volumul integral (.pdf)

238
editura SILVICA

Upload: ngodan

Post on 28-Jan-2017

303 views

Category:

Documents


8 download

TRANSCRIPT

Page 1: Volumul integral (.pdf)

editu

ra

SILVICA

Page 2: Volumul integral (.pdf)

3

ICAS 2008 Conference October 23 – 25, 2008 Bucharest, Romania

Contents

Opening discussions

Impact of Natura 2000 sites designation on forest managementPeter Veen …………………………………………….......................................................7

The history of Forest Research and Management Institute and its development prospects (in Romanian)

Marian Ianculescu ………………………………………………………........................11

The forest in a changing natural and socio-economic environment

Researches regarding the parametric objective approach of the climatic year structure in hilly and mountainous regions, in the frame of climate changes

Viorela Huber ………………………………………………………………...................21Effects of accidental fl uorine pollution on Prahova Valley’s forest stands Marian Ianculescu, Ionel Popa, Ştefan Neagu, Cristina M. Măcărescu …………….......29Hungarian oak and Turkey oak fructifi cation in the Western part of the Getic Plateau Iulian Bercea ……………………………………………………………….....................41Research on structural variety of stands for three European beech forests with different ages,

located in middle and superior Valley of Argeş River Gheorghe Guiman, Virgil Scărlătescu, Constantin Truică …………………...................53Ecological reconstruction by regeneration of pine stands located on degraded lands in the South-

Eastern Romania (in Romanian) Cristinel Constandache, Sanda Nistor ……………………………………......................65

Research on ecological reconstruction of the declining forests in embanked areas located in the Danube fl ood plain and Delta (in Romanian)Manole Greavu …………………………………………………………….....................79

Aerodynamic study of forest shelter belts (wind breaks)Titus-Traian Orădean ………………………………………………………....................89

Local networks of forest shelterbelts – solution to achieve a national plan Maria Magdalena Vasilescu, Cornel Cristian Tereşneu ……………………………….....91

Forest resources – assessment, management, use

Evolution of the European concept of forest management and the incidence on the Romanian silvicuture (in Romanian)Petre Bradosche ………………………………………………………............................99

Wood biomass resources of Romania – an alternative source of energy (in Romanian)

Page 3: Volumul integral (.pdf)

4

Gavril Budău, Mihai Ispas, Mihaela Câmpean ……………….......................................117Current structure and growth in diameter of hornbeam stands in northeast Bulgaria

Hristo Tsakov, Alexander Delkov ……………………………………...........................123Considerations on some current problems of management in Romania’s silviculture (in

Romanian)Ion Machedon …………………………………………………………….....................131

Certifi cation schemes – a fi rst step towards sustainable management of forestry in RomaniaCorina-Ionela Dumitrescu, Beatrice Leuştean……………………………....................139

Beech timber preservation during storageOctavia Zeleniuc ………………………………………………………….....................145

Assessment of anthropogenic and climatic changes impacts on forest systems by satellite and biogeophysical dataMaria Zoran, Mihaela Caian ………………………………………………...................151

Aspects regarding the use of digital orthophotomaps in forest cadastreIosif Vorovencii ……………………………………………………………..................159

Integrated forest planning and management system: pathway to the future in Romania?Eugen Iordache, Marius Petrila …………………………………………….................169

Inventory of primary and secondary forest ways using GPS/GIS in Romanian mountainous forestsEugen Iordache ……………………………………………………………...................177

Operational model for assessment of environmental impact in forest road construction (in Romanian)

Valeria Alexandru, Rostislav Bereziuc, Valentina Ciobanu …………………………....183 Possibilities of estimating discharge in small watersheds by means of TR-55 model

Cornel Cristian Tereşneu, Ştefan Tamaş, I. Clinciu, Maria Magdalena Vasilescu .........189Contributions to the kinematics study of the blade borers for seedling planting holes Ilie Popescu, Rudolf Derczeni, Eugen Iordache, Horia Şotoc ……………...................195Gully erosion in Suceava Plateau – a case study

Ovidiu Iacobescu, Ionuţ Barnoaiea ………………………………………....................203

Forest biodiversity – assessment, monitoring, conservation, improvement

The importance of some endemic plant taxa in maintaining the identity of Dacian Beech forest (Symphyto-Fagion)Anca Păunescu ……………………………………………………………....................211

Formation, development and early abscission of the Italian oak (Quercus frainetto) acorns during vegetation season (in Romanian)Marius Sorin Nică, Marcel Octavian Bădele, Constantin Neţoiu, Ionel Cioc, Cornel Şoancă ................................................................................................................219

Physiological aspects of Quercus species under chemical and integrated pest control in North-Eastern Romania’s forestsLigia Acatrinei ……………………………………………………………....................227

Management principles of fi sh populations in mountain waters (in Romanian)Ioan Cristea ……………………………………………………………….....................235

Page 4: Volumul integral (.pdf)

5

ICAS 2008 Conference October 23–25, 2008 Bucharest, Romania

Preface

The proceedings is the result of the international conference „Sustainable forestry in a changing environment” held in Bucharest, Romania, from October 23rd to 25th of 2008. The meeting was organized under the auspices of the International Union of Forestry Research Organizations (IUFRO), the European Forest Institute (EFI), the Ministry of Agriculture and Rural Development (MADR), the National Forest Administration (RNP-ROMSILVA) and the Academy of Agriculture and Forest Sciences (ASAS), and hosted by the Forest Research and Management Institute (ICAS). The purpose of this conference was to bring together, on the occasion of the anniversary of 75 years of institute foundation, specialists from various areas - forestry sciences, biology, ecology, wood industry, environmental protection, nature conservation, social and economic sciences, etc. - to partake of their recent experience and achievements on sustainable forest management in the context of socio-economic and natural environment changes. The specifi c objectives of the conference were: presentation of scientifi c and technical aspects regarding the priorities in forest research, management and policy in the context of the natural and socio-economic environment changes; presentation of the latest achievements in scientifi c forest research; strengthening contacts and scientifi c exchanges among the members of scientifi c community; presentation of research and development activities of ICAS at its anniversary. The conference was structured in a plenary session, three working sessions (Forest in the context of natural and socio-economic environment changes; Forest resources - evaluation, management, use; Forest biodiversity - assessment, monitoring, conservation and improvement), poster session and a fi eld trip to the experimental forest district Mihăieşti, Argeş county. 193 participants from 10 countries joined the meeting presenting 6 opening speeches and 93 oral presentations and posters.

Acknowledgements The editors wish to express their gratitude to all people involved in the preparation of the meeting, for excellent organization of the scientifi c and fi eld program, as well as for pleasant atmosphere. Special thanks go to the organization committee. We are indebted to Elena Avădănii, Pollyana Pârnuţă and Dana Mohor, who have done the technical editing and computer formatting of the entire volume.

The Editors

Page 5: Volumul integral (.pdf)

6

Page 6: Volumul integral (.pdf)

7

ICAS 2008 Conference October 23-25, 2008 Bucharest, Romania

Impact of Natura 2000 sites designation on forest management

P. Veen

Veen P. 2009. Impact of Natura 2000 sites designation on forest management. In: Olenici N., Teodosiu M., Bouriaud O. (eds.), Proceedings of the conference “Sus-tainable forestry in a changing environment“, October 23-25, 2008, Bucharest, For-est Research and Management Institute ICAS, pp. 7-10.

Abstract. Forests are important habitat types within the Natura 2000 network and the central task of forest managers should be the keeping of the “favourable conserva-tion status” alive for all qualifi ed habitats and species. Consequently, the EU Habitat Directive stated several obligations for the forest managers: the conservation value (species and/or habitats of European concern) should be the leading principle; for every activity in the site it is necessary to do an assessment according the manage-ment plan or to do a case-to-case judgement, and conservation measures are needed to support the Natura 2000 goals. The forest management should be seen not only as management of forests as tree-stands, but also as places where species of European importance live.Key words: Natura 2000 sites, forest habitats, forest management

Author. Peter Veen - Royal Dutch Society for Nature Conservation, The Ne-therlands.

Myths about Natura 2000 and forestry

It was stated by EU that several myths exist concerning Natura 2000 sites and the possibility to manage the site as a forest. Some selection of arguments:- Natura 2000 sites all will become nature reserve: EU Membership Countries are free to choose for the status of Natura 2000 sites. There are 3 possibilities to solve the status:• Statutory status like for example to make a nature reserve;• Contractual status like to sign a management agreement with the owner of the site;• Administrative status to give possibilities for management of the site.- We will have to stop all our activities for the sake of nature: the conservation of species and habitats can be quite compatible with well-managed human activities such as tourism, hunting and forestry. Eventual restrictions must be based on a case-by-case judgement.

EU Habitats Directive and Natura 2000

Forests are important habitat types within the Natura 2000 network. Information from 2003 (before accession of the New Member State Countries) learned that within about 50% of the designated Natura 2000 sites in the EU Member States forest is an important habitat (Figure 1).

Page 7: Volumul integral (.pdf)

8

Even in 10% of the sites, the forests cover more than 80% of the total surface. It is expected that in the New Member States this percentage will be higher. The EU Habitat Directive (HD) provides the forest manager with several obligations. The following obligations are to mention:- Art.4: After designation of the Natura 2000 site, the site has to be managed according art.6 of the HD.- Art.6: This article is very important for management of the forests like:• The conservation value (species and/or habitats of European concern) should be the leading principle.• For every activity in the site it is necessary to do an assessment according the management plan or to do a case-to-case judgement.• Conservation measures are needed to support the Natura 2000 goals.Central task for the forest manager is “to take all necessary conservation measures’’ in order to keep the ‘’favourable conservation status’’ alive for all qualifi ed habitats and species. For that art.6 HD foresees in:- Identifi cation of special areas for conservation (pSCI);- To prepare appropriate management plans;- To take all statutory, administrative, contractual measures to preserve all targeted habitats and species.

Management plans for Natura 2000 sites

Every forester of Natura 2000 sites has to deal with ‘’habitats’’ and ‘’species’’ management. In fi gure 2 a management strategy scheme has been provided based on the requirements of the EU Habitats Directive. In the centre of the scheme are the conservation objectives of the species and the habitats which are selected as qualifying habitats and species for the Natura 2000 sites (see annexes of the Habitats Directive with lists of habitats and species of European importance). For these habitats and species a Favourable Conservation Status (FCS) is obligated. For every habitat and species it is needed to defi ne a benchmark like number of species in the site or total area covered by a habitat type. A good conservation status means that the species number or the habitat area is stable or increasing compared with the total population in the country or the total coverage

Fig. 1 Number of Natura 2000 sites connected with presence of forest habitats (EU, 2003)

Page 8: Volumul integral (.pdf)

9

of that habitat in the country. During the selection of the Natura 2000 sites it is necessary to identify the benchmark for species and habitats. The management plan starts with the conservation goals which can be based on these benchmarks indicators. The objectives for the management plan follow these conservation goals and give information about the FCS during the period of the management plan. Monitoring of these species and habitats need to be done to deliver information about these status in time. During the evaluation of the management plan the objectives should be evaluated also. Based on these results it is necessary to follow a maintenance management or to develop a recovery management strategy in order to improve the conditions for species and/or habitats.

Conclusions

Foresters have to deal in Natura 2000 sites with management of species and habitats. Management of the forests means to create good conditions for nature. The knowledge for this type of management means a challenge for forest faculties in the university. From now, forest management is not only management of forests as tree-stands but also as places where species of European importance live.

Fig. 2 Management strategy based on conservation of species and habitats of European importance

Page 9: Volumul integral (.pdf)

10

Page 10: Volumul integral (.pdf)

11

ICAS 2008 Conference October 23-25, 2008 Bucharest, Romania

Istoricul Institutului de Cercetari şi Amenajari Silvice şi perspectivele de dezvoltare ale acestuia

M. Ianculescu

Ianculescu M. 2009. Istoricul Institutului de Cercetări şi Amenajări Silvice şi per-spectivele de dezvoltare ale acestuia. [The history of Forest Research and Manage-ment Institute and its development prospects]. In: Olenici N., Teodosiu M., Bouriaud O. (eds.), Proceedings of the conference “Sustainable forestry in a changing environ-ment“, October 23-25, 2008, Bucharest, Forest Research and Management Institute ICAS, pp. 11-20.

Abstract. The paper presents a short history of the Romanian forest research institute, its achievements as well as its development prospects. The Forest Re-search and Management Institute was founded in 1933, but concerns on forest experimentation animated Romanian sylviculturists much earlier, in the second half of the 19th century. After 1933, the institute underwent a lot of organiza-tional changes. However, with professionalism and devotion, the people work-ing in all activities (research, designing and forest administration) contributed signifi cantly to the development of our national sylviculture. The main expecta-tions for the institute concern its nomination as national institute, obtaining of an unambiguous judicial status and acknowledging of its patrimony.Key words: Forest Research and Management Institute, history, development pros-pects

Author. Marian Ianculescu - Forest Research and Management Institute, Bd. Eroilor 128, 077190 - Voluntari, Romania.

1. Experimentatia forestiera pâna la institutionalizarea cercetarii silvice în tara noastra

În ordine cronologică prezentăm principalele acţiuni şi promotorii acestora referitor la experimentaţia forestieră, până la instituţionalizarea cercetării silvice în ţara noastră.• 1845 – încercări pentru abordarea experimentaţiei forestiere (D. Heyer, distins forestier german, la un congres al silvicultorilor.• 1868 – la congresul silvicultorilor de la Viena s-a defi nitivat conceptul de experimentaţie forestieră (Gustav Heyer, Judeich, Baur, Ebermayer, Oser).• În Romania, părinţii experimentaţiei forestiere pot fi consideraţi: Ion Ionescu de la Brad şi P.S. Aurelian, care au realizat în 1865 (deci cu 3 ani înaintea silvicultorilor de la Congresul de la Viena) primul proiect de cultură pentru exploatarea moşiei Pantelimon proiect aprobat în ian. 1865 de Mihail Kogălniceanu, ministru de Interne, Agricultură şi Lucrări Publice. • 1887 – V. Cârnu Munteanu prezintă în cadrul Societăţii ,,Progresul Silvic”, conferinţa intitulată ,,Rolul experimentaţiunii în silvicultură”, unde susţine ideea efectuării de cercetări proprii pentru

^^

^

,^

^

,

^

,

Page 11: Volumul integral (.pdf)

12

fundamentarea unei silviculturi specifi ce condiţiilor din ţara noastră. Ideea a fost preluată de A.M. Iliescu (1888), care propune înfi inţarea de ,,Staţiuni de experimentaţie forestieră”, idee susţinută de N.G. Popovici (1901), D.R. Rusescu (1906), P. Antonescu (1907, 1911, 1915, 1922).• 1918 – Necesitatea înfi inţării unei instituţii de cercetare ştiinţifi că forestieră apare după întregirea istorică a neamului. Pe arena silviculturii româneşti apare, în acest context, fi gura proeminentă a prof. Marin Drăcea ca şef al ocolului silvic Ţigăneşti (1919-1920), unde sesizează necesitatea cercetărilor în domeniu forestier.• 1920 – Teodor Cudalbu – administratorul Casei pădurilor (azi RNP) decide începerea unor lucrări de cercetare la ocoalele silvice Sinaia şi Ţigăneşti.• 1920 – este semnată decizia (Mon. Ofi cial nr. 210 din 1920) de înfi inţarea Staţiunii experimentale de la Sinaia sub conducerea lui Marin Drăcea şi V. N. Stinghe Din păcate, aceasta a funcţionat o perioadă scurtă de timp.• 1929 – După experienţa din SUA, ca bursier şi după participarea sa la cel de-al VII-lea Congres mondial al staţiunilor de experimentaţie forestieră, Marin Drăcea îşi conturează concepţia privind organizarea unei instituţii de cercetare ştiinţifi că forestieră.• 1930 – Ia fi inţă CAPS (azi RNP). Marin Drăcea în calitate de director general, organizează în cadrul CAPS un birou de studii, unul de publicaţii şi trei laboratoare (soluri, entomologie, botanică şi fi topatologie forestieră).• 1932 – decembrie, sub auspiciile Societăţii ,,Progresul Silvic”, se înfi inţează ,,Cercul de studii forestiere”.• 1932 – Marin Drăcea – director general la CAPS, înfi inţează ,,Ofi ciul de studii” în cadrul CAPS-ului, prin transformarea celor două birouri şi laboratoarele înfi inţate în 1930. Ofi ciul cuprindea: o secţie de cercetări şi experimentaţie forestieră şi o secţie de documentare şi era condus de V.N. Stinghe. Până la înfi inţarea institutului nu mai era decât un pas.

