výpoctová mechanika 2001 -...

21
1 Bone as a microcontinuum 12 Josef Rosenberg & Robert Cimrman & Ludˇ ek Hynˇ cík University of West Bohemia in Plzeˇ n Department of Mechanics & New Technology Research Centre Univerzitní 22, 301 14 Plzeˇ n How to treat the microstructure? homogenization theory of mixtures, of composites microcontinuum theories Presentation for the conference Výpoˇ ctová Mechanika 2001, Neˇ ctiny, 29.-31. October 2001. 1 Typeset by ConT E Xt (http://www.pragma-ade.nl). 2

Upload: others

Post on 03-Oct-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Výpoctová Mechanika 2001 - presentationhome.zcu.cz/~cimrman3/results/presentation/nectiny2001_main.ct.pdf · 17 Femur bone with nail — example IIa • Dependenceofstressonc: l

1

Bone as a microcontinuum1 2

Josef Rosenberg& Robert Cimrman & Ludek Hyncík

University of West Bohemia in PlzenDepartment of Mechanics & New Technology Research Centre

Univerzitní 22, 301 14 Plzen

How to treat the microstructure?

• homogenization

• theory of mixtures, of composites

• microcontinuum theories

Presentation for the conferenceVýpoctová Mechanika 2001, Nectiny, 29.-31. October 2001.1

Typeset by ConTEXt (http://www.pragma-ade.nl ).2

Page 2: Výpoctová Mechanika 2001 - presentationhome.zcu.cz/~cimrman3/results/presentation/nectiny2001_main.ct.pdf · 17 Femur bone with nail — example IIa • Dependenceofstressonc: l

2

Basic kinematics

• Continuum "points" can translate, but alsorotateanddeform→ micromorphic continuum.

• Position within a particle given byx′ = x + ξ, y′ = y + η.• Special types:− microstretch continuum: rotation + volume change,− micropolar continuum: rotation only.

Figure 1 Coordinates within particles.

Page 3: Výpoctová Mechanika 2001 - presentationhome.zcu.cz/~cimrman3/results/presentation/nectiny2001_main.ct.pdf · 17 Femur bone with nail — example IIa • Dependenceofstressonc: l

3

General balance equations

The balance of forces and balance of stress moments equations:

tkl,k + ρf l = 0 , mklm

,k + tml − sml + ρllm = 0 . (1)

t′kl . . . stress tensor in a particle,t′kl = t′lk,slm . . . micro-stress average — stress tensor of

the macrovolume averaged acrossthe volume (symmetric),

tkl . . . stress tensor of the macrovolume averaged acrossthe surface (non-symmetric),

mklm . . . the first stress moment — moment of the forcesacting on the surface of the macrovolumewith respect to its centre of gravity,

llm . . . the first body moment of the volume forces withrespect to the centre of gravity of the macrovolume,

f l . . . averaged volume force.

Some defining relations:∫dS

t′kln′k ds′ = tklnk dS ,∫dS

ξ′mt′kln′k ds′ = mklmnk dS .

Page 4: Výpoctová Mechanika 2001 - presentationhome.zcu.cz/~cimrman3/results/presentation/nectiny2001_main.ct.pdf · 17 Femur bone with nail — example IIa • Dependenceofstressonc: l

4

Special types

• microstretch continuum — 7 degrees of freedom

mklm =13mkδlm − 1

2elmrmk

r , (2)

lkl =13lδlm − 1

2eklrlr . (3)

• micropolar continuum — 6 degrees of freedom

mk = 0 , l = 0 . (4)

Page 5: Výpoctová Mechanika 2001 - presentationhome.zcu.cz/~cimrman3/results/presentation/nectiny2001_main.ct.pdf · 17 Femur bone with nail — example IIa • Dependenceofstressonc: l

5

Micropolar continuum - the boundary value problem

• Basic equations:

tkl,k + ρf l = 0 , mk

l,k + elmntmn + ρll = 0 , (5)

tkl = ρ∂Ψ

∂ΨKL

∂yk

∂xKχlL , mkl = ρ0

∂Ψ∂ΓLK

∂yk

∂xKχlL ,

ΨKL = yk,K χkL , ΓKL =

12e MN

K χkMχkN , whereχlk =

∂ηl

∂ξk, χl

k =∂ξl

∂ηk.

