warsawuniversity of technologymyinventions.pl/dydaktykasimr/tmac_17-18-lecture_14_notes.pdf ·...

196
Theory of Machines and Automatic Control Winter 2017/2018 Lecturer: Sebastian Korczak, PhD, Eng. Warsaw University of Technology The Faculty of Automotive and Construction Machinery Engineering Institute of Machine Design Fundamentals Department of Mechanics http://www.ipbm.simr.pw.edu.pl/

Upload: buidang

Post on 20-Aug-2018

219 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

Theory of Machines and Automatic ControlWinter 2017/2018

Lecturer: Sebastian Korczak, PhD, Eng.

Warsaw University of TechnologyThe Faculty of Automotive

and Construction Machinery EngineeringInstitute of Machine Design Fundamentals

Department of Mechanicshttp://www.ipbm.simr.pw.edu.pl/

Page 2: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 2

Lecture 14

Material repeat.Informations about the exam.

WUT questionnaires.

Materials license: only for educational purposes of Warsaw University of Technology students.

Page 3: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

3.10.2017 TM&AC, Lecture 1, Sebastian Korczak, only for educational purposes of WUT students. 3

Lecture 1

kinematic pairs, mechanisms, mobility

Materials license: only for education purposes of Warsaw University of Technology students.

Page 4: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

3.10.2017 TM&AC, Lecture 1, Sebastian Korczak, only for educational purposes of WUT students. 4

Degrees of freedom

material point (2D)

material point (3D)

rigid body (2D)

rigid body (3D)

2 DoF

3 DoF

3 DoF

6 DoF

Page 5: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

3.10.2017 TM&AC, Lecture 1, Sebastian Korczak, only for educational purposes of WUT students. 5

Kinematic pairs & chains

A kinematic pair is a movable coupling of two rigid members that imposes restraints on the relative motion of the members by the conditions of linkage.

A kinematic chain is an assembly of kinematic pairs.

A base is a fixed (motionless) member of mechanism.

Page 6: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

3.10.2017 TM&AC, Lecture 1, Sebastian Korczak, only for educational purposes of WUT students. 6

Kinematic pairs (3D)

Class V

rotary

= 6 - 1

translatory screw-type

Page 7: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

3.10.2017 TM&AC, Lecture 1, Sebastian Korczak, only for educational purposes of WUT students. 7

Kinematic pairs (3D)

Class IV

cylindrical

= 6 - 2

Page 8: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

3.10.2017 TM&AC, Lecture 1, Sebastian Korczak, only for educational purposes of WUT students. 8

Kinematic pairs (3D)

Class III = 6 - 3

spherical

Page 9: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

3.10.2017 TM&AC, Lecture 1, Sebastian Korczak, only for educational purposes of WUT students. 9

Kinematic pairs (3D)

Class II = 6 - 4

Page 10: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

3.10.2017 TM&AC, Lecture 1, Sebastian Korczak, only for educational purposes of WUT students. 10

Kinematic pairs (3D)

Class I = 6 – 5

Page 11: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

3.10.2017 TM&AC, Lecture 1, Sebastian Korczak, only for educational purposes of WUT students. 11

Kinematic pairs (2D)

Class V

rotary

= 6 - 1

translatory

Page 12: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

3.10.2017 TM&AC, Lecture 1, Sebastian Korczak, only for educational purposes of WUT students. 12

Kinematic pairs (2D)

Class IV = 6 - 2

cam joint

cam follower (tapper)

Page 13: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

3.10.2017 TM&AC, Lecture 1, Sebastian Korczak, only for educational purposes of WUT students. 13

Kinematic pairs

lower kinematic pair – surface contact

higher kinematic pair – line or point contact

Page 14: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

3.10.2017 TM&AC, Lecture 1, Sebastian Korczak, only for educational purposes of WUT students. 14

Kinematic pairs

closed pair – contact because of shape

open pair – force required for constant contact

Page 15: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

3.10.2017 TM&AC, Lecture 1, Sebastian Korczak, only for educational purposes of WUT students. 15

Kinematic chain mobility

F > 1 – movableF = 1 – constrainedF < 1 – locked or overconstrained

(3D chain) F=6N − p1 − 2 p2 − 3 p3 − 4 p4 − 5 p5

(2D chain) F=3N − p4 − 2 p5

N− numberof moving bodies

pi − number of i − type classes

kinematic chain mobility – structural formula

(the Chebychev–Grübler–Kutzbach criterion)

Page 16: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

10.10.2017 TM&AC, Lecture 2, Sebastian Korczak, only for educational purposes of WUT students. 16

Lecture 2

Structural classification,velocities in planar mechanisms.

Materials license: only for education purposes of Warsaw University of Technology students.

Page 17: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

10.10.2017 TM&AC, Lecture 2, Sebastian Korczak, only for educational purposes of WUT students. 17

Classification of kinematic chains

Simple kinematic chain – every member has maximum

two kinematic pairs.

Complex kinematic chain – at least one member has

three kinematic pairs.

Open kinematic chain – at least one member has only

one kinematic pair.

Closed kinematic chain – every member has minimum

two kinematic pairs.

Page 18: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

10.10.2017 TM&AC, Lecture 2, Sebastian Korczak, only for educational purposes of WUT students. 18

Structural classification of mechanisms

Structural group – the simplest part of mechanism that has zero

mobility.

Planar mechanism with only 5th class pairs: F=3n − 2 p5=0

p5

n=

3

2=

6

4=

9

6=.. .

n=2 p5=3

IInd structural

group

IIIrd structural

group

n=4 p5=6 n=6 p5=9

IVth structural group

Page 19: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

10.10.2017 TM&AC, Lecture 2, Sebastian Korczak, only for educational purposes of WUT students. 19

Structural classification of mechanisms

crank drive

Ist structural group – drive

n=1 p5=1 + drive

linear drive rotary drive

Page 20: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

10.10.2017 TM&AC, Lecture 2, Sebastian Korczak, only for educational purposes of WUT students. 20

Kinematics of mechanisms

Kinematic analysis of a mechanism – determination of velocities

and accelerations of selected mechanism members' points at

considered configuration. Mechanism structure must be given

(geometry of members, kinematic pairs) and drive method must

be known.

Page 21: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

10.10.2017 TM&AC, Lecture 2, Sebastian Korczak, only for educational purposes of WUT students. 21

Methods of velocities and accelerationdetermination

Graphical methods

- velocity projection method,

- instantaneous center of rotation method,

- instantaneous center of acceleration method,

- method of rotated velocities,

- velocity decomposition method,

- acceleration decomposition method,

- velocity scheme method,

- accelerations scheme method.

Analytical method

Page 22: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

10.10.2017 TM&AC, Lecture 2, Sebastian Korczak, only for educational purposes of WUT students. 22

Methods of velocities and accelerationdetermination

Graphical methods Analytical method

advantage

better understanding of mechanism motion,

analysis of very complicated mechanisms,

computers not needed,

functions of configuration as a solution,

analysis of very complicated mechanisms,

disadvantage

great workload, needs to repeat graphs

for every configuration, graphical errors.

computer needed for complicated mechanisms,

complicated systems of equations to solve,

solution interpretation may be complicated.

Page 23: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

10.10.2017 TM&AC, Lecture 2, Sebastian Korczak, only for educational purposes of WUT students. 23

Velocity projection method

A

B

vA

vB

Projections of velocities of two rigid body's points onto

common line are equal.

Page 24: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

10.10.2017 TM&AC, Lecture 2, Sebastian Korczak, only for educational purposes of WUT students. 24

Instantaneous center of rotation method

A

BvA

vB

S

center of instantaneous rotation

(center of velocities)

Page 25: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

10.10.2017 TM&AC, Lecture 2, Sebastian Korczak, only for educational purposes of WUT students. 25

AB

+AB

AB =

vB= v A+ v BA

absolute velocity

of point B velocity of a linear motion

Angular velocity of point B

in rotation around point A.

vBA=ω× AB

Velocity decomposition method

2nd example

ω

Page 26: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

10.10.2017 TM&AC, Lecture 2, Sebastian Korczak, only for educational purposes of WUT students. 26

Velocity scheme method

Velocity scheme of a rigid body – geometry created by the ends

of it's velocity vectors moved to the common starting point

(pole).

Velocity scheme is similar to the corresponding rigid body: it is

scaled and rotated by an 90o angle in the direction of body's

angular velocity.

Page 27: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

10.10.2017 TM&AC, Lecture 2, Sebastian Korczak, only for educational purposes of WUT students. 27

Velocity scheme method

A

B

vA

vB

C

vC

vB

vA

Ov

a

b

c

90o

velocity scale: the samegeometry scale: new!

Example

Graph in scale! e.g.:

geometry scale: 1cm → 10cmvelocity scale: 1cm → 1m/s

Page 28: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

10.10.2017 TM&AC, Lecture 2, Sebastian Korczak, only for educational purposes of WUT students. 28

Velocities in relative motion

A1

A2

v A2=v A1+ v A2 A1

absolute

velocity of

point A2

transportation

velocity

relative

velocity

A

Page 29: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

17.10.2017 TM&AC, Lecture 3, Sebastian Korczak, only for educational purposes of WUT students. 29

Instantaneous center of acceleration

A

BaA

aB

P

center of acceleration

ψ=atan εω2

Page 30: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

17.10.2017 TM&AC, Lecture 3, Sebastian Korczak, only for educational purposes of WUT students. 30

AB

A

+AB

=

aB=aA+ aBA=aA+ aBAn+ aBA

t

absolute acceleration

of point B

Angular acceleration of point B

in rotation around point A.

