warehouse!logistics!and!internal! … · warehousing"can" be"...

9
1 WAREHOUSE LOGISTICS AND INTERNAL DISTRIBUTION OPTIMIZATION BARBOSA E ALMEIDA VIDRO –CASE S TUDY Maria Victoria Camacho Instituto Superior Técnico – Universidade Técnica de Lisboa July 7, 2011 Abstract: The industrial macroeconomic environment in which companies are developed today is characterized by being highly demanding and competitive. Success or failure depends not only on the ability to adapt to market requirements, but also on the efficiency level of the applied practices. In this sense, the increase in productivity in warehouse operations has a direct influence on the optimization of logistic processes in the company, thus giving a competitive advantage. After studying the stock behavior using different criteria for ABC analysis, this paper proposes and analyzes different layout alternatives for reducing times and distances in warehouse activities, while increasing the storage capacity of the warehouse compared to the current situation. The present work is implemented on a real case study with specific conditions in the finished product warehouse of a glass packaging factory. A set of indicators was developed in order to evaluate the performances of the suggested layouts. Other suggestions on systems and division in zones of warehouse layout are presented in an attempt to increase productivity in warehouse processes. Key words: Warehouse, layout, internal logistics, KPI, internal distribution. 1. INTRODUCTION Warehousing can be defined as the process in which three main functions are accomplished: receiving products from a source, storing products as long as necessary until they are requested (internally or externally) and retrieving the products when they are demanded (Queirolo et. al. 2002). It is one of the most important levels of the supply chain, although, it is an activity of high financial cost for companies, standing for approximately 25% of total costs (Frazelle 2002). Thus, by improving its internal operations, the performance of the company is also improved. Current initiatives, such as justintime businesses, attempt to eliminate warehousing as a level in the supply chain. However, it is very difficult to achieve the organization needed to coordinate the different levels and suppress warehouses from the process. Storing products compensate imbalances in the supply chain, giving to it more flexibility while stabilizing it. A good warehouse management is a prerequisite for achieving a high level of customer service (Frazelle 2002). The process of warehousing involves a series of sequential activities, namely: reception of the goods, putaway, storage, order picking, sortation, unitizing and shipping (Frazelle 2002). This paper is focused on the putaway activity. Putaway can be defined as the act of placing merchandise in storage (Frazelle 2002). It can be considered a reverse pick and is characterized by long distances, especially when a random storage system is applied, which is the case in the current study. Travel and handling can be minimized by generating a putaway route according to layout slotting and frequency of use (Liebeskind 2005). Therefore, layout must be established by level of activity or popularity of the

Upload: phamngoc

Post on 20-Aug-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

1    

 

 

WAREHOUSE  LOGISTICS  AND  INTERNAL  DISTRIBUTION  OPTIMIZATION  

BARBOSA  E  ALMEIDA  VIDRO  –  CASE  STUDY    

Maria  Victoria  Camacho    

Instituto  Superior  Técnico  –  Universidade  Técnica  de  Lisboa  

 

July  7,  2011  

   

Abstract:   The   industrial   macroeconomic   environment   in   which   companies   are   developed   today   is  characterized  by  being  highly  demanding  and  competitive.  Success  or  failure  depends  not  only  on  the  ability  to  adapt  to  market  requirements,  but  also  on  the  efficiency  level  of  the  applied  practices.  In  this  sense,  the  increase  in  productivity   in  warehouse  operations  has  a  direct   influence  on  the  optimization  of   logistic  processes   in  the  company,  thus  giving  a  competitive  advantage.  After  studying  the  stock  behavior  using  different  criteria  for  ABC  analysis,   this   paper   proposes   and   analyzes   different   layout   alternatives   for   reducing   times   and   distances   in  warehouse  activities,  while  increasing  the  storage  capacity  of  the  warehouse  compared  to  the  current  situation.  The  present  work  is  implemented  on  a  real  case  study  with  specific  conditions  in  the  finished  product  warehouse  of   a   glass   packaging   factory.  A   set   of   indicators  was  developed   in   order   to   evaluate   the  performances   of   the  suggested  layouts.  Other  suggestions  on  systems  and  division  in  zones  of  warehouse  layout  are  presented  in  an  attempt  to  increase  productivity  in  warehouse  processes.  

Key  words:  Warehouse,  layout,  internal  logistics,  KPI,  internal  distribution.  

1. INTRODUCTION  Warehousing   can   be   defined   as  the   process   in  

which   three   main   functions   are  accomplished:  receiving   products  from   a   source,  storing  products  as  long  as  necessary  until  they  are  requested   (internally   or  externally)   and   retrieving  the  products  when  they  are  demanded  (Queirolo  et.  al.   2002).   It   is  one   of   the  most   important   levels  of  the   supply   chain,  although,   it   is  an  activity   of  high  financial   cost  for   companies,  standing   for  approximately   2-­‐5%   of   total   costs   (Frazelle   2002).  Thus,   by   improving   its   internal   operations,   the  performance   of   the   company   is   also   improved.  Current   initiatives,   such   as   just-­‐in-­‐time   businesses,  attempt   to   eliminate  warehousing   as   a   level   in   the  supply   chain.   However,   it   is   very  difficult   to  achieve  the   organization  needed   to   coordinate  the  different   levels   and   suppress  warehouses   from   the  process. Storing   products   compensate  

imbalances  in   the   supply   chain,  giving   to   it   more  flexibility   while   stabilizing   it.   A   good  warehouse  management  is   a   pre-­‐requisite   for  achieving  a  high  level  of  customer  service  (Frazelle  2002).  

