•••---••lflNlll• . . . . . . . . . . . ....................... ::::===~=== ......... ,,. ...... "' . . . . . . . . . . . . lllNl'll'll'll'll'll'I•••

::::::••;::.: . .... :: ......... ........... .................. • ::"'t:=:===~ •• s ...... "' .... . . . . . . . . . . . ............. :s:::f :::s: . . . . . . . . . . . "'"' ................ .. :s::::::::: . . . . . . . . . . . ........... -.... -.... ::::::!:::: . . . . . . . . . . . :::::::::::• -,,. ........... .. . ..... ,,. .. ,,. .. . ............... ·······---­. . . . . . . . . . . ••••••••••• _____ .......... ··-····-··· . . . . . . . . . . . __ .,. ...... ,,. ..... . ...... "' ...... ----

i I.I

I.I -i -f

Ill ... ·­Ill

I ... ... 0 •

~ I.IS -· .. .. -1 e

z .... .. ... I

z .. . .. .... • 111 .. .... •

......................... •lflllllfllflllllll"'"'"'"' . ......... . ------------·-··-····· ............. "'"'"'········ . . . . . . . . . . . N'lllllNNllllllNNllllll

..,,. ......... . ••••••••••• . . . . . . . . . . . -----------................. ==::;;;;::: . . . . . . . . . . . l'll'IN'llNNllllllNNN

:.~i::.:i:O::i:i: ............ ............................ • •••••••••• • •••••••••• . . . . . . . . . . . •••••••••••

·-----··----··-·· ................. . . ............................ .. . . . . . . . . . . . •••••••••••

.............................. ~ :.:.:.:.::.::.:.:.:. . . . . . . . . . . . •••••••••••

=======:==== • •••••••••• . . . . . . . . . . . • •••••••••• •••••N"'•••• =·=··====== . . . . . . . . . . . .. .......... . ••••••••••• "'"'"'"'"'"'"'"'"'"'"' . . . . . . . . . . . N'llNNNNNNNNN

• •••••••••• "'"'"'"'"'"'"'"'"'"'"' . . . . . . . . . . . NNlllNNNNNNNN

::::::::::: ===:t======:t

=====i=:.t:: • s:;::ts::::: . . . . . . . . . . . ··---......... ,,. . •••••••••• ............. . . . . . . . . . . . ••'11 .......... N .... _ . .,. ..... .. ___ ..... ,,. ...

! .. -"' I • .. I ... • .. "'

'

Ill

"'~ ·­"' .. .. • • .,. . :i Ill c .... ...

-'

I ,,. .. .... 0 •

~z C• . .. I* z .. .. .. ... I

• ...

~ ...

::c ... -· • z .. 1: "' J

25

... ........... ·-· .,. ......... .,. ..... .... . ......... . ......... .,. ... -..

. ...... .,. ............. . ·-... ·-·····"' •• - ............ ftilftl . ......... . N--eeeeeeee

____ .,. ......... . ........... .,. .. . ......... . _ ....... .,. ......... ... ----• ... -•-tw••-.-. ·-····· ... ··· ........ "'."'"'f'lll . ......... . N---•eeeeee

"'.,,.,,, ........ .,. •••Ne- ... .-. .... ... . ..... "' ..... _ .. .... ... ....... ______ _ • ••••••••••

• • • . • •

• ••••••••••• . ......... . • ••••••••••• .............. "' . .... "' ............ __ ..... ,,..,,.111 ... ... . . . . . . . . . . . .... ,,. ......... ~ ... ....,. .... -...... . . .,. ... .,. __ ,.. ........ . ..,. ............. _ .. ... ........... ........................ ._.

,,. ............ ~. ... ........... _. .... .,. ........ _ . ........... . ............... . • .............. .,.._"' N--•"'•••-•• . .......... . . . . . . . . . . . . . ........... ..

.,,..,,..,,..,,. . .,. . ,,.,,. ........... . . ......... . N'lllllNNllllllllllllN~ .,,..,,..,,..,,..,,.. "'"' .......... . . . . . . . . . . . . lllNlll'lllllNlllllllll"'"'

••••••••••• .... "' ............ . . . . . . . . . . . . ................. ,..,.\ ..... ,,. ......... ' ~ •• ,,.. ••111• •

=:•==~==~= ·····------. ......... . • •••••••••• ··-----"'"'"' ._. •• N.,.•-•,..• . ......... . ...... .,. ........ ... .. ............ .,,_,...