Acceleration decomposition method

Example

AB

ε+

absolute acceleration

of point A Centripetal acceleration

(normal)

Rotary acceleration

(tangential)

Page 31: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

17.10.2017 TM&AC, Lecture 3, Sebastian Korczak, only for educational purposes of WUT students. 31

AB

A

+AB

=

aB=aA+ aBA=aA+ aBAn+ aBA

t

aBA=ω×(ω× AB )= − ω2AB

Acceleration decomposition method

Example

AB

ε+

Centripetal acceleration

(normal)

Rotary acceleration

(tangential)

aBA=ε× AB

Page 32: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

17.10.2017 TM&AC, Lecture 3, Sebastian Korczak, only for educational purposes of WUT students. 32

Acceleration scheme (diagram)

Acceleration scheme of a rigid body – geometry created by the

ends of it's acceleration vectors moved to the common starting

point (acceleration scheme's pole).

Acceleration scheme is similar to the corresponding rigid body:

it is scaled and rotated by (180o-) angle in the direction of

body's angular velocity if sgnω=sgnε (or opposite direction

if sgnω≠sgnε).

Page 33: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

17.10.2017 TM&AC, Lecture 3, Sebastian Korczak, only for educational purposes of WUT students. 33

Acceleration scheme method

A

B

aA

aB

C

Oa

a

b

acceleration scale, e.g.: 1cm → 1m/sgeometry scale wrt. original dimensions

Example

Given: aA and aB + geometry

Searched: aC

c

aA

aB

aC

Page 34: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

17.10.2017 TM&AC, Lecture 3, Sebastian Korczak, only for educational purposes of WUT students. 34

Accelerations in relative motion

B1

B2

B

aB2=aB1u+ aB2B1

w+ a

c

absolute acceleration

of point B2

Transportation acceleration

(absolute acceleration of

point B1)

Relative

acceleration

Coriolis

acceleration

ac=2 ωu×v B2B1

Page 35: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

31.10.2017 TM&AC, Lecture 4, Sebastian Korczak, only for educational purposes of WUT students. 35

Lecture 4

Analytical method. Cam mechanisms.

Materials license: only for educational purposes of Warsaw University of Technology students.

Page 36: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

31.10.2017 TM&AC, Lecture 4, Sebastian Korczak, only for educational purposes of WUT students. 36

Procedure of analytical determination of velocities and accelerations in planar mechanisms.

1. Set up Cartesian coordinate system OXY.

2. Subsitiute the mechanism's members with set of vectors. All vectors can

move with mechanism's elements, change their size, location and

orientation.

3. Vectors must to create closed polygons.

4. Define “directed angles” for all vectors defined in the same manner.

Assume that this angles are created by the positive x axis counter-

clockwise rotation.

5. Fore each of polygon write down sum of vectors, e.g.:

∑i=1

i=n

l i=0

Page 37: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

31.10.2017 TM&AC, Lecture 4, Sebastian Korczak, only for educational purposes of WUT students. 37

Procedure of analytical determination of velocities and accelerations in planar mechanisms.

6a. Write down projections of each polygon onto coordinate system's axes:

x: ∑i=1

i=n

licosφ i=0 y: ∑i=1

i=n

li sin φ i=0

(we do not need to analyze signs because of „directed angles” setup

procedure)

6b. Define which vectors' lengths and angles are given and/or constant

(related to geometry), and which are variable in time and unknown.

(for a proper defined system number of unknown variables is equal to the

number of equations)

7. Solve the equations. The resulting functions describes motion of the

mechanism.

Page 38: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

31.10.2017 TM&AC, Lecture 4, Sebastian Korczak, only for educational purposes of WUT students. 38

Procedure of analytical determination of velocities and accelerations in planar mechanisms.

8. Differentiate functions achieved in p.7 to obtain velocities. Differentiate

once again to obtain accelerations.

9. If desired informations was not obtained in p.8, differentiate equations

from p.6. Sometimes rotation of the coordinate system is useful here.

Page 39: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

31.10.2017 TM&AC, Lecture 4, Sebastian Korczak, only for educational purposes of WUT students. 39

Cam-follower

Cam-follower mechanism – mechanism build of a cam and a follower

(tappet) connected as a IV class kinematic pair.

Cam is rotating (sometimes is translating)

follower is reciprocating (sometimes is swinging/oscillating)

advantages

simple to construction,

simple to create,

any dimensions,

simple to create advanced

motions.

disadvantages

small strength with hight loads,

no adaptation possible.

Page 40: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

31.10.2017 TM&AC, Lecture 4, Sebastian Korczak, only for educational purposes of WUT students. 40

Cam-follower

Classification

flat / spatial

with in-line (central) follower / with offset (eccentric) follower

closed with geometry / closed with force

Page 41: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

31.10.2017 TM&AC, Lecture 4, Sebastian Korczak, only for educational purposes of WUT students. 41

Analysis and synthesis of cam-follower mechanism

Analysis – calculation of displacement, velocity and accelerationfunctions for a follower motion with respect to a cam's rotations anglefor arbitrary given geometry.

Synthesis – calculation of a cam geometry needed to obtain givendisplacement/velocity/acceleration functions. Limitations must beincluded, i.e. some maximum values, geometry limitations and jerkvalues (third derivative).

Page 42: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

07.11.2017 TM&AC, Lecture 5, Sebastian Korczak, only for educational purposes of WUT students. 42

Lecture 5

Cam-follower mechanisms cont.Dynamics of planar mechanisms.

Materials license: only for educational purposes of Warsaw University of Technology students.

Page 43: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

07.11.2017 TM&AC, Lecture 5, Sebastian Korczak, only for educational purposes of WUT students. 43

Analysis and synthesis of cam-follower mechanisms

Analysis Syntesis

substitution of IV. class kinematic pair with V. class kinematic pairs + graphical method (velocity and acceleration scheme)

graphical determination of a follower movement and graphical differentiation

analytical method (substitution with polygones of vectors)

graphical determination of cam outline by a base circle rotation with follower movement

analytical designing with a function description

Page 44: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

07.11.2017 TM&AC, Lecture 5, Sebastian Korczak, only for educational purposes of WUT students. 44

Overview

Dynamics of planar mechanisms

Members description as rigid bodies and and material points.

Graphical determination of inertial forces and torques.

Reaction forces in kinematic pairs.

Driving and operating forces/torques.

Inverse and direct dynamics problems.

Graphical, analytical and graphical-analytical method.

Friction in kinematic pairs.

Page 45: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

07.11.2017 TM&AC, Lecture 5, Sebastian Korczak, only for educational purposes of WUT students. 45

Members description

Dynamics of planar mechanisms

Material points method - example

Given:Geometry, mass m,center of a mass location (pt. C) and mass moment of inertia IC

m1 m2 m3

m

C

m1+m2+m3=m

− am1+bm3

m1+m2+m3

=0a b

m1a2+m3b

2=IC

x

y

x

Page 46: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

07.11.2017 TM&AC, Lecture 5, Sebastian Korczak, only for educational purposes of WUT students. 46

Inertia forces and torques

Dynamics of planar mechanisms

C aC

ε

BC= − maC

Inertia torque

MC= − IC ε

MC

BC

inertia force

Page 47: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

07.11.2017 TM&AC, Lecture 5, Sebastian Korczak, only for educational purposes of WUT students. 47

Inverse dynamics problem – calculation of forces and torques thatcause given motion of a mechanism.

Direct dynamics problem – calculation of mechanism's motion causedby external forces and torques.

Dynamics of planar mechanisms

Page 48: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

07.11.2017 TM&AC, Lecture 5, Sebastian Korczak, only for educational purposes of WUT students. 48

Inverse dynamics problem

Dynamics of planar mechanisms

Calculation of forces and torques that cause given motion of a mechanism(kinetostatics)

0. Mechanism and it's geometry, driving and operating forces/torques,displacement, velocity and acceleration functions are given.

1. Calculation of inertia forces and torques acting moving members of themechanism.

2. Decomposition of the mechanism with reaction disclosure.

3. Write down vector sums of external forces, reactions and inertia forces(d'Alembert equations).

4. Solve the equations with graphical and/or analytical method.

Page 49: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

14.11.2017 TM&AC, Lecture 6, Sebastian Korczak, only for educational purposes of WUT students. 49

Lecture 6

Machine dynamics.Reduction of masses and forces.

Machine equation of motion.

Materials license: only for educational purposes of Warsaw University of Technology students.

Page 50: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

14.11.2017 TM&AC, Lecture 6, Sebastian Korczak, only for educational purposes of WUT students. 50

Kinetic energy

Reduction of masses

mr(t)Fr(t )

xr( t)

I r(t)

Mr(t)

φ r (t)

Total kinetic energy

T =1

2I r ωr

2

reduced moment of inertia

T =1

2mr vr

2

reduced mass

or

vr=dxr (t )

dt

ωr=d φ r (t)

dt

T=∑i=1

n

(12 mi vi2+

1

2I iωi

2)

Page 51: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

14.11.2017 TM&AC, Lecture 6, Sebastian Korczak, only for educational purposes of WUT students. 51

System power

Reduction of forces

Total system's power

P=Mrωr

reduced torque

P (Fi , Mi ,ωi , vi , ...)

