wacker oxidation ~anti-markovnikov~

49
Anti-Markovnikov Olefin Functionalization ~Prof. Robert H. Grubbs’ Work~ 4 th Literature Seminar July 5, 2014 Soichi Ito (D1)

Upload: lyduong

Post on 08-Feb-2017

233 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Wacker Oxidation ~anti-Markovnikov~

Anti-MarkovnikovOlefin Functionalization

~Prof. Robert H. Grubbs’ Work~

4th Literature Seminar

July 5, 2014

Soichi Ito (D1)

Page 2: Wacker Oxidation ~anti-Markovnikov~

1. Introduction• Flow of Prof. Grubbs’ Research

• Markovnikov’s Rule

• Wacker Oxidation

2. Grubbs’ Work• Substrate-Controlled Wacker Oxidation

• Catalyst-Controlled Wacker-Type Oxidation

2

Contents

Page 3: Wacker Oxidation ~anti-Markovnikov~

Introduction ~Flow of Research~

Olefin Metathesis

Z-Selective Metathesis

Ethenolysis

Z-Selective Ethenolysis

Anti-Markovnikov

Wacker Oxidation

of Terminal Olefin

Hydration

Hydroamination

HydrophosphonationDecarbonylative Dehydration

Wacker Oxidation

of Internal Olefin

Production of Terminal Olefin Functionalization of Terminal Olefin

Substrate-Controlled

Catalyst-Controlled

+ Reduction

3

Page 4: Wacker Oxidation ~anti-Markovnikov~

Introduction ~Markovnikov’s Rule~

Robert H. Grubbs et al. Science, 2011, 333, 1609.

Two-Step

Two-Step

(+1C)

4

Page 5: Wacker Oxidation ~anti-Markovnikov~

Anti-Markovnikov Hydration of Olefins

Shannon S. Stahl et al. J. Am. Chem. Soc. 2010, 132, 15116.

• One-Step

• One-Step with Activated Olefins

• Three-StepBen L. Feringa and Gerard Roelfes et al. Nat. Chem. 2010, 2, 991.

Robert G. Bergman and F. Dean Toste et al.

J. Am. Chem. Soc. 2003, 125, 8696.

William C. Trogler et al. Science 1986, 233, 1069.

This work was difficult to reproduce.

5

Inorg. Chem. 1988, 27, 3151.

Page 6: Wacker Oxidation ~anti-Markovnikov~

Anti-Markovnikov Wacker Oxidation / Reduction Strategy

aldehyde-selective

Wacker Oxidation

Oxidation cycle must be compatible with the reduction cycle.

Robert H. Grubbs et al. Science, 2011, 333, 1609.

6

Page 7: Wacker Oxidation ~anti-Markovnikov~

Introduction ~Wacker-Tsuji Oxidation~

• 1894 F. C. Phillips reported stoichiometric reaction.

• 1959 J. Smidt et al. reported the Wacker process.

(oxidation of ethylene to acetaldehyde)

Investigations for convenient laboratory methods

• 1976 J. Tsuji et al. reported PdCl2, CuCl / DMF, H2O method.

Jacques Muzart Tetrahedron 2007, 63, 7505.

“Terminal alkenes may be viewed as masked ketones.” 7

Page 8: Wacker Oxidation ~anti-Markovnikov~

DMF / H2O System

Charles M. Selwitz et al. J. Org. Chem. 1964, 29, 241.

DMSO, acetone, AcOH, THF, dioxane, MeCN were not good.

Jiro Tsuji et al.

Tetrahedron Lett. 1976, 2975.

“CuCl2 tends to chlorinate ketones.”

8

Page 9: Wacker Oxidation ~anti-Markovnikov~

Development: Direct O2-Coupled Wacker Oxidation

Roger A. Sheldon et al. Chem. Commun. 1998, 2359.

Ligand :

Matthew S. Sigman et al. Org. Lett. 2006, 8, 4117.