Page 170: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

21

• • • • • .. ... N•••lllN•l't• .. ::::::::::: .. :::::::::::::: .. •• .............. "' .. ..1 .. . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... ·- _ ................. ·- -·········· ·- .......... 111•••-s .. .. .. I .. .. ...

• • ... • • • .................. • • ............ 111•••• s • ::~:=:;:::.: . ;: =i:==•====:~ !:S ======::;:;:;:; !:S Ill ... ............. __ ... c' . . . . . . . . . . . c' . . . . . . . . . . . C' . . . . . . . . . . . ... ............... .... ----........ "' .... ... ---········ I ~ ~ ~ .. c • ... ... I .. ! I I w ::::~::1:::: ............ :::::;:::;::; , .... -·········· ..... .. ... .... . . . . . . . . . . . ..... . . . . . . . . . . . . ... . . . . . . . . . . . • ~ • ..................... • ----------- : ................. _ • -- • ... • .,. . • ... ... ...

I • . ... .......... ! •"'"':• .... ~::==~·==== 1-: =:::::::~::::• I ... • cl c:=:: ::;;.:: cl ... ........... cl ................. x: . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... ... I:! • ... , ········--- ..., "' .................... ...... ... ............ I ~ • • • •

= •• ~ ~ ~

"' ~- • .. .. I .. ... I .. ... .. 5..t I U"'••111111 ....... ... ....... "' ...... ::::::~=:::• z ... ............... ... .. s .. ;Ct ... :::!::::::: ;Ct . ............ ;Ct . .............. : - c ..................... ................................ ... ................. D .. . .. .. ... ••••••••••• ... ••••••••••• .. • ••••••••••• c z .... - • u• ••••••••••• ~· ••••••••••• U• ••••••••••• I ~I

.. • - . . . . . . . . . . . . . . . . . . . . . . ; . . . . . . . . . . . .. .. • • • •••••••••• • • •••••••••• • •••••••••• c

! Ill • ... • ~ .. .. ., • • ~ i

... I .. .. .. ... i •U ::::-:!::=·= •U ic··:······· I •U

~=-======== CI • - -· ...... : ...... ~- ~ -· -== ======= -· • .. .. ¥ ... I ¥ ... - ¥ ... ................ "' I Z I • " - . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . .

I I ~-..................... ~- ••••••••••• - ~-

.................... - • I w ,. I r• I , ... ... ; .. c • .. • • u • .. 1;, • ... ~ ~ • ~s • • z . :s=:=====·r u .. I w•- - • 5 us - "s ................................. . ................. • .. .. I . .. .. ..... ::::::::::: I ... ::::::;:::::: • I .. - 0 I • .... .............. "'"'' I .. .. .... I •• i •• • • • • • • • • • • • ;1 . . . . . . . . . . . I -1 . . . . . . . . . . . • .. .. .. .. .......................... • •••••••••• ···~"'"'"'"'"'"'"' • .. • I' - i " - u .. B :~ ~· • D f .. • ~ • •• I ..

' • I • • Ii .......... £ __

Ii ----------- Ii --:-:"' ......... • - ..,_ ... ....... N•• •Ill "'"'"'"'"'"'"'"'"'"'"' ·- " ---·-· .. c • • .. .. .............. .... .................................. ...111 ............ " .. " • • . . . . . . . . . . . . . . . . . . . . . ........... c ... ii ••••••••••• . ............ ···········: • f = Ill • ... ... .... c . I .. .. • z ::"'~=·=·:::

z --···-·---- z --·-··"'"'"'--- ·- .... ... .. : : =: :: r::::: .. .. :::::::::::= .. .... I ... •• s •• = .. s ...... ... .. . .. -1 • . . . . . . . . . . . • . . . . . . . . . . . I . . . . . . . . . . . .. ~ • ............. ••••••••••• • •••••••••• .. I g =

z I ., :s:s:::sss: ::::::::::: :s:s:::::s: c

* :; ( • • • ~ ... . . . . . . . . . . . ... . . . . . . . . . . . ... . . . . . . . . . . .

f ... ....................... .................... "' ........ "' ............. - 1: ... " ... ::::::::::: .. 5 • :::::::ss:: ::::::::::: " • d d ~

c • • • • • • • • • • • • . . . . . . . . . . . ... . . . . . . . . . . . i

....................... ...................... "' ........ "' .. "' ....... • • • .. • s :::1::!:::1 z :1:1:1:1111 z 1:::!::::::: .. .. ... • ... • • • • • • • • • • • D• . . . . . . . . . . . D• ............ ... -· :::;::::::a -· aaaaaaaaaaa -· . ................. .. .. • • • ............. c • - -· • u • • • s:-·s•• ........ ····=·:··· ...............