2. Înfiintarea Institutului de Cercetari Forestiere

Începând cu înfi inţarea Institutului de Cercetări Forestiere, în ordine cronologică, este de menţionat următoarea evoluţie în structura acestuia:• 1933 – Prin Jurnalul Consiliului de Miniştrii nr. 561 din 16 mai 1933, publicat în Monitorul Ofi cial nr. 115 din 22 mai 1933 – Ofi ciul de Studii al CAPS se transformă în ,,Institut de Cercetări şi Experimentaţie Forestieră”. Primul director al Institutului devine Marin Drăcea. Sediul Institutului – str. Clopotarii Vechi nr. 1.Membrii fondatori: M. Drăcea, V.N. Stinghe, C. Chiriţă, C.C. Georgescu, Gr. Eliescu, I. Popescu-Zeletin, N. Rucăreanu D. Drâmbă, M. Petcuţ, V. Sabău, D. Sburlan, I. Demetrescu, At. Haralamb, N. Ghelmeziu, V. Dinu, T. Bălănică, Tr. Ionescu-Heroiu, G. Toma, S. Paşcovschi, E. Vintilă, M. Badea, M. Ene, A. Rădulescu, A. Constantinescu.• 1935 – Prin Decizia ICEF nr. 422 se înfi inţează staţiunile experimentale Gurghiu şi Timişoara (Casa Verde) condusă de S. Paşcovschi.• 1936 – Legea de organizare a Ministerului Agriculturii şi Domeniilor, aprobată prin Decretul nr. 986/1936 şi publicată în Monitorul Ofi cial nr. 255 din 2 nov 1936, dă o nouă consfi nţire Institutului de Cercetări şi Experimentaţie Forestieră.• 1938 – Se înfi inţează Staţiunea silvică experimentală ,,Dobrogea” cu sediul în Comorova, condusă de M. Petcuţ, apoi de I. Z. Lupe, prin decizia ministerială nr. 845 din 4 august 1938. Staţiunea silvică experimentală ,,Dobrogea” este înzestrată, prin Decizia ministerială nr. 1438 din 1942, publicată în M.O. nr. 226 din 26 sept. 1942, cu 808 ha din pădurea Comorova.• 1939 – Prin Jurnalul Consiliului de Ministrii din 12 aprilie se înfi inţează Câmpul de Experienţă Băneasa. In prealabil, prin Jurnalul Consiliului de Ministrii din 12 aprilie 1935 s-a aprobat cumpărarea de către Institut a unui teren de cca. 15 ha de la locuitorii din comuna suburbană

^

,

Page 12: Volumul integral (.pdf)

13

Sediul actual al Institutului de Cercetări şi Amenajări Silvice Bucureşti

Prof. Marin Drăcea - fondatorul Institutului de Cercetări şi Experimentaţie Forestieră

Localizarea în teritoriu a centralei şi a subunităţilor ICAS

Page 13: Volumul integral (.pdf)

14

Băneasa, în vederea construirii pavilioanelor şi laboratoarelor necesare I.C.E.F.-ului. În anii 1939 şi 1940 s-au achiziţionat 12,47 ha din cele 15 ha aprobate.• 1942 – Se înfi inţează Staţiunea Experimentală ,,Bărăgan” prin Jurnalul Consiliului de Miniştrii nr. 736 din 14 iulie 1942, căreia i se dă în folosinţă 1200 ha din moşia satului Jegălia.• 1942 – Prin Decizia ministerială nr. 1438 din 18 sept., publicată în M.O. nr. 226 din 28 sept., se înzestrează I.C.E.F.-ul cu trei ocoale silvice experimentale: Sinaia, Carol I Mihăeşti-Muscel şi Huffel – Ţigăneşti-Ilfov. Astfel se realizează năzuinţa institutului în dotarea cu ocoale silvice experimentale.• 1945 – Se aduc modifi cări structurale importante I.C.E.F.-ului. Au fost sporite numărul secţiilor de la 5 la 8, apoi de la 8 la 10 şi s-au creat noi organe de conducere şi îndrumare. Denumirea institutului s-a schimbat în ,,Institutul de Cercetări Forestiere al României”, conducerea fi ind încredinţată prof. C.C. Georgescu.• Până în 1947 Institutul de Cercetări şi Experimentaţie Forestieră (I.C.E.F.) a funcţionat pe baza legilor de organizare a Ministerului Agriculturii şi Domeniilor şi conform deciziilor ministeriale de înfi inţare şi organizare. • El n-a avut o lege proprie, organică, de funcţionare.• 1947 – Este promulgată Legea nr. 173 pentru reorganizarea Institutului de Cercetări Forestiere al României (I.C.E.F.) în Institutul de Cercetări Forestiere, republicată în M.O. nr. 129 din 9 iunie. Apariţia acestei legi, cu sprijinul nemijlocit al acad. Tr. Săvulescu, ministrul Agriculturii şi Domeniilor din acea perioadă, a constituit o recunoaştere ofi cială a străduinţelor îndelungate depuse de corpul silvic pentru binele pădurilor ţării, ştiinţei forestiere româneşti şi economiei naţionale. Această lege fi xează în coordonatele ei fi reşti cercetarea silvică românească, fi xându-i patrimoniul, considerându-l inalienabil. Numărul secţiilor se reduce de la 10 la 8, având următoarele denumiri:I - Cultura şi exploatarea pădurilor;II - Botanică, ecologie, genetică şi fi topatologie;III - Protecţia pădurilor, fenologie, zoologie, entomologie şi vânătoare;IV - Pedologie forestieră;V - Amenajări forestiere, cubaje, creşteri şi estimaţiuni;VI - Tehnologie şi industrializarea lemnului şi a altor produse forestiere;VII - Construcţii forestiere, instalaţii de transport şi cadastru;VIII - Economie, administraţie şi politică forestieră, studiul muncii. Ca unităţi exterioare, Institutul de Cercetări Forestiere, avea:- staţiunea experimentală forestieră şi cinegetică ,,Banat”;- staţiunea experimentală forestieră ,,Bărăgan”;- staţiunea experimentală forestieră ,,Dobrogea”;- staţiunea experimentală forestieră ,,Mihăeşti”;- staţiunea experimentală forestieră ,,Sinaia”;- staţiunea experimentală forestieră ,,Snagov”. Institutul a primit un local propriu corespunzător (Şos. Kisselef nr. 55-65), care a permis, pentru prima dată, gruparea în aceeaşi incintă a tuturor laboratoarelor. A urmat dotarea cu aparatură modernă şi trecerea la o nouă etapă de organizare a cercetărilor pe bază de planuri tematice corelate cu cerinţele economiei naţionale.• 1949 – Se înfi inţează Staţiunea experimentală forestieră ,,Câmpulung Moldovenesc”.• 1948-1976 – Institutul suferă unele metamorfoze, fi e prin contopirea lui cu activităţile de amenajare a pădurilor şi proiectarea de investiţii, fi e cu activitatea de mecanizare a lucrărilor silvice, fi e prin revenirea acestuia la gruparea cercetărilor forestiere cu profi l de cercetare complex, după cum urmează:• 1950 – Decretul 88 grupează activitatea de cercetare în două noi sectoare, unul pentru silvicultură şi altul pentru exploatarea şi industrializarea lemnului.

Page 14: Volumul integral (.pdf)

15

• 1951 – Cele două sectoare sunt transformate în institute de sine stătătoare: Institutul de Cercetări Silvice (I.C.E.S.) şi Institutul de Cercetări pentru Industrializarea Lemnului (I.C.E.I.L.).• 1956 – Se înfi inţează Institutul pentru mecanizarea lucrărilor silvice şi a exploatării pădurilor (I.C.M.S.E.), care în 1958 prin ordinul nr. 50 din 15 mai privind aplicarea HCM nr. 530/1958 se comasează cu I.C.E.S. formându-se astfel Institutul de Cercetări Forestiere (I.C.F.), organizat pe 5 secţii de cercetare cu 22 laboratoare, 17 staţiuni, 22 puncte experimentare şi 12 puncte de observaţii, în cadrul cărora activau 164 cercetători, din care 86 la unităţile exterioare şi 207 cadre ajutătoare.• 1960 – Se revine la gruparea cercetărilor forestiere într-un institut cu profi l de cercetare complex. I.N.C.E.F. (prin HCM 765/1960 – se uneşte I.C.F. cu I.C.E.I.L.) cu şapte secţii de cercetare (secţii noi: silvotehnica, vânătoarea şi produsele accesorii). La exterior se păstrează organizarea anterioară.• 1969 - Silvicultura trece de la Ministerul Economiei Forestiere la Ministerul Agriculturii. Ca urmare, prin HCM nr. 1110/1969 sectorul de cercetare din I.N.C.E.F. se uneşte cu cel de amenajare a pădurilor şi proiectare din I.S.P.F. (Institutul de Studii şi Proiectări Forestiere), formând Institutul de Cercetări, Studii şi Proiectări Silvice (I.C.S.P.S.). Astfel se face primul pas spre integrarea de mai târziu a cercetării cu proiectarea şi producţia, fapt care s-a dovedit viabil şi de mare actualitate şi efi cienţă şi în prezent. În anii următori, şi acesta a mai suferit unele restructurări neesenţiale, dar cu modifi cări în denumirea institutului: Institutul de Cercetări, Proiectări şi Documentare silvică (I.C.P.D.S.) şi Institutul de Cercetări şi Amenajări Silvice (I.C.A.S.) legiferat prin Decretele nr. 297/1973 şi nr. 139/1974, denumire care se păstrează şi azi, fi ind cea mai lungă perioadă din existenţa institutului cu această denumire, chiar dacă, pe parcurs, a suferit unele modifi cări structurale, de statut juridic şi de relaţii de coordonare şi de subordonare faţă de diferite instituţii.• 1976 – Modifi cări importante în structura organizatorică şi în activitatea institutului. Prin ,,Programul naţional pentru conservarea şi dezvoltarea fondului forestier în perioada 1976-2010”, aprobat prin Legea nr. 2/15.IV.1976, publicată în Mon. Ofi c. Nr. 35/23.IV.1976 se prevede organizarea I.C.A.S. pe şase fi liale zonale cu profi l mixt de cercetare – amenajare – producţie, subordonat Ministerului Silviculturii şi în coordonarea ştiinţifi că a Academiei de Ştiinţe Agricole şi Silvice. În cadrul fi ecărei fi liale zonale funcţionau staţiuni de cercetare, staţiuni de amenajare sau staţiuni mixte de cercetare, amenajare şi proiectare de investiţii. În scopul integrării activităţii, de cercetare cu producţia, institutul este dotat cu şase ocoale silvice experimentale (Tomnatic, Vidra, Mihăieşti, Caransebeş, Lechinţa şi Săcele). • 1990 – I.C.A.S. intră în structura Regiei Autonome a Pădurilor (devenită Regia Naţională potrivit Legii nr. 26/1996 Codul Silvic), conform HG nr. 1335/1990, păstrându-şi patrimoniul cu cele şase ocoale silvice experimentale. Cu toate criticile aduse de o serie de personalităţi ştiinţifi ce din institut, vis-a-vis de apartenenţa acestuia la Regia Naţională a Pădurilor, consider că opţiunea aleasă, pentru acea perioadă, a fost bună. În organizarea teritorială a cercetării ştiinţifi ce şi a amenajării pădurilor s-au făcut unele modifi cări de natură funcţională în sensul că au fost desfi inţate fi lialele teritoriale iar activitatea ocoalelor silvice a fost trecută în subordinea staţiunilor de cercetare pentru a face o legătură directă între cercetarea ştiinţifi că şi producţie.• 1992 – Pe baza propunerilor Consiliului ştiinţifi c din ICAS, Regia Autonomă a Pădurilor a aprobat Strategiile de restructurare organizatorică a activităţilor de cercetare ştiinţifi că, amenajarea pădurilor şi producţie.• 2002 – O nouă lege pentru ICAS – Legea nr. 633/2002. Prin Legea nr. 290/2002 privind organizarea şi funcţionarea unităţilor de cercetare-dezvoltare din domeniul agriculturii, silviculturii, industriei alimentare şi a Academiei de Ştiinţe Agricole şi Silvice ,,Gheorghe Ionescu - Şişeşti”, I.C.A.S. a fost inclus în anexa 1, în subordinea Academiei. Imediat, la o zi după, Guvernul din acea perioadă, a dat Ordonanţa de Urgenţă nr. 62/2002 pentru modifi carea anexei 1, în sensul că I.C.A.S. să rămână, în continuare, în structura Regiei Naţionale a Pădurilor, fără personalitate juridică.

Page 15: Volumul integral (.pdf)

16

Prin Legea nr. 633/07 decembrie 2002 de aprobare a Ordonanţei de urgenţă nr. 62/2002, Parlamentul României, prin amendamentele aduse Ordonanţei de urgenţă, a schiţat o nouă lege pentru I.C.A.S. Din păcate nici până azi nu s-a elaborat Hotărârea de Guvern care să defi nească statutul juridic al I.C.A.S. şi patrimoniul I.C.A.S.

Parlamentul României

Lege nr. 633/2002 din 07/12/2002

privind aprobarea Ordonanţei de urgenţă a Guvernului nr. 62/2002 pentru modifi carea anexei nr. 1 la Legea nr. 290/2002 privind organizarea şi funcţionarea unităţilor de cercetare-dezvoltare din domeniile agriculturii, silviculturii, industriei alimentare şi a Academiei de Ştiinţe Agricole şi Silvice “Gheorghe Ionescu-Şişeşti”

Publicat în Monitorul Ofi cial, Partea I nr. 896 din 10/12/2002

Actul a intrat în vigoare la data de 10 decembrie 2002

Parlamentul României adoptă prezenta lege.

