w1412_tower 1 and tower 2_basic load data-v1

31
STATICAL CALCULATION BASIC LOAD DATA 230 – ATW – HA LONG BAY, VIETNAM WAA0003920 Tower 1 AND Tower 2 Client: Garaventa AG Birkenstrasse 47 CH-6343 Rotkreuz March 2015 RM Lei Lei Date elaborated checked released Project No.: W1412 all 31 Pages

Upload: anh-tuan-pham

Post on 12-Jan-2016

34 views

Category:

Documents


1 download

DESCRIPTION

The calculation of Cable car Tower

TRANSCRIPT

Page 1: W1412_Tower 1 and Tower 2_Basic Load Data-V1

STATICAL CALCULATION

BASIC LOAD DATA

230 – ATW – HA LONG BAY, VIETNAM

WAA0003920

Tower 1 AND Tower 2

Client: Garaventa AG Birkenstrasse 47 CH-6343 Rotkreuz

March 2015 RM Lei Lei Date elaborated checked released

Project No.: W1412 all 31 Pages

Page 2: W1412_Tower 1 and Tower 2_Basic Load Data-V1

W1412 Basic load data – Tower 1 and Tower 2 Page 2

Projekt Nr.: W1412 03.2015

CONTENTS 1.  General 3 

2.  Basics 3 

2.1.  Relevant drawings and documents 3 

2.2.  Verifications and calculations 4 

2.3.  Materials 4 

2.4.  Software 5 

3.  Load cases / Combination of load cases 6 

3.1.  Design criteria 6 

3.2.  Safety Factors 6 

3.3.  Load cases 7 

3.4.  Load combination 13 

4.  Images of tower 1 14 

4.1.  Isometric views 14 

4.2.  Wind X 15 

4.3.  Wind Y 16 

4.4.  Support forces 17 

4.5.  Maximum deformations in z-direction 18 

4.6.  Minimum deformations in z-direction 19 

4.7.  Total deformation at the top (translation) 20 

4.8.  Total deformation at the top (rotation) 21 

5.  Images of tower 2 22 

5.1.  Isometric views 22 

5.2.  Wind X 23 

5.3.  Wind Y 24 

5.4.  Support forces 25 

5.5.  Maximum deformations in z-direction 26 

5.6.  Minimum deformations in z-direction 27 

5.7.  Total deformation at the top (translation) 28 

5.8.  Total deformation at the top (rotation) 29 

6.  Pile foundation 30 

Page 3: W1412_Tower 1 and Tower 2_Basic Load Data-V1

W1412 Basic load data – Tower 1 and Tower 2 Page 3

Projekt Nr.: W1412 03.2015

1. General

The consulting engineers’ society BauCon ZT GmbH was authorized by Garaventa AG to

perform the statical calculations of the tower 1 and tower 2 as well as the formwork and

reinforcement drawings for the project 230 – ATW – Ha Long Bay, Vietnam.

2. Basics

2.1. Relevant drawings and documents

a) Support reactions document for tower 1 and tower 2 from Garaventa

b) Support reactions drawings for tower 1 and tower 2 from Garaventa

c) Design of tower 1 and tower 2 structure from Garaventa

d) Geological and topographical data

Page 4: W1412_Tower 1 and Tower 2_Basic Load Data-V1

W1412 Basic load data – Tower 1 and Tower 2 Page 4

Projekt Nr.: W1412 03.2015

2.2. Verifications and calculations

All stability verifications are executed with the Dlubal RFEM software.

Following Codes are used:

- EN 1990: 2001; EC0 Basic of structural design

- EC1 EN 1991-1-4 Wind actions

- EC2 EN 1992-1-1 Design of concrete structures

- EC7 EN 1997 – 1 Geotechnical engineering – spread foundations

- TCVN 2737-1995_Loads and Actions-Design Code

- EN 1998-1: 2005; Design of structures for earthquake resistance.