• For theisotropic continuumholds (denotingγij = φi,j , εkl = ∂ul

∂xk + elkmφm):

tkl = λεmmδkl + (µ + κ)εkl + µεlk , mkl = αγm

mδkl + βγkl + γγlk . (6)

• The boundary conditions:uk = uk

φk = φk

on∂Ω1 ,

tklnk = tl

mklnk = ml

on∂Ω2 .

Page 6: Výpoctová Mechanika 2001 - presentationhome.zcu.cz/~cimrman3/results/presentation/nectiny2001_main.ct.pdf · 17 Femur bone with nail — example IIa • Dependenceofstressonc: l

6

Variational formulationThe solution is thestationary pointof the potential (see[8])

Π(u, φ) = 12

∫Ω

[λδklεm

m + (µ + κ)εkl + µεkl]εkldx

+ 12

∫Ω

(αδklγm

m + βγkl + γγlk)γlkdx +

∫∂Ω2

(uinj + gij)τ ijdx

+∫

∂Ω2

(φknl + γkl)mkldx−∫Ω

ρfiuidx−∫

∂Ω1

τiuidx−∫Ω

ρllφldx

with the constraints

εkl =∂ul

∂xk+elkmφm, −uinj = gij on∂Ω2, γkl =

∂φk

∂xl, −φiu

j = γij on∂Ω2 .

The weak solution of the problem atpage 5satisfies (we omit loading terms here)

Π(u, φ; δu) = 0→∫Ω

τklδuεkldΩ = 0, (7)

Π(u, φ; δφ) = 0→∫Ω

(τklδφεkl + mklδφφl,k) dΩ = 0 . (8)

Page 7: Výpoctová Mechanika 2001 - presentationhome.zcu.cz/~cimrman3/results/presentation/nectiny2001_main.ct.pdf · 17 Femur bone with nail — example IIa • Dependenceofstressonc: l

7

FE discretizationDenote:1≡ [1, 1, 1|0, 0, 0|0, 0, 0]T , J . . . a permutation matrix,G, ν strain operators.

te = (λ11T + (µ + κ)I + µJ)︸ ︷︷ ︸D1

[G+|ν]de = D1Bde , me = (α11T + βJ + γI )︸ ︷︷ ︸D2

G+φe = D2G+φe .

Discrete balance equations for one element:

Ue ≡∑

q

[G+T teJ0W

]|ξq =

∑q

[G+TD1BJ0W

]|ξq · de = [Ae, Be]de = 0 , (← Eq. 7)

φe ≡∑

q

[(νT te + G+Tme)J0W

]|ξq =

∑q

[νTD1BJ0W

]|ξq · de

+∑

q

[G+TD2G+J0W

]|ξq · φe = [Ce, De]de + Eeφ

e = 0 . (← Eq. 8)

⇒ Linear system withindefinitematrix:[Ae Be

Ce De + Ee

] [ue

φe

]=

[f e

ge

]. (9)

Page 8: Výpoctová Mechanika 2001 - presentationhome.zcu.cz/~cimrman3/results/presentation/nectiny2001_main.ct.pdf · 17 Femur bone with nail — example IIa • Dependenceofstressonc: l

8

Analytical verification I

The analytical solution is known in some cases (cf.[3], results taken from[8]) , e.g.:

• a plane with a hole loaded in tension,

• compute the stress concentration factor on the boundary of the hole.

mesh microrotations

Figure 2 Plane with a hole.

Page 9: Výpoctová Mechanika 2001 - presentationhome.zcu.cz/~cimrman3/results/presentation/nectiny2001_main.ct.pdf · 17 Femur bone with nail — example IIa • Dependenceofstressonc: l

9

Analytical verification II

R = radius of the hole (macroscopic characteristic length)[m]c = characteristic length of the microstructure [m]K = stress concentration factor

Figure 3 Stress concentration(R/c ).