Articol unic. - Se aprobă Ordonanţa de urgenţă a Guvernului nr. 62 din 30 mai 2002 pentru modifi carea anexei nr. 1 la Legea nr. 290/2002 privind organizarea şi funcţionarea unităţilor de cercetare-dezvoltare din domeniile agriculturii, silviculturii, industriei alimentare şi a Academiei de Ştiinţe Agricole şi Silvice “Gheorghe Ionescu-Şişeşti”, publicată în Monitorul Ofi cial al României, Partea I, nr. 369 din 31 mai 2002, cu următoarele modifi cări şi completări: 1. Titlul ordonanţei de urgenţă va avea următorul cuprins:

“ORDONANŢĂ DE URGENŢĂpentru modifi carea anexelor nr. 1 şi 6 la Legea nr. 290/2002 privind organizarea şi funcţionarea unităţilor de cercetare-dezvoltare din domeniile agriculturii, silviculturii, industriei alimentare şia Academiei de Ştiinţe Agricole şi Silvice «Gheorghe Ionescu-Şişeşti»”

2. După articolul I se introduce articolul I1 cu următorul cuprins: “Art. I1. - Anexa nr. 6 la Legea nr. 290/2002 privind organizarea şi funcţionarea unităţilor de cercetare-dezvoltare din domeniile agriculturii, silviculturii, industriei alimentare şi a Academiei de Ştiinţe Agricole şi Silvice «Gheorghe Ionescu-Şişeşti», publicată în Monitorul Ofi cial al României, Partea I, nr. 358 din 29 mai 2002, se modifi că, în sensul că poziţia nr. 6, referitoare la Staţiunea de Cercetare-Dezvoltare pentru Acvacultură şi Ecologie Acvatică Iaşi, se elimină.” 3. Articolul II va avea următorul cuprins: “Art. II. - În urma modifi cării prevăzute la art. I, Institutul de Cercetări şi Amenajări Silvice rămâne ca unitate cu personalitate juridică în structura Regiei Naţionale a Pădurilor.” 4. După articolul II se introduc articolele III-VIII cu următorul cuprins: “Art. III. - Autoritatea publică centrală care răspunde de silvicultură coordonează, organizează şi îndrumă activitatea de cercetare ştiinţifi că şi inginerie tehnologică în domeniu, sprijină dezvoltarea acestora şi urmăreşte folosirea efi cientă a rezultatelor obţinute în vederea fundamentării tehnico-ştiinţifi ce a măsurilor de gospodărire a pădurilor. Art. IV. - Institutul de Cercetări şi Amenajări Silvice este în coordonarea ştiinţifi că a Academiei de Ştiinţe Agricole şi Silvice «Gheorghe Ionescu-Şişeşti» şi benefi ciază de facilităţile prevăzute la art. 14-17 din Legea nr. 290/2002 privind organizarea şi funcţionarea unităţilor de cercetare-dezvoltare din domeniile agriculturii, silviculturii, industriei alimentare şi a Academiei de Ştiinţe

Page 16: Volumul integral (.pdf)

17

Agricole şi Silvice «Gheorghe Ionescu-Şişeşti». Art. V. - Prevederile art. 13, art. 19 alin. (2) şi ale art. 20 din Legea nr. 290/2002 rămân aplicabile Institutului de Cercetări şi Amenajări Silvice. Art. VI. - Terenurile forestiere afl ate în administrarea Institutului de Cercetări şi Amenajări Silvice evidenţiate în SILV 1 - EFF la data de 31 decembrie 2001 au regimul juridic prevăzut de art. 35 alin. (2) din Legea nr. 18/1991, republicată, cu modifi cările şi completările ulterioare, şi de Legea nr. 213/1998 privind proprietatea publică şi regimul juridic al acesteia, cu modifi cările ulterioare. Art. VII. - În urma modifi cării prevăzute la art. I1, Staţiunea de Cercetare-Dezvoltare pentru Acvacultură şi Ecologie Acvatică Iaşi trece ca unitate fără personalitate juridică în structura Universităţii «Al. I. Cuza» Iaşi şi în coordonarea ştiinţifi că a Academiei de Ştiinţe Agricole şi Silvice «Gheorghe Ionescu-Şişeşti». Art. VIII. - Staţiunea de Cercetare-Dezvoltare pentru Acvacultură şi Ecologie Acvatică Iaşi benefi ciază de facilităţile prevăzute la art. 14-17 din Legea nr. 290/2002.”

Această lege a fost adoptată de Senat în şedinţa din 18 noiembrie 2002, cu respectarea prevederilor art. 74 alin. (1) din Constituţia României.

PREŞEDINTELE SENATULUINICOLAE VĂCĂROIU

Această lege a fost adoptată de Camera Deputaţilor în şedinţa din 26 noiembrie 2002, cu respectarea prevederilor art. 74 alin. (1) din Constituţia României.

p. PREŞEDINTELE CAMEREI DEPUTAŢILOR,VIOREL HREBENCIUC

Bucureşti, 7 decembrie 2002. Nr. 633.

• 2004 – Consiliul de Administraţie al Regiei Naţionale a Pădurilor, prin încălcarea fl agrantă a art. 35 alin. (2) din Legea nr. 18/1991, republicată, a art. nr. 24 alin. (2), lit. h). din Ordonanţa de urgenţă a Guvernului nr. 102/2001, aprobată prin Legea nr. 400/2002, a art. VI din Legea nr. 633/2002 publicată în Mon. Ofi c., Partea 1, nr. 896 din 10/12/2002 şi art. 223 din Legea nr. 147/2004, a luat unele terenuri forestiere din administrarea Institutului prin efectul legii nr. 2/1976 şi date în administrare unor direcţii silvice.Ne punem întrebarea de ce nu i se recunoaşte dreptul legal al ICAS de administrare a propriilor baze materiale? Considerăm că este cazul ca atât ministerul de resort, cât şi Regia Naţională a Pădurilor, să manifeste receptivitate pentru dotarea I.C.A.S. cu baze experimentale, fi ind benefi ce pentru silvicultura română, după cum arată marele silvicultor Marin Drăcea, fondatorul Institutului.• 2008 – Apare un nou Cod Silvic: Legea nr. 46/2008, în care, un capitol special, capitolul X, cu articolele 74-77, este consacrat cercetării ştiinţifi ce din silvicultură. Institutul de Cercetări şi Amenajări Silvice ,,Marin Drăcea”, reorganizat prin Hotărâre de Guvern, are în administrare, potrivit acestei legi, ocoale silvice experimentale şi alte baze experimentale, în care se efectuează cercetări în vederea generalizării rezultatelor în practica silvică.Dar pentru ca acest lucru să devină realitate, autoritatea publică centrală care răspunde de silvicultură trebuie să promoveze proiectul de hotărâre de Guvern, care să defi nească statul juridic al I.C.A.S., patrimoniul I.C.A.S, organizarea I.C.A.S., etc. De ce oare se întârzie cu realizarea acestui deziderat? Ne-am fi aşteptat, ca la acest moment aniversar din viaţa I.C.A.S, 75 de ani de

Page 17: Volumul integral (.pdf)

18

existenţă, cel mai preţios dar din partea ministerului de resort şi a Regiei Naţionale a Pădurilor, să fi e elaborarea şi aprobarea actului normativ în cauză.

3. Perspectivele de dezvoltare ale I.C.A.S.

3.1. Realizari ştiintifice mai importante

Etapa 1933-1947. În această perioadă de pionierat au fost puse bazele cercetării ştiinţifi ce româneşti în domeniul silviculturii. Preocupările de bază s-au axat pe iniţierea primelor experimentări de durată şi pe necesitatea evidenţierii specifi cului cadrului natural şi al silviculturii naţionale. Contribuţiile ştiinţifi ce aduse de cercetători de marcă, membrii fondatori ai institutului, publicate în Analele institutului şi în alte publicaţii ale acestuia, prezintă şi astăzi interes pentru ştiinţă şi practică, demonstrând astfel din plin efi cienţa institutului, înfi inţat în anul 1933. Etapa 1948-1960. Cele mai remarcabile progrese s-au înregistrat în domenii ca: silvobiologie, inclusiv pedologie forestieră, silvotehnică, protecţia pădurilor, biometria forestieră, amenajament, biologia vânatului, exploatarea forestieră şi industrializarea lemnului. Au fost elaborate numeroase lucrări ştiinţifi ce originale de mare valoare practică în baza cărora au fost întocmite instrucţiuni şi norme tehnice de cea mai mare importanţă pentru conturarea silviculturii în ţara noastră. În toată această perioadă s-a împletit în mod armonios munca de creaţie ştiinţifi că a două generaţii distincte de cercetători: cea a membrilor fondatori ai institutului care au atins maturitatea lor sub raportul creativităţii şi cea a tinerilor cercetători. Acest lucru a constituit un exemplu de conlucrare în interesul progresului între două generaţii pătrunse de acelaşi devotament faţă de pădurile ţării. Etapa de după 1960. La început silvicultura s-a afl at sub presiunea cererilor crescânde ale industriei de prelucrare a lemnului pentru care s-a angajat în acţiunea de creştere rapidă a producţiei pădurilor. În acest context, cercetarea ştiinţifi că îşi amplifi că preocupările în direcţia creşterii productivităţii pădurilor, în care sens s-au făcut unele greşeli prin curentele şi modele adoptate. Astfel, conceptele de bază ale silviculturii tradiţionale (naturalistice) sunt în parte părăsite, în favoarea intereselor economice pe termen scurt. Pe prim plan se înscriu preocupările privind împăduririle pe cale artifi cială. Mai târziu, începând cu deceniul al nouălea, cercetările din silvicultură sunt reorientate în sensul unei armonioase îmbinări a concepţiei naturalistice (ecologice) cu cea economică, acordându-se importanţă speciilor autohtone valoroase, în special stejarilor şi fagului, inclusiv ameliorării lor pe cale genetică, regenerării naturale a arboretelor, combaterii biologice şi integrate a bolilor şi dăunătorilor, funcţiilor de protecţie exercitate de păduri, ocrotirii naturii şi a mediului înconjurător, valorifi cării complexe şi raţionale a tuturor resurselor forestiere. Prin aceasta se trece într-o nouă etapă de dezvoltare a cercetării silvice româneşti se face un pas înainte pe linia mijloacelor de investigaţie, trecându-se la aplicarea pe scară largă a tehnicii moderne experimentale, bazate pe modele matematice evoluate şi pe prelucrarea automată a datelor. Bază materială şi dotarea laboratoarelor se amplifi că considerabil. Peste 25 de lucrări de cercetare sunt premiate de Academia Română. Cercetătorii institutului reprezintă cu cinste ştiinţa silvică românească la congrese IUFRO, simpozioane şi consfătuiri internaţionale. Peste 15 cercetători ştiinţifi ci devin membri titulari şi membri corespondenţi ai Academiei de Ştiinţe Agricole şi Silvice ,,Gheorghe Ionescu – Şişeşti” şi ai Academiei Române. Cercetătorii români preiau conducerea unor compartimente I.U.F.R.O., aducând astfel partea noastră de contribuţie la propăşirea ştiinţei universale, realizându-se obiectivul enunţat de fondatorul Institutului, profesorul Marin Drăcea. În perioada de după 1990, Institutul s-a confruntat şi încă se mai confruntă cu difi cultăţi fi nanciare evidente. Totuşi, cu toate greutăţile inerente unei economii afl ate în perioadă de tranziţie, Institutul a fost dotat cu tehnică nouă de calcul, practic fi ecare cercetător dispunând de

,

^

Page 18: Volumul integral (.pdf)

19

cel puţin un calculator. Au fost dotate laboratoarele de cercetări pedologice, fi ziologice, ecologice, cu aparatură performantă, unele din acestea de ultimă generaţie. Tot mai mulţi cercetători devin doctori în ştiinţe silvice şi predau cursuri la diferite universităţi.

3.2. Perspective. I.C.A.S. este necesar să aibă statut de Institut naţional. Acest lucru este posibil prin promovarea unei Hotărâri de Guvern, potrivit noului Cod Silvic – Legea nr. 46/2008 în care să se stabilească statutul juridic şi patrimoniul ICAS (clădiri, ocoale silvice experimentale şi alte baze materiale). Pentru înfăptuirea acestui deziderat, principalii interesaţi ar trebui să fi e ministerul de resort şi Regia Naţională a Pădurilor. Cercetarea silvică românească trebuie reconsiderată în contextul schimbărilor climatice. Cu dotarea existentă şi cu specialiştii săi de înaltă clasă, I.C.A.S. a dovedit că este capabil să efectueze lucrări complexe de anvergură, aşa cum a demonstrat în cazul realizării studiilor de necesitate, studiilor de fezabilitate şi a proiectelor tehnice pentru realizarea Sistemului naţional al perdelelor forestiere de protecţie în ţara noastră, potrivit Legii nr. 289/2002. I.C.A.S. trebuie să se facă respectat şi să fi e respectat, să se impună opiniei publice şi atenţiei lumii forestiere internaţionale prin realizări de prestigiu în folosul pădurii şi al silviculturii româneşti, spre binele întregii societăţi!

Bucureşti, 20 oct. 2008

Page 19: Volumul integral (.pdf)

20

Page 20: Volumul integral (.pdf)

21

ICAS 2008 Conference October 23-25, 2008 Bucharest, Romania

Researches regarding the parametric objective ap-proach of the climatic year structure in hilly and mo-untainous regions, in the frame of climate changes

V. Huber

Huber V. 2009. Researches regarding the parametric objective approach of the cli-matic year structure in hilly and mountainous regions, in the frame of climate chan-ges. In: Olenici N., Teodosiu M., Bouriaud O. (eds.), Proceedings of the conference “Sustainable forestry in a changing environment“, October 23-25, 2008, Bucharest, Forest Research and Management Institute ICAS, pp. 21-28.

Abstract. The paper presents the results of the researches carried out in the region of “Carpaţii de Curbură “ with regard to the structure of the climatic year in mountain and hill regions. The researches started from the well known truth, according to which “mountain seasons” rarely coincide with calendar seasons. This is the reason why the mountain climate has been analyzed by “dividing” the climatic year into its real, natural components and by identifying those homogenous temporal seg-ments, individualized through distinct features and delimited on objective scientifi c criteria: daily climatic data throughout a period of 35 years (1962-1996). Thus, there has been framed a structure of the climatic year made of four seasons – these sea-sons are not similar to calendar seasons, except for their denomination – as well as 12 climatic stages clearly delimited on climatic layers. For instance, beyond the ‘borders’ of the three months of the calendar year considered, the winter mountain climatic season lasts for 5 months and a half (165 days). In conclusion, under the conditions of climate changes and, implicitly, of structuring forestry on layers, our researches bring contributions to developing the mountain climatology and set he bases for the elaboration of a “unique phenoclimatic calendar of forestry works”, on phytoclimatic layers.Key words: the structure of the climatic year, mountains’seasons, phenological ca-lendar.

Author. Viorela Huber - Transylvania University of Braşov, Faculty of Silviculture and Forest Engineering, Şirul Beethoven St. 1, 500123 - Braşov, Romania.

Introduction

In mountainous regions the researcher deals with a geographical complexity characterized by a diversity of climatic conditions which are not found in any other region. The mountainous relief generates the most complex changes in the assembly of latitudinal and altitudinal bio-geographical zonality. Local climatogenesis, so complex in mountainous regions, may be best deciphered under the conditions of a spatial-temporal research, under seasonal aspect, throughout the whole year.

Page 21: Volumul integral (.pdf)

22

Notwithstanding, in our country, the issue of structuring the climatic year, the climatic seasons has not drawn the attention of researchers. The studies, which have been carried out so far, have considered only the framework of calendar seasons, except for the studies upon the winter season when a certain approach was brought to the months of this season (last December and this January-February). Three basic issues are put forward when scientifi c research approaches climatic seasons: meteoclimatic genesis of seasons, their structure and inter-seasonal connections that actually aim at delimiting and structuring climatic seasons. In this paper: (i) Climatic seasons were conceived as divisions of the astronomic year, characterized by a relative meteoclimatic homogeneity, by a particular evolution of atmospheric processes and phenomena, expressed through certain (phenological) aspects of landsaft of the vegetal layer; (ii) The climatic stage is that part of the climatic season which is distinguished through either the “weakness” tendency of the preceding season or the “accentuation” tendency of the following season, with obvious changes of the active surface aspect. The stages of the climatic season may be individualized within seasons as well, when they are characterized by a rhythm of different intensities of meteorological processes and phenomena, for instance the mid-summer stage, which expresses a distinct regime, relatively more constant, “calmer” of the weather, as compared to the other stages of the season.