P=Fr vr

reduced force

or

mr(t)Fr(t )

xr( t)

I r(t)

Mr(t)

φ r (t)

vr=dxr (t )

dt

ωr=d φ r (t)

dt

Page 52: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

14.11.2017 TM&AC, Lecture 6, Sebastian Korczak, only for educational purposes of WUT students. 52

Kinetic energy

Reduction of masses

T= ∑i=1

n1

2mi vi

2+ ∑

j=1

k1

2I jω j

2

n – translating elementsk – rotating elements

1

2mr vr

2= ∑

i=1

n1

2mi vi

2+ ∑

j=1

k1

2I jω j

2

mr= ∑i=1

n

mi

vi2

vr2+ ∑

j=1

k

I jω j

2

vr2

1

2I rωr

2= ∑

i=1

n1

2mi vi

2+ ∑

j=1

k1

2I jω j

2

I r= ∑i=1

n

mi

vi2

ωr2+ ∑

j=1

k

I jω j

2

ωr2

– arbitrary chosen velocitiesvr , ωr

Page 53: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

14.11.2017 TM&AC, Lecture 6, Sebastian Korczak, only for educational purposes of WUT students. 53

Work

Reduction of forces

dW= ∑i=1

n

Pi dsi cosαi+ ∑j=1

k

M j d φ j

n – translating elementsk – rotating elements

Pr dsr=∑i=1

n

Pi dsicosα i+∑j=1

k

M j d φ j Mr dφ r=∑i=1

n

Pi dsicosαi+∑j=1

k

M j d φ j

Pr=∑i=1

n

Pi

dsidsr

cosα i+∑j=1

k

M j

d φ j

dsr

Pr=∑i=1

n

Pi

vi dt

vr dtcosαi+∑

j=1

k

M j

ω j dt

vr dt

Pr=∑i=1

n

Pi

vivr

cosαi+∑j=1

k

M j

ω j

vr

Mr=∑i=1

n

Pi

dsid φ r

cosαi+∑j=1

k

M j

d φ j

d φ r

Mr= ∑i=1

n

Pi

vi dt

ωr dtcosα i+ ∑

j=1

k

M j

ω j dt

ωr dt

Mr= ∑i=1

n

Pi

viωr

cosαi+ ∑j=1

k

M j

ω j

ωr

Page 54: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

14.11.2017 TM&AC, Lecture 6, Sebastian Korczak, only for educational purposes of WUT students. 54

Linear motion

Machine equation of motion

dT=dW

d(1

2m(t) v (t)2)=F ( t)dx

1

2dm (t)v (t)

2+m( t)v ( t)dv (t)=F (t)dx

1

2dm ( t)v ( t)

2+m(t )

dx (t )

dtdv (t )=F (t )dx

dm (t)

dx

v (t)2

2+m

dv (t)

dt=F (t )

dm (t )

dt

v (t )

2+m

dv (t )

dt=F (t)

if m=const . ⇒ mdv (t)

dt=P(t) o r m x ( t)=F (t )

m(t)F (t)

v (t)

Page 55: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

14.11.2017 TM&AC, Lecture 6, Sebastian Korczak, only for educational purposes of WUT students. 55

Angular motion

Machine equation of motion

dT=dW

d(I ω(t)2

2 )=M ( t)d φ

...

...

dI (t)

d φ

ω(t)2

2+ I (t)

dω(t )

dt=M (t )

dI ( t)

dt

ω( t)

2+ I ( t)

dω(t)

dt=M ( t)

if I=const . ⇒ Idω( t)

dt=M (t ) o r I φ (t)=M (t )

I (t)

M (t)

φ ( t)

Page 56: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

21.11.2017 TM&AC, Lecture 7, Sebastian Korczak, only for educational purposes of WUT students. 56

Lecture 7

Non-uniformity of machine motion.Introduction to automatic control.

Materials license: only for educational purposes of Warsaw University of Technology students.

Page 57: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

21.11.2017 TM&AC, Lecture 7, Sebastian Korczak, only for educational purposes of WUT students. 57

engine machine

φ ( t) I R

φ ( t)

t

ωmax

ωmin

T max=1

2IRωmax

2 Tmin=1

2I Rωmin

2

W=Tmax − Tmin=δ I Rωmean2

δ=ωmax− ωmin

ωmeanωmean=

ωmax+ωmin

2

Non-uniformity of machine motion

Non-uniformity of machine motionSteady-state motion

pumps combustion engines generators

δ=1/5÷1/30 δ=1/50÷1/150 δ=1/200÷1/300

Page 58: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

21.11.2017 TM&AC, Lecture 7, Sebastian Korczak, only for educational purposes of WUT students. 58

x (t)

t

vmax

v min

δ=vmax − vminvmean

vmean=vmax+vmin

2

Non-uniformity of machine motion

machine

mR

FR( t) x (t)

Non-uniformity of machine motionSteady-state motion

W=Tmax − Tmin=δmRvmean2

Page 59: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

21.11.2017 TM&AC, Lecture 7, Sebastian Korczak, only for educational purposes of WUT students. 59

ω( t)

φ ( t)

engine machine

φ ( t) I R

MD MP

φ ( t)

MD MP

π 2π

W

W=∫φmin

φmax

(MD − MP)d φ

δ=W

IRωmean2

Non-uniformity of machine motionSteady-state motion

Example

ωmax

ωminW=Tmax − Tmin=δ IRωmean

2

Page 60: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

21.11.2017 TM&AC, Lecture 7, Sebastian Korczak, only for educational purposes of WUT students. 60

engine machine

φ ( t) I RI FW

I FW=(δ1

δ2

− 1)I R

W=δ1 I Rωmean

2assume

I R≈ const .

Flywheel

engine machine

φ ( t) I R

φ ( t)

t

ωmax

ωmin

Steady-state motion

φ ( t)

t

ωmax

ωmin

W=δ2(I R+ I FW )ωmean2

δ1 I Rωmean2 =δ2(I R+ I FW )ωmean

2 (if velocity of a flywheel same as analyzed velocity)

Page 61: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

21.11.2017 TM&AC, Lecture 7, Sebastian Korczak, only for educational purposes of WUT students. 61

Automatic control

“Automatic control in engineering and technology is a wide generic term covering the application of mechanisms to the operation and regulation of processes without continuous direct human intervention.” - wikipedia

Control theory – branch of mathematics and cybernetics that deals with analysis and mathematical modeling of objects and processes threated as dynamical systems with feedback.

Page 62: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

21.11.2017 TM&AC, Lecture 7, Sebastian Korczak, only for educational purposes of WUT students. 62

Automatic control

Classical control theorymodern control theory

(1950-now)

single input, single output (SISO)

multiple input, multiple output (MIMO)

usually linear systems often nonlinear systems

time independent systems time dependent systems

description by a transfer functions

description by a state equations

time and frequency domain analysis

time domain analysis

system response is the most important

system state is the most important

Page 63: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

21.11.2017 TM&AC, Lecture 7, Sebastian Korczak, only for educational purposes of WUT students. 63

Single Input Single Output (SISO) system

SYSTEMx (t) y (t )

Page 64: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

21.11.2017 TM&AC, Lecture 7, Sebastian Korczak, only for educational purposes of WUT students. 64

Linear time-invariant (LTI) system

Linear system

x (t ) - input, y (t )=h(x (t )) - output

h(α x (t ))=αh(x (t ))=α y (t ) scaling

h(x1(t)+x2(t))=h(x1(t))+h(x2(t )) superposition

Page 65: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

21.11.2017 TM&AC, Lecture 7, Sebastian Korczak, only for educational purposes of WUT students. 65

Linear time-invariant (LTI) system

Time-invariant system

output does not depend explicitly on time

if y (t)=h(x (t )) then y (t − τ)=h(x (t − τ))

Time-varying system

if y (t)=h(x (t )) then y (t − τ) ≠ h(x (t − τ))

Page 66: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

21.11.2017 TM&AC, Lecture 7, Sebastian Korczak, only for educational purposes of WUT students. 66

Open loop control

SYSTEMu(t)=x (t ) y (t )

CONTROLLERyd(t )

desiredoutput

controlfunction

system output

system input

Page 67: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

21.11.2017 TM&AC, Lecture 7, Sebastian Korczak, only for educational purposes of WUT students. 67

Closed loop control

SYSTEMu(t)=x (t ) y (t )

CONTROLLER

yd(t )

desiredoutput control

function

system output

system input

+

-

e(t)

Page 68: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

28.11.2017 TM&AC, Lecture 8, Sebastian Korczak, only for educational purposes of WUT students. 68

Lecture 8

Laplace transform.Transfer function.

Inputs and outputs in time domain.

Materials license: only for educational purposes of Warsaw University of Technology students.

Page 69: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

28.11.2017 TM&AC, Lecture 8, Sebastian Korczak, only for educational purposes of WUT students. 69

Laplace transform

Assumption: x (t ) - signal such that for t<0 x (t )=0

X (s)=L{x (t )}= ∫0

x (t)e − stdt

where: s ∈ ℂ , s=σ+ jω , j= √ − 1

A necessary condition for existence of the integral is that x(t) must be locally integrable on t in <0, ∞).

Laplace transform of x(t):

Inverse Laplacetransform of x(t): x (t )=L − 1{X (s)}=

12π j

limω → ∞

∫γ − jω

γ+ jω

X (s)est ds

Page 70: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

28.11.2017 TM&AC, Lecture 8, Sebastian Korczak, only for educational purposes of WUT students. 70

Page 71: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

28.11.2017 TM&AC, Lecture 8, Sebastian Korczak, only for educational purposes of WUT students. 71

Page 72: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

28.11.2017 TM&AC, Lecture 8, Sebastian Korczak, only for educational purposes of WUT students. 72

Transfer function

dny (t )

dtn +a1

dn − 1

y (t )

dtn − 1 +...+an − 1

dy(t )

dt+an y (t )=

dmx (t )

dtm +b1

dm − 1

x (t )

dtm − 1 +...+bm − 1

dx(t)

dt+bm x (t)

Linear time-invariant SISO system for continous-time input signal x(t) and output y(t) in a form

after Laplace transformation with zero initial conditions

snY (s)+a1 s

n − 1Y (s)+...+an − 1sY (s)+anY (s)=s

mX (s)+b1 s

m − 1X (s)+...+bm − 1s X (s)+bm X (s)

(sn+a1s

n − 1+...+an − 1 s+an)Y (s)=(s

m+b1 s

m − 1+...+bm − 1 s+bm)X (s)

H (s)=Y (s)

X (s)=sm+b1 s

m − 1+...+bm − 1 s+bm

sn+a1 sn − 1+...+an − 1 s+an

Transferfunction

Page 73: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

28.11.2017 TM&AC, Lecture 8, Sebastian Korczak, only for educational purposes of WUT students. 73

Transfer function

H (s)=Y (s)