• ... .... ...... . .. ::::~.- ::1 ... =::sa~==~== • . :.::::::::; • ........ 1 ••• • -· -· -· ·····------· Ill • . . . . . . . . . . . • . . . . . . . . . . . • . . . . . . . . . . . ... ••••••••••• .................. • •••••••••• .. • s .:::::::::: s •••••••••• z ··------.... • I • .. .. . ............ ... . ..... "',,, ....... I • 1: . . . . . . . . . . . 1: . . . . . . . . . . . 1: . . . . . . . . . . . • -~==:::::::

........ , ........ . ................ • ... ... "":.;: :::s: ... ••llll'tl't•llllll• I ~ --- ~ ~

• • • I

Page 171: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

I

.. ................... .. ... ..... ·------ .. _ ....... .,. .......... .. •• ............. "' ..... •• .. .... .., .............. •• N•lll•fllflllll•N•• ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... ·- ................... ·- ----------- ·- .. .................. I Ill -- " " ... a .. .. .. • .1o; • • I • :!·~!::"'•c: ===·=:::::;;;;;; l:i ••111 ........... . !:I ::::::::=== =

:::iS _ ... i.wi .... :ie .... •"'"':"'"'"'"'"'"' .. c ... . . . . . . . . . . . c ... . . . . . . . . . . . c ... . . . . . . . . . . . ... ········--- ... N ...... N .. N .. N .... .. . .............. • ... ... -• c

I .. I I I • ::=s:::::sx: =·-...................... :=::::::::=:! ,,. .. .. .. ............................. .. .. • .. .. . .. . . . . . . . . . . . ... . . . . . . . . . . . . .. . . . . . . . . . . . i 0 N ................ I ----------- I ---"'·"'···-"' • -- --.. • " . • .. .. ..

I • . ... ........ !•"'·"' 1a :::~:;:::::: I"; ................... • ... ! . i:iltt~=:~ .::: ••N•••••-lfte • cl ............. c: ............. ~ ... . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ... 1: . .., ·······--- ... -~ ... .............................. ..... .. .............

I ... • • • ~ c• ... ... ... u .... • • ,. s .. s .. s .. ... .. • • I :::;;:::~:cs • ...... ;!·""·"' :i:i::s:::::;: • .. u: ::;:: ::=: ... .. ;Ct ... .................... ;Ct •t . ·=·· ... -··-- c

··------~--............................ ... .... ----··· I ,. . ,. Ill ... ••••••••••• .. ••••••••••• .. • •••••••••• z !:II - • ui.. ••••••••••• ui.. ••••••••••• ui.. • •••••••••• I • • - . . . . . . . . . . . - . . . . . . . . . . . - . . . . . . . . . . . ..

ii ,. • • ••••••••••• • ••••••••••• • • ••••••••••• c ~ .. ... ... • ' .. = • f - .. I

,. ,. ,. I .. I •U '""""'"" .. "'=·-=- .. .., --'":•N••s·· I .. .., ................. - CI

~ - -· ... -· -· Ne•""•N••••• • ,. .. ::::::.:= : I :::.:::: == - ·--···-··"'-I Z I u - ¥ ... . . . . . . . . . . . ¥ ... . . . . . . . . . . . .. ¥ ... . . . . . . . . . . .

I I ..... .............. "'.,. ..... ..... ••••••••••• - ... .. .... "' ............... • - •I I ir• .... I Ir ... ... ; .. .. • • u • 1;. • .. ~ ~ • ... • z • u .. c w·- - • I uz ::====::·=="' - uz ................................ uz ... ................ • • I ... .. ... :::.:.:::.::.::. I . .. :s:::;:::::: • .. - Cll • r .... ........... S111wil. ! .. .. .... Cll I i ;1 . . . . . . . . . . . iii . . . . . . . . . . . • -1 . . . . . . . . . . . .. ,. • .. N ....................... ••••••••••• .........................

" • I I - I " - u .. ~ 0 I • ~ 0 -· : ' I • ..is ..............

Ii ••••••••••• ~! •••lll•••lfleNe - .... ... c• : :::·::i::a: ••••••••••• ==::::::~~= .. w • ... .. Ii ----------- Ii u .. • ... • . . . . . . . . . . . . . . . . . . . . . ........... c r ii .................. • •••••••••• . ................... • c • • • .. I • .... • -s:·::s:::::: ! • .. - z • .......... ,! ... _ z z . ................ - ·- ..... ::s=:::. :cs .. .. '····------ .... .................