The  process  of  warehousing  involves  a  series  of  sequential  activities,  namely:  reception  of  the  goods,  put-­‐away,   storage,   order   picking,   sortation,  unitizing  and  shipping  (Frazelle  2002).  This  paper  is  focused  on   the  put-­‐away  activity.    Put-­‐away  can  be  defined  as  the  act  of  placing  merchandise  in  storage  (Frazelle  2002).  It  can  be  considered  a  reverse  pick  and   is   characterized   by   long   distances,   especially  when  a  random  storage  system  is  applied,  which  is  the   case   in   the   current   study.   Travel   and   handling  can   be   minimized   by   generating   a   put-­‐away   route  according   to   layout   slotting   and   frequency   of   use  (Liebeskind   2005).   Therefore,   layout   must   be  established  by   level   of   activity  or  popularity  of   the  

Warehouse  logistics  and  internal  distribution  optimization   2    

 

products,   so   as   to   separate   fast   from   slow  movement  products  (Hales  2006).  

Most   literature   provides   a   global   approach   for  optimizing   processes   in   the   warehouse,   such   as  models   for   picking   and   general   warehouse  optimization  models.  Gua,  Goetschalckx  &  McGinnis  (2007)   presented   and   extensive   review   on  warehouse   operation-­‐planning   problems,   which  were   classified   according   to   basic   warehouses  functions.  The   aim  of   this  paper  was   to   establish   a  bridge   between   academic   research   and   real  warehouse   practices,   explaining   planning   models  and  methods.  Baker  &  Canessa  (2009)  elaborated  a  literature   review   in   warehouse   design,   validating  their  results  with  warehouse  design  companies.  The  result   was   a   general   framework   of   steps,   with  specific   tools   and   techniques   that   can   be   used   for  layout  design.    

The   closest   study  appears   to  be  Chan  and  Chan  (2011),   which   aimed   to   present   a   simulation   for   a  real   case   study   about   manual-­‐pick   and   multi-­‐level  rack.   This   study   focuses   on   a   storage   assignment  problem   in   an   ABC   warehouse   and   use  measurements  of  travel  distance  and  order  retrieval  time   to   determine   performance.   In   other   studies,  such   as   Roodbergen   &   Vis   (2006),   a   model   for  warehouse  layout  optimization  was  built.  The  main  objective  was  to  find  the  optimal  number  of  aisles  in  an   order   picking   area.     The   study   considered  manual   order   picking,   in   which   pickers   walk   or  drive   through   a   rectangular   picking   area   with   no  unused   space.   Also,   Hwang   and   Cho   (2006)  developed   mathematical   and   simulation   models  considering   probabilistic   demand   and   picking  frequency.  A  computer  program  was  also  developed  to  test  the  results.      

Other  studies  presented  ABC  stock  classification  through   implementing   different   methods,   such   as  Hua   and   Song   (2011),   who   proposed   expansion   of  the   ABC   model   to   address   the   problem   of   its  simplicity.   They   studied   a   model   for   EIQ-­‐ABC  analysis,   which   aimed   to   provide   a   scientific   basis  for  warehouse  management.  

The   warehouse   analyzed   in   the   present   paper  corresponds   to   a   finished   goods  warehouse,  which  keeps   finished   products   and   is   located   near   the  facilities  of  the  factory.  

Due   to   the   many   limitations   of   the   warehouse  space   in   this   study,   and   the   specific   conditions   of  this   particular   case,   general  models   for   optimizing  layout  distributions  are  difficult  to  be  applied.    

This  paper  focuses  on  two  main  subjects,  which  are   layout   performance   and   putting   away   process.  The   main   objective   is   to   optimize   the   internal  

logistics   by   elaborating   warehouse   layout   models  using   triple   pallet   lanes   for   the  warehouse   located  near   the   end   of   the   production   line.   KPI   were  developed  to  evaluate  the  models  and  select  the  one  that   displayed   the   best   results.   The   layout  alternative   selected  must   reduce   the   time   spent   in  the   put   away   process,   optimizing   it.   It   is   also   an  objective  of  this  investigation  to  obtain  and  analyze  product  data,   as   to   identify  quantities   and   types  of  stock.   Additionally,   this   work   aims   to   establish  zones   according   to   a   previous   classification   of   the  inventory.    

2. PROBLEM  DESCRIPTION  The   present   investigation   took   place   between  

February   and   May   of   2011,   in   the   Portuguese  manufacturer   company   of   glass   containers   –  Barbosa  and  Almeida,  located  in  Lisbon.  

Barbosa   &   Almeida   Vidro,   S.A.   is   a   Portuguese  company   specialized   in   producing   glass   containers  for  food,  drinks  and  pharmaceutical   industries.  The  company,  which  owns   installations   in  Portugal  and  Spain,  has  recently  acquired  a  new  facility  in  Lisbon.  

The   building   analyzed   in   this   case   study   was  originally   built   for   train   assembling   and   was   not  intended   to   store   goods.   It   was   later   adapted   to  perform   the   functions   of   a   warehouse   despite   its  several   limitations   of   infrastructure   and   non-­‐favorable   conditions.   The   columns   to   support   the  structure  stand  in  the  middle  of  the  building  and  the  dimensions  of  the  facility  makes  it  difficult  to  adapt  any  optimized  layout  model  in  order  to  achieve  and  optimal  design.    