X (s)=sm+b1 s

m − 1+...+bm − 1 s+bm

sn+a1 sn − 1+...+an − 1 s+an

H (s)=Y (s)

X (s)=

(s − z1)(s − z2)...(s − zm)

(s − p1)(s − p2)...(s − pn)

z1, z2 , ... , zm - zeroes

p1, p2 , ... , pn - poles

Page 74: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

28.11.2017 TM&AC, Lecture 8, Sebastian Korczak, only for educational purposes of WUT students. 74

Input and output

H (s)=Y (s)

X (s)Transfer function:

Y (s)=H (s)X (s)Laplace transform of output:

Output in time domain: y(t )=L − 1{Y (s)}

y(t )=L − 1{H (s)X (s)}=L − 1 {H (s)}∗ L − 1{X (s)}=h(t)∗ x(t)

Convolution h(t) ∗ g(t )= ∫0

h(τ) x (t − τ)d τ

h(t) - system impulse response ( y(t) when x (t )=δ(t))

Page 75: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

28.11.2017 TM&AC, Lecture 8, Sebastian Korczak, only for educational purposes of WUT students. 75

Input and output

x (t ) y (t )=h(t) ∗ x (t )h(t)

X (s) Y (s)=H (s)X (s)H (s)

time domain

complex domain

L L L-1

Page 76: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

28.11.2017 TM&AC, Lecture 8, Sebastian Korczak, only for educational purposes of WUT students. 76

Exemplary input signals

No input: x (t )=0

Unit impulse (Dirac delta pseudofunction): δ(t)={0 , t<0 ∞ , t=00 , t>0

Unit step function (Heviside step function): 1(t)={0 , t<01 , t>0

H (t ) or 1+ (t)

Ramp function: x (t )={0 , t<0t , t>0

Harmonic function: x (t )=a sin (ω t)

Page 77: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

28.11.2017 TM&AC, Lecture 8, Sebastian Korczak, only for educational purposes of WUT students. 77

Input and output

h(t)impulse responsey (t ) for x (t )=δ(t )

a(t)step responsey (t ) for x (t )=1(t)

d a(t )

dt=h(t)

t

ax (t)

a(t)

t

x (t)

h(t )

Page 78: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

29.11.2017 TM&AC, Lecture 9, Sebastian Korczak, only for educational purposes of WUT students. 78

Lecture 9

Frequency response.Classification of basic automatic systems.

Materials license: only for educational purposes of Warsaw University of Technology students.

Page 79: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

29.11.2017 TM&AC, Lecture 9, Sebastian Korczak, only for educational purposes of WUT students. 79

Transfer function

Linear time-invariant SISO system for continous-time input signal x(t) and output y(t) in a form

H (s)=Y (s)

X (s)Transferfunction

Y (s) - Laplace'a transform of an output

X (s) - Laplace'a transform of an input

Page 80: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

30.11.2017 TMiPA, Wykład 9, Sebastian Korczak, tylko do użytku edukacyjnego studentów PW 80

Transfer function – frequency response

H (s)

Transfer function(Laplace domain)

H ( jω)

s= jω

Full system description(for every possible input)

Description of a system in steady state with harmonic input

Frequency response(Fourier domain)

Page 81: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

29.11.2017 TM&AC, Lecture 9, Sebastian Korczak, only for educational purposes of WUT students. 81

H (s) H ( jω)=P (ω)+ jQ(ω)

A (ω)=|H ( jω)|= √P2(ω)+Q

2(ω)

φ (ω)=Arg H ( jω)=arctanQ

P

P(ω)

Q(ω)

ω=0ω= ∞

y (t)=A sin (ω t+φ)

Transfer function – frequency response

input: x (t)=sin (ω t) output:H (s)transfer function:

Nyquist plot

A (ω)

φ (ω)

s= jω

DELAY

GAIN

Page 82: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

29.11.2017 TM&AC, Lecture 9, Sebastian Korczak, only for educational purposes of WUT students. 82

φ(ω

) [r

ad]

gain (magnitude) plot

Bode Plot

y (t)=A sin (ω t+φ)input: x (t )=sin (ω t ) output:H (s)transfer function:

phase (phase shift) plot

Transfer function – frequency response

ω [rad/s]

L(ω

) [d

B]

ω [rad/s]

L(ω)=20 log A (ω)

Page 83: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

29.11.2017 TM&AC, Lecture 9, Sebastian Korczak, only for educational purposes of WUT students. 83

Transfer function – frequency response

A (gain) 20logA [dB]

1000 60

100 40

10 20

1 0

0.1 -20

0.01 -40

0.001 -60

Page 84: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

29.11.2017 TM&AC, Lecture 9, Sebastian Korczak, only for educational purposes of WUT students. 84

Classification of basic automatic systems

Element name

Equation Transfer function

proportional k

first order (inertial)

integrator or

y (t )=ku (t )

Tdy (t )

dt+y (t )=ku (t )

y (t )=k ∫0

t

u (t )dt

dy (t )

dt=ku (t )

k

Ts+1

ks

Page 85: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

29.11.2017 TM&AC, Lecture 9, Sebastian Korczak, only for educational purposes of WUT students. 85

Classification of basic automatic systems

Element name EquationTransfer function

derivative

derivative with inertia

y (t )=kdu (t )

dt

Tdy (t )

dt+y (t )=k

du (t )

dt

ks

ks

Ts+1

Page 86: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

29.11.2017 TM&AC, Lecture 9, Sebastian Korczak, only for educational purposes of WUT students. 86

Classification of basic automatic systems

Element name EquationTransfer function

delay

second order (oscillator)

y (t )=u (t− τ )

T 1

2 d 2 y (t )

dt2

+T 2

dy (t )

dt+

+y (t )=ku (t )

e − τ s

k

T 12s

2+T 2 s+1

Page 87: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

29.11.2017 TM&AC, Lecture 9, Sebastian Korczak, only for educational purposes of WUT students. 87

Page 88: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

29.11.2017 TM&AC, Lecture 9, Sebastian Korczak, only for educational purposes of WUT students. 88

Page 89: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

5.12.2017 TM&AC, Lecture 10, Sebastian Korczak, only for educational purposes of WUT students. 89

Lecture 10

Classification of basic automatic systemswith examples.

Materials license: only for educational purposes of Warsaw University of Technology students.

Page 90: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

5.12.2017 TM&AC, Lecture 10, Sebastian Korczak, only for educational purposes of WUT students. 90

Proportional element

1. Element equation: y (t )=ku (t ) u(t ) - input, y (t ) - output

2. Static characteristic (steady state): y=ku for dydt

=0 ∧dudt

=0

3. Transfer function: H (s)=k

4. Step response: y (t)=k u0 1(t )

u

y

for u(t)=u0 1(t)

t

u0

u(t)

k u0

y (t )

t

for k>0

Page 91: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

5.12.2017 TM&AC, Lecture 10, Sebastian Korczak, only for educational purposes of WUT students. 91

Proportional element

5. Frequency response: H ( jω)=k P (ω)=k , Q (ω)=0

6. Nyquist plot:

P(ω)

Q(ω)

7. Bode plot:

φ(ω

) [r

ad]

ω [rad/s]

L(ω

) [d

B]

ω [rad/s]

L(ω)=20 log A (ω)

A(ω)= √P2+Q

2=|k| φ (ω)=arctan

QP={0 , dla k≥ 0

π , dla k<0}

20 log|k|

for k>0

Page 92: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

5.12.2017 TM&AC, Lecture 10, Sebastian Korczak, only for educational purposes of WUT students. 92

Proportional elementExamples

1

GEARBOX:input – angular velocity ω1(t)output – angular velocity ω2(t)

GEARBOX:input – rotation angle φ1(t)output – rotation angle φ2(t)

ω1(t)

ω2(t)

2

φ1(t)

φ2(t)

Page 93: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

5.12.2017 TM&AC, Lecture 10, Sebastian Korczak, only for educational purposes of WUT students. 93

Proportional elementExamples

4BEAM in steady state:input – force F1output – force F2

F1 F2

3 OPERATIONAL AMPLIFIER:input – voltage v1(t)output – voltage v2(t)

Vsupply

0Vv2(t)

v1(t)

R2R1

v2 (t )=v1 (t )(1+R2

R1)

Page 94: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

5.12.2017 TM&AC, Lecture 10, Sebastian Korczak, only for educational purposes of WUT students. 94

Proportional elementExamples

5

HYDRAULIC LEVER:input – displacement x1(t)output – displacement x2(t)

x1(t)

x2(t)

6 PRESSURE ACTUATOR:input – pressure p1(t)output – displacement x(t)

x(t)

p(t)

Page 95: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

5.12.2017 TM&AC, Lecture 10, Sebastian Korczak, only for educational purposes of WUT students. 95

First-order inertial element

1. Element equation: u(t) - inputy (t ) - output

2. Static characteristic (steady state): y=ku for dydt

=0 ∧dudt

=0

3. Transfer function: H (s)=k

Ts+1

u

y

Tdy (t )

dt+y (t )=ku (t )

for k>0

Page 96: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

5.12.2017 TM&AC, Lecture 10, Sebastian Korczak, only for educational purposes of WUT students. 96

First-order inertial element

4. Step response:

input: u (t)=u01(t)

u0

u(t)

Laplace of input: U ( s)=u0

1

s

Laplace of output: Y (s)=H ( s)U (s)=k u0

s (Ts+1)

output: y (t)=L − 1{Y (s)}=k u0(1 − e

− t /T)

k u0

y (t )

tT 2T 3T

0.950 k u0

0.865 k u0

0.632 k u0

t

Page 97: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

5.12.2017 TM&AC, Lecture 10, Sebastian Korczak, only for educational purposes of WUT students. 97

First-order inertial element

5. Frequency response: H ( jω)=k

Tjω+1

6. Nyquist plot:

P (ω)=k

T 2ω2+1, Q (ω)=

− k T ω

T 2ω2+1

P(ω)

Q(ω)

ω=0ω= ∞

k /2 k0

− k /2ω=1/T

for k>0

Page 98: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

5.12.2017 TM&AC, Lecture 10, Sebastian Korczak, only for educational purposes of WUT students. 98

First-order inertial element

7. Bode plot:

L(ω)=20 log A (ω)=20 log|k| − 20 log √T 2ω2+1

A(ω)= √P2+Q

2=|k|/ √T

2+1

φ (ω)=arctanQ

P=arctan ( − T ω)

L(ω

) [d

B] ω [rad/s]1

10T1

T

20 log|k| − 3

10 /T

20 log|k| − 20φ(ω

) [r

ad]

− π2

− π4

1T

10T

ω [rad/s]

100T

110T

1100T

20 log|k|

20 log|k| − 40

for k>0

Page 99: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

5.12.2017 TM&AC, Lecture 10, Sebastian Korczak, only for educational purposes of WUT students. 99

First-order inertial elementExamples

1LINEAR MOTION OF A MATERIAL POINT WITH LINEAR DAMPING:input – force F(t)output – velocity v(t)

F(t)

v(t)

example: car is driving on a flat surface with air resistance proportionalTo its velocity, described using machine equation of motion, with assumptionof constant reduced mass.