Theory:

• linear elasticity: red curve (K = 3)• micropolar elasticity: green curve

Numerical values:

• linear elasticity: magenta curve• micropolar elasticity: blue curve• adjusted (shifted by LE numeric− LE

theory): cyan curve

Page 10: Výpoctová Mechanika 2001 - presentationhome.zcu.cz/~cimrman3/results/presentation/nectiny2001_main.ct.pdf · 17 Femur bone with nail — example IIa • Dependenceofstressonc: l

10

Femur bone with nail — motivation

Figure 4 Example of a fixation of a bone.

Page 11: Výpoctová Mechanika 2001 - presentationhome.zcu.cz/~cimrman3/results/presentation/nectiny2001_main.ct.pdf · 17 Femur bone with nail — example IIa • Dependenceofstressonc: l

11

Femur bone with nail — material data

set λ [Pa] µ [Pa] κ [Pa] α [N] β [N] γ [N]

MP1 1.8 · 1010 −1.468 · 1010 3.837 · 1010 −120 120 240MP2 1.8 · 1010 −1.468 · 1010 3.837 · 1010 −12000 12000 24000LE 1.8 · 1010 4.5 · 109 — — — —

Table 1 Material data.

• Equivalent LE set was obtained usingλE = λM , µE = µM + κ/2(→ E = 1.26 · 1010 [Pa],ν = 0.4).

• Material data of the steel nail:E = 2.1 · 1011 [Pa],ν = 0.3.• Characteristic lengths of the microstructure:− MP1: c = 0.1283 [mm]− MP2: c = 1.283 [mm]

• Characteristic length of the macrostructure = radius of the hole.• LE set was used in PAM-Crash code for verification of our solver — the results

are denoted as "PC".

Page 12: Výpoctová Mechanika 2001 - presentationhome.zcu.cz/~cimrman3/results/presentation/nectiny2001_main.ct.pdf · 17 Femur bone with nail — example IIa • Dependenceofstressonc: l

12

Femur bone with nail — loads

• Two kinds of loading: bending and torsion.• Observed micropolar effect: decrease of stress on the femur–nail interface

bending torsion

Figure 5 Original (white) + deformed femur mesh (magnified displace-ments), LE set used for the bone.

Page 13: Výpoctová Mechanika 2001 - presentationhome.zcu.cz/~cimrman3/results/presentation/nectiny2001_main.ct.pdf · 17 Femur bone with nail — example IIa • Dependenceofstressonc: l

13

Femur bone with nail — evaluation lines

Figure 6 t22 [kPa], torsion case.

The nail was considered to be fixed to thebone — no movement between the two ma-terials was allowed. The stress was evalu-ated along these lines on the surface of thehole drilled into the bone:

Page 14: Výpoctová Mechanika 2001 - presentationhome.zcu.cz/~cimrman3/results/presentation/nectiny2001_main.ct.pdf · 17 Femur bone with nail — example IIa • Dependenceofstressonc: l

14

Femur bone with nail — stress along the lines

• Bending load: different behaviour (tension-compression) of middle and "non-middle" rows of elements⇒ separate plots.

• Torsion load: no such phenomenon.

t33 [kPa] (bending) t22 [kPa] (torsion)

Figure 7 Stress along the lines, MP2 set used for the bone.

Page 15: Výpoctová Mechanika 2001 - presentationhome.zcu.cz/~cimrman3/results/presentation/nectiny2001_main.ct.pdf · 17 Femur bone with nail — example IIa • Dependenceofstressonc: l

15

Femur bone with nail — example Ia

• We plot "averaged" stress along the front and back lines of Figure atpage 13.• The "averaging" = the least squares fitting of stress in the elements ofFigure 7).

middle element row upper element row

Figure 8 t33 along the lines, bending.