- EN 13107 – Safety requirements for cableway installations designed to carry persons –

Civil engineering works

2.3. Materials

Tower 1:

Piles: M450 waterproof, XC4 XS2 XF2 XA2, F5

Foundations: M450 waterproof, XC4 XS2 XF2 XA2

Tower: M450 waterproof, XC4 XS2 XF2 XA2

Tower 2:

Piles: M450 waterproof, XC4 XS2 XF2 XA2, F5

Foundations: M450 waterproof, XC4 XS2 XF2 XA2

Tower: M450 waterproof, XC4 XS2 XF2 XA2

Unit Weight concr. = 25kN/m3

Page 5: W1412_Tower 1 and Tower 2_Basic Load Data-V1

W1412 Basic load data – Tower 1 and Tower 2 Page 5

Projekt Nr.: W1412 03.2015

Reinforcement Steel (in general) SD390

Allowed yield strength fy = 390N /mm²

Reinforcement Steel (bollard walls) SD490

Allowed yield strength fy = 490N /mm²

2.4. Software

Dlubal RFEM Version 5.04.0058

Page 6: W1412_Tower 1 and Tower 2_Basic Load Data-V1

W1412 Basic load data – Tower 1 and Tower 2 Page 6

Projekt Nr.: W1412 03.2015

3. Load cases / Combination of load cases

3.1. Design criteria

According EN 13107 there are 3 combinations of load cases to examine:

- Permanent design situation

1j 1i

kiQ0iψQiγk1QQ1γKjGGjγDS

- Combination for accidental design situation

1j 1i

kiQ

2iψ

k1Qψ

KjG

GAjγ

DS 1i

- Combination due to seismic loads

1j 1i

kiQ2iψA1γKjGDS Ed

3.2. Safety Factors

for dead loads γdead_load = 1,35

for live loads γlive_load = 1,50

for earthquake loads γearthquake = 1,00

Page 7: W1412_Tower 1 and Tower 2_Basic Load Data-V1

W1412 Basic load data – Tower 1 and Tower 2 Page 7

Projekt Nr.: W1412 03.2015

3.3. Load cases

Dead load

Dead load from the concrete structure in RFEM .

Unit Weight concr. = 25kN/m3

Wind load

● Tower 1

Static and dynamic wind load:

The applied wind loads are according to TCVN 2737. The values for the static and dynamic

wind components at height Hi are listed in the second table.

c =  1  [‐/‐] 

W0 =  1,24  [kN/m²] 

Terrain class:  A 

f1 =  0,43  [Hz] 

ε =  0,095 

γ =  1,2  [‐] 

ξ =  2,5  [‐] 

ρ =  3  [m] 

χ =  124  [m] 

ν =  0,70  [‐] 

Ψ =  0,834  [1/s²] 

Hi [m]  k [‐]  W [kN/m²]  ζ [‐]  Wpk [kN/m²] Li [m]  mi[t]  yi [m]  Wpi [kN]  wp [kN/m]

42,8  1,441  1,79  0,274  0,34 43 1470,6 0,046  141,9  1,10

83,4  1,587  1,97  0,261  0,36 41 1233,075 0,081  209,2  1,70

124  1,668  2,07  0,255  0,37 40,9 1006,14 0,112  235,7  1,92

168,1  1,745  2,16  0,249  0,38 44,8 1590,9 0,142  471,9  10,53

185,7  1,77  2,19  0,247  0,38 16,6 800,6 0,169  281,5  16,96

Page 8: W1412_Tower 1 and Tower 2_Basic Load Data-V1

W1412 Basic load data – Tower 1 and Tower 2 Page 8

Projekt Nr.: W1412 03.2015

Vortex shedding:

For the wind component vortex shedding the Eurocode ÖNORM B 1991-1-4 is applied.

Wind x – direction:

Vortex shedding action                

     

Height z [m]  Δz [m]  Mj [kg]  Φ  n1,y [Hz]  yF,max [m]  Fw [kN]    

           

0,38  0,090 

     

12,70  25,40  1.114.870,0  0,0089  5,1    

              

34,20  17,60  1.912.680,0  0,0345  33,9    

              

61,00  36,00  2.401.470,0  0,1120  138,1    

              

93,50  29,00  1.783.250,0  0,2480  227,0    

              

119,50  23,00  1.351.350,0  0,3992  276,9    

              

141,50  21,00  1.139.060,0  0,5577  326,0    

              

162,50  21,00  900.279,0  0,7345  339,4    

              

181,50  17,00  796.152,0  0,9145  373,7    

∑  190  11.399.111,0     1.720,2    

     

   transverse force at the bottom of the chimney    

   Fw =  1.720,2 kN    

     

   bending moment at the bottom of the chimney    

   Mw =  233.077,8 kNm             

Page 9: W1412_Tower 1 and Tower 2_Basic Load Data-V1

W1412 Basic load data – Tower 1 and Tower 2 Page 9

Projekt Nr.: W1412 03.2015

Wind y – direction:

Vortex shedding action                

     

Height z [m]  Δz [m]  Mj [kg]  Φ  n1,y [Hz]  yF,max [m]  Fw [kN]    

           

0,38  0,098 

     

12,70  25,40  1.114.870,0  0,0089  5,6    

              

34,20  17,60  1.912.680,0  0,0345  37,0    

              

61,00  36,00  2.010.640,0  0,1120  126,1    

              

93,50  29,00  1.524.230,0  0,2480  211,6    

              

119,50  23,00  1.173.140,0  0,3992  262,1    

              

141,50  21,00  1.008.980,0  0,5577  314,9    

              

162,50  21,00  801.861,0  0,7345  329,7    

              

181,50  17,00  796.152,0  0,9145  407,5    

∑  190  10.342.553,0     1.694,4    

     

   transverse force at the bottom of the chimney    

   Fw =  1.694,4 kN    

     

   bending moment at the bottom of the chimney    

   Mw =  232.227,8 kNm             

Page 10: W1412_Tower 1 and Tower 2_Basic Load Data-V1

W1412 Basic load data – Tower 1 and Tower 2 Page 10

Projekt Nr.: W1412 03.2015

● Tower 2

Static and dynamic wind load:

c =  1  [‐/‐] 

W0 =  1,24  [kN/m²] 

Terrain class:  A 

f1 =  0,73  [Hz] 

ε =  0,056 

γ =  1,2  [‐] 

ξ =  2,125  [‐] 

ρ =  3  [m] 

χ =  121  [m] 

ν =  0,71  [‐] 

Ψ =  0,197  [1/s²] 

Hi [m]  k [‐]  W [kN/m²]  ζ [‐]  Wpk  [kN/m²]  Li [m]  mi[t]  yi [m] Wpi [kN]  wpi [kN/m]

39  1,424  1,77  0,266  0,33 39,4 1110,9 0,100 46,4  0,39

81  1,573  1,95  0,262  0,36 43,5 1043,4 0,400 174,3  1,34

103,48  1,627  2,02  0,258  0,37 21,5 548,1 0,600 137,3  6,39

121,12  1,662  2,06  0,255  0,37 17,1 426,7 0,800 142,5  8,34

Page 11: W1412_Tower 1 and Tower 2_Basic Load Data-V1

W1412 Basic load data – Tower 1 and Tower 2 Page 11

Projekt Nr.: W1412 03.2015

Vortex shedding:

Vortex shedding action                

     

Height z [m]  Δz [m] Mj [kg]  Φ  n1,y [Hz]  yF,max [m]  Fw [kN]    

           

0,70  0,066 

     

9,50  19,00  670.271,0  0,0123  10,5    

              

28,75  19,50  1.360.960,0  0,0629  108,7    

              

49,25  21,50  737.302,0  0,1736  162,3    

              

70,75  21,50  887.718,0  0,3498  393,9    

              

92,25  21,50  537.639,0  0,5891  401,8    

              

112,00  18,00  427.124,0  0,8623  467,2    

∑  121  4.621.014,0     1.544,5    

     

   transverse force at the bottom of the chimney    

   Fw = 1.544,5 kN    

     

   bending moment at the bottom of the chimney    

   Mw = 128.486,3 kNm             

Page 12: W1412_Tower 1 and Tower 2_Basic Load Data-V1

W1412 Basic load data – Tower 1 and Tower 2 Page 12

Projekt Nr.: W1412 03.2015

Earthquake

Acc to EN1998 – 1

Ground acceleration agR = 1,2 [m/s²]

Importance factor I = 1,0

Design ground acceleration ag = agR * I = 1,2 * 1,0 = 1,2 [m/s²]

Behaviour factor q = 1,5 [-/-]

Ground type B

S = 1,35 [-/-]; TB = 0,15 [s]; TC = 0,5 [s]; TD = 2,0[s]

Load cases according to support reactions document from Garaventa

- Support forces tower 1 → Doc.No. 1390320, Garaventa

- Support forces tower 2 → Doc.No. 1399784, Garaventa

Page 13: W1412_Tower 1 and Tower 2_Basic Load Data-V1

W1412 Basic load data – Tower 1 and Tower 2 Page 13

Projekt Nr.: W1412 03.2015

3.4. Load combination

SLS – Serviceability limit state

ULS – Ultimate limit state

Combination scheme for earthquake conditions, acc. to EC8

EEq_x „+“ 0,3 EEq_y

0,3 EEq_x „+“ EEq_y

In which „+“ means „to combine“. All directions are considered in the analysis. All load

combinations are listed in the RFEM printout report.