2ANGULAR MOTION OF A RIGID BODY WITH LINEAR DAMPING:input – torque M(t)output – angular velocity ω(t)

M(t)

ω(t)

Page 100: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

5.12.2017 TM&AC, Lecture 10, Sebastian Korczak, only for educational purposes of WUT students. 100

First-order inertial elementExamples

3p1(t)

p2(t) AIR CONTAINER:input – pressure p1(t)output – pressure p2(t)

4 HEATED OBJECT WITH SMALL INERTIA:input – heater power h(t)output – object temperature Ti(t)

Page 101: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

5.12.2017 TM&AC, Lecture 10, Sebastian Korczak, only for educational purposes of WUT students. 101

Integrator

1. Element equation:u(t) - inputy (t ) - output

2. Static characteristic (steady state): for dydt

=0 ∧dudt

=0

3. Transfer function: H (s)=ks

dy (t)

dt=k u(t )

u=0

u

y

Page 102: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

5.12.2017 TM&AC, Lecture 10, Sebastian Korczak, only for educational purposes of WUT students. 102

Integrator

4. Step response:

input: u (t)=u01(t)

u0

u(t)

u0

y (t )

t

Laplace of input: U ( s)=u0

1

s

Laplace of output: Y (s)=H ( s)U (s)=k u0

s2

output: y (t)=L − 1{Y (s)}=k u0 t

1/kt

for k>0

Page 103: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

5.12.2017 TM&AC, Lecture 10, Sebastian Korczak, only for educational purposes of WUT students. 103

Integrator

5. Frequency response: H ( jω)=kjω

6. Nyquist plot:

P (ω)=0 , Q(ω)= −kω

P(ω)

Q(ω)

ω= ∞

0

for k>0

Page 104: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

5.12.2017 TM&AC, Lecture 10, Sebastian Korczak, only for educational purposes of WUT students. 104

Integrator

7. Bode plot:

L(ω)=20 log A (ω)=20 log|kω|

A(ω)= √P 2+Q2=|kω|

φ (ω)=arctanQ

P=arctan ( − ∞)

φ(ω

) [r

ad]

− π2

ω [rad/s]

L(ω

) [d

B] ω [rad/s]

k /10 k

− 20 dB/dek

10k0

20

40

100k

for k>0

Page 105: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

5.12.2017 TM&AC, Lecture 10, Sebastian Korczak, only for educational purposes of WUT students. 105

IntegratorExamples

1PRISM LIQUID TANK:input – liquid inflow f(t)output – liquid level h(t)

h(t)

f(t)

2 OPERATIONAL AMPLIFIER:input – voltage v1(t)output – voltage v2(t)Vsupply

0Vv2(t)

v1(t)

CR

v2(t )=1

RC ∫0

t

v1(t)dt

Page 106: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

5.12.2017 TM&AC, Lecture 10, Sebastian Korczak, only for educational purposes of WUT students. 106

IntegratorExamples

3GEARBOX:input – angular velocity ω(t)output – rotation angle φ(t)

ω(t)

φ(t)

4 HYDRAULIC CYLINDER:input – volume inflow f(t)output – displacement x(t)

x(t)

f(t)

Page 107: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

5.12.2017 TM&AC, Lecture 10, Sebastian Korczak, only for educational purposes of WUT students. 107

Differentiator

1. Element equation:u(t) - inputy (t ) - output

2. Static characteristic (steady state): y=0 for dydt

=0 ∧dudt

=0

3. Transfer function: H (s)=k s

u

y

y (t)=kdu(t)

dt

Page 108: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

5.12.2017 TM&AC, Lecture 10, Sebastian Korczak, only for educational purposes of WUT students. 108

Differentiator

4. Step response:

input: u (t)=u01(t)

u0

u(t) y (t )

t

Laplace of input: U ( s)=u0

1

s

Laplace of output: Y (s)=H ( s)U (s)=k u0

output: y (t)=L − 1{Y (s)}=k u0δ(t )

t

Page 109: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

5.12.2017 TM&AC, Lecture 10, Sebastian Korczak, only for educational purposes of WUT students. 109

Differentiator

5. Frequency response: H ( jω)= j k ω

6. Nyquist plot:

P (ω)=0 , Q (ω)=k ω

P(ω)

Q(ω)

ω=0

0

for k>0

Page 110: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

5.12.2017 TM&AC, Lecture 10, Sebastian Korczak, only for educational purposes of WUT students. 110

Differentiator

7. Bode plot:

L(ω)=20 log A (ω)=20 log|kω|

A(ω)= √P2+Q

2=|k ω|

φ (ω)=arctanQ

P=arctan ( ∞)

φ(ω

) [r

ad]

π2

ω [rad/s]

for k>0

L(ω

) [d

B]

ω [rad/s]k /10

k

+20 dB/dek

10k0

20

40

− 20

− 40

Page 111: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

5.12.2017 TM&AC, Lecture 10, Sebastian Korczak, only for educational purposes of WUT students. 111

DifferentiatorExamples

1GEARBOX:input – rotation angle φ(t)output – angular velocity ω(t)

ω(t)

φ(t)

2 OPERATIONAL AMPLIFIER:input – voltage v1(t)output – voltage v2(t)

v2(t )= − RCdv1(t )

dt

Vsupply

0Vv2(t)

v1(t)

C R

Page 112: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

5.12.2017 TM&AC, Lecture 10, Sebastian Korczak, only for educational purposes of WUT students. 112

Real differentiator (derivative+1st order)

1. Element equation: u(t) - inputy (t ) - output

2. Static characteristic (steady state): for dydt

=0 ∧dudt

=0

3. Transfer function: H (s)=k s

Ts+1

Tdy (t)

dt+ y (t )=k

du(t )

dt

y=0

u

y

Page 113: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

5.12.2017 TM&AC, Lecture 10, Sebastian Korczak, only for educational purposes of WUT students. 113

Real differentiator (derivative+1st order)

4. Step response:

input: u (t)=u01(t)

Laplace of input: U ( s)=u0

1

s

Laplace of output: Y (s)=H ( s)U (s)=k u0

Ts+1

output: y (t)=L − 1{Y (s)}=k u0 e − t /T

k u0

y (t )

tT 2T 3T0.050 k u0

0.135 k u0

0.368 k u0u0

u(t)

t

for k>0

Page 114: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

5.12.2017 TM&AC, Lecture 10, Sebastian Korczak, only for educational purposes of WUT students. 114

Real differentiator (derivative+1st order)

5. Frequency response: H ( jω)=k jω

Tjω+1

6. Nyquist plot:

P (ω)=k T ω2

T 2ω2+1, Q (ω)=

k ω

T 2ω2+1

P(ω)

Q(ω)

ω=0 ω= ∞

k2T

k

T

0

− k /2ω=1/T

for k>0

Page 115: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

5.12.2017 TM&AC, Lecture 10, Sebastian Korczak, only for educational purposes of WUT students. 115

Real differentiator (derivative+1st order)

7. Bode plot:

L(ω)=20 log A (ω)=20 log|kω| − 20 log √T 2ω2+1

A(ω)= √P2+Q

2=|k ω|/ √T

2+1

φ (ω)=arctanQ

P=arctan( 1

T ω)

φ(ω

) [r

ad]

π2

π4

1T

10T

ω [rad/s]

100T

110T

1100T

for k>0

L(ω

) [d

B]

ω [rad/s]110T

1T

20 log|k /T| − 3

10 /T

20 log|k /T| − 20

20 log|k /T|

20 log|k /T| − 40

0

Page 116: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

5.12.2017 TM&AC, Lecture 10, Sebastian Korczak, only for educational purposes of WUT students. 116

Real differentiator (derivative+1st order)Examples

1 RC CIRCUIT:input – voltage u1(t)output – voltage u2(t)

Page 117: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

5.12.2017 TM&AC, Lecture 10, Sebastian Korczak, only for educational purposes of WUT students. 117

Delay

1. Element equation:u(t) - inputy (t ) - output

2. Static characteristic (steady state): y=u for dydt

=0 ∧dudt

=0

3. Transfer function: H (s)=e− τ s

u

y

y (t)=u(t− τ)

Page 118: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

5.12.2017 TM&AC, Lecture 10, Sebastian Korczak, only for educational purposes of WUT students. 118

Delay

4. Step response:

input: u (t)=u01(t)