Research location. Research material

Researches were carried out under the conditions of a mountainous system of great complexity in the sector of “Carpaţii de Curbură” (Fig. 1) made up of mountainous massifs “Postăvaru” and “Piatra Mare” and a great depression – Depression of Braşov – the greatest intra-mountainous depression in the Romanian Carpathians. Meteorological data were provided by a network of meteorological stations that operated in the whole Postăvaru massif, on climatic layers, at

Fig. 1 Map of “Carpaţii de Curbură” Mountains. Territorial subunits

Page 22: Volumul integral (.pdf)

23

altitudes of 534-1724 m, during the period 1912-2007 (main meteorological station – Braşov – 609 m), and during the period 1962-1996 the other meteorological stations as shown in fi gure 2. (i) Meteorological station from Ghimbav (534 m) for Bârsa depression plain, belonging to the Transilvanian plateau hills layer; (ii) Meteorological station from Braşov – city (609 m) for sub-mountainous sector, belonging to the same layer of Transilvanian hills; (iii) Meteorological station from Poiana Braşov (1026 m) from the lower mountainous layer; (iv) Meteorological station from Cristianu Mare (1724 m) situated at the limit between upper mountainous layer and sub-alpine layer.

Research results

To objectively delimit climatic seasons and their stages, daily meteorological and phenological data were required. Essentially, objective (parametric) criteria and phenological (observational) criteria have been considered. The fulfi llment of objective criteria resided in daily meteorological data regarding: (i) daily mean temperature (inter-diurnal variation of daily mean temperatures: (i.i) intense increasing – spring; (i.ii) rapid decreasing – autumn; (i.iii) relative “stability” – winter and summer. (ii) daily maximum mean temperatures; (iii) absolute maximum temperature; (i.v) absolute minimum temperature; (v) cumulative sums of daily mean temperatures >0°C; (v.i) mean duration of the fi rst and last frost (tmin < 0°C); (v.ii) mean and maximum daily duration of insolation; (v.iii) mean and maximum depth of the snow layer. The observation-oriented criteria stem from the data provided by the daily observations regarding: (i) formation and disappearance date of stable and unstable snow layer; (ii) beginning date of the snow layer “partial melting”; (iii) date of fi rst and last snows; (iv) aspects of the geographic and phenological landscape (phenosignals): (iv.i) apparition (blooming) of some plants and succession of the other phenophases; (iv.ii) long-lasting snow water “stream”; (iv.iii) autumn coloring and leaves falling etc. The above enumeration shows that most of the objective criteria considered belong to the air thermal regime on account of the fact that: (i) air temperature is surely the most representative and important climatic parameter (atmospheric air impresses through its temperature); (ii) it is

Fig. 2 The network of weather stations that operated in the whole Postavaru massif, on climatic layers, at altitudes of 534-1724 m.

Page 23: Volumul integral (.pdf)

24

the climatic element that best synthesizes the action of all weather and clime generating factors (solar radiation, atmospheric circulation and subjacent surface) and that is characterized by a well-expressed seasonal variety; (iii) it best conditions the phenological rhythm of both organic and anorganic world. Figure 3 illustrates that the daily mean temperature, during its evolution throughout the whole year, expresses not only the general rhythm, “in waves” of meteoclimatic processes, but also the various intensity of these processes throughout the year. Starting from these parametric and phenological criteria, 4 seasons and 10 stages of the climatic year were delimited. They are presented in fi gure 4 and show as follows: (i) in upland regions of the mountain, meteorological seasons are not similar to calendar seasons; they are delayed and have a variable altitudinal duration; (ii) spring stages delay on highest summits by 30-40 days, and winter stages are 46 earlier as compared to lowland regions; (iii) spring, summer and autumn seasons, on mountain summits, have a duration of about two months each; (iv) whereas “Brasov summer” at the foot of the mountain lasts for about 100 days, the “mountain summer” on the highest tops of the massif lasts for only two months; (v) the duration of the winter season presents the greatest altitudinal difference: from a duration of 94 days in Braşov, to 5 months and a half (167 days) at the altitude of 1724 m. The real and objective practical utility of the data provided by phenological observations in delimiting and characterizing climatic seasons and layers is shown in the data presented in fi gure 4 “Phenoclimatic calendar of “Carpaţii de Curbură”. As for the possibilities to use the elements provided by the phenological calendar to plan forestry works, we state, in the fi rst place, the fact that in production it is very important to know the best time for carrying out various works. Therefore, the fi rst two stages of spring indicate exactly the periods when spring works must be carried out. The best period to start the afforestation works, especially on slopes exposed to early snow melting, is the period that comes just after the blooming of the nut tree, Alnus incana and prevernal herbaceous plants. The altitudinal variation of the climatic stages duration between the altitudes of 600 to 1800 meters. The data regarding the buds blossom indicate the moment when the afforestation works must be fi nished in the respective phytoclimatic layer. The shrubs and the arborescent species that have an early vegetation must be planted around the date when the snow is to melt and racemosa buds blossom. The phenomena characterizing summer and autumn layers indicate the dates for harvesting the forest fruits and forest seeds. The works for fi r cone (Abies alba) harvesting may be planned around the dates in the phenoclimatic layer when autumn crocus (Colchychum autumnale) blossoms and just after the fi rst autumn frosts.

Conclusions

Our researches have emphasized that “mountain seasons” are rarely similar to “calendar seasons”. This is the reason why, by “dividing” the climatic year in its real, natural and relatively homogenous components, the researchers have structured the climatic year in 4 seasons and 12 climatic stages, clearly delimited, on objective criteria, on climatic layers. By framing the real phenoclimatic calendar, within the framework of anticipated climate changes and, implicitly, within the framework of forestry specialization, on phytoclimatic layers, researchers bring contributions to the development of the Romanian mountainous climatology and set the bases for the elaboration of a unique calendar of forestry works, on phytoclimatic layers.

Page 24: Volumul integral (.pdf)

25

F

ig. 3

The

clim

atic

yea

r stru

ctur

e an

d th

e in

terd

iurn

al e

volu

tion

of d

aily

ave

rage

tem

pera

ture

s in

the

infe

rior l

evel

of t

he m

ount

ain

Page 25: Volumul integral (.pdf)

26

F

ig.4

The

clim

atic

yea

r stru

ctur

e in

the

Car

paţii

de

Cur

bură

” M

ount

ains

Page 26: Volumul integral (.pdf)

27

References

Arlery, R. 1973. Climatologie. Editura Gauthier-Villars, Paris.Barry, G.R. 1981. Mountain, Weather and Climate. Metheuen, London and New York, 313 p.Bâzâc, Gh. 1983. Infl uenţa reliefului asupra principalelor caracteristici ale climei României. Editura Academiei Române, Bucureşti, 179 p.Cadéz, M. 1957. Sur une clasifi cation des types de temps. La Météorologie, nr. 1-6, Paris.Donn, L.W. 1965. Dinamica atmosferei. Editura Tehnică, Bucureşti, 475 p.Huber, Viorela 2001. Cercetări asupra regimului meteoclimatic al spaţiului montan. Teză de doctorat, Universitatea din Bucureşti, 217 p.Malberg, H. 2001. Meteorologie und Klimatologie. Ed. Springer, Berlin, 364 p.Marcu, M. 1971. Cercetări topoclimatice şi fenologice in masivul Postăvarul. Teză de doctorat, Institutul Politehnic, Braşov, 210 p.Velcea, V. 1964. Relieful ca element de bază in cercetările fi zico-geografi ce. Natura nr. 3.

Page 27: Volumul integral (.pdf)

28

Page 28: Volumul integral (.pdf)

29

ICAS 2008 Conference October 23-25, 2008 Bucharest, Romania

Efects of accidental fluorine pollution on Prahova Valley’s forest stands

M. Ianculescu, I. Popa, Şt. Neagu, C. M. Macarescu

Ianculescu M., Popa I., Neagu Şt., Măcărescu C. M. 2009. Efects of accidental fluo-rine pollution on Prahova Valley’s forest stands. In: Olenici N., Teodosiu M., Bouri-aud O. (eds.), Proceedings of the conference “Sustainable forestry in a changing environment“, October 23-25, 2008, Bucharest, Forest Research and Management Institute ICAS, pp. 29-40.

Abstract. The accidental pollution with fluorine from Azuga Valley was inves-tigated by dendroecological techniques. The effect of this pollution event is re-flected in a significant loss of relative volume growth differentiated by the degree of damage. The maximum loss of radial growth is recorded one year after the ecological accident and varies form 45% in heavily affected spruce stands to 27% in the moderately damaged stands. Key words: fluorine pollution, dendroecology, growth loss

Authors. Marian Ianculescu, Ionel Popa, Ştefan Neagu, Cristina Mihaela Măcărescu - Forest Research and Management Institute, Bd. Eroilor 128, 077190 - Voluntari, Bucharest, Romania.

Introduction

Between December 2003 and June 2004, during a relatively short time, there was an environmental accident in Azuga Valley because of an accidental pollution with fluorine from the refractory brick factory, readjusted for processing of waste ore enriched with fluorine. Following the discharge of fluorine, in concentrations higher than the allowable limit, without the existence of restraining filters, the forests surrounding the source of pollution alarmingly coloured in red on over 1700 ha.

Materials and methods

Auxological (dendrocronological) researches have been carried out in the forest stands of the Azuga Forest District, which have been in the period December 2003 - June 2004 under the influence of accidental pollution with fluorine resulted from the calcination of ores rich in fluorine in the former refractory brick factory in the town Azuga. It was analyzed the annual ring width, in chronological sequence, using core samples for long time series extracted from average trees of the forest stands located in the permanent sample plots which are presented in Table 1. After

^ ^

Page 29: Volumul integral (.pdf)

30

measuring the width of annual rings from 10-15 average trees of the forest stands in permanent sample plots, the following data were calculated: the series of statistical parameters of growth obtained with the Hugershoff function of the generalized growth (Ianculescu 1975, 1977, 2005; Popa 2004), the average radial increment series - Ir (mm) – for the average trees in the research area, average growth index of the stands affected by pollution with fluorine in relation to the growth indexes of unaffected stands (Table 2). In order to determine the growth losses of the tree stands which were affected by pollution, it was used a method described in the scientific literature (Ianculescu 1975, 1977, 1987, 2005). This method consists mainly in research into the chronological sequence of annual rings from average trees of the stands mapped according to the extent and area of injury. The general rule that the average tree of the stand is also the average tree of diameter increment, within the even- and relative even-aged stands, is used for determining diameter increment of forest stands based only on 10 to 15 core samples taken from trees with approximate average diameters, estimated based on inventory of trees in permanent sample plots and located in damaged and undamaged forest stands. Because the forest stands are not homogenous (practically unlikely to find in real life) the increment was compared against their relative values, using annual ring width index (growth index). These values are the relative expression of the variation curve of the annual rings against the ideal increment curve and the result of the relation between the actual width of annual rings and the normal value, given by the compensated value of the increment curve, multiplied by a hundred. In these situations, annual rings indices allow comparison of increment variations both for different forest sites and for different ages. They also facilitate the mutual comparison between different time intervals of increment curve. In order to compensate the actual diameter increment for beech and spruce stands in Azuga research area, a complex exponential function, which does not contradict the properties of the development curve, is proposed by Hugershoff as follows:

(1)being easy to see that it is obtained by merging a parabolically degree m function and an exponential function. The relative growth indices (ICi) are determined, for the forest stands that are unaffected by pollution and for those in various damage categories, as a relative ratio of the annual increase in diameter (id) and the compensated value of the diameter increment (idc), multiplied by 100. (2) According to the work methodology presented by Ianculescu (1975, 1977, 1987, 2005), knowing the relationship between indices of growth in forest stands affected by noxious influence and those of witness stands, denoted symbolically by IRi, the growth loss in diameter (ΔPid) will result from the following relation:ΔPid = 1 – IRi, whereΔPid = growth loss in diameter,IRi = ratio between increment indices,i = damage extent. From research conducted by Ianculescu (1977, 1987, 2005), it results that the basal area growth loss (ΔPig) is higher with maximum 2% than the diameter increment loss (ΔPid), and consequently we are able to approximate the following relation: ΔPid ≅ ΔPig. Because the reduced hight growth loss (ΔPihf) is regarded as negligible, we consider the following approximations: ΔPid ≅ ΔPig ≅ ΔPiv, where ΔPig = basal area growth loss and ΔPiv=volume growth loss. In case of fluorine pollution from Azuga, growth samples (core samples) obtained from average

Page 30: Volumul integral (.pdf)

31

Tabl

e 1

Bio

met

rical

dat

a of

the

fore

st st

ands

in p

erm

anen

t sam

ple

plot

s loc

ated

in A

zuga

are

a af

fect

ed b

y flu

orin

e po

llutio

n

Azu

ga F

ores

t Dis

trict

Site

Dis

tanc

e to

po

llutio

n so

urce

( km

)

Mai

n tre

e sp

ecie

s

Re-

gim

eA

ge

(yea

rs)

Num

ber

of tr

ees

per h

aN

.ha-1

Bas

al

area

per

ha

G.h

a-1

(mp)

Aver

age

diam

eter

of

the

mai

n tre

e sp

ecie

sD

g(c

m)

Aver

age

heig

ht

of th

e m

ain

spec

ies

hg

(m)

Den

-si

ty

in-

dex

Site

cl

ass

Volu

me

per

hect

are

V.ha

-1

(mc.

ha-1)

Da-

mag

e de

-gr

ee

Iden

tifi-

catio

n b

atch

Man

a-ge

men

t U

nit

U.P

.

Com

-pa

rt-m

ent

unit

u.a.

VI.

Obâ

rşia

A

zugi

i21

A13

.0Sp

ruce

P90

566

71.7

3140

.16

31.1

1.27

294

0.42

6w

itnes

s-

VI.

Obâ

rşia

A

zugi

i68

A8.

5Sp

ruce

P70

312

52.4

7630

.68

280.

982

671.

95w

itnes

s-

II. V

alea

C

erbu

lui

11A

4.0

Bee

chS

150

144

37.3

7857

.435

.40.

791

698.

24lo

wA

ZUF

III.

Vale

a G

recu

lui

9B1.

5B

eech

S50

1160

33.9

3619

.320

.91.

082

381.

64st

rong

AZU

E

IV.

Clă

buce

tul

Taur

ului

31D

3.7

Spru

ceP

9527

632

.656

38.8

310.

572

424.

5lo

wA

ZUA

IV.

Clă

buce

tul

Taur

ului

45A

3.2

Spru

ceP

105

435

59.9

841

.933

.81.

042

881.

75lo

wA

ZUB

IV.

Clă

buce

tul

Taur

ului

54C

1.0

Spru

ceP

9035

744

.985

4030

.90.

802

598.