Kiyotomi Kaneda et al. Angew. Chem. Int. Ed. 2006, 45, 481.

Pd[(-)-sparteine]Cl29

Page 10: Wacker Oxidation ~anti-Markovnikov~

Selectivity of Wacker Oxidation

10

With directing group

Robert H. Grubbs et al. J. Am. Chem. Soc. 2014, 136, 890.

Catalyst-controlled selectivity is required.

Page 11: Wacker Oxidation ~anti-Markovnikov~

Anti-Markovnikov Wacker Oxidation Strategies

Ben L. Feringa et al. J. Am. Chem. Soc. 2009, 131, 9473.

• with Directing Groups

• with Stoichiometric Palladium or Excess Heteropolyacid

Jonathan B. Spencer et al. Chem. Eur. J. 2006, 12, 949.

rt

11

Aromatic group was crucial.

Other Pd(ll) such as

Pd(OAc)2 and Pd(NO3)2

gave exclusively

the methyl ketone.

Page 12: Wacker Oxidation ~anti-Markovnikov~

Ben L. Feringa J. Chem. Soc., Chem. Commun. 1986, 909.

?

Jacques Muzart Tetrahedron 2007, 63, 7505.

• Catalyst-Controlled (or Solvent-Controlled?)

12

Page 13: Wacker Oxidation ~anti-Markovnikov~

Takahiro Hosokawa et al. Bull. Chem. Soc. Jpn. 2005, 78, 1555.

(1 mmol)

Similar Trends

No Isomerization

The use of LiCl and/or CuCl reduced the regioselectivity.

Timothy T. Wenzel J. Chem. Soc., Chem. Commun. 1993, 862.

High Selectivity

Low Yield

13

Page 14: Wacker Oxidation ~anti-Markovnikov~

Ketone-Selective Wacker-Type Oxidation

14

Matthew S. Sigman et al. J. Am. Chem. Soc. 2009, 131, 6076.

Matthew S. Sigman et al. J. Am. Chem. Soc. 2011, 133, 8317.

Matthew S. Sigman et al. Acc. Chem. Res. 2012, 45, 874.

Catalyst-Controlled!!

Page 15: Wacker Oxidation ~anti-Markovnikov~

1. Introduction• Flow of Prof. Grubbs’ Research

• Markovnikov Rule

• Wacker Oxidation

2. Grubbs’ Work• Substrate-Controlled Wacker Oxidation

• Catalyst-Controlled Wacker-Type Oxidation

15

Contents

Page 16: Wacker Oxidation ~anti-Markovnikov~

General Reaction Scheme

• Control Experiments

16

about Shvo‘s catalyst, see:

Chem. Rev. 2010, 110, 2294.

Page 17: Wacker Oxidation ~anti-Markovnikov~

Substrate Scope

Major

Byproduct

17

Page 18: Wacker Oxidation ~anti-Markovnikov~

Triple Relay Catalysis System• Proposed Mechanism

• Initial Mechanistic Study

enol ether hydrolysis

D2O

Shvo’s cat.

without H2O, IPA, Shvo’s cat.

18

Page 19: Wacker Oxidation ~anti-Markovnikov~

Aldehyde Selective Wacker Oxidationunder aerobic condition

19

Robert H. Grubbs et al. Org. Lett. 2012, 14, 3237.

Page 20: Wacker Oxidation ~anti-Markovnikov~

Aldehyde Selective Wacker Oxidation

The bulkiness of t-BuOH is important

for aldehyde-selectivity.

Product yield starts decreasing likely due to self-condensation.

because of the increase in acidity?

20

Page 21: Wacker Oxidation ~anti-Markovnikov~

Catalyst-Controlled Wacker-Type Oxidation

Robert H. Grubbs et al. Angew. Chem. Int. Ed. 2013, 52, 11257.

• Entry 1

• Entry 2

• Without t-BuOH (only MeNO2),

no conversion was observed.