Laplace of input: U ( s)=u0

1

s

Laplace of output: Y (s)=H ( s)U (s)=u0

se − τ s

output: y (t)=L − 1{Y (s)}=u0 1(t − τ)

u0

u(t)

t

u0

y (t )

t

τ

Page 119: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

5.12.2017 TM&AC, Lecture 10, Sebastian Korczak, only for educational purposes of WUT students. 119

Delay

5. Frequency response: H ( jω)=e − τ jω

6. Nyquist plot:

P (ω)=cos(τω), Q (ω)= − sin (τω)

P(ω)

Q(ω)

ω=00

ω= π2 τ

ω=πτ

ω=3π2 τ

1

1

− 1

− 1

for k>0

e − x=cos x − j sin x

Page 120: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

5.12.2017 TM&AC, Lecture 10, Sebastian Korczak, only for educational purposes of WUT students. 120

Delay

7. Bode plot:

L(ω)=20 log A (ω)=20 log 1=0

A(ω)= √P2+Q

2=1

φ (ω)=arctanQ

P=arctan ( − tan ( τω))= − τω

φ(ω

) [r

ad]

− π

πτ

ω [rad/s]

10πτ

L(ω

) [d

B]

ω [rad/s]

110T

1T

10T

0

Page 121: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

5.12.2017 TM&AC, Lecture 10, Sebastian Korczak, only for educational purposes of WUT students. 121

DelayExamples

1 WIRELESS TRANSMISSION:input – sent dataoutput – received data

data pocket data pocket

Page 122: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

5.12.2017 TM&AC, Lecture 10, Sebastian Korczak, only for educational purposes of WUT students. 122

Second-order inertial element

1. Element equation:

2. Static characteristic (steady state): y=ku for dydt

=0 ∧dudt

=0

3. Transfer function: H (s)=k

T 12s

2+T 2 s+1

u

y

T 12 d

2y (t)

dt 2+T 2

dy (t )

dt+ y (t )=k u(t)

Page 123: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

5.12.2017 TM&AC, Lecture 10, Sebastian Korczak, only for educational purposes of WUT students. 123

Second-order inertial element

4. Step response:

input: u (t)=u01(t)

Laplace of input: U ( s)=u0

1

s

Laplace of output: Y (s)=H ( s)U (s)=k u0

s(T 12 s2+T 2 s+1)

output: y (t )=L− 1 {Y (s )}=

={k u0

T 1

2(1− e

− ht (cosω t+hω sinω t )), for h≤ ω0

k u0

T 12 (1+e

− ht((h+w

2w− 1)e− wt

−h+w

2 we

wt)), for h≥ ω0

where: h=T 2

2T 12, ω0=

1T 1

, ω= √ω02 − h2 , w= √h2 − ω0

2

Page 124: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

5.12.2017 TM&AC, Lecture 10, Sebastian Korczak, only for educational purposes of WUT students. 124

Second-order inertial element

4. Step response:

u0

u(t)

t

k u0

y (t )

t

h<ω0

h=ω0

h>ω0

Page 125: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

5.12.2017 TM&AC, Lecture 10, Sebastian Korczak, only for educational purposes of WUT students. 125

Second-order inertial element

5. Frequency response: H ( jω)=k

− T 12ω

2+T 2 jω+1

6. Nyquist plot:

P (ω)=k (1 − T 1

2)

(1 − T 12ω2)2+T 2

2ω2, Q (ω)=

− k T 2ω

(1 − T 12ω2)2+T 2

2ω2

P(ω)

Q(ω)

ω=0ω= ∞

k0

ω=1/T

for k>0

for h<ω0

for h=ω0

for h>ω0

Page 126: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

5.12.2017 TM&AC, Lecture 10, Sebastian Korczak, only for educational purposes of WUT students. 126

Second-order inertial element

7. Bode plot:

L(ω)=20 log A (ω)

A(ω)= √P2+Q

2

φ (ω)=arctanQ

P

L(ω

) [d

B]

ω [rad/s]

110T 1

1T 1

20 log|k| − 20

20 log|k|

20 log|k| − 40

for k>0

10T 1

for h<ω0

for h=ω0

for h>ω0

φ(ω

) [r

ad]

π

π2

1T

10T

ω [rad/s]

100T

110T

1100T

Page 127: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

5.12.2017 TM&AC, Lecture 10, Sebastian Korczak, only for educational purposes of WUT students. 127

Second-order inertial elementExamples

material point of mass m

linear spring with stiffness k

linear damper with damping c

1 VIBRATING SYSTEM:input – force F(t)output – displacement y(t)

y(t)

F(t)

Page 128: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

5.12.2017 TM&AC, Lecture 10, Sebastian Korczak, only for educational purposes of WUT students. 128

Second-order inertial elementExamples

LINEAR MOTION OF A MATERIAL POINT WITH LINEAR DAMPING:input – force F(t)output – displacement x(t)

F(t)

x(t)

example: car driving on a flat surface with air resistance proportional to velocity, described using machine equation of motion, with assumption of constant reduced mass.

2

3

ANGULAR MOTION OF A RIGID BODY WITH LINEAR DAMPING:input – torque M(t)output – angle φ(t)

M(t)

φ(t)

Page 129: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

5.12.2017 TM&AC, Lecture 10, Sebastian Korczak, only for educational purposes of WUT students. 129

Second-order inertial elementExamples

4 HEATED OBJECT WITH HIGH INERTIA:input – heater power h(t)output – object temperature Ti(t)

Page 130: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

5.12.2017 TM&AC, Lecture 10, Sebastian Korczak, only for educational purposes of WUT students. 130

Classification of basic automatic systems

Element name Transfer function

proportional k

first order (inertial)

integrator

differentiator

differentiator with inertia

delay

second order (oscillator)

k

Ts+1

ks

ksks

Ts+1

e − τ s

k

T 12s

2+T 2 s+1

Page 131: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

11.12.2017 TM&AC, Lecture 11, Sebastian Korczak, only for educational purposes of WUT students. 131

Lecture 11

Block diagram algebra.Control and controllers.

Materials license: only for educational purposes of Warsaw University of Technology students.

Page 132: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

11.12.2017 TM&AC, Lecture 11, Sebastian Korczak, only for educational purposes of WUT students. 132

BLOCK DIAGRAM ALGEBRATransfer function

X(s) Y(s)G(s)

Page 133: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

11.12.2017 TM&AC, Lecture 11, Sebastian Korczak, only for educational purposes of WUT students. 133

BLOCK DIAGRAM ALGEBRAinformation node

X(s)

one input,a few outputs,

X(s) X(s)

X(s)

Page 134: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

11.12.2017 TM&AC, Lecture 11, Sebastian Korczak, only for educational purposes of WUT students. 134

BLOCK DIAGRAM ALGEBRAsum node

A(s) +

B(s)

+

A(s)+B(s)-C(s)–

C(s)

Page 135: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

11.12.2017 TM&AC, Lecture 11, Sebastian Korczak, only for educational purposes of WUT students. 135

BLOCK DIAGRAM ALGEBRAserial connection

G1(s)x(s) y(s) x(s) y(s)

GR(s)G2(s)

GR(s)=G1(s) G2(s)

Page 136: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

11.12.2017 TM&AC, Lecture 11, Sebastian Korczak, only for educational purposes of WUT students. 136

BLOCK DIAGRAM ALGEBRAparallel connection

G1(s)x(s) y(s) x(s) y(s)

GR(s)

G2(s)GR(s)= - G1(s) + G2(s) + G3(s)

-

+

G3(s)

+

Page 137: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

11.12.2017 TM&AC, Lecture 11, Sebastian Korczak, only for educational purposes of WUT students. 137

BLOCK DIAGRAM ALGEBRAfeedback

G2(s)

+

x(s) y(s) x(s) y(s)GR(s)G1(s)

GR=G1

1+G1 G2

Page 138: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

11.12.2017 TM&AC, Lecture 11, Sebastian Korczak, only for educational purposes of WUT students. 138

BLOCK DIAGRAM ALGEBRAchange of information points order

X(s) X(s)

Page 139: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

11.12.2017 TM&AC, Lecture 11, Sebastian Korczak, only for educational purposes of WUT students. 139

BLOCK DIAGRAM ALGEBRAorder change of sum node and block

G(s)+

+

X(s) Y(s)

A(s)

G(s)

G(s)+

+

X(s) Y(s)

A(s)

Y=(X+A)G Y=XG+AG

Page 140: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

11.12.2017 TM&AC, Lecture 11, Sebastian Korczak, only for educational purposes of WUT students. 140

-

+

A(s)

C(s)B(s)

+

- +

+

A(s)

B(s)C(s)

-

+

BLOCK DIAGRAM ALGEBRAorder change of sum nodes

attention to signs!