17lo

wA

ZUD

VII

. Azu

ga1C

0.5

Spru

ceP

7047

646

.381

35.2

34.3

0.82

170

7.14

stro

ngA

ZUC

Page 31: Volumul integral (.pdf)

32

trees of the stands in permanent sample plots, after drying, were polished with abrasive belt of 200 to 800µ in order to enhance annual tree rings. Measuring the width of annual rings was achieved with the TSAP program LINTAB, with an accuracy of 0.01 mm. Series of growth were cross-dated by graphical method with logarithmic scale, the program Carota v.2.1 and verified with COFECHA (Holmes 1983, Cook et al. 1997) by analyzing the correlation of 50 years dated time segments (Holmes 1983). For each series of growth were calculated specific statistics parameters (Douglass 1941, Frits 1976, Cook & Kairiukstis 1990, Popa 2004). All individual growth series were standardized with Hugershoff function in order to eliminate age effect for the dendrochronological series. Average series of standardized growth indices was obtained through robust biweight average (Kairiukstis & Cook 1990). For this purpose it was used the ARSTAN software (Grissino-Mayer et al. 1996) and the standard dendrochronological type of series (STD).Results and discussion

In the Figures 1, 2 and 6, 7 are given indications on growth, ICi, calculated both for spruce and beech “witness” stands, unaffected by the pollution with fluorine, and for those in various degrees

Table 2 Ratio between the growth index of forest stands affected by pollution and control stands in mana- gement unit 21A U.P. VI

YearSoftly

polluted/witness

Softly polluted/witness

Moderately polluted/witness

Strongly polluted/witness

2006 92.22 127.13 101.52 79.972005 108.70 111.63 72.07 55.222004 85.10 94.52 68.65 54.022003 94.49 114.79 151.51 82.832002 81.58 80.87 95.65 72.572001 84.71 115.63 118.10 98.052000 64.12 94.94 112.79 95.521999 78.93 102.43 114.10 101.621998 66.35 77.57 90.79 77.131997 89.75 97.42 120.59 105.881996 84.87 90.05 112.70 97.991995 112.35 94.27 130.98 127.561994 106.00 104.80 127.59 116.251993 104.78 100.44 118.46 118.691992 107.67 106.24 111.39 111.751991 88.74 73.11 92.24 84.151990 99.14 81.75 74.95 82.401989 106.40 92.72 99.56 100.001988 106.50 101.59 91.18 125.141987 86.40 69.94 70.97 97.601986 97.30 91.00 73.90 108.701985 100.40 86.91 82.32 109.991984 101.22 80.16 86.16 93.791983 86.18 66.47 75.77 92.921982 81.15 72.66 69.53 82.711981 86.71 86.35 82.82 85.531980 94.17 94.17 82.91 92.49

Page 32: Volumul integral (.pdf)

33

of damage, according to the formula (2). The use of growth indices allows comparison, in terms of growth, for forest stands of different age, density, climate and site conditions, leaving only the resultant influence of fluorine pollution. This is evident not only in comparing the indices of growth for 2004 and 2005, years that followed immediately after excessively strong pollution with fluorine during the period December 2003 - June 2004. In the Figures 2, 3 and 6, where the growth indices for forest stands that were strongly, intermediate and softly polluted are in a descending trend, being below the 1.00 value index of growth compared with forest stands that are considered witness in terms of the effects of pollution by fluorine, where the growth indices values are over 1.00. Specifically, it is to compare Azuc,Azud curves with Azua and Azub curve in Figure 2 and 3 (see correlation in Table 1) and Azuecurve (representing beech stands heavily affected by pollution with fluorine) with Azuf curve, a witness stand, theoretically (Fig. 6). The results are much clearer if we analyze the details of the growth indices in Figures 3 and 6. Thus, in Figure 3 is clearly seen that for the years 2004 and 2005, the indices of growth are below the 1.00 average in stands that are strongly and moderately affected by pollution with fluorine (Azuc and Azud compared with Azua - presumably as witness). The same comment is valid for Figure 6: Azue (heavily polluted) with Azuf, assumed as witness. It is worth mentioning that since 2006 it has started a growth recovery of strongly and moderately affected stands, because of the shutdown in 2004 of the uncontrolled burning of waste ore enriched in fluorine, but is still maintaining at a lower value, compared with the growth of stands considered without fluorine pollution. Considering the Figures 4, 5 and 7 and data in tables 2 and 3, the resulting variation of the growth indices of spruce and beech stands, in the stands with various degrees of damage and the growth indices of unaffected stands, presumed to be a witness and symbolically denoted asIRi. It is noted here that for the years 2004 and 2005, years that followed to the discharge of high atmospheric concentrations of fluorine, in all spruce and pine stands affected by strong environmental and noxious influence, the ratio of growth indices of the polluted against the unaffected forest stands, alleged witness, is below the value of 100% and that for 2006 it has been found a process of recovery of these increments, due to the elimination of pollution sources, but

Fig. 1 Average growth series for spruce stands (1947-2007)

Page 33: Volumul integral (.pdf)

34

Fig. 2 Average growth index for spruce stands (1947-2007)

Fig. 3 Average growth index for spruce stands (1996-2007)

Page 34: Volumul integral (.pdf)

35

Fig. 4 Variation of the ratio between growth index of spruce stands affected by pollution and those unaffected in management unit 21A-U.P. VI (1980-2007)

Fig. 5 Variation of the ratio between growth index of spruce stands affected by pollution and those unaffected in management unit 21A-U.P. VI (1996-2006)

Page 35: Volumul integral (.pdf)

36

Fig. 6 Average growth index for beech stands

Fig. 7 Variation of the ratio between growth index of spruce and beech stands affected by pollution and those unaffected (witness)

Page 36: Volumul integral (.pdf)

37

still under the witnesses reference values, considered 100%. In Table 4 are presented the values of the relative growth losses in diameter (ΔPid), which often are equal or approximately equal with the volume growth losses (ΔPiv). From the data presented in Table 4 we conclude the following: - maximum loss of diameter increment was recorded in 2004 and 2005, one year after the ecological accident in the period December 2003 - June 2004, registering 45.98% and respectively 44.78% to spruce stands strong affected, 31.35% and 27.93% in the moderately affected, and 26.28% in the beech stands strongly affected.- in 2006, two years after stopping the burning of waste ore enriched with fluorine, it continues to register losses in relative diameter increment by 20.03% to spruce stands affected and 25.93% in beech stands considered affected by the phenomenon of reddening of leaves, but considered moderately affected by the growth loss. However, it is acknowledged the recovery process, meaning the decrease in the percentage of loss in diameter increment, after stopping the pollution source in 2004. Future research could reveal a return to a normal growth of the forest stands in question;- in the spruce stand heavily affected by pollution from fluorine (u.a. 1C, UP VII Azuga, located near the source of pollution (azua), there have been registered losses in relative diameter growth

Table 3 Ratio between growth index of beech stands affected by pollution and those unaffected

Species BeechYear Strongly polluted/witness (Azue/Azuf)2006 74.072005 73.722004 82.982003 108.992002 102.342001 161.752000 121.101999 102.681998 88.091997 106.161996 111.351995 79.391994 98.621993 123.221992 133.611991 136.591990 118.511989 137.491988 173.811987 142.061986 101.091985 99.691984 91.091983 93.401982 109.021981 93.681980 97.26

Page 37: Volumul integral (.pdf)

38

also in previous years, before the environmental accident, of 27.43% in 2002 and 17.17% in 2003. This might be due to the influence of the fire brick factory’s normal activity, that caused the release in the atmosphere of some amounts of air pollutants, such as fluorine, with negative consequences for the forest vegetation, especially in the immediate vicinity of the pollution source. In Tables 5 and 6 are presented the growth losses in volume (ΔIv) for spruce and beech species, on damage degrees, in terms of loss of relative growth in diameter, (ΔPid), according to the current annual growth in volume of all forest stands, extracted from the General Study for Management Planning of the Azuga Forest District, from last edition, in 1999.

Table 4 Relative growth losses in diameter ΔPid for forest stands in permanent sample plots affected by fluorine pollution (Azuga Forest District)

* Average of the ratios between growth index of softly affected stands and growth index of the witness stands (Management unit VII, compartment unit 21A)

Years

Ratio between growth index of forest stands that were affected and those unaffected (witness) IRi

Relative growth losses in diameter ΔPiv≅ ΔPig≅ ΔPid

Spruce Beech Spruce Beech

Softly affected

(IR1)

Moderately affected

(IR2)

Strongly affected

(IR3)

Strongly affected

(IR3)

oftly affected

1-IR1

Moderately affected

1-IR2

Strongly affected

1-IR3

Strongly affected

1-IR3

2006 109.66 101.52 79.97 74.07 - - 20.03 25.93

2005 110.17 72.07 55.22 73.72 - 27.93 44.78 26.28

2004 89.81 68.65 54.02 82.98 10.19 31.35 45.98 17.02

2003 104.64 151.51 82.83 108.99 - - 17.17 -

2002 81.22 95.65 72.57 102.34 18.78 4.35 27.43 -

2001 100.17 118.10 98.05 161.75 - - 1.95 -

Table 5 Volume growth losses ΔIv, during 2004-2006 period,in spruce stands affected by fluorine pollution Azuga Forest District

* From Forest management planning, 1999

Damage degree

Years Relative volume growth losses

ΔPiv≅ ΔPig≅ ΔPid

(%)

Current volume growth in Azuga Forest District

stands*-Iv –

(m3an-1ha-1)

Current volume growth losses -ΔIIv–

(m3an-1ha-1)

Softly damage 2004 10.10

7.2

0.732005 - -2006 - -

M o d e r a t e l y damaged

2004 31.35 2.262005 27.93 2.012006 - -

S t r o n g l y affected

2004 45.98 3.312005 44.78 3.222006 20.03 1.44

Page 38: Volumul integral (.pdf)

39

Conclusions

The auxological investigations in forest stands of Azuga Forest District have highlighted the significant loss of relative volume growth, depending on the degree of damage as a result of the influence of fluorine pollution resulting from waste incineration of ore with rich content of fluorine in the former factory of refractory brick. The results confirm for the first time in our country the influence of fluorine pollution on growth of forest stands, which results in a significant damaging process. By law such damages should be recovered from those who have produced it. In this way the investigations undertaken with the financial support of National Forests - Romsilva are justified.References

Cook, E.R., Kairiukstis, L.A. (eds.) 1990. Methods of dendrochronology. Applications in the environmental sciences. Kluwer Academic Publischers. Dordrecht. 394 p.Cook, H.R., Holmes, R.L., Bosch, O., Grissino, M.H.D. 1997. International tree-ring data bank program library. http:www.rgdc.noaa.gov/paleo/treering.html. (accessed in 2003).Douglass, A.E. 1941. Crossdating in dendrochronology. Journal of Forestry 39: 825-831Fritts, H.C. 1976. Tree rings and climate, Academic Press London, 567 p.Garrec, J. P., Haluwyn, Ch. 2002. Biosurveillance végétale de la qualité de l’air, Londra, Paris, New Zork. 117 p.Grissino – Meyer, H.D., Holmes, R.L., Fritts, H.C. 1996. International Tree Ring Data Bank program library version 2.0 user’s manual. Laboratory of Treering Research, University of Arizona. Tucson, Arizona.Holmes, R.L. 1983. Computer – assisted qualitycontrol in tree ring dating and measurement. Tree Ring Buletin 43: 69-75.Ianculescu, M. 1975. Aspecte metodologice privind determinarea pierderilor de creştere în diametru la arboretele poluate. Studii şi Cercetări, Seria I, ICAS, 33: 141-149.Ianculescu, M. et al. 1977. Influenţa poluării asupra creşterii pădurilor. Centrul de material didactic şi propagandă agricolă, Seria II, ICAS, 47 p.Ianculescu, M. et al. 1987. Cercetări privind dinamica fenomenului de poluare industrială a pădurilor din zona Copşa Mică. Manuscris, Referat ştiinţific final. ICAS, 182 p.Ianculescu, M., Costea., C. 1989. Bewertungs – methoden für die durch Lufverungreinigungen Bedingten Waldschäden. Berichte aus der Abteilung für Rechnungswesen und Forstliche Marketlehre. Institut für Forstliche Betriebswirtschaft und Forstwirtschaftspolitik der Universität für Bodenkultur, Wien, Heft 8, pp. 165-169.Ianculescu, M. 2005. Aspecte ale relaţiilor dintre pădure şi poluare. In Giurgiu V, (ed.): Pădurea şi modificările de mediu, Editura Academiei Române, pp. 92-125Popa, I., 2004. Fundamente metodologice şi aplicaţii de dendrocronologie. Editura Tehnică Silvică, Bucureşti, 200 p.

Table 6 Volume growth losses ΔIv, during 2004-2006, in the beech affected stands with accidental fluorine pollution Azuga Forest District

* From Forest management planning, 1999

Damage degree

Years Relative volume growth losses

ΔPiv≅ ΔPig≅ ΔPid

(%)

Current volume growth in Azuga Forest District

stands*-Iv-

(m3an-1ha-1)

Current volume growth losses

-ΔIIv-(m3an-1ha-1)

Strongly damaged

2004 17.027.2

1.232005 26.28 1.892006 25.93 1.87

Page 39: Volumul integral (.pdf)

40

Ulrich, E., Bonneau, M. 1994. Etat nutritionnel des peuplements du reseau RENECOFOR. La sante de foret. UN/ECE – CEC 1994. Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forest. PCC, Praga, 177 p.De Vries, W., et al. 2000. Intensive Monitoring of Forest Ecosistems in Europe. CEC-UN/ECE, Brussele, Genova.

Page 40: Volumul integral (.pdf)

41

ICAS 2008 Conference October 23-25, 2008 Bucharest, Romania

Hungarian oak and Turkey oak fructification in the Western part of the Getic Plateau

I. Bercea

Bercea, I. 2009. Hungarian oak and Turkey oak fructifi cation in the Western part of the Getic Plateau. In: Olenici N., Teodosiu M., Bouriaud O. (eds.), Proceedings of the conference “Sustainable forestry in a changing environment“, October 23-25, 2008, Bucharest, Forest Research and Management Institute ICAS, pp. 41-52.

Abstract. The ecosystems with Hungarian oak (Quercus frainetto Ten.) and Turkey oak (Quercus cerris L.) have formed stable structures along the time, but they have been seriously affected since 1989 until 1994 by a long drought, followed by mas-sive drying. The behavior of the two species differed, especially in what may con-cern the fructifi cation process, because the Hungarian oak didn’t fructify anymore and the Turkey oak continued to fructify with the known periodicity. The research has focused on assessment of fructifi cation periodicity and intensity in the Hungarian and Turkey oak, under the changes of the present climatic conditions. Fructifi cation periodicity of the Hungarian oak was very different from that of the Turkey oak during the last three decades. The Hungarian oak had very abundant fructifi cation in 1981 and 2003 and only one weak fructifi cation in 1995. These data together with the information on fructifi cation in the fi rst half of the 20th century imply that the Hungarian oak fructifi cation period is between 8 and 11 years. The fructifi cation periodicity of the Turkey oak remains unchanged and it comprises a 2 to 5 years in-terval. Climatic changes, manifested through very dry years, with high temperatures for a long time and very large amplitudes in a short period of time, have resulted in changing the fructifi cation periodicity for the Hungarian oak and also in a massive drying phenomenon. This determines differentiated carrying out of the cuttings for rejuvenation and approaching a new strategy to maintain and perpetuate Hungarian oak on its territories. Exhibiting a great endurance for climatic changes, the Turkey oak fructifi es normally, with the normal periodicity. This fact ensures an easy natu-ral regeneration and a tendency of the Hungarian oak elimination from the mixed stands.Keywords: Quercus frainetto Ten., Quercus cerris L., climatic changes, fructifi ca-tion periodicity

Author. Iulian Bercea - Filiaşi Forest District, Radateanu St. 277, 205300 - Filiaşi, Romania.

Introduction

Hungarian oak (Quercus frainetto Ten.) and Turkey oak (Quercus cerris L.) forests are ecosystems with stable structures that can be found in the hot and dry regions in South Europe and mostly in the Balkans and in our country, where they reach the northern and north-eastern extremes of their natural ranges.