Page 14: W1412_Tower 1 and Tower 2_Basic Load Data-V1

W1412 Basic load data – Tower 1 and Tower 2 Page 14

Projekt Nr.: W1412 03.2015

4. Images of tower 1

4.1. Isometric views

Page 15: W1412_Tower 1 and Tower 2_Basic Load Data-V1

W1412 Basic load data – Tower 1 and Tower 2 Page 15

Projekt Nr.: W1412 03.2015

4.2. Wind X

Page 16: W1412_Tower 1 and Tower 2_Basic Load Data-V1

W1412 Basic load data – Tower 1 and Tower 2 Page 16

Projekt Nr.: W1412 03.2015

4.3. Wind Y

Page 17: W1412_Tower 1 and Tower 2_Basic Load Data-V1

W1412 Basic load data – Tower 1 and Tower 2 Page 17

Projekt Nr.: W1412 03.2015

4.4. Support forces

Page 18: W1412_Tower 1 and Tower 2_Basic Load Data-V1

W1412 Basic load data – Tower 1 and Tower 2 Page 18

Projekt Nr.: W1412 03.2015

4.5. Maximum deformations in z-direction

Max deformation uz = 24,9mm

Page 19: W1412_Tower 1 and Tower 2_Basic Load Data-V1

W1412 Basic load data – Tower 1 and Tower 2 Page 19

Projekt Nr.: W1412 03.2015

4.6. Minimum deformations in z-direction

Min deformation uz = 3,2mm

Page 20: W1412_Tower 1 and Tower 2_Basic Load Data-V1

W1412 Basic load data – Tower 1 and Tower 2 Page 20

Projekt Nr.: W1412 03.2015

4.7. Total deformation at the top (translation)

Max deformation u = 465mm

Page 21: W1412_Tower 1 and Tower 2_Basic Load Data-V1

W1412 Basic load data – Tower 1 and Tower 2 Page 21

Projekt Nr.: W1412 03.2015

4.8. Total deformation at the top (rotation)

Max deformation φz = 2,0mrad

Page 22: W1412_Tower 1 and Tower 2_Basic Load Data-V1

W1412 Basic load data – Tower 1 and Tower 2 Page 22

Projekt Nr.: W1412 03.2015

5. Images of tower 2

5.1. Isometric views

Page 23: W1412_Tower 1 and Tower 2_Basic Load Data-V1

W1412 Basic load data – Tower 1 and Tower 2 Page 23

Projekt Nr.: W1412 03.2015

5.2. Wind X

Page 24: W1412_Tower 1 and Tower 2_Basic Load Data-V1

W1412 Basic load data – Tower 1 and Tower 2 Page 24

Projekt Nr.: W1412 03.2015

5.3. Wind Y

Page 25: W1412_Tower 1 and Tower 2_Basic Load Data-V1

W1412 Basic load data – Tower 1 and Tower 2 Page 25

Projekt Nr.: W1412 03.2015

5.4. Support forces

Page 26: W1412_Tower 1 and Tower 2_Basic Load Data-V1

W1412 Basic load data – Tower 1 and Tower 2 Page 26

Projekt Nr.: W1412 03.2015

5.5. Maximum deformations in z-direction

Max deformation uz = 38,4mm

Page 27: W1412_Tower 1 and Tower 2_Basic Load Data-V1

W1412 Basic load data – Tower 1 and Tower 2 Page 27

Projekt Nr.: W1412 03.2015

5.6. Minimum deformations in z-direction

Min deformation uz = 0,8mm

Page 28: W1412_Tower 1 and Tower 2_Basic Load Data-V1

W1412 Basic load data – Tower 1 and Tower 2 Page 28

Projekt Nr.: W1412 03.2015

5.7. Total deformation at the top (translation)

Max deformation u = 328mm

Page 29: W1412_Tower 1 and Tower 2_Basic Load Data-V1

W1412 Basic load data – Tower 1 and Tower 2 Page 29

Projekt Nr.: W1412 03.2015

5.8. Total deformation at the top (rotation)

Min deformation φz = -1,5mrad

Page 30: W1412_Tower 1 and Tower 2_Basic Load Data-V1

W1412 Basic load data – Tower 1 and Tower 2 Page 30

Projekt Nr.: W1412 03.2015

6. Pile foundation

● Tower 1: Pfahlbemessung:  BH1 

D =  150 [cm] 