Page 141: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

11.12.2017 TM&AC, Lecture 11, Sebastian Korczak, only for educational purposes of WUT students. 141

BLOCK DIAGRAM ALGEBRAorder change of block and information node

G(s) G(s)

G(s)

Page 142: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

11.12.2017 TM&AC, Lecture 11, Sebastian Korczak, only for educational purposes of WUT students. 142

Closed loop control

SYSTEM/PROCESS/

PLANT

u(t)=x (t) y (t)CONTROLLER

yd(t )

desiredoutput(setpoint) control

function

system output(measured)

system input

+

-

e (t )

error

Page 143: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

11.12.2017 TM&AC, Lecture 11, Sebastian Korczak, only for educational purposes of WUT students. 143

Closed loop control

u(t)CONTROLLER

controlfunction

e(t)

error

Page 144: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

11.12.2017 TM&AC, Lecture 11, Sebastian Korczak, only for educational purposes of WUT students. 144

Types of controllers

ON/OFF

three state

Proportional (P)

Integrator (I)

Differentiator (D)

Proportional-inegral-derivative (PID)

Page 145: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

11.12.2017 TM&AC, Lecture 11, Sebastian Korczak, only for educational purposes of WUT students. 145

RELAY / ON-OFF / TWO STATE / BANG-BANG CONTROLLER

u(t)

Control signal

e(t)

erroru(t)

e(t)

u(t)={umax , if e>e0

umin , if e< − e0

no change, in other situations}

umax

umin

e0 − e0

eo - mechanical or programmed hysteresis

Page 146: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

11.12.2017 TM&AC, Lecture 11, Sebastian Korczak, only for educational purposes of WUT students. 146

NONLINEARITIES

input

output

Symmetric hard limiting saturation

Page 147: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

11.12.2017 TM&AC, Lecture 11, Sebastian Korczak, only for educational purposes of WUT students. 147

input

output

NONLINEARITIESDead zone

Page 148: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

11.12.2017 TM&AC, Lecture 11, Sebastian Korczak, only for educational purposes of WUT students. 148

EXAMPLE 1

mdv (t )

dt= f (t ) − d (t )

Car on a flat surfacem – mass,f(t) – driving force,d(t)=c*v(t) – air resistance,v(t) – velocity H (s)=

V (s)

F (s)=

1

ms+c

Speed control (cruise control, autocruise, tempomat)

CARf (t ) v (t )

PROPORTIONALCONTROLLER

vd(t )

desiredvelocity

+

-

e(t)

realvelocity

driving force

Page 149: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

11.12.2017 TM&AC, Lecture 11, Sebastian Korczak, only for educational purposes of WUT students. 149

EXAMPLE 2Water level control

x1(t)[m3/ s ] - inflow of a liquid (controlled)

x2(t )[m3 /s ] - outflow of a liquid (not controlled)

w (t )[m] - level of a liquid in a tank

A [m2] - constant surface area

w(t)

x2(t)

x1(t)

Page 150: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

19.12.2017 TM&AC, Lecture 12, Sebastian Korczak, only for educational purposes of WUT students. 150

Lecture 12

PID controller.Stability.

Materials license: only for educational purposes of Warsaw University of Technology students.

Page 151: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

19.12.2017 TM&AC, Lecture 12, Sebastian Korczak, only for educational purposes of WUT students. 151

PID transfer functions

kP

1

Ti s

Td s

T d s

T s+1

Controller Transfer function

Proportional (P)

Integral (I)

Ideal derivative (D)

Real derivative (D)

Page 152: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

19.12.2017 TM&AC, Lecture 12, Sebastian Korczak, only for educational purposes of WUT students. 152

PID transfer functions

kP(1+ 1

Ti s+Td s)

kP+ki1

s+kd s

Controller Transfer function

Proportional-integral-derivative (PID)

in standard formwith ideal derivative

Proportional-integral-derivative (PID)

in parallel formwith ideal derivative

Page 153: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

19.12.2017 TM&AC, Lecture 12, Sebastian Korczak, only for educational purposes of WUT students. 153

PID transfer functions

kP(1+ 1

Ti s+Td s

Ts+1)

kP+ki1

s+kd

s

Ts+1

Controller Transfer function

Proportional-integral-derivative (PID)

in standard formwith real derivative

Proportional-integral-derivative (PID)

in parallel formwith real derivative

Page 154: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

19.12.2017 TM&AC, Lecture 12, Sebastian Korczak, only for educational purposes of WUT students. 154

PID CONTROLLERstandard form with ideal derivative

1

+

+

1Ti s

kP

T d s

+

Page 155: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

19.12.2017 TM&AC, Lecture 12, Sebastian Korczak, only for educational purposes of WUT students. 155

PID CONTROLLERparallel form with ideal derivative

+

+

ki1s

kP

kd s

+

Page 156: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

19.12.2017 TM&AC, Lecture 12, Sebastian Korczak, only for educational purposes of WUT students. 156

PID CONTROLLERstep responses

u(t)CONTROLLER

controlsignal

e(t)

error

?

Page 157: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

19.12.2017 TM&AC, Lecture 12, Sebastian Korczak, only for educational purposes of WUT students. 157

P - CONTROLLER

time

input

output

G(s)=K p

K p x0

x0

Page 158: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

19.12.2017 TM&AC, Lecture 12, Sebastian Korczak, only for educational purposes of WUT students. 158

I - CONTROLLER

time

input

output

Ti

G(s)=1

Ti s

x0

Page 159: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

19.12.2017 TM&AC, Lecture 12, Sebastian Korczak, only for educational purposes of WUT students. 159

PI - CONTROLLER

time

input

output

Ti

G(s)=Kp(1+1

Ti s)

K p x0

x0

2K p x0

Page 160: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

19.12.2017 TM&AC, Lecture 12, Sebastian Korczak, only for educational purposes of WUT students. 160

D - CONTROLLER

time

input

output

G(s)=T d s

+ ∞

x0

Page 161: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

19.12.2017 TM&AC, Lecture 12, Sebastian Korczak, only for educational purposes of WUT students. 161

D - CONTROLLER

time

input

output

G(s)=T d s

x0

discrete time

x0

Δ t

Δ t

Page 162: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

19.12.2017 TM&AC, Lecture 12, Sebastian Korczak, only for educational purposes of WUT students. 162

PD - CONTROLLER

time

input

output

G(s)=KP (1+T d s)+ ∞

x0

K p x0

Page 163: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

19.12.2017 TM&AC, Lecture 12, Sebastian Korczak, only for educational purposes of WUT students. 163

czas

wejście

wyjście

G(s)=Kp(1+1Ti s

+T d s)

x0

K p x0

2K p x0

Ti

+ ∞

PID – CONTROLLERstandard form, ideal derivative

Page 164: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

19.12.2017 TM&AC, Lecture 12, Sebastian Korczak, only for educational purposes of WUT students. 164

D - CONTROLLER

time

input

output

G(s)=Td s

T s+1

x0

T

0,368umax

T T

0,135umax

0,05umax

umax=x0

Td

T

Page 165: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

19.12.2017 TM&AC, Lecture 12, Sebastian Korczak, only for educational purposes of WUT students. 165

PD - CONTROLLER

time

input

output

G(s)=Kp(1+T d s

T s+1)

x0

T

K p x0

KP x0(1+Td

T )

Page 166: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

19.12.2017 TM&AC, Lecture 12, Sebastian Korczak, only for educational purposes of WUT students. 166

time

input

output

G(s)=K p(1+ 1Ti s

+T d s

T s+1 )

x0

K p x0

KP x0(1+ T d

T )2K p x0

T i

PID – CONTROLLERstandard form, real derivative

Page 167: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

19.12.2017 TM&AC, Lecture 12, Sebastian Korczak, only for educational purposes of WUT students. 167

PID CONTROLLERimportant notes

Proportional term – necessary part of the controller, creates a main part of control signal that bring output of the system closer to desired value; higher KP coefficient gives lover errors; control signal is based on present error;

Integral term – this part of the controller accumulates error; for nonzero error control signal increases that helps to achieve zero error; control signal is based on past error values; “integral windup” problem;

Derivative term – this part of the controller reacts on error changes; for constant error control signal is zero; control signal is based on the trend of feature error; this term is very sensitive to noise;

Page 168: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

19.12.2017 TM&AC, Lecture 12, Sebastian Korczak, only for educational purposes of WUT students. 168

PID CONTROLLERInfluence of errors onto control signal

Control signal

P

Control error

I

D

0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00

-1-0,8-0,6-0,4-0,20

0,20,40,60,81

0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00

-1,00-0,80-0,60-0,40-0,200,000,200,400,600,801,00

0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00

-1,00

-0,60

-0,20

0,20

0,60

1,00

0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00

-1,00-0,80-0,60-0,40-0,200,000,200,400,600,801,00

Page 169: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

19.12.2017 TM&AC, Lecture 12, Sebastian Korczak, only for educational purposes of WUT students. 169

PID CONTROLLERintegral windup problem

After a large change in a setpoint the integral term can produce very large control signal (higher than maximum possible) – system input is very hight until accumulated error goes back close to zero.

Possible solution: disabling and zeroing integral term outside the small region around the setpoint.

Page 170: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

19.12.2017 TM&AC, Lecture 12, Sebastian Korczak, only for educational purposes of WUT students. 170

Quality of the control process

Overshoot: w=e1

e0

100%

Risetime

steady-stateerror

Settlingtime

czas

setpoint

System output

e1

e2

eST

TR ±5%e0 region

TS

e0

Damping: d=e2

e1

100 %

Page 171: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

19.12.2017 TM&AC, Lecture 12, Sebastian Korczak, only for educational purposes of WUT students. 171

PID CONTROLLERtuning methods

Analytical With a simulation Experimental

1st step: calculation of the system's reduced

transfer function2nd step: calculation of the system's step

response3rd step: tuning of the

Kp, Ki and Kd coefficients to obtain desired shape of step

response

1st step: calculation of the system's reduced

transfer function2nd step: numerical

implementation of the system's reduced transfer function

3rd step: tuning of the Kp, Ki and Kd

coefficients to obtain desired shape of the system's simulated

outputs

Manual tuning

or

methods: Ziegler-Nichols Pessen Cohen-Coon Åström–Hägglund

Page 172: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

19.12.2017 TM&AC, Lecture 12, Sebastian Korczak, only for educational purposes of WUT students. 172

PID CONTROLLERinteractive simulation and tuning

Download spreadsheet file from the website

Page 173: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

19.12.2017 TM&AC, Lecture 12, Sebastian Korczak, only for educational purposes of WUT students. 173

PID CONTROLLERZiegler-Nichols tuning method (PID in standard form)

1. Disable integral and derivative terms of the controller. Set proportional gain to small value.2. Observe a step response of the output of control loop. Go to point 3, if you observe stable and consistent oscillations. If not, increase proportional gain and repeat step 2.3. For the ultimate gain Ku from step 2 and oscillation period Tucalculate parameters of the controller according to the table:

kp Ti Td

ClassicZiegler-Nichols

0.6 Ku 0.5 Tu 0.125 Tu

Pessen 0.7 Ku 0.4 Tu 0.15 Tu

no overshoot 0.2 Ku 0.5 Tu 0.333 Tu

Page 174: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

19.12.2017 TM&AC, Lecture 12, Sebastian Korczak, only for educational purposes of WUT students. 174

PID CONTROLLERprogramming

dt = 0.1p_error = 0.sum = 0.Kp = 2.Ki = 0.5Kd = 0.01start:

setpoint = …measurement = …error = setpoint – measurementsum = sum + error * dtderivative = (error – p_error) / dtoutput = Kp*error + Ki*sum + Kd*derivativep_error = errorwait(dt)goto start

SYSTEMPIDsetpoint

controlfunction

system output+

– measurement

error

Page 175: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

19.12.2017 TM&AC, Lecture 12, Sebastian Korczak, only for educational purposes of WUT students. 175

PID CONTROLLERinteractive simulation

PID for a car position control – real-time simulation

Page 176: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

19.12.2017 TM&AC, Lecture 12, Sebastian Korczak, only for educational purposes of WUT students. 176

BIBO stability

Bounded Input, Bounded Output stability(in signal processing and control theory)

a LTI SISO system is called BIBO stable if its outputwill stay bounded for any bounded input.