Products   are   stored   on   pallets,   universally  recognized   as   the   base   for   unitary   loads.   A   pallet  consists   in   a   portable,   horizontal,   rigid   platform,  generally  made  of  wood,  used   for  storing,   stacking,  handling   and   transporting   products   as   a   unitary  load  (Twede  &  Selke,  2005).    The  sizes  of  the  pallets  depend   on   the   type   of   product   and   the   industry.  Standard   Industrial   (1200   x   1000   mm2)   and  European  (1200  x  800  mm2)  pallets  are  used  in  the  present   investigation.   Unit   loads   are   stacked   using  the  block  stacking  system,  in  which  loads  are  placed  on  the  floor  and  stacked  one  on  top  of  each  other  in  storage   lanes.   Height   depends   on   various   factors,  such   as   the   weight   and   stability   of   the   loads,   the  clear   height   of   the   building   and   acceptable   safe  limits   (Robson   e   Copacino   1994).   In   the   present  investigation,   loads   are   stacked   in   a   maximum   of  three   levels,   which   will   be   referred   as   T3   loads.  Smaller   pallets  may   be   stacked   in   four   (T4   loads),  five  (T5  loads)  or  six  (T6  loads)  levels.  

As   loads   come   out   of   the   production   line,   they  are   grouped   by   reference   and   stored   randomly   in  

3    

 

any   open   slot.   Initially,   loads   are   placed   in   a  warehouse   located   near   the   end   of   the   production  line.   Some   items   are   later   moved   by   an   internal  truck   to   a   bigger  warehouse   inside   the   facilities,   a  few   meters   away.   The   drawback   of   these  procedures   is   the   amount   of   internal   transactions  done   to   store   the   loads   and   the   cost   of   using  unnecessary   equipment.   These   procedures   in   the  putting   away   process   were   also   object   of   the  present  investigation,  since  the  process  contains  too  many   steps   to   be   accomplished,   reflecting   a   non-­‐optimized  system.    

Mobile   equipment   used   for   transporting   and  stacking   loads   in   the   warehouse   is   two-­‐pallet  forklifts.   Depending   on   the   height   of   the   load,   the  forklift   can   transport  up   to   four   loads   at   a   time.   In  other   factories   of   the   company,   it   is   used   three-­‐pallet   forklifts,   which   is   an   initiative   that   will   be  adopted  in  the  warehouse  of  the  current  case  study.  These  forklifts  are  able  to  transport  up  to  six   loads  depending  on  the  height  of  the  load,  minimizing  the  time   for   storing   the   same   amount   of   items.  Warehouse  slots  are  double  pallet   lanes,  consistent  with   the   type   of   forklift   used   in   the   warehouse,  having  a  width  of  2,2m  so  the  forklift  can  enter  deep  into   the   position   and   place   the   pallet   loads.   The  alteration  of   the   forklift   type  also  means  alteration  of  the  layout,  which  must  be  modified  to  triple  pallet  lanes  with  a  width  of  3,3m  to  permit  the  entering  of  the  forklift.  

3. METHODOLOGY  For   the   elaboration   of   this   paper,   a   series   of  

steps  were  followed,  as  illustrated  in  Figure  1.  

 FIGURE  1:  Methodology  approach.    

The  first  step  consisted  in  gathering  information  about  the  actual  situation  in  the  company.  This  was  accomplished   through   direct   observation   of   the  facilities   and   non-­‐structured   interviews   with   the  working  personnel.    

The   second   step  consisted   in   gathering   and  analyzing  essential   data   to   characterize   the  situation.   The  data   required   for  analysis   was  obtained  through  the  software  used  by  BA.  The  data  that   was   not  available   in   the   system  was   obtained  

through  qualified   personnel.  Data   analysis  was  prepared  in  two  steps:  

o The  first  stage   constituted  a  characterization   of   the   products  in   the   factory  warehouse,  in  order  to  understand  its  behavior  and  elaborate   an   inventory   map.    This   analysis   done  using   the  concept   of  ABC   inventory   classification  and  product  rotation.    

o A   second   stage   consisted   in   obtaining   and  structuring   data   from   a   reference   month   through  the  software  SAP.    This   information   in  combination  with   the   current   configuration  of   the  warehouse   is  analyzed   through   Key   Performance   Indicators  created  by  author  in  the  process  of  investigation.  

The   third   step  included   the   creation  of  alternative   layout   models   using   the   AutoCAD  software.  

The  fourth  step   consisted   on   the   evaluation   of  the  layout  models  by  comparing  the  result  values    of  different  indicators  applied  to  the  reference  month.      

The   fifth   step   consisted   in   selecting  the  alternative   that   maximizes   the   productivity  of   the  warehouse.   Other   proposals   for   operational  performance  improvement  were  also  elaborated.    

4. RESULTS  AND  DISCUSSION  4.1. STOCK  CHARACTERIZATION  

It   was   analyzed   the   monthly   stock   as   to  determine  quantities  and  behavior  of  the  inventory,  using  ABC  classification  using  two  different  criteria.  The  first  was  the  Pareto  Principle,  which  is  based  on  the  20/80  rule.  The  second  classification  was  based  on   the   rotation   records   of   the   products   in   the  system.      