21

Page 22: Wacker Oxidation ~anti-Markovnikov~

Detailed Yield & Selectivity

• Entry 1 • Entry 2

22

Page 23: Wacker Oxidation ~anti-Markovnikov~

• Substrate Scope

• Aldehyde-Selective Wacker Oxidation

on a 10 mmol Scale with

Reduced Catalyst Loading

Intermolecular Markovnikov Attack

+

Hydrolysis

With styrene…

H

23

Page 24: Wacker Oxidation ~anti-Markovnikov~

Comparison of Innate Selectivity

without assistance from

a Thorpe-Ingold effect

24

Page 25: Wacker Oxidation ~anti-Markovnikov~

Influence of PhO-Proximity

Robert H. Grubbs et al. J. Am. Chem. Soc. 2014, 136, 890.

25

Page 26: Wacker Oxidation ~anti-Markovnikov~

Influence of Oxygen Functionality

aldehyde / ketone

Catalyst-Controlled Regioselectivity

26

Page 27: Wacker Oxidation ~anti-Markovnikov~

Influence of Steric Profile

5 h24 h24 h

5 h24 h

27

Page 28: Wacker Oxidation ~anti-Markovnikov~

Applicability of Nitrate-Modified Wacker Oxidation

• On a Larger Scale

• Synthesis of Atomoxetine

28

Retention of Stereochemical Information Drug for the treatment of ADHD

about Ir catalyst, see John F. Hartwig et al. J. Am. Chem. Soc. 2003, 125, 3426.

Page 29: Wacker Oxidation ~anti-Markovnikov~

Preliminary Mechanistic Insight

· Stoichiometric 18O-Labeling Experiment

· Plausible Mode of Oxygen Transfer

Brief induction period

The same catalytic species remains active.

29

Robert H. Grubbs et al. Angew. Chem. Int. Ed. 2013, 52, 11257.

Page 30: Wacker Oxidation ~anti-Markovnikov~

Oxidation of Olefins with Nitro-Nitrosyl Redox Couple

• Transition-Metal Nitro-Nitrosyl Redox Coupling

Mark A. Andrews et al. J. Am. Chem. Soc. 1981, 103, 2894.

30

color:

orange

→yellow

detectable

at least 1 h

ketone selective

Grubbs’ system

Page 31: Wacker Oxidation ~anti-Markovnikov~

Metal Nitro Complexes as Catalysts

Mark A. Andrews et al. Organometallics 1984, 12, 1777.

“we believe far less likely”

Page 32: Wacker Oxidation ~anti-Markovnikov~

Nitration of Alkenes by Palladium Nitro Complexes

Mark A. Andrews et al. Organometallics 1984, 3, 1479.

Path 1: cis

Path 2: trans

trans

support

Page 33: Wacker Oxidation ~anti-Markovnikov~

Preliminary Mechanistic Insight• Radical Model to Explain Anti-Markovnikov Selectivity

33

Robert H. Grubbs et al. Angew. Chem. Int. Ed. 2013, 52, 11257.

electron-deficient

Robert H. Grubbs et al. J. Am. Chem. Soc. 2014, 136, 890.

• Influence of Electronic Properties

Page 34: Wacker Oxidation ~anti-Markovnikov~

Compared with Cationic Transition State• Intermolecular Competition Experiments

• Intramolecular Competition Experiments

Robert H. Grubbs et al. Angew. Chem. Int. Ed. 2013, 52, 9751

electron-deficient

34

Page 35: Wacker Oxidation ~anti-Markovnikov~

Preliminary Mechanistic Insight

When the reaction is run in an unsealed vessel, significantly lower yield and selectivity is observed.

in a sealed vessel (air)NO2 (gas) flies away?

Is NO2 generated?

What mediates NO2 delivery?

Stoichiometric reaction of CuCl2 and AgNO2 with an alkene (without Pd) gave no conversion of alkene.

Pd may mediate NO2 delivery.

35

Without metal…

William A. Pryor et al. J. Am. Chem. Soc. 1982, 104, 6685.