Ill ... • ... .. ... ..... -··--······-,. i• I . . . . . . . . . . . I . . . . . . . . . . . I . . . . . . . . . . .

Ill ! • ............ • •••••••••• .................. ... g ... ... - !f :s:s::::::: ::::::::::: :::::::=:::: I = • • ~

. . . . . . . . . . . ... • • • • • • • • • • • ... . . . . . . . . . . . • ....................... N .................... .. .......... N .. NNfll - 1: .. • u • g ' • :s::::::::: ::::::::::: ::::::::::: • d d ... • • • • • • • • • • • • • • • • • • • • • • • ... . . . . . . . . . . .

' ....................... .. .................... .. ............ NNNfll • • z ::::::::111 z ,,,,,,,:1:1 z ::::::::::: .. .. .. • ... • • • • • • • • • • • o~ • • • • • • • • • • • o .. . . . . . . . . . . . ... ;• :::;:s::::a ;• aaauutaaaaa -· •fll•t11Ne ........ .. .. • ..... "' ........

c ti -• • s:::::::::: 1·"'·:·:.··· "'••t11•••N•• • ... . .. ... .. , - ""=! . .. =:•s=~==~= • • ........ -111 ... • . ... ·······---- -· ..:: .. :1:: • -· ·····------· I! • • • • • • • • • • • • • • • • • • • • • • • • • . . . . . . . . . . . ••••••••••• . .............. .,.. • •••••••••• .. • I ................. I .:::::::::: z ............... "" ... e•N••··-··· ~ •"'••a.111•-• .. e • 1: . . . . . . . . . . . 1: • • • • • • • • • • • 1: . . . . . . . . . . . •::::;;::::::: • ...... !!""=··- ·•-•wi- ... ···~ .. .. ~:; ~.:;;: ... ___ ........ "'.

~ --- ~ ...

Page 172: WATER RESOURCES PUBLICATIONS P. o. · water resources public a tio ns p.o. box 2841 littleton, colorado 80161-2841 u.s.a. hydraulic design of riprap gradient control structu-res

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ••• • • ••••••••••••••••••••••••••••••••••••••••••••••••••• WllfR Sutl,AC[ 'RCWIL[S AND lRACflV[ SfltfSSl!S '°" Nl,Rl' 8RADl[Nf CDNlROL. SfltUCfUltfS I

S'[CIAL ANALYSIS ,.f,AR[D •Y flC DfSl8N UNlf Af HYAffSVILL[o ND.

'°" 0[Sl8N ... ,,, [N811tf[RI ... DIVISICNlo HYAffSVILLfo NA•YLAND (IANPLf DESI ... llOo I - - • • • • • • • JANUARY ZJo 1911

'ARAMff[RS USED IN flC W5' ANALYSIS

I • 1191.H C'S ...... JSI DH • I.II n DIV • •••• CONW • Zoll Sii ••••• ,. •• fltffA • JS.I DfGR[(S

DOWltlfRUll fRANSlflM

UNHH RISI •llfH IL IR Dl"H NOllMAL CRlflCAL VfLOClfY 'RIC SLOPI! UU811 n UUSll '5

" " " " Df'fH DI!''" n1uc "'" L.,H.n •orr0111 L•1s1.n SINS

••• ••• ...... , ... , ... , .... • ••••• 1.r .. ,_,., l.HISH lo HI ••• JS •·I•• u.s. Holl .... " H.11 I.ff 1.n '·'" ..... z.e9t , .... lolHHl lolSJ "·" .. ,,. as.n

"·" .. ., .. . , ... 1 ••• 1 ... ••••• ... ,, ,_.,, J .... . ... .,,. ··"' u ••• 1.111 U.H 11.11 1.HH 11.1• 1.ts 1.11 .... , .... , JolH J.tu ........ 1.na ..... I.HI ..... 11 •• 1 ...... Heft 1.11 1.11 •• 111 •·••I JoJJI •·n• ...... u •·•I• t.SI .. , .. • ••• 6Joll •• 1611 ..... 1.rs 1.19 .... , •• 111 Jolll •·•I• ..... ,,. . .... '··· ••• JI ,_,. 11.11 1.HH 6lolt 1.11 1.11 •• HI .. ,.. Jo JU 1.111 ..... , .. •·HI •• JJ .. ,,. • ••• 11.1J 1.llH ss.•• 1.11 lo61 .... , ..... J.H. 1.•1• ........ • ••• J •••• ..... . .. , ..... , 1.1111 ••• 11 •••• 1 ••• lo HJ •••• 1 .. ,,. .. ,.. 1.11ntr ..... J.11 ••••• , ... . ., ... .... ., .,., . 1.11 1.11 '·"· 1.rr. •• 111 ,_,., • ... u .. . .. ., 1.1• 1.1u 1 •• ,