4.1.1. STOCK  QUANTITY  MAP  Figure   2   presents   the   monthly   input   of   the  

warehouse.   The   data   used   was   a   sample  correspondent   to   the   period   from   January   to  December   2010,   which   is   the   last   yearly   stock  record  available  in  the  SAP  software.    

 FIGURE  2:  Monthly  stock  record  in  the  year  2010.    

The  monthly  quantity  of  stock   in  2010  does  not  show   large   variations.   The   graphic   shows   that  

Problem  contextualiza1on    Step  1  

Data  gathering  and  analysis  Step  2  

Layout  models  designing  Step  3  

Layout  models  evalua1on  Step  4  

Selec1on  of  the  best  alterna1ve  Step  5  

50,000  

55,000  

60,000  

65,000  

70,000  

Jan/10  

Fev/10  

Mar/10  

Abr/10  

Mai/10  

Jun/10  

Jul/1

0  

Ago/10  

Set/10  

Out/10  

Nov/10  

Dez/10  

Prod

uct  q

uan,

ty  

Monthly  stock  2010  

Montlhy  stock   Average  

Warehouse  logistics  and  internal  distribution  optimization   4    

 

almost  all  values  appear  to  be  close  to  the  average,  which   value   is   61.880   products,   with   a   standard  deviation   of   3,6%.   The   graphic   shows   a   slowdown  in   June  2010,  which   is   recovered   rapidly   stating   in  July  2010.  The  possible  causes  for  this  event  may  be  attributed   to   seasonal   demand   or   internal  production   changes.   Further   acknowledgements  corroborated  that  production  capacity  had  changed  in  July  2010,  since  a  second  hoven  was  installed  and  production   capacity   increased.   This   fact   also  indicated  the  need   for  a  second  stock  map  analysis  using   different   period,   this   time   from   July   2010   to  March  2011  (See  Figure  3).      

 FIGURE  3:  Monthly  stock  record  from  July  2010  to  March  2011.  

Figure   3   illustrates   that   stock   has   a   linear  increasing  trend  as  from  July  2010  to  the  date  of  the  present   study.   The   data   for   further   analyses,   the  period   of   evaluation   will   comprehend   the   months  between  July  2010  and  March  2011.  

4.1.2. PRODUCT  CHARACTERIZATION  A   classification   of   SKUs   in   ABC   was   elaborated  

using   diverse   criteria,   as   will   be   showed   later   on.  The   data   utilized   for   the   analyses   represents   the  products   in   stock   with   physical   existence   in   the  warehouse.   SKUs   that   had   no   physical   existences  were  not  considered.    

The   first   approach   in   the   analyses   employs   the  Pareto  principle   to  analyze   the   inventory  behavior,  using  as  input  the  number  of  SKUs  and  the  monthly  quantity   of   products   stored   in   the  warehouse.   The  second   approach   divides   the   stock   by   level   of  activity,  applying  rotation  information  of  each  SKU.  

4.1.2.1.  QUANTITY  ABC  ANALYSIS  

The   ABC   analysis   is   based   on   the   Pareto  principle,  which  is  grounded  on  the  80/20  rule.  The  hypothesis   that   is   sought   to   confirm   with   this  approach   is   that  20%  of   the  SKUs  hold  80%  of   the  quantity   of   products.   Table   1   presents   the   average  results  of  the  analysis  for  the  period  of  evaluation.  

  A   B  e  C       %  SKU   %  Quantity   %  SKU   %  Quantity  

Average   25%   80%   75%   20%  TABLE  1:   Chart   exposing   the   average  percentages  of   SKUs   and    quantity  by  ABC  stock  classification  using  quantity  criteria.    

The   analysis   did   not   entirely   confirm   the  previously  stated  hypothesis,  for  the  80/20  rule  was  not   completely   satisfied;   though   the   results   were  close,  for  in  average  25%  of  the  SKUs  holds  80%  of  the   quantity.   The   study   also   showed   that   the  monthly   behavior   of   the   stock   is   similar   for   every  month.  

4.1.2.2. ROTATION  ABC  ANALYSIS  A   second   analysis   was   elaborated   in   order   to  

classify   the   inventory   by   SKU   rotation,   using   as  reference   the   average   rotation   of   the   company,  which   is   70   days,   and   according   to   the   conditions  presented  in  Figure  4.    

 FIGURE  4:  Classification  of  stock  in  ABC  by  rotation  criteria.    

The   aim   was   to   determine   how   many   SKUs  scored   under   the   company   average   of   maximum  days  in  stock,  and  how  does  this  factor  change  over  time.   The   results   of   the   analysis   are   showed   in  Figure  5.  

 FIGURE  5:  Graphic  and  chart  of   the  percentage  of  SKUs  by  ABC  stock  classification  using  rotation  criteria.  

The   results   show   that,   on   average,   class   A   of  SKUs  correspond  to  19%  of  the  total  amount,  being  a  good  approximation  of  the  20/80  rule.  The  results  also   confirmed   greater   variations   over   time,  which  can   be   consequence   of   the   seasonal   product  demand.        