Page 16: Výpoctová Mechanika 2001 - presentationhome.zcu.cz/~cimrman3/results/presentation/nectiny2001_main.ct.pdf · 17 Femur bone with nail — example IIa • Dependenceofstressonc: l

16

Femur bone with nail — example Ib

• The bending case — fitting with the second order polynomial.• The torsion case — fitting with the third order polynomial.

Bending, middle element row, MP1 set. t22 along the lines, torsion.

Figure 9 Averaging example + torsion case results.

Page 17: Výpoctová Mechanika 2001 - presentationhome.zcu.cz/~cimrman3/results/presentation/nectiny2001_main.ct.pdf · 17 Femur bone with nail — example IIa • Dependenceofstressonc: l

17

Femur bone with nail — example IIa

• Dependence of stress onc: lt varied in range〈0.2, 2〉 [mm] while keeping the otherparameters constant. This resulted inc variation in range〈0.1283, 1.283〉 [mm].

• Stress was evaluated in6 selected elements (“left” end of the hole (the lowestx

coordinate), seeFigure 7, Table 2.

• Note the difference between middle and non-middle elements in the bending case.

element 5786 4236 4351 6103 6050 6123

line front front front back back back

row upper middle lower upper middle lower

Table 2 Selected elements.

Page 18: Výpoctová Mechanika 2001 - presentationhome.zcu.cz/~cimrman3/results/presentation/nectiny2001_main.ct.pdf · 17 Femur bone with nail — example IIa • Dependenceofstressonc: l

18

Femur bone with nail — example IIb

t33(c), bending t22(c), torsion

Figure 10 Dependence onc in the selected elements.

Page 19: Výpoctová Mechanika 2001 - presentationhome.zcu.cz/~cimrman3/results/presentation/nectiny2001_main.ct.pdf · 17 Femur bone with nail — example IIa • Dependenceofstressonc: l

19

Femur bone with nail — example IIc

t33(c), bending t22(c), torsion

Figure 11 Dependence onc in element 4236.

Page 20: Výpoctová Mechanika 2001 - presentationhome.zcu.cz/~cimrman3/results/presentation/nectiny2001_main.ct.pdf · 17 Femur bone with nail — example IIa • Dependenceofstressonc: l

20

Conclusion

• Linear micropolar elasticity was introduced.

• Presented examples showed a stronginfluence of the microstructural parameterson the stress.

• Further work:

− micropolar anisotropic continuum

− micromorphic continuum

− material parameter identification

Page 21: Výpoctová Mechanika 2001 - presentationhome.zcu.cz/~cimrman3/results/presentation/nectiny2001_main.ct.pdf · 17 Femur bone with nail — example IIa • Dependenceofstressonc: l

21

References[1] H. Bufler. Zur variationsformulierung nichtlinearer randwertprobleme.Ingenieur-Archiv 45, pp. 17–39, 1976.[2] E. Cosserat.Theorie des Corps Deformables. Hermann, Paris, 1909.[3] A.C. Eringen.Microcontinuum Field Theories: Foundation and Solids. Springer,New York, 1998.[4] A.C. Eringen and E.S. Suhubi. Nonlinear theory of simple micro-elastic solids.Int. J. Engng. Sci., 2:189–203, 1964.[5] H.C. Park and R.S. Lakes. Cosserat micromechanics of human bone: Strainredistribution by a hydratation sensitive constituent.J. Biomechanics, 19:385–397,1986.[6] J. Rosenberg. Allgemeine variationsprinzipien in den evolutionsaufgaben derkontinuumsmechanik.ZAMM, 65:417–426, 1985.[7] J. Rosenberg. Variational formulation of the problems of mechanics and its matrixanalogy.Journal of Computational and Applied Mathematics, 53:307–311, 1995.[8] J. Rosenberg and R. Cimrman. Microcontinuum Approach in BiomechanicalModelling. Mathematics and Computers in Simulation, 2001. Special volume: Pro-ceedings of the conference Modelling 2001, Plzen, submitted.