Page 41: Volumul integral (.pdf)

42

In our country, these species occupy 4.8% of the national forest territory with an area of 304 thousand hectares. They dominate the hilly plain of Oltenia and Muntenia, reaching altitudes from 70 to 200 m, with small horizontal and vertical fragmentation. In Oltenia and Muntenia, Hungarian and Turkey oak can be found on low hills, their territory reaching to the north especially on the Jiu Valley and the Olt Valley. The widest extension can be found on the Getic Plateau where the largest Hungarian oak forests in our country are located. Seaca de Pădure forest, positioned to the west of Craiova and especially Seaca-Optăşani forest, located to the south-west of Pitesti, are considered to be the largest Hungarian oak forests in Europe. The Hungarian and Turkey oak forests have a special socio-economic importance, due to the wood they produce, as well as an ecological importance as they modify the terrestrial active surface facing the hot and dry air masses that reach Oltenia’s Plain from the south and south-west of Europe. The forests form a buffer area having a strong effect on the environmental equilibrium of the region they occupy, especially on the climatic conditions. The ecosystems with Hungarian and Turkey oak have formed stable structures along the time, but they have been seriously infl uenced since 1989 until 1994 by a long drought followed by massive tree dying. The intensity of dying phenomenon was quite different in the two species, being more intense in the Hungarian oak stands of different ages. Hungarian and Turkey oak decline has determined the start of some research activities that have extensively evaluated the stand situation and to which extent the trees were affected. The drying effect appeared while regeneration works were being applied in different stages to the exploitable stands. Due to the extraction of dried trees from the stands, a disturbance of the normal course of works and consequently of the regenerations took place. The behaviour of the two species differed, especially in what may concern the fructifi cation process, because the Hungarian oak didn’t fructify anymore and the Turkey oak continued to fructify with the known periodicity. Our research aimed at determining the fructifi cation periodicity, its intensity and its dissemination way in order to direct the cuttings for regeneration that will be performed in the Hungarian and Turkey oak stands. Consequently it focused on the following aspects: establishing the favourable natural environment for the Hungarian and Turkey oaks, evolution of the periodicity and intensity of the Hungarian and Turkey oak fructifi cation, and the infl uence of the fructifi cation on the assuring the natural regeneration of these tree species.

Materials and methods

The territory chosen for the research is located in Oltenia and it comprises Motru Hills, Jiu Hills, Gilort and Amaradia Hills, the northern area of the Bălăciţa Plateau, Segarcea Plain north-eastern area, the north-western part of the Leu-Rotunda Field, geomorphologic units that can be found in the Jiu area. The location for conducting the research was limited to areas with large spreading of Hungarian and Turkey oak: for the southern part of the territory - Bucovăţ and Seaca de Pădure forests in the forest departments of Craiova, and for the central and northern part - Argetoaia, Războinicu, Şuşiţa, Motru, Cărbuneşti, Murgeşti forests in the forest departments of Filiaşi, Strehaia, Motru, Turceni and Cărbuneşti. All observations were made in the following forest departments: Segarcea, Craiova, Filiaşi, Şimian, Corcova, Strehaia, Motru, Tarniţa, Târgu-Jiu, Peşteana, Cărbuneşti, Turceni, Hurezani and Amaradia, in 49 Production Units. These representative forests with maximum spreading of the Hungarian and Turkey oak were chosen in order to observe the standard conditions in which the two species vegetate, with the aim of not infl uencing the conclusions that are generally applicable for this territory. In order to assess the diversity of the conditions in which Hungarian and Turkey oak fructifi cation takes place, 77 observation plots have been placed. The plots were positioned within the most spread

Page 42: Volumul integral (.pdf)

43

types of forests, where the stand was at exploitability age and where regeneration had started due to various reasons, and the study of fructifi cation was appropriate. The research territory was chosen as to comprise the most diverse conditions for the determinant ecologic factors infl uencing Hungarian and Turkey oak fructifi cation. The territory should also have displayed the evolution through time of the destabilizing factors in the area, having consequences over the stands and, implicitly, over their fructifi cation. In order to achieve the objectives, a wide range of research that took place both outdoors (in the fi eld) and indoors (at the offi ce) was initiated. Studies were conducted in order to establish fructifi cation intensity, dissemination distance, as well as Hungarian and Turkey oak acorn viability, under normal vegetation conditions and under great oscillation of the determinant ecologic factors condition as well.

Results

Fructification periodicity The fructifi cation periodicity in the Hungarian oak until 1955 is presented in the literature and it was revealed that the species had a very good fructifi cation in 1932, 1936, 1942, 1951 and 1955 (Marcu 1965). There is no specifi cation related to the fructifi cation years after that. Taking into account both the information gathered from the forest districts within the investigated territory and my personal observations, we can conclude that very good fructifi cation took place in 1981 and in 2003. Fructifi cations took place at 4-13 years intervals until 1955, but the periodicity signifi catly increased (u to 23 years, during the recent decades. Between the abundant fructifi cations of the period 1923-1955, there were also moderate fructifi cations during the years 1923–1936 and 1937–1942 (Marcu 1965), but only one weak-moderate fructifi cation during the period 1981-2003, in 1995. Periodicity of middle fructifi cation is about 8 years. Seedlings of Hungarian oak of various ages, raised from seeds, were found in the testing areas that were set for the research. This proves that the Hungarian oak had frequent weak fructifi cations from which the seedling grew. Taking into account the very long period without fructifi cation in the Hungarian oak during the last decades, we can conclude that the favourable periods for regeneration are very rare, and that the Hungarian oak was in decline throughout the last period, the stability and continuity of the pure Hungarian oak stands that reached the age of exploitability being at risk. Consequently, this situation led to the reduction of areas naturally regenerated from seeds and also to a declining quality of Hungarian oak regeneration. At the same time, it is really necessary that the local sylviculturists optimally render profi table every year with moderate or abundant fructifi cation, in order to reach a natural, but also an artifi cial regeneration, by directly sowing and by producing seedlings from the gathered acorns. The existence of some regeneration groups and pre-existing usable or unusable seedlings in the Hungarian oak stands that can be harvested is due to the intermediary very weak fructifi cations. Between 1981 and 2003, week and very week fructifi cations contributed to the installing of some seedlings in the stands that comprise Hungarian oak trees. In comparison with the Hungarian oak, the Turkey oak had, since 1981, six very abundant fructifi cations in the following chronological order: 1982, 1986, 1989, 1994, 1998, 2005, at intervals of 4-7 years, which means a fructifi cation periodicity of 4-5 years. Between the years with abundant fructifi cation, there were also moderate fructifi cations in 1995, 2002 and 2004. If we take into consideration the intermediary moderate fructifi cations, we conclude that the favourable periods for natural regeneration from seeds of the stands that comprise Turkey oak occur quite often, from 2 to 5 years (Bercea 2007).

Page 43: Volumul integral (.pdf)

44

Quantity and quality of the Hungarian oak disseminated acorn

The related research was conducted during the years 2002-2005 in the area of the following forest districts: Craiova, Strehaia, Filiaşi, Turceni, Cărbuneşti, Peşteana and Târgu-Jiu, in order to include different intensities of fructifi cation for the two studied species. For this purpose, testing areas were placed under the tree crowns and around them; all acorns were gathered periodically and their quality was determined by sectioning. Hungarian oak had very weak fructifi cation in 2002, 2004 and 2005, but a very good fructifi cation in 2003, an exceptional year. In 2003, also the old debilitated trees with dead tops fructifi ed; acorns were abundantly found on various offshoots of different ages. For the Turkey oak, 2002 and 2004 were years with moderate fructifi cation. In 2003, the Turkey oak didn’t fructify, while in 2005 fructifi cation was very good. For the studied territory, and not only, Hungarian oak fructifi cation was of great interest, especially through the mechanism of adaptation in order to ensure regeneration and perpetuation on the occupied territories, taking into consideration the lack of fructifi cation or its very low intensity for a long period of time. The following were noticed based on the observations made within Hungarian oak forests, Turkey and Hungarian oak forests, Turkey oak forests and normal mixtures of common oak, Hungarian and Turkey oak forests. In 2002, the Hungarian oak fructifi ed very weakly, and the dissemination period lasted between the 3rd of September and the 10th of November. During the fi rst period of dissemination, the acorn deteriorated by Balaninus glandium (20-45%) and the dried or mouldy fell down (55-85%). The mean density was 3.7 acorns/m2 (Table 1), out of which only 28% healthy acorns. In the same testing areas, the seedlings raised after the weak fructifi cation of 2002 were inventoried on February 18th, 2004. A proportion of 53% of these was installed, as compared to the fallen acorns. This represents a very high percentage in comparison with the proportion (28%) of sound acorns fallen in the testing areas. The only explanation is that the seedlings installing had resulted in the auto cutting seedlings. We should mention the fact that the testing areas were placed on grass-free areas, having a thin layer of litter and forest soil favourable for seed germination in optimal conditions. Hungarian oak fructifi cation was very good in 2003, the acorn dissemination starting at the beginning of September, as the dried and deteriorated acorns fell. Measurements taken on September 5th and 6th 2003 resulted into 2.2% and 5.3% fallen sound acorns. The next measurements made on September 19th and 20th 2003 showed that the percentage of the fallen sound acorns was between 11.4% and 43.2%, also noticing a slight latitudinal differentiation, as 11.4% was recorded in the southern part of the territory in u.a. 124 A, U.P. III Seaca de Pădure, and 43.2% in the central part of the territory (Table 2). The dissemination period ended on November 1st 2003, when the Hungarian oak acorn fell entirely. The percentage of sound acorns was between 75.1% and 84.9%, thus being noticed a latitude differentiation: the smallest percentage of sound acorns 75.1% was located in the southern part, while in the middle the percentage increased to 84.9% on some areas, but on others decreased by 25% than in the central part of the studied territory. The number of sound acorns that were disseminated during a year with a very good fructifi cation under the protection of tree crowns and around them was on average of 181 units on a square meter, varying between 142 and 206 units; this was considered to be an exceptional year for Hungarian oak fructifi cation as a result of the research. In many stands a great variation of the acorn quantity and quality was noticed, depending on the site conditions, on the stand condition, on the age and individual characteristics of trees. Within the research territories, parts of stands with as much as 420 acorns/m2 could also

Page 44: Volumul integral (.pdf)

45

be found (u.a. 112 B in U.P. II Argetoaia). The dissemination of Hungarian oak sound acorns takes place after September 20th, with a peak between October 1st and October 15th. This is closely related to the great temperature variation between daytime and night time and especially to the fi rst white frost day. The change in leaves colour and the beginning of the leaf falling for the Hungarian oak coincides with the largest sound acorns dissemination. Knowing the period, the dissemination rhythm and the acorn quantity fallen in the years with fructifi cation is useful in order to schedule and put in practice the forest workings necessary for helping natural regeneration. In the years that preceded the exceptional fructifi cation of Hungarian oak in 2003, observations related to tree vegetation condition were made, in relation with season weather in 2001 and 2002. The purpose was to notice the external factors that can infl uence the Hungarian oak and that can determine fructifi cation periodicity and intensity. In the spring of 2002 trees started their vegetation late and the development of leaves was very weak; the Hungarian and the Turkey oak leaves had very reduced dimension, between 1/3 and 1/2 of the normal leaf dimension. The abnormal developing of the leaves was determined by rain rhythm in 2000, 2001, and 2002. The year 2000 was dry; 339.2 mm were recorded at the meteorological station in Craiova and 359.2 mm at the meteorological station Bâcleş. When looking at the rainfall, the fi rst 9 months of 2001 were normal. The last three months were dry as 37.7 mm cumulated were recorded at the meteorological station in Craiova and 48.7 mm at the meteorological station in Bâcleş. The drought continued in the fi rst half of 2002, as 120.3 mm cumulated precipitations were recorded at the meteorological station Craiova and 128.5 mm at the meteorological station Bâcleş. Practically, in a period of nine consecutive months (October 2001-June 2002) only 158 mm cumulated precipitations were recorded at the meteorological station Craiova and 177.2 mm at the meteorological station Bâcleş (Tables 3-4). The extremely reduced precipitation was accompanied by high temperatures during spring and summer. This led to a much reduced development of leaves in Turkey and Hungarian oaks. By analyzing the total precipitation in 2001 and 2002, we can claim that the values were normal,

Species Date Area Forest type

Num

ber o

f see

dlin

g af

ter o

ne

year

of v

eget

atio

n

Number of acorns Percentages

Healthy

Drie

d &

det

erio

rate

d

Tota

l

Hea

lthy

Drie

d &

det

erio

rate

d

Tota

l

10.11 u.a. 80 H Hungarian oak plateau forest middle productivity 2 11 13 15 85 100 7

Hungarian oak

10.11 u.a.79 I Hungarian oak plateau forestmiddle productivity 5 6 11 45 55 100 6

11.11 u.a. 124 ATurkey oak and Hungarian oak plain forest middle productivity

4 12 16 25 75 100 8

Total 11 29 40 28 72 100 21

Table 1 Average number of acorns on 1 m2 area under the crown of the old Hungarian oak trees in 2002, after a very weak fructifi cation, and the number of seedlings one year later

Page 45: Volumul integral (.pdf)

46

but the distribution on months and seasons was not regular. Starting with July 2002, abundant precipitations begun to fall and they continued during the fi rst three months of 2003, as well. This helped the leaves to develop normally and fl ower-buds to differentiate, a fact which led to the abundant fructifi cation in the autumn of 2003. This matched to the extremely small production

Table 2 Average number of acorns disseminated on 1 m2 areas under the crown of Hungarian oak trees, in 2003, after very good fructifi cation

Species Date Area Forest Type

Number of acorns Percentages

Hea

lthy

Drie

d &

de

terio

rate

d

Tota

l

Hea

lthy

Drie

d &

de

terio

rate

d

Tota

l

Hunga-rian oak

05.09 124 A Turkey oak and Hungarian oak plain forests middle productivity 0.3 13.1 13.4 2.2 87.8 100

06.09 82 MTurkey oak and Hungarian oak plateau forests middle productivity

0.7 12.6 13.3 5.3 94.7 100

06.09 112 B Hungarian oak plateau forests middle productivity 0.6 14.5 15.1 4.0 96.0 100

06.09 112 C Turkey oak and Hungarian oak hills forests middle productivity 0.7 16.4 17.1 4.1 95.9 100

Mean 0.6 14.1 14.7 4.1 95.9 10019.09 124 A 2.1 16.3 18.4 11.4 88.6 10020.09 82 M 22.9 30.1 53.0 43.2 56.8 10020.09 112 B 27.1 40.6 67.7 40.0 60.0 10020.09 112 C 25.1 36.3 61.4 40.9 59.1 100Mean 19.3 30.8 50.1 38.5 61.5 10030.10 124 A 142 47 189 75.1 24.9 10001.11 82 M 180 32 212 84.9 15.1 10001.11 112 B 206 45 251 82.1 17.9 10001.11 112 C 196 40 236 83.1 16.9 100Mean 181 41 222 81.5 18.5 100

Fig. 1 Hungarian oak abundant fructifi cation in 2003 autumn

Page 46: Volumul integral (.pdf)

47

of corn in the same zone, generating an unfavourable situation for Hungarian oak regeneration in the stands located near populated areas, because the acorns were gathered by the peasants to feed their pigs, being consumed by abusive grazing. Hungarian oak acorns dissemination under the crown of the trees and outside it is not homogeneous. For this reason, measurements were made on the direction of the four cardinal points, around the seed-bearing trees in the area of acorns falling, installing on the testing areas

Year Station Months AnnualI II III IV V VI VII VIII IX X XI XII

2000Craiova 37.4 30.4 11.7 61.8 9.7 12.9 64.6 1.8 72.5 0.3 28.1 7.8 339.0Bâcleş 22.5 10.7 10.7 88.9 12.5 7.3 102.2 3.7 60.9 1.2 15.0 23.6 359.2Tg. Jiu 17.7 18.0 39.3 50.5 43.4 5.5 44.5 3.2 64.1 0.0 14.1 33.1 333.4

2001Craiova 22.8 32.1 79.7 98.6 43.2 150.3 75.7 36.2 68.5 1.7 24.6 11.4 644.8Bâcleş 22.7 32.3 44.3 101.3 43.3 110.6 49.6 3.1 97.1 10.0 25.6 13.1 553.0Tg. Jiu 55.5 25.0 58.5 93.8 50.8 143.0 96.6 18.3 91.8 7.7 45.3 9.2 695.5

2002Craiova 15.2 0.8 5.6 33.6 28.8 36.3 134.4 106.5 80.9 65.0 43.8 109.2 660.1Bâcleş 7.4 1.0 4.3 28.7 47.8 39.3 146.1 100.0 94.2 76.3 25.0 82.0 652.1Tg. Jiu 1.1 1.9 1.4 40.3 50.5 73.8 204.6 112.7 73.2 77.8 41.4 119.4 796.1