12•··· 1.1111 ,. ... 1.11 1.11 I.HI 1.11• .... , •• 111 . .... ,. . loUI •••• 1.IJJ 1.11

.- NISMAflC CtW91rL

LHlfH •IH •IOfH IL za .,." lllOHAL talflCAL WILOClfY 'RIC SLOf'f fAU911 n UUSll ,. " " " " DI!"" .,," n1Sl!C '"" L•1s1.n ""°" LllSl.n SIDU

••• 1.1 ,. ... 1.11 1.11 .. ,.. 1.sn .... , '·"' . ... ., .. 1.•JI 1.11 1.1Jr 1.11 11.11 1.1ses ,. ... 1.11 1.11 1.611 1.11• .... , ..... ... .,,. . I.HI 1.s• 1.111 •••• .. , ... 1.1111 ,. ... 1.11 1.11· s.ss• lolH .... , t.111 '·""" 1 .... •••• 1.1.1 1.J •

IUoH .... ss ,. ... l.H '·" 1.sM 1.sz• .... , '·"· 1.11nn 1.111 •••• 1.111 1.J •

H•·•I 1.1141 ,. ... 1.11 1.11 1.11• 1.111 .... J '·"' .... ,.,, 1.11• ... , 1.11• 1.J. ,., ... 1.HH ,. ... 1.11 1.11 1.111 1.111 .... , '·'" l.llrtJt 1.111 1.•r 1.111 1.J• .,,.,. J.HH , .... 1.11 1.11 1.11• 1.11• .... , '·'" .... ,.., 1.111 ···' 1.111 t .J. ..... I , ..... ,. ... 1.11 I.St 1.11• 1.111 .... J '·"' .... ,. .. 1.114 1 •• , 1.111 1.J•

1••·•1 .... ,. ,. ... l.H 1.11 1.11• 1.11, .... J '·"' .... ,. .. 1.11 • ... , 1.111 1.H

•••••• 1.111• ,. ... 1.11 1.11 1.11• 1.111 •••• J '·'" .... ,. .. 1.rH l.•r 1.111 1.H

111.11 1 .... , .... 1.11 1.11 1.11• 1.sz1 .... , '·'" ... ., ... 1.rz• l.•r 1.111 1.J•

UHfMAll fHNSlfl•

LUlfH RISI WIDfH IL za HPfM ..... RAL CRlllCAL VfLOClfY ,. IC SL Of'I! UUlll n UUSll n ,, " " " Di!"" H"H ""(C ""' L•1S1.n IOUOll L.,H.ff SIDES

••• ••• ,. ... 1.11 1.11 s.11• s.111 .... , t.HI .... ,. .. '·'" 1.u 1.111 1.J4

. .. ,. .. .,., •J.11 1.ss z.ss .... , 1.n• •• 111 r.•H t.H•IS1 1.1•1 z.sa 1., •• z.H ., ... •••••• ••••• '·'' 1 ••• •• J .. ••••• •• ZJI ••••• .... ,. .. . . .,. >.s• l.9SJ 1.11 ..... ...... ss.•• 1.65 '·'' ••••• •· ••> >.•s• ••••• l.HHH ••••• •••• 1.11. ..,, Holl I.IMS 61.H 1.11 '·" •• 111 •·I•> J.111 1.111 ...... ,, '·'" s.•• '·'" '·'' JloSI ...... ••••• '·" '·" ••• sl .. ,.. J.SI I .. "' l.HIJJ1 ..... 1.l• •••• J •••• ,, ... ...... "·'· 1.11 1.11 .. ,.. .... , J.lJI •·JI• ••• lllH ••••• •••• t.Jll •••• ..... '·"" ••••• 1.11 I.IS .. , .. ... ., J • ., • ••••• ...... JI t.Jrl 11.11 .. ,,. ...,. .... , 1.11•1 ••••• 1 ••• 1.•1 '·"· .... , 1.11r J. ,.. 1.1111•• .. , .. u. rs 1.111 11.u

, .. ,, 1.ll•• 9)." 1.•s 1.n ••• is .. , .. , .... 1.sn ........ .. , .. .... , 1.111 ... ,. 6).tl 1.1>•• 1••··· J.tl , ... •• 11• •••••• l. , •• J.l•• 1.11161) 1.111 1 r •JI 1.211 .... ,

······························································································~······························