   

50,000  55,000  60,000  65,000  70,000  75,000  

Jul/1

0  

Ago/10  

Set/10  

Out/10  

Nov/10  

Dez/10  

Jan/11  

Fev/11  

Mar/11  

Prod

uct  q

uan,

ty   Stock  since  July  2010  

Stock  since  July  2010  Linear  (Stock  since  July  2010)  

A • Products  with  rota1on  of  70  days  or  less    

B • Products  with  rota1on  between  71  and  210  days  

C • Products  with  rota1on  of  210  days  or  more  • Products  with  infinite  rota1on  

5    

 

4.2. WAREHOUSE  MANAGEMENT  OPTIMIZATION  

In   the   following   section   is  presented  a   series  of  proposals  for  warehouse  optimization.  A  first  phase  consists   on   the   designing   and   analysis   of   layout  models  using  KPIs  to  determine  the  best  alternative  that   is   expected   to   minimize   time   spent   in   the  putting  away  process.  A  second  phase  corresponds  to  the  zone  assignment  on  the  warehouse  for  class-­‐based  storage.  

4.2.1. LAYOUT  OPTIMIZATION  

Layout   models   are   based   on   triple   pallet   lanes  and   are   adapted   to   the   warehouse   infrastructure.  The   models   were   evaluated   using   a   set   of   KPIs  defined  by  author  and  presented  on  Figure  6,  using  the   quantity   of   loads   that   were   stored   on   March  2010  as  sample.    

  Name,  description  and  nomenclature     Formula  and  unit  

Operational  KPI  Group  1  

NV:  Number  of  travels  for  storing  the  loads  in  each  block.  (The  lower  the  better)  !!!!"  is  the  quantity  of  T3  loads  stored  in  lane  !  of  block  !.  !!!!!!  !"  is  the  quantity  of  T4,  T5  and  T6  loads  stored  in  lane  no.  !  of  block  no.  !.  !  and  !  are  constant  number,  and  depend  on  the  type  of  forklift  used.  For  double  pallet  forklifts,  !  equals  2  and  

!  equals  4.  For  triple  pallet  forklifts,  !  equals  3and  !  equals  6.    !  is  the  total  of  lanes.  !  is  the  total  of  block.  

The  total  number  of  travels  (!"!"#)  is  the  sum  of  all  !"!" .  

!"!"  =  !!!!"!

+  !!!!!!  !"

!

!

!!!

!

!!!

 

DP:  Total  traveled  distance  for  storing  the  loads  in  the  storage  lanes.    (The  lower  the  better)    !!  is  two  times  the  distance  from  the  put-­‐away  zone  to  te  middle  point  of  each  block.  This  number  includes  

both  ways  travel.    !"!  is  the  number  of  travels  to  each  block.  

The  total  traveled  distance  !"!"#  is  the  sum  of  all  distances  to  each  block  (!"!).  

!"! =   !!×!"!

!

!!!

 

(m)  

T:  Total  time  for  storing  the  total  amount  of  loads  in  the  storage  positions.  For  it  estimation,  it  was  needed  to  calculate  the  speed  (!"#)  in  which  forklifts  move,  also  taking  in  account  the  time  spent  in  removing  of  the  production  line  and  placing  the  loads  in  the  position.  (The  lower  the  better)    

!"!"#  total  hours  of  work  in  March  2011.    !!  unitary  time  spent  by  the  forklift  to  place  the  loads  in  each  block.    

The  total  time  (!!"#)  is  the  sum  of  all  unitary  times  !! .  

!"# =  !"!"#

!"!"#×1000  

(Km/h)    

!! =!"!!"#

 

(h)  CC:  Value  in  euros  of  the  amount  of  fuel  used  by  forklifts  to  store  the  pallets.  (The  lower  the  better)  

!!  is  the  consumption  rate  of  forklifts.  It  has  a  value  of  2,83Kg/h  for  double  pallet  forklifts  and  3,9Kg/h  for  triple  pallet  forklifts.    

!"  is  the  cost  of  fuel  and  equals  1,08  €/kg.  

!! =   !!×!!×!"!

!!!

 

(€)  

Operational  KPI  Group  2  

PpV:  Average  quantity  of  loads  stored  for  each  forklift  trip.  (The  higher  the  better)  !!"#  is  total  quantity  of  loads  in  March  2011.    !"!"#  is  the  total  number  of  trips  for  storing  the  loads.  

!"# =  !!"#!"!"#

 

(loads  stored  per  trip)  

DV:   Average   distance   traveled   by   the   forklifts   in   each   trip   to   store   the   loads.   (The   higher   the  better)  

!"!"#  is  the  total  distance  traveled  by  the  forklifts  to  store  the  loads.    

!" =!"!"#!"!"#

 

(m  per  trip)  VpH:  Average  number  of  trips  that  the  forklift  must  do  to  store  the  loads.  (The  higher  the  better)  

!!"#  is  the  total  work  time.  !"# =  

!"!"#!!"#

 

(trip  per  h)  CA:   Quantity   of   loads   that   can   be   stored  per   day   in   the  warehouse   taking   in   account   the   layout  disposition  and  the  type  of  equipment.  (The  higher  the  better)  For  this  indicator,  it  was  supposed  that  the  total  work  hours  per  day  per  worker  are  20.  A  work  day  divides  in  three   work   turns,   approximately   of   6   hours   and   40   minutes   each.   It   is   discounted   1   hour   for   lunch   and  approximately  20  minutes  to  count  fatigue.      