2003Craiova 51.6 11.6 11.7 103.2 76.9 14.0 59.4 9.2 121.0 132.1 39.0 51.8 681.5Bâcleş 89.6 15.8 4.5 78.1 103.5 16.9 58.7 4.3 91.1 114.5 43.6 23.4 644.0Tg. Jiu 83.4 20.7 4.8 113.0 70.8 7.2 68.2 26.6 128.8 174.1 49.7 33.2 780.5

2004Craiova 65.5 27.5 33.9 17.6 66.9 123.4 31.7 27.6 55.6 17.5 99.2 35.7 602.6Bâcleş 39.3 42.5 35.1 49.4 53.4 97.5 44.1 60.8 39.2 33.5 90.4 11.6 596.8Tg. Jiu 91.0 66.3 44.1 69.5 102.2 150.2 135.6 85.9 67.5 40.4 131.8 35.2 1019.7

2005Craiova 71.8 55.7 34.7 57.8 117.9 104.5 170.5 215.8 113.7 22.0 66.9 51.0 1082.3Bâcleş 45.5 45.6 15.1 54.8 73.5 30.3 202.0 219.7 92.3 24.8 45.0 60.4 909.0Tg. Jiu 71.1 91.3 66.2 60.0 76.6 63.8 251.8 160.2 118.6 12.6 58.2 91.5 1121.9

Table 3 Monthly and annual rainfall amount (mm) during the years 2000-2005

Year StationMonths Annual

meanI II III IV V VI VII VIII IX X XI XII

2000Craiova -3.8 -3.5 6.5 14.4 18.8 22.8 23.9 24.7 16.5 11.9 8.4 2.6 11.9Bâcleş -4.3 2.4 5.4 13.4 17.5 21.9 22.5 23.5 15.4 11.0 7.5 1.8 11.5Tg. Jiu -4.1 2.1 5.6 14.0 17.4 22.1 22.9 23.5 15.7 11.1 7.2 1.3 11.6

2001Craiova 0.9 3.0 8.8 11.1 17.1 19.1 23.4 24.3 17.3 14.2 4.7 -3.2 11.7Bâcleş 0.3 2.2 7.9 10.0 16.1 17.8 22.2 23.4 15.6 13.0 3.4 -4.1 10.7Tg. Jiu 0.9 2.8 8.0 11.3 16.5 18.5 22.1 23.0 15.6 12.1 4.0 -3.3 11.0

2002Craiova -0.8 6.7 9.1 10.6 19.2 22.8 24.1 20.7 16.5 10.5 6.8 -3.5 11.9Bâcleş -1.1 5.9 8.5 9.8 18.2 22.0 23.0 20.1 15.8 9.9 6.7 -3.7 11.3Tg. Jiu -0.9 5.1 8.4 10.7 19.0 21.9 23.7 20.5 15.4 10.2 6.4 -2.7 11.5

2003Craiova -1.7 -4.3 3.2 10.0 20.4 23.2 22.6 24.9 16.3 9.2 6.7 -0.4 10.8Bâcleş -2.0 -5.3 3.4 9.0 19.5 22.3 21.8 24.3 15.3 8.0 6.4 -0.6 10.2Tg. Jiu -1.6 -4.0 4.3 10.0 19.8 22.6 22.3 23.6 16.0 8.9 6.2 0.1 10.7

2004Craiova -3.5 1.3 6.2 11.7 15.1 19.4 22.4 21.9 17.1 12.6 6.5 1.3 11.0Bâcleş -3.5 0.7 5.2 10.9 14.3 18.8 21.3 21.1 16.0 11.9 5.8 1.0 10.3Tg. Jiu -3.2 0.6 6.4 12.0 15.0 19.3 21.7 20.8 15.7 11.7 6.2 1.3 10.6

2005Craiova 1.1 -2.8 3.9 11.2 16.8 19.3 21.8 20.3 17.0 11.1 4.2 1.7 10.5Bâcleş 0.5 -3.1 3.0 10.2 16.2 19.0 21.1 19.4 16.5 10.4 3.8 1.2 9.9Tg. Jiu 1.0 -2.7 3.6 11.1 17.2 19.1 21.1 19.9 16.5 10.8 4.0 1.2 10.2

Table 4 Average air temperature (oC) at Craiova, Bâcleş and Târgu-Jiu during the years 2000-2005

Page 47: Volumul integral (.pdf)

48

on the directions north (N), south (S), east (E) and west (W), with the size of 1 m2, one near the other, from which all the acorns fallen were gathered on the specifi ed dates (Table 5). Most acorns fell on eastern and southern areas, 48% and 35% respectively of the whole disseminated acorns quantity. At East, most of them fell on the testing area no. 3 (21%) and no. 2 (16%) and at South, most of acorns fell on the testing area no. 3 (14%), followed by the testing area no. 2 (12%). The lowest percentages of acorns were recorded at west and north, 7% and 10% respectively, and most acorns were on the testing areas no. 1 on both directions. The greatest proportions of disseminated acorns were found on the testing areas no. 3 and no. 2 for the projection of the entire crown of the seed-bearing tree - 36%, respectively 33%, followed by areas no. 1 and no. 4 (area no. 4 is usually found outside the projection of the crown of the seed bearing tree).

Quantity and quality of the Turkey oak disseminated acorns

The research was conducted in the testing areas placed in the exploitable stands of u.a. 46 B (U.P. II Bucovăţ), 124 A (U.P. III Seaca de Pădure), u.a. 44 B (U.P. I Gogoşu). The fructifi cations of the years 2002-2005 were investigated. The investigations led to some conclusions having local importance. Turkey oak fructifi cation in 2002 was of a middle intensity; acorn dissemination took place between September 7th and October 31st, being a year of clear phenological differences, caused by the abundant rainfall during July, August and September, that delayed the ripening, and by the reduced dissemination period at the end of October, caused by the sudden cooling of weather, negative daily average temperatures being frequently recorded in November. Acorns had smaller dimensions than normal ones. This was caused by the long drought during the last quarter of 2001 and the fi rst quarter of 2002. During the fi rst period of dissemination, low quality acorns, dried ones, those touched by Balaninus glandium and some of those with split tegument - as a result of the great precipitation variations in the growing period - fell down. Around September 15th, 4.5% were healthy acorns, the others were dried (55-80%), deteriorated by Balaninus glandium (15-42%) or with split tegument in the middle part of the acorn (8-12%) (Table 6). The small percentage of the disseminated healthy acorns maintained until October 16th (10-12%), growing to 69% by October 24th, and then to 97% by October 30th. The dissemination fi nished at the end of October, being accelerated by the low temperatures and by the early white frost. Turkey oak fructifi cation during 2002 was not homogeneous, neither in quality, nor in quantity, with regard to the site conditions, to individual tree characteristics, but especially to tree

Direction from the seed-bearing tree

Percentage of the total number of acorns fallen on the direction…on the testing area number …..

Percentage of the total number of acorns fallen on the testing area number. ……...

1 2 3 4 Total 1 2 3 4 TotalNorth 59 34 8 0 100 6 3 1 0 10East 17 31 44 8 100 8 16 21 3 48South 22 35 40 3 100 8 12 14 1 35West 80 20 0 0 100 5 2 0 0 7Total 27 33 36 4 100

Table 5 Hungarian oak acorns dissemination on 20th of September 2003 in u.a. 124 A U.P. III Seaca de Pădure

Page 48: Volumul integral (.pdf)

49

positioning on the slope, being better for the trees at the base of the slope, placed in less sunnier exposures. In 2004, the acorn dissemination started at the beginning of September and ended on November 12th. Dried, rotten and deteriorated by Balaninus glandium acorns fell fi rst and this lasted until October 16th. A more intense dissemination of healthy acorns took place by October 31st (80% of the sound acorns), followed by a period of less intense dissemination by November 10th for trees placed on the northern sides and at the base of the hill. Acorn quantity and quality shows variations depending on the stand condition, on previous exploitation technique, on the site conditions and on the species variability. Due to the abundant precipitations and their homogeneous distribution throughout the vegetation season, there were no differences that year regarding acorn quantity between the trees on plateaus and southern sides and those at the base of the hill or placed on northern sides. In 2005, Turkey oak fructifi cation was very good; within the investigated areas placed under the seed-bearing trees, there were around 86 healthy acorns per square metre (53 to 141 acorns per sq m). The acorn dissemination started on September 5th and ended on November 12th. During the fi rst stage, which ended around October 15th, the dried and deteriorated acorns fell; then the healthy ones until November 5th, while the last acorns fell around November12th, at the same time with the massive leaf falling start of the Turkey oaks trees. This was another year with non-homogenous tree fructifi cation, its intensity being different from one place to another, and even from one tree to another, depending on site conditions, tree age, stand current condition, tree individual characteristics, as well as on crown shape and developing. The rhythm of dissemination is accelerated between October 15th and November 5th for the healthy acorns (over 80%). Previous to this period, helping works for natural regeneration should be conducted, especially those related to soil mobilization on the grassy areas and to removing of under-brushes and overwhelming species seedlings. Turkey oak dissemination is not homogenous for the acorns under the seed-bearing trees and outside them. This is the reason for which measurements were made on the directions of the four

Species Date Area Forest Type

Number of acorns Percentages

Hea

lthy

Drie

d &

de

terio

rate

d

Tota

l

Hea

lthy

Drie

d &

de

terio

rate

d

Tota

l

Turkey oak

07.09 80 H Hungarian oak plateau forestsmiddle productivity 0.08 1.33 1.49 5.6 94.4 100

07.09 81 DNormal mixture of sessile oak, Hungarian oak and Turkey oak plateau forests (m).

0.08 1.75 1.83 4.4 95.6 100

07.09 82 A Turkey oak and Hungarian oak hills forests middle productivity 0.08 1.5 1.58 5.0 95.0 100

06.09 153 B Hungarian oak plateau forests middle productivity 0.05 1.75 1.80 2.8 97.2 100

Mean 0.07 1.58 1.65 4.45 95.55 10031.10 80 H 3.9 1.7 5.6 70.0 30.0 10031.10 81 D 12.7 1.9 14.6 86.9 13.1 10031.10 82 A 11.8 1.8 13.6 86.8 13.2 10030.10 153 B 15 2.3 17.3 86.7 13.3 100Mean 10.9 1.9 12.8 82.6 17.4 100

Table 6 Average number of disseminated acorns over 1 m2 under the crown of Turkey oak trees in 2002, a year with a medium fructifi cation

Page 49: Volumul integral (.pdf)

50

Species Date Area Forest Type

Number of acorns Percentages

Hea

lthy

Drie

d &

de

terio

rate

d

Tota

l

Hea

lthy

Drie

d &

de

terio

rate

d

Tota

l

Turkeyoak

05.09 47 CNormal mixture of sessile oak, Hungarian oak and Turkey oak forests

0 6 6 0 100 100

06.09 46 B Turkey oak and Hungarian oak plateau forests 0.1 6 6.1 1.6 98.2 100

07.09 82 L Turkey oak and Hungarian oak hill forests (s) 0.07 2 2.07 3.4 96.4 100

Mean 0.06 4.7 4.76 1.67 98.33 10024.10 82 L 5.1 2.3 7.4 68.9 31.1 10016.10 47 C 0.8 7.2 8.0 10 90 10004.12 46 B 10.9 7.4 18.3 59.6 40.4 100

Table 7 Average number of disseminated acorns over 1 m2 under the crown of Turkey oak, in 2004, a year with a medium fructifi cation

Species Date Area Forest Type

Number of acorns Percentages

Hea

lthy

Drie

d &

de

terio

rate

d

Tota

l

Hea

lthy

Drie

d &

de

terio

rate

d

Tota

l

Turkey oak

05.09 81 DNormal mixture of sessile oak, Hungarian oak and Turkey oak plateau forests (m).

0.1 4.8 5.9 1.7 98.3 100

07.09 153 BHungarian oak plateau forests middle productivity 0.2 5.4 5.6 3.6 96.4 100

08.09 124 ATurkey oak and Hungarian oak plateau forests middle productivity 0 5 5 0 100 100

06.09 44 BTurkey oak and Hungarian oak silvostepa forests (m) 0.3 8.7 9.0 3.3 96.7 100

Mean 0.15 6.0 6.15 2.4 97.6 10001.11 153 B 84 8 92 91.3 8.7 10007.11 124 A 53 26 79 67 33 10012.11 81 D 141 6 147 95.9 4.1 10009.11 44 B 67 28 95 70.5 29.5 100Mean 86 17 103 83.5 16.5 100

Table 8 Average number of disseminated acorns over 1 m2 under the crown of Turkey oak, in 2005, a year with a very good fructifi cation

cardinal points. The seed-bearing trees selected for assessing the intensity of the Turkey oak dissemination and the dissemination distance can be found in u.a. 81 D from U.P. II Argetoaia on a northern side and a 50 slope. Most Turkey oak acorns 33% can be found in the southern part of the seed-bearing trees, followed by the eastern part - 31%, the smallest quantities falling in the northern and western part - 18% (Table 9). Turkey oak acorns disseminate two meters outside the projection area, the greatest quantity of

Page 50: Volumul integral (.pdf)

51

acorns falling within the testing areas on the fi rst three meters at the base of the tree, as it follows: 35% within the fi rst, 32% within the next one and 22% within the third square meter (sq, m). The southern and eastern parts, where most acorns fell, are relatively close as the proportion of the acorns fallen within the fi rst three square meters of the base of the seed bearer tree is between 21% and 33%, as compared to the western and northern parts, where the least quantity of acorns fell (18%), and the greatest percentage of fallen acorns was within the fi rst square meters from the base of the tree. The largest distances where Turkey oak acorns were disseminated can be found in the southern (4 m) and eastern (5 m) areas, where most acorns fell. By analyzing tree acorns, we can observe a slight trend of going south-east, explained by the phototropism phenomenon. This matches the larger dissemination distance of the crown. The more intense light and heat infl uenced the biochemical processes of differentiating the leaf-buds to a higher extent, as well as the fecundation and preserving of the fruit until their dissemination in the autumn of 2005. The acorn dissemination for trees on sloping plots was investigated separately, in order to emphasize the differences compared to the fl at plots. For this reason, testing areas were positioned in u.a. from U.P. I Gogosu on a sloping side of 260 and southern exposure. It was noted that the greatest quantity of acorn is disseminated to the south of the seed-bearing trees (60%); acorn dissemination to the west and east of the seed-bearing trees is quite uniform, 20% and 16% of the number of the fallen acorns respectively (Table 10). The smallest quantity of acorns is found to the north of the seed-bearing trees (4% of the number of the fallen acorns). The distance to which dissemination took place is strongly infl uenced by the plot slope. Therefore, in the northern part acorns are found only on the fi rst testing areas placed on this direction, most acorns being within the fi rst square meter from the tree base, while in the eastern and western parts, the acorns were disseminated within the fi rst four meters of the tree base, the highest proportion being on the testing areas placed within two and three meters from the tree base. In the southern part, the distance of dissemination reaches even 9 meters from the tree base, the

Table 9 Turkey oak acorns dissemination on 12.11. 2005 in u.a. 81 D, U.P. II Argetoaia

Direction from the seed-bearing tree

Percentage of the total number of acorns fallen on the direction… on the testing area number …..