Robert H. Grubbs et al. J. Am. Chem. Soc. 2014, 136, 890.

• One-pot Intermolecular Competition Experiments

Page 36: Wacker Oxidation ~anti-Markovnikov~

Hiroyuki Ishibashi et al. Adv. Synth. Catal. 2011, 353, 2643.36

cf. Plausible Mechanism of Radical Nitration

Page 37: Wacker Oxidation ~anti-Markovnikov~

Mechanism?

37

about hydrolysis of alkyl nitrite,

Michael P. Doyle et al. J. Org. Chem. 1983, 48, 3379.

Page 38: Wacker Oxidation ~anti-Markovnikov~

Summary

Robert H. Grubbs et al. J. Am. Chem. Soc. 2014, 136, 890.

38Robert H. Grubbs et al. Org. Lett. 2012, 14, 3237.

Styrene-type substrate

slide 14

Page 39: Wacker Oxidation ~anti-Markovnikov~

Appendix

39

Page 40: Wacker Oxidation ~anti-Markovnikov~

Williem H. Koppenol et al. Chem. Eur. J. 2009, 15, 6161.40

Intermediates in the Autoxidation of Nitrogen Monoxide

detected with EPR

Page 41: Wacker Oxidation ~anti-Markovnikov~

Debabrata Maiti et al. J. Am. Chem. Soc. 2013, 135, 3355.41

cf. Nitration of Olefins with AgNO2 and TEMPO

AgNO2 (3 eq)

TEMPO (0.4 eq)

MS4A, DCE

Page 42: Wacker Oxidation ~anti-Markovnikov~

Melanie S. Sanford et al. Chem. Sci. 2012, 3, 3192.42

cf. Nitrate as a Redox Co-Catalyt

Known Reaction

25 mol% NaNO3

Page 43: Wacker Oxidation ~anti-Markovnikov~

Other Olefin Functionalizations• Hydroamination

Wacker Oxidation / Transfer Hydrogenative Reductive Amination

Two-Step, One-Pot Hydroamination Protocol

see: Robert H. Grubbs et al. Chem. Sci. 2014, 5, 101.

• Wacker Oxidation of Internal Olefins

see: Robert. H. Grubbs et al. Angew. Chem. Int. Ed. 2013, 52, 2944.

Robert H. Grubbs et al. Angew. Chem. Int. Ed. 2013, 52, 9751.

• Hydrophosphonation

see: slide 44,45

Robert H. Grubbs et al. Org. Lett. 2011, 13, 6429.

• Pd-Catalyzed Decarbonylative Dehydration of Fatty Acids

see: slide 46~49

Robert H. Grubbs, Brian M. Stoltz et al. Adv. Synth. Catal. 2014, 356, 130.

43

Page 44: Wacker Oxidation ~anti-Markovnikov~

Hydrophosphonation

Robert H. Grubbs et al. Org. Lett. 2011, 13, 6429.

Precedent : Radical Cyclization – HWE Reactions

James G. T. Rawlinson et al. Org. Lett. 2005, 7, 1597.

44

Page 45: Wacker Oxidation ~anti-Markovnikov~

Hydrophosphonation

45

Page 46: Wacker Oxidation ~anti-Markovnikov~

Pd-Catalyzed Decarbonylative Dehydration of Fatty Acids

Robert H. Grubbs, Brian M. Stoltz et al. Adv. Synth. Catal. 2014, 356, 130.

· High Temperature Process (Miller, Kraus)

· Low Temperature Process (Gooβen, Scott)

· Grubbs’ Work

volatile olefins only

46

Page 47: Wacker Oxidation ~anti-Markovnikov~

Effect of Catalyst, Ligand, and Additive

47

Page 48: Wacker Oxidation ~anti-Markovnikov~

· Portionwise Addition of Acetic Anhydride

· Large-Scale Decarbonylative Dehydration

stearic acid

10-acetoxydecanoic acid

48

Page 49: Wacker Oxidation ~anti-Markovnikov~

Substrate Scope

49