!" = !"#×!"#×  20  (loads  stored  per  day)  

CpQ:  Value  in  euros  of  the  total  amount  of  consumed  fuel  per  kilometer  by  the  forklifts.  (The  lower  the  better)  

!"# =!!×1000!"!"#

 

(€/Km)  

Area  KPI    

ABU:  Total  base  area  available  to  store  the  loads  per  block.  (The  higher  the  better)  !!  is  the  length  of  the  lane,  which  is  also  the  length  of  the  block.    !!  is  the  width  of  each  storage  lane.  This  value  equals  2,2m  for  double  pallet  lanes,  and  3,3m  for  triple  pallet  

lanes.    !". !"#$%!  corresponds  to  the  number  of  storage  lanes  per  block.      The  total  base  area  in  the  warehouse  !"#!"#  is  the  sum  of  all  the  base  areas  for  blocks  (!"#!).  

!"#! = !!×!!×!". !"#$%!  (m2)  

PB:   Number   of   loads   that   can   be   stored   in   the   base   level   of   the   storage   lanes.   (The   higher   the  better)  

!". !"#$%!  is  the  number  of  storage  lanes  in  each  block.    !"#!"  is  the  quantity  of  pallets  that  can  be  stores  in  the  base  level  of  the  storage  lanes.    

The  total  base  loads  !"!"#  is  the  sum  of  the  base  pallets  stored  in  each  block  !"! .    

!"! =  !". !"#!"!×!"#!"  (loads)  

PP:  Percentage  of  storage  useless  space.  (The  lower  the  better)  The  number  1,2  represents  the  total  base  area  occupied  by  one  load.   !! =  

!!"! − !"!"#×1,2!!

!!"#×100  

PPE:  Percentage  of  storage  useless  space,  considering  corridor  area  as  useful  space.  (The  lower  the  better)    

!!"##  is  the  occupied  by  the  corridors.    !!" =  

!!"! − !"!"#×1,2!! − !!"##!!"#

×100  FIGURE  6:  Table  of  KPI  .  Operational  KPI  and  Area  KPI  

Warehouse  logistics  and  internal  distribution  optimization   6    

 

Operational   KPIs   were   divided   in   two   groups  based  on  the  procedures  used  to  calculate  them.  The  first   group   includes   those   that   are   calculated  directly   based   on   the   data   obtained   for   the   sample  month.  The   second  group   corresponds   to  KPIs   that  are   calculated   indirectly,   using   as   basis   previously  calculated  values.  

The   initial   conditions   of   the   warehouse   are  presented  on  Figure  7.  

 

Double  pallet  lane  layout  The   actual   layout   consists   of  

double   pallet   lanes   distributed   all  over  the  warehouse,  fit  between  the  structure   columns   and   walls   and  adapted   to   other   initial   conditions  such   as   the   end   of   the   production  line  in  the  put-­‐away  zone.  

 

 

FIGURE  7:  Initial  layout  conditions  –  double  pallet  lanes.    

Based   on  the   initial   conditions  previously,  three  triple   lane   layout   models   were   developed,   which  are  shown  and   explained   in   Figure   8,  highlighting  their  advantages  and  disadvantages.  

 

 Triple  pallet  lane  model  No.  1  The   first   model   is   based   on   the  

double  pallet  layout  distribution,  fitting  the   lanes   between   the   columns   and  maintaining   the   same   corridor  configuration.   Due   to   the   structure  limitations,   this   configuration  maximizes   the   use   of   space   between  columns.   The   disadvantage   is   that  there   is  no  direct   access   from   the  put-­‐away   zone   to   the   central   corridor,  which   is   also   a   problem   in   the   actual  layout   distribution.   All   storage   lanes  function  with  the  LIFO  method.    

 

 Triple  pallet  lane  model  No.  2  This  model  aims  to  reduce  the  travel  

distance   to  place  pallets   in   the  storage  lanes.   For   this   reason,   lines   are  oriented   to   the   corridors.   It   is  characterized  by   two   vertical   parallel  corridors   and   a   crossed   corridor  connecting   the   first   two   corridors  between  each   other   and   to   the   put-­‐away   zone.   The   disadvantage   of   this  model   is   that   does   not   take  maximum  advantage   of   storage   space   between  columns.   Vertically   disposed   lanes  function   with   the   FIFO   method,   while  the  rest  uses  LIFO  method.  

 

 Triple  pallet  lane  model  No.  3  The   last   model   results   from   the  

combination  of  the  first  two,  plus  some  modifications.   Storage   lanes   are  disposed   both   ways,   vertically   and  horizontally,  to  fit  the  space  limitations  as   best   as   possible   and   minimizing  travel   distances   at   the   same   time.   For  this   matter,   the   put-­‐away   zone  connects   directly   to   both   vertical  parallel   corridors   through   a   cross  corridor.   Vertically   disposed   lanes   in  common   with   model   No.   2   function  with   the   FIFO   method,   while   the   rest  uses  LIFO  method.  

FIGURE  8:  Triple  pallet  lane  models  display  and  description.    

Each   model   was   evaluated   using   a   set   of   KPIs  defined   previously.   The   results   were   compared  between   each   other   and   with   the   results   of   the  initial  conditions.  

The  improvement  percentage  is  showed  aside  of  each   estimated   value   in   gray   to   have   a   better  perspective  of  the  variations  in  Tables  2,  3,  4  and  5.  Layout   NV   DP   T   CC  

      (m)     (h)     (€)    Double   7.263     1.080.523,40     490,54     1.499,29    Triple  No.  1   4.842   33%   720.394,70   33%   327,05   33%   1.377,53   8%  Triple  No.  2   4.842   33%   674.088,63   38%   306,03   38%   1.288,98   14%  Triple  No.  3   4.842   33%   661.928,48   39%   300,51   39%   1.265,73   16%  TABLE  2:  Overall  results  for  operational  KPI  Group  1.    