∀t ⩾ 0

if |x (t)|⩽ A , then |y (t )|⩽ B ∃0<B< ∞

∃0<A< ∞

x (t ) - input

y (t) - output

Page 177: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

19.12.2017 TM&AC, Lecture 12, Sebastian Korczak, only for educational purposes of WUT students. 177

General stability criterion

Hurwitz criterion

Nyquist stability criterion

STABILITY CRITERIA

Page 178: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

19.12.2017 TM&AC, Lecture 12, Sebastian Korczak, only for educational purposes of WUT students. 178

ℜ ( p1)=a1 , ℑ ( p1)=b1 ℜ y (t )=e

a1 tcos b1 tG (s)=

Y (s)

X (s)=

1s − p1

ℜ ( p1)<0asymptotically stable

Page 179: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

19.12.2017 TM&AC, Lecture 12, Sebastian Korczak, only for educational purposes of WUT students. 179

General stability criterion

G (s) is stable if: Re p1<0 ∧ Re p2<0 ∧ ... ∧ Re pn<0

LTI SISO system is asymptotically stable if real part of every pole of the system's transfer function is less than zero.

G (s)=(s − z1)(s − z2)...(s − zm)

(s − p1)(s − p2) ...(s − pn)

Page 180: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

9.01.2018 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes of WUT students. 180

Lecture 13

Stability criteria.Gain margin and phase margin.

System correction.

Materials license: only for educational purposes of Warsaw University of Technology students.

Page 181: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

9.01.2018 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes of WUT students. 181

Hurwitz criterion

mathematics

a necessary and sufficient condition whether all

the roots of the polynomial are in the left half of the complex plane

control theory

a necessary and sufficient condition whether all the poles of transfer function of a linear

system have negative real parts

Page 182: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

9.01.2018 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes of WUT students. 182

Hurwitz criterion

LTI SISO system with a transfer function

H (s)=bm s

m+bm − 1 s

m − 1+...+b1 s+b0

an sn+an − 1 s

n − 1+...+a1 s+a0

=(s − z1)(s − z2) ...(s − zm)

(s − p1)(s − p2)...(s − pn)

an>0 , an − 1>0 , ... , a1>0 , a0>01

2

M n=[ an − 1 an 0 0 0 0

an − 3 an − 2 an − 1 an 0 0

an − 5 an − 4 an − 3 . . .

. . . . . . 0 0 0 a0 a1 a2

0 0 0 0 0 a0

]Δ2 Δ3 Δn − 1

detΔ2>0

detΔ3>0

...detΔn − 1>0

is stable if:

- leading principal minor of order i

Δi

Page 183: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

9.01.2018 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes of WUT students. 183

Nyquist stability criterion

Gz (s)=y( s)

x (s)=

G1( s)

1+G1(s)G2( s)

G1(s)

G2(s)

+

x(s) y(s)

G1 G2 = − 1Unstable if:

G1(s)

G2(s)

Gopen(s)=a(s)

x (s)=G1(s)G2(s)

a(s)

y(s)x(s)

a(s)

ω=0

Re Gopen

Im G open

ω → − ∞

ω → + ∞

Page 184: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

9.01.2018 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes of WUT students. 184

Nyquist stability criterion (particular)

The closed-loop system is stable if:1) open-loop transfer function is stable AND

2) open-loop transfer function not enclosing the point (-1,j0).

ReGopen

Im G open

Re Gopen

Im G open

-1 -1

stable unstable

Page 185: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

9.01.2018 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes of WUT students. 185

Gain margin

P(ω)

Q(ω)

ΔM

-1

L(ω

) [d

B]

ω [rad/s]

φ(ω

) [r

ad] ω [rad/s]

− π

ΔM0

Closed-loop system will loose its stability if we add additional gain (in serial) greater or equals to gain margin.

Page 186: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

9.01.2018 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes of WUT students. 186

Phase margin

P(ω)

Q(ω)

-1

Δφ

L(ω

) [d

B]

ω [rad/s]

φ(ω

) [r

ad] ω [rad/s]

− πΔφ

0

Closed-loop system will loose its stability if we add additional

delay (in serial) greater or equals to phase margin.

Page 187: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

9.01.2018 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes of WUT students. 187

Summing of Bode plots – example

G (s) = 10

s2+s = 10 ⋅

1

s+1 ⋅

1

s

L(ω

) [d

B] φ(ω

) [r

ad]

ω [rad/s]

− π2

0

201 100,1

40

60

− π

− 20

− 40

− 60

ω [rad/s]

1 100,1

Page 188: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 188

Lecture 14

Material repeat.Informations about the exam.

WUT questionnaires.

Materials license: only for educational purposes of Warsaw University of Technology students.

Page 189: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

9.01.2018 TM&AC, Lecture 13, Sebastian Korczak, only for educational purposes of WUT students. 189

Lecture 15 – modern control theory overview,

experiment with control system,

consultations

Page 190: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

10.10.2017 TM&AC, Lecture 2, Sebastian Korczak, only for educational purposes of WUT students. 190

Theory of Machines and Automatic ControlWinter 2017/2018

Field of studies: Electric and Hybrid Vehicle Engineering (full-time)

form of studies: 30 hrs lecture, 15 hrs project class

ECTS: 4

Lecture: Tuesdays at 8:15 (room 3.3)

Projects: Wednesdays at 9:15 (room 3.8)1st meeting on 8th November

Lecturer: Sebastian Korczak, PhD, Eng.

room: 2.8b

e-mails: [email protected], [email protected]

consultations: Tuesdays at 10:00-11:00 and Thursdays at 12:00-13:00

website with materials and marks: http://myinventions.pl/lectures/

Page 191: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

3.10.2017 TM&AC, Lecture 1, Sebastian Korczak, only for educational purposes of WUT students. 191

Assessment method

Exam: written examination on skills and knowledge after completing and successful attestation of project classes.

2 terms in the winter examination session (1.02, 8.02)

1 term in the autumn examination session (3.09 – 19.09)

Negativ mark: 2,0Positiv marks: 3,0; 3,5; 4,0; 4,5; 5,0

Page 192: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 192

EXAM – IMPORTANT NOTES

You have to pass the project class to attend the exam.

Student card or erasmus paper is needed on the exam.

Please write the exam clearly on the A4 paper.

Everyone must to return the exam.

You can not use any electronic devices during the exam (mobile phones, smart watches, calculators).

Table of Laplce transform will be displayed on the screen.

Additional persons are delegated to help during the exam.

Any cheating behaviors will cause exam failure.

Topics will be distributed in printed form or displayed.

Page 193: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 193

EXAM – IMPORTANT NOTES

Your answers will be rated with points.

Exam mark will be based on the total number of points achieved with the rules:

< 50% - mark 2 (exam failed)

51%-60% - mark 3,0

61%-70% - mark 3,5

71%-80% - mark 4,0

81%-90% - mark 4,5

>90% - mark 5,0

If marks from project class and exam are positive, then

Final_mark = 0.5 * project_mark + 0.5 * exam_mark

Page 194: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 194

EXAM – IMPORTANT NOTES

MAIN GROUPS OF TOPICS

1. Mechanisms – kinematic pairs, movability, velocities and accelerations, dynamics.2. Machine dynamics – system reduction, equation of machine motion, flywheel.3. Laplace transform. Transfer function.4. Clasification of basic automatic systems and their characteristics (step responses, Nyquist and Bode plots).5. Block diagram algebra (information and sum nodes, serial, parallel and feedback connections).6. Controllers (on/off, PID).7. Stability criterions.

Please prepare carfully for the exam.

Page 195: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 195

EXAM – TERM 1

1st February 2018 (Thursday)

12:00 – 13:15 exam for lecture in polish

13:25 – lecture hall (room 3.4) openning

13:25-13:30 – preparation

13:30-14:30 – exam

5th February 2018 (Monday)

to 12:00 – publication of exam effects on the website

http://myinventions.pl/lectures/ and USOSweb

12:00-14:00 – filling of indexes and erasmus papers

Page 196: WarsawUniversity of Technologymyinventions.pl/dydaktykaSiMR/TMAC_17-18-Lecture_14_notes.pdf · Kinematic pairs (3D) Class V rotary = 6 -1 translatory screw-type. ... (the Chebychev–Grübler–Kutzbach

24.01.2017 TM&AC, Lecture 14, Sebastian Korczak, only for educational purposes of WUT students. 196

EXAM – TERM 2

8th February 2018 (Thursday)

12:00 – 13:15 exam for lecture in polish

13:25 – lecture hall (room 3.4) openning

13:25-13:30 – preparation

13:30-14:30 – exam

11th February 2017 (Sunday) – last session day

to 23:59 – publication of exam effects on the website

http://myinventions.pl/lectures/ and USOSweb

13th February 2017 (Monday)

12:00 – 14:00 – filling of indexes and erasmus papers