U =  471 [cm] 

Nk =  9550 [kN] 

L0 =  20,05 [m] 

Lmg =  5,93 [m] 

ΣL =  25,98 [m] 

τmg,1 =  700 [kN/m²] 

l1 =  0 [m] 

R1 =  0,0 [kN] 

τmg,2 =  700 [kN/m²] 

l2 =  5,93 [m] 

R2 =  19561,1 [kN] 

η =  2 [‐/‐] 

ΣR =  19561,1 [kN] 

ηNk/ΣR =  0,98 ≤ 1 

Pfahlbemessung:  BH2 

D =  150 [cm] 

U =  471 [cm] 

Nk =  9550 [kN] 

L0 =  21,93 [m] 

Lmg =  7,17 [m] 

ΣL =  29,1 [m] 

τmg,1 =  700 [kN/m²] 

l1 =  3,6 [m] 

R1 =  11875,2 [kN] 

τmg,2 =  700 [kN/m²] 

l2 =  3,57 [m] 

R2 =  11776,3 [kN] 

η =  2 [‐/‐] 

ΣR =  23651,5 [kN] 

ηNk/ΣR =  0,81 ≤ 1 

Pfahlbemessung:  BH3 

D =  150 [cm] 

U =  471 [cm] 

Nk =  9550 [kN] 

L0 =  19,43 [m] 

Lmg =  6,57 [m] 

ΣL =  26 [m] 

τmg,1 =  700 [kN/m²] 

l1 =  0 [m] 

R1 =  0,0 [kN] 

τmg,2 =  700 [kN/m²] 

l2 =  6,57 [m] 

R2 =  21672,3 [kN] 

η =  2 [‐/‐] 

ΣR =  21672,3 [kN] 

ηNk/ΣR =  0,88 ≤ 1 

Page 31: W1412_Tower 1 and Tower 2_Basic Load Data-V1

W1412 Basic load data – Tower 1 and Tower 2 Page 31

Projekt Nr.: W1412 03.2015

● Tower 2: Pfahlbemessung:  F4 

D =  150  [cm] 

U =  471  [cm] 

Nk =  8240  [kN] 

L0 =  25,9  [m] 

Lmg =  32  [m] 

ΣL =  57,9  [m] 

τmg,1 =  70  [kN/m²] 

l1 =  3,6  [m] 

R1 =  1187,5  [kN] 

τmg,2 =  120  [kN/m²] 

l2 =  28,4  [m] 

R2 =  16059,8  [kN] 

η =  2  [‐/‐] 

ΣR =  17247,3  [kN] 

ηNk/ΣR =  0,96  ≤ 1  Pfahlbemessung:  F6 

D =  150  [cm] 

U =  471  [cm] 

Nk =  8000  [kN] 

L0 =  26,5  [m] 

Lmg =  30  [m] 

ΣL =  56,5  [m] 

τmg,1 =  70  [kN/m²] 

l1 =  4  [m] 

R1 =  1319,5  [kN] 

τmg,2 =  120  [kN/m²] 

l2 =  26  [m] 

R2 =  14702,7  [kN] 

η =  2  [‐/‐] 

ΣR =  16022,1  [kN] 

ηNk/ΣR =  1,00  ≤ 1 

Pfahlbemessung:  F5 

D =  150 [cm] 

U =  471 [cm] 

Nk =  8050 [kN] 

L0 =  15,1 [m] 

Lmg =  8 [m] 

ΣL =  23,1 [m] 

τmg,1 =  500 [kN/m²] 

l1 =  0 [m] 

R1 =  0,0 [kN] 

τmg,2 =  500 [kN/m²] 

l2 =  8 [m] 

R2 =  18849,6 [kN] 

η =  2 [‐/‐] 

ΣR =  18849,6 [kN] 

ηNk/ΣR =  0,85 ≤ 1