NV   value   shows   independent   from   the   layout  configuration,  for  it  only  changes  as  the  forklift  type  changes.  All   three   triple  pallet   lane  models  have  an  improvement   of   33%.   DP,   T   and   CC   values   have  different   behavior,   for   they   depend   on   the   forklift  type   as  well   as   on   the   layout   configuration.   For   all  three,  the  model  with  best  performance  was  No.  3.  Layout   PpV   DV   VpH   CA   CpQ  

          (m)           (pal/dia)     (€/Km)    Double   2,83     148,77     14,81     838,05     1,39    Triple  No.  1   4,25   33%   148,78   0%   14,81   0%   1.257,00   33%   1,91   -­‐38%  Triple  No.  2   4,25   33%   139,22   6%   15,82   6%   1.343,35   38%   1,91   -­‐38%  Triple  No.  3   4,25   33%   136,71   8%   16,11   8%   1.368,03   39%   1,91   -­‐38%  TABLE  3:  Overall  results  for  operational  KPI  Group  2.  

PpV   value   shows   independent   from   the   layout  configuration,  for  it  only  changes  as  the  forklift  type  changes.  All   three   triple  pallet   lane  models  have  an  improvement   of   33%.   DV,   VpH   and   CA   values  depend  on  the  forklift  type  and  layout  configuration.  For   all   of   the,   model   No.   3   resulted   with   a   higher  improvement   percentage.   On   the   contrary,   CpQ  value   showed   a   declining,   for   triple   pallet   forklifts  consume  more  fuel  that  double  pallet  forklifts.    

Layout   ABU   PB   PP   PPE       (m2)     (pal)                

Double   6.564,47     4.858,00     36%     7%    Triple  No.  1   6,393.09   -­‐3%   4,731.00   -­‐3%   38%   -­‐2%   9%   -­‐2%  Triple  No.  2   6.078,20   -­‐8%   4.590,00   -­‐6%   40%   -­‐4%   18%   -­‐11%  Triple  No.  3   6.865,78   4%   5.124,00   5%   33%   3%   5%   2%  

TABLE  4:  Overall  results  for  area  KPI.  

Put-­‐  away  zone  

Central  corridor  

Put-­‐  away  zone  

Put-­‐  away  zone  

Vertical  corridor  

Vertical  corridor  

Crossed  corridor  

Vertical  corridor  

Vertical  corridor  

Crossed  corridor  

Put-­‐  away  zone  

Central  corridor  

7    

 

All   Area   KPI   depend   only   in   the   layout  configuration.   For   these,   the   only   model   that  presented   improvement   in   every   category   was  model  No.  3,  as  showed  on  Table  4.    

 Operational  KPI  Group  1  

Operational  KPI  Group  2  

Area  KPI   Average  

Triple  No.  1   27%   6%   10%   14%  Triple  No.  2   31%   9%   11%   17%  Triple  No.  3   32%   10%   12%   18%  TABLE  5:  Overall  percentage  results  for  KPI.  

In   general,   the   best   result   corresponded   to   the  triple   pallet   lane   model   No.   3,   with   an   average  improvement   of   18%.   The   results   in   Table   5  correspond   to   the   average   percentage   of  improvement  in  the  different  indicators.    

 

4.2.2. OPERATIONAL  MANAGEMENT  IMPROVEMENT  

Proposals   for   operational   management  optimization   consisted   on   an   automatic   ABC  classification   based   on   the   rotation   of   the   SKU,  specifically   founded   on   the   number   of   days   that  loads  will  remain  stored  when  they  are  produced  for  order   in  batches.  The  diagram   is   showed  on  Figure  9.  The  aim  of  this  procedure  is  to  separate  the  stock  depending   on   the   time   loads   will   stay   in   storage,  using  more  accurate   criteria.     The   system  classifies  the  loads  according  to  the  following  scheme:  

o A1:  storage  time  less  than  30  days.  o A2:  storage  time  between  31  and  70  days.    o B1:  storage  time  between  71  and  140  days.  o B2:  storage  time  between  141  and  210  days.  o C:  storage  time  more  than  210  days.    

 

 FIGURE  9:  Diagram  of  automatic  ABC  load  classification  according  to  SKU  rotation.    

 

Finished  goods  come  out  from  the  production  line

Start

Legenda:

Load  situation  

Process  executed  by  operator

Question

Loads  pass  through  a  automatic  barcode  reader  

SKU  was  produced  to  stock

Does  the  SKU  have  a  delivery  date?

SKU  was  produced  to  order

Store  the  loads  in  the  apropiate  zone

End

Go  to  rotation  registers

Classify  the  product  according  to  ABC  

analysis  

A1:  storage  time  less  than  30  days  A2:  storage  time  between  31  and  70  days  B1:  storage  time  between    71  and  140  daysB2:  storage  time  between  141  and  210  daysC:  storage  time  more  than  210  days  

Process  executed  by  system

YES

NO

SKU  registration  enters  the  system

Known  delivery  date Unknown  delivery  date

Additional  information

Warehouse  logistics  and  internal  distribution  optimization   8    

 

The   classification   in   smaller   sections   allows  having   more   specific   zones   for   products   with  different   rotation,   thus   optimizing   internal  functions.   The   system   is   robust   and  works   in   real-­‐time,  for  the  classification  of  loads  is  done  just  in  the  moment  the  come  out  of  the  production  line.    

For   this   system   to   work,   it   is   required   that   the  warehouse   layout   is   divided   by   activity   level,  according  to  the  previous  ABC  classification.  For  the  zone   distribution,   both   warehouses   were  considered,   the  one  near   the  end  of   the  production  line  as  well  as  the  furthermost,  which  is  also  bigger,  as   showed   in   Figure   10.   This   diagram   shows  approximate   areas   for   each   division,   according   to  previous  studies  of  stock.    

 Figure   10:   Warehouse   zone   division   according   to   ABC   load  

classification  using  SKU  rotation  as  criteria.  

5. CONCLUSIONS  This   paper   allowed   reaching   some   important  

conclusions.     It   is   very   useful   to   perform   a  characterization  of  the  products  before  studying  the  layout   modifications,   as   to   identify   the   product  characteristics  and  behavior.  Using  the  ABC  analysis  with   different   approaches,   it   was   possible   to   get  precise  information  on  the  stock,  such  as  quantities,  storage   time   and   comportment   over   time,   and  consequently  allocate  the  production.  

A   set   of   KPIs   were   developed   to   evaluate   the  models   and   compare   their   results   them   between  each   other   and   with   the   results   of   the   initial  condition.  After  analyzing   the   layout  models,   it  was  concluded   that   the   Triple   pallet   lane   model   No.   3  was   the   one   that   optimized   the   most.   This  alternative   presented   the   greatest   improvement   in  the   KPIs   evaluation   when   compared   to   the   other  models   (18%).   This   alternative   resulted   from   the  combination   of   the   first   two,   adopting   the  

advantages   of   each   one   and  putting   them   together.  The  optimization  permitted  to  do  more  work  in  less  time,   which   means   that   in   the   same   period,   more  loads  can  be  stored.  This  permits  the  direct  storage  of   loads   in   the   bigger   warehouse,   eliminating   the  need   of   the   truck   to   transport   loads   internally;  consequently   reducing   the   amount   of   internal  transactions  and  optimizing  warehouse  activities.  

ABC   stock   classification   by   level   of   activity  allowed   to   elaborate   a  division   if   the  warehouse   in  zones  to  store  the  SKUs  depending  on  their  rotation.  This   system   will   allow   more   organization   in   the  warehouse,  thus,  incrementing  its  performance.  

6. REFERENCES  Ackerman,   Kenneth   B.,   e   Art   Van   Bodegraven.  

Fundamentals   of   Supply   Chain   Management.   DC  Velocity  Books,  2007.  

Baker,   Peter,   e   Marco   Canessa.   “Warehouse  design:  A  structured  approach.”  European  Journal  of  Operational  Research  193,  n.º  2  (2009):  424-­‐436.  

Chan,   e   Chan.   “Improving   the   productivity   of  order  picking  of  a  manual-­‐pick  and  multi-­‐level  rack  distribution  warehouse  through  the  implementation  of   class-­‐based   storage.”   Expert   Systems   with  Applications  38,  n.º  3  (2011):  2686-­‐2700.  

Frazelle,   Edward.  World-­‐Class   Warehousing   and  Material   Handling.   United   States:   McGraw-­‐Hill,  2002.  

Gua,   Jinxiang,   Marc   Goetschalckx,   e   Leon   F.  McGinnis.   “Research   on   warehouse   operation:   A  comprehensive   review.”   European   Journal   of  Operational  Research  177,  n.º  1  (2007):  1-­‐21.  

Hales,   H.   Lee.   “Put   yourwarehouse   in   order.”  Industrial  Engineer,  Fevereiro  2006:  34  -­‐  38.  

Hua,   Lin,   e   Wang   Song.   “Research   on   the  Application   of   Expansion   of   EIQ-­‐ABC   in   the  warehouse   management.”   7th   International  Conference   on   Innovation   and   Management.   Chiba,  Japan,  2011.  1591  -­‐  1594.  

Hwang,   Heung   Suk,   e   Gyu   Sung   Cho.   “A  performance   evaluation   model   for   order   picking  warehouse   design.”   Computers   &   Industrial  Engineering,  October  de  2006:  335-­‐342.  

Liebeskind,  Art.  How  to  optimize  your  warehouse  operations.   Tulsa:   Industrial   Data   and   Information  Inc.,  2005.  

Murray,   Jean.  FIFO  Inventory  Cost  Method.   2011.  http://www.about.com  (acedido  em  Maio  de  2011).  

Queirolo,   Tonelli,   Schenone,   Nan,   Zunino.  “Warehouse   layout  design:  Minimyzing  Travel   time  witn   a   genetic   and   simulative   approack   -­‐  

9    

 

Methodology   and   case   study.”   Montagem   por   W.  Krug,   eds.   A.   Verbraeck.   Dresden:   4th   European  Simulation  Symposium,  2002.  

Robson,   James   F.,   e   William   C.   Copacino.   The  Logistics  Handbook.  The  Free  Press,  1994.  

Roodbergen,   Kees   Jan,   e   Iris   F.   A.   Vis.   “A  model  for   warehouse   optimization.”   IEE   Transactions,  2006:  799  -­‐  811.  

Twede,   Diana,   e   Susan   E.   Selke.   Cartons,   Crates  and   Corrugated   Boards:   Handbook   of   Paper   and  Wood   Packaging   technology.   United   States   of  America:  DEStech  Publications,  2005.