Percentage of the total number of acorns fallen on the testing area number…

1 2 3 4 5 Total 1 2 3 4 5 TotalNorth 45 33 20 2 0 100 8 6 4 0 0 18East 23 30 21 22 4 100 7 9 7 7 1 31South 32 33 26 7 2 100 11 11 9 2 0 33West 54 34 10 2 0 100 9 6 2 1 0 18Total 35 32 22 10 1 100

Direction from the seed-bearing tree

Percentage of the total number of acorns fallen on the direction… on the testing area number…

Percentage of the total number of acorns fallen on the testing area number…

1 2 3 4 5 6 7 8 Total 1 2 3 4 5 6 7 8 TotalNorth 36 24 30 6 4 0 0 0 100 2 1 1 0 0 0 0 0 4East 16 35 22 27 0 0 0 0 100 2 6 4 4 0 0 0 0 16South 2 5 5 13 14 14 28 19 100 1 3 3 8 8 9 17 11 60West 17 39 27 17 0 0 0 0 100 3 8 6 3 0 0 0 0 20Total 8 18 14 15 8 9 17 11 100

Table 10 Turkey oak acorns dissemination in u.a. 44 B, U.P. I Gogosu in 2005 autumn

Page 51: Volumul integral (.pdf)

52

greatest quantity of acorns (28%) being within testing area placed at seven meters from the tree, followed by the testing areas placed at eight meters (19%) and at 4-5-6 meters (13-14%). In the southern part of the seed-bearing trees we can also fi nd the greatest quantity of healthy acorns (29%), especially within the testing areas placed at 8-7-6 and 5 meters from the tree base. The healthy acorns are the heaviest and the rolling distance is depending on the acorn weight. After analyzing the measures taken, the conclusion is that the acorn dissemination happens on distances between 4 and 9 meters from the massive edge towards the interior of seeding felling area, depending on the projection size of the tree crown, on the plot slope.

Conclusions Fructifi cation periodicity for the Hungarian oak was very different from that of the Turkey oak during the last three decades. The Hungarian oak had very abundant fructifi cation in 1981 and 2003 and only one weak fructifi cation in 1995. These data, together with the information on fructifi cation from the fi rst half of the 20th century, suggest that the Hungarian oak fructifi cation period is between 8 and 11 years. The fructifi cation periodicity for the Turkey oak remained unchanged and it is of 2-5 years. The ripening and dissemination of the Hungarian oak acorn starts during the fi rst days of September, by the falling of the dried and mouldy acorns, just the same as for the Turkey oak. Starting with September 20th in the Hungarian oak, and with October 1st for the Turkey oak, the proportion of the disseminated acorn increases, reaching the maximum between October 1st and 15th for the Hungarian oak and after October 15th for the Turkey oak, and fi nishes towards the end of the month for both species. The dissemination of Hungarian and Turkey oak acorns takes place under the seed-bearing trees crown and within no more than 2 meters outside their crown projection on fl at or with slight sloping plots. Within the plots with high sloping, the dissemination takes place downstream on a distance no larger than 9 meters from the base of the seed-bearing the tree, and on the level curve up to a distance of 6 meters from the base of the tree. The quantity of the acorn fallen in the seeding felling areas usually decreases from the edge of the areas towards the centre, especially for the large ones.In the seeding felling areas with the dimension of 0.5 H, the surface of the seeding felling area is entirely covered by acorns, while in the seeding felling areas with the dissemination exceeding 1.0 H, the central part often remains unsown with acorns.

References

Badea, O., Tănase, M. 2002. Starea de sănătate a pădurilor din România în anul 2001. [The health condi-tion of the Romanian forests in 2001]. Revista Pădurilor 2: 6-10.Bercea, I. 2007. Cercetări privind regenerarea arboretelor de gârniţă şi cer din partea vestică a Podişului Getic. [Research on regeneration of the Hungarian oak and Turkey oak tree stands in the western part of the Getic Plateau]. Teză de doctorat. Universitatea “Transilvania” Braşov, Facultatea de Silvicultură şi Exploatări Forestiere, 224 p.Marcu, Gh. 1965. Studiul ecologic şi silvicultural al gârniţetelor dintre Olt şi Teleorman. [Ecological and sylvicultural study of the Hungarian oak forests between Olt and Teleorman rivers]. Editura Agro-Silvică, Bucureşti. 320 p.

Page 52: Volumul integral (.pdf)

53

ICAS 2008 Conference October 23-25, 2008 Bucharest, Romania

Research on structural variety of stands for three Eu-ropean beech forests with different ages located in middle and superior valley of Argeş River

Gh. Guiman, V. Scarlatescu, C. Truica

Guiman Gh., Scărlătescu V., Truică C. 2009. Research on structural variety of stands for three European beech forests with different ages located in middle and superior valley of Argeş River. In: Olenici N., Teodosiu M., Bouriaud O. (eds.), Proceedings of the conference “Sustainable forestry in a changing environment“, October 23-25, 2008, Bucharest, Forest Research and Management Institute ICAS, pp. 53-64.

Abstract. Researches concerned the structure of two European beech uneven-aged stands which are cultivated one in uneven-aged regeneration system and the other in even-aged system with progressive regeneration fellings during a long period. For comparison, we studied the structure of a virgin European beech forest too. The main objective was to alsoidentify the structural and func-tional similarities and differences among analyzed stands, in order to establish the management measures for forests biodiversity preservation, as a component of sustainable management. Identifi cation and description of structures was ac-complished using vertical and horizontal structure of the three analyzed stands. At this stage, the research of stands structure had, as objectives, the following components: to determine the experimental distribution for trees number and for basal area, to analyze the distributions using the accepted theoretical distribu-tions; the volumes and basal area allocation on elementary surfaces (10 m x 10 m); the analysis of structural homogeneity using the texture homogeneity index Camino (1972) and the presentation of structure for stands having different ages, using the two-dimensional profi les. Herewith, it has been ascertained that beech stand cultivated and managed by treatments with a long or continuous re-generation period have many structural similarities with virgin and quasi-virgin natural stands. These fi ndings provide further scientifi c arguments for drawing the conclusion that managing stands through intensive treatments ensures for-est stability. Under these circumstances, the ecological, social and economical functions of the forests are accomplished with the maximum effi ciency, ensuring in this particular way the forest sustainable development and, on the whole, the sustainable development of the society.Key words: European beech forest, structural diversity

Authors. Gheorghe Guiman, Virgil Scărlătescu - I.C.A.S. Bucharest, Research Station Mihăeşti, 117470 - Mihăeşti, Argeş, Romania; Constantin Truică – Piteşti Forest District, Trivale St. 84, 110058 - Piteşti, Romania.

^ ^ ^

Page 53: Volumul integral (.pdf)

54

Introduction

Biodiversity conservation and improvement, a part of forest sustainable management, is manifested in some European Union countries (Prosilva trend) trough management tools applied according with specifi c structural laws of the natural forests. These developments are of great interest also to Romanian forestry, and our research takes into account the latest concerns in the fi eld worldwide, with real positive infl uence on forest management.

Material and methods

The structure diversity of the two managed stands, compared with the structure diversity of the natural virgin stand was observed in three 1 ha experimental areas (one for each type) (Guiman 2007). The inventory was conducted on elementary areas of 100 m2 (10 m x 10 m). The stand locations in which the research was carried out and the main dendrometric elements are presented in the Table 1. The analysis of horizontal and vertical stand structure was conducted by processing the information collected in the 300 elementary areas (each 0.01 ha). Through the rectangular coordinates system, the position of each tree was determined, also two crown perpendicular diameters, overall height and the height of natural pruning. For each elementary area the basal area and the volume were calculated. In this way, experimental distributions of the elementary areas on basal area classes and volume classes were obtained.

Results

Diversity analysis of horizontal structure in multi-aged stands

In a fi rst stage, after determining the basal area and the tree volumes for each elementary area (0.01ha), the experimental distributions of the basal area and volume classes were established. Thus, 16 basal area classes with the value of 0.10 m2 and 34 volume classes with the value of 1 m3 were formed. These experimental distributions were analyzed using statistical parameters: minimum, maximum, magnitude, average, variation, standard deviation, variation coeffi cient (%), average standard deviation, asymmetry coeffi cient and excess coeffi cient (Table 2). The horizontal structure of the three stands was represented in relation with the allocation of tree basal area and the tree volume for the 300 elementary areas. It was found that the graphic division of the two distributions is similar. This fact is well defi ned in Figures 1-3, where the distribution of volume in elementary areas is presented for the experimental surfaces installed in the three analyzed stands. Experimental distributions of the number of experimental areas in relation to the basal area and volume classes were analyzed and adjusted through commonly used distributions. According to

Table 1 The stands dendrometic characteristics in which structure research was conducted

No

Forest District

Production Unit

The stand (u.a.)

Production class

Compo-sition(%)

Canopycover

Volume (m3)

Surface (ha)

1 Mihăeşti (S.G.I.) 213A II 100 beech 0.8 477 15.3

2 Vidraru (U.P. I 50A II 100 beech 0.7 520 17.8

3 Muşăteşti (U.P. IV) 15 II 100 beech 0.7 627 17.8

Page 54: Volumul integral (.pdf)

55

data entered in the adjustment test for the experimental distribution of the number of elementary areas in relation to the basal area classes (Table 3), the adjustment is done with very good result using normal distribution, exponential distribution, Beta distribution, Gamma distribution (in all cases experimental χ2 < theoretic χ2). The studies produced so far have pointed out that the volume and basal area distribution are following the normal distribution law (Parde 1960, Dissescu 1958,

Table 2 The statistical parameters for the experimental distribution of elementary surfaces in relation with the basal area classes (a) and the volume classes (b)

Statistical parametersa b

Tree stand Tree stand Vidraru Mihăeşti Muşăteşti Vidraru Mihăeşti Muşăteşti

Minimum (cm)Maximum (cm)Magnitude (cm)Average (cm)Variation (cm2)Standard deviation (cm)Variation coeffi cient (%)Average standard deviation (cm)Asymmetry coeffi cientExcess coeffi cient

0.001.151.150.350.050.2367.190.020.650.08

0.000.750.750.280.050.2277.370.020.50-0.68

0.001.451.450.320.110.33101.960.031.010.29

0.0020.5020.505.3217.014.1277.530.410.980.83

0.0013.5013.504.6814.733.8482.110.380.55-0.80

0.0032.5032.506.3652.827.27114.270.731.301.32

Fig. 1 Volume distribution for elementary areas (100 m2) in a virgin stand from Muşăteşti Forest District, U.P. IV Vâlsan Gorge, u.a 15

Fig. 2 Volume distribution for elementary areas (100 m2) in a managed stand from Mihăeşti Forest District, S.E. I Râul Târgului, u.a. 213A.

Page 55: Volumul integral (.pdf)

56

Giurgiu 1968). The following show that normal distribution is done in particular conditions and the empirical relations are fi tting into more comprehensive models. The graphical representation of adjustment test of the experimental distribution for the number of elementary areas in relation with the basal area classes (Fig. 4) and the volume classes (Fig. 5) is achieved trough normal distribution. The two graphs are similar, a known fact in the literature, and the following can be concluded: - the normal distributions for the number of elementary areas in relation with the basal area and volume classes for the managed tree stands (Mihăeşti u.a 213A and Vidraru u.a. 50) are similar, the only difference being that for Vidraru, the number of volume classes is greater. From this point of view, we believe that by restriction trough a limit diameter in stand management may be a limiting factor particularly for the stand diversity and generally for the biodiversity; - the normal distribution for the number of elementary areas in relation with the basal area

Table 3 The experimental distribution analysis for the number of elementary area on basal area classes in relation with normal distribution, exponential distribution, Beta distribution, Gamma distribution (adjustment test)

Forest stand(u.a.)

Theoretical Distribution

Statistic Testχ 2 Kolmogorov-Smirnov

Experimental value

Theoretical value

Experimental value

Theoretical value

Vidraruu.a.50

NormalExponentialBetaGamma

1.1436.4840.7780.954

18.30721.02619.67518.307

0.0770.0250.0110.047

0.3640.3640.3640.364

Mihăeştiu.a.213A

NormalExponentialBetaGamma

1.4955.1111.1773.183

12.59215.50714.06712.592

0.0850.120.0030.11

0.4240.4240.4240.424

Muşăteştiu.a.15A

NormalExponentialBeta

5.6643.5884.427

22.36224.99623.685

0.2330.0080.015

0.3310.3310.331

Fig. 3 Volume distribution for elementary areas (100 m2) in a multi-aged stand with it’s fi rst intervention of progressive treatment in Vidraru Forest District, U.P. I Aref, u.a. 50.

Page 56: Volumul integral (.pdf)

57

and volume classes from natural virgin stand Muşăteşti (u.a. 15A) is distinguished by a greater magnitude and a lower frequency as the number of elementary areas. The analysis shows a great diversity in the structure of natural and cultivated multi-aged beech stands and an obvious resemblance between managed structures and natural virgin structures.

Analysis of structural uniformity in multi-aged beech stands

In our country, especially in the mountains there were and still are old virgin forests made of pure or mixed multi-aged beech stands (Giurgiu 1978a, 1978b, 1995, 1999a). These forests are characterized by an optimal diversity and maximum stability. Their behavior is generated according to specifi c and complex cybernetic rules: self-adjusting, self-control, self-regeneration,

Fig. 5 The experimental distribution adjustment in relation with the distribution for the number of elementary areas (100 m2) on volume classes, in Mihăeşti forest stand (213A), Vidraru (u.a. 50) and Muşăteşti (u.a. 15A).

Fig. 4 The experimental distribution adjustment in relation with the distribution for the number of elementary areas (100 m2) on base surface classes, in Mihăeşti forest stand (213A), Vidraru (u.a. 50) and Muşăteşti (u.a. 15A)

Page 57: Volumul integral (.pdf)

58

self-cleaning (Zlei 2006). Such forests present a maximum multi-functionality and preservation concerns for all these resources are within the range of forestry priority actions, without which their future will be seriously threatened or compromised (Giurgiu 1978a, 1978b). The tree stand homogeneity characterized by the homogeneity index (H) is established as the number of trees in a percentage relation with the volume on different diameter categories (Camino 1976, Barbu & Cenuşă 2001). The graphic expression between the tree number and their volume in percentage values, on diameter categories is represented trough a curve, Lorentz curve. For an uniform stand, in which all the trees should have the same volume, Lorentz curve is a diagonal. The degree of structural uniformity is defi ned as a violation of Lorentz curve related to the diagonal, meaning that the value of 10 indicates a high uniformity, and the 2 shows the lack of uniformity (Barbu & Cenuşă 2001). In heterogeneous stands (e.g. managed in uneven-aged systems), a high percentage of thin trees have a small volume and thick trees – small percentage share - have a large volume.

Fig. 6 Lorentz curve and the uniformity index value for managed stand in u.a. 213A (Mihăeşti Forest District).

Fig. 7 Lorentz curve and the uniformity index value for managed stand in u.a. 15A (Muşăteşti Forest District).

Page 58: Volumul integral (.pdf)

59

Camino showed that managed stands with good growth have a lower uniformity thn in low productivity stands. Managed stands have a heterogeneity coeffi cient between 1.4 and 2.8. The uniformity can also supply information on the type and intensity of the intervention: tree extractions in the lower fl oor decreases the uniformity, while in the middle and top fl oor raises the uniformity. The uniformity coeffi cient analysis and the construction of Lorentz curve for studied stands is achieved in Figure 6 - for the stand managed in uneven-aged system (u.a. 213A, Mihăeşti Forest District), Figure 7 - for virgin beech stand (u.a. 15A, Muşăteşti Forest District) and Figure 8 - for the beech stand which underwent the fi rst progressive felling (u.a. 50, Vidraru Forest District). As it was expected, the multi-aged virgin beech stand has the largest heterogeneity (the structural uniformity index Camion is 2.42). Multi-aged managed beech stands have also a great heterogeneity, resulted mainly due to the presence of large trees in the superior limit of the experimental distribution and whose volume is a large proportion from the total volume. The structural uniformity index Camino is 2.64 for the stand treated with the fi rst progressive felling, and 2.91 fothe stand managed in uneven-aged system. The same as the value of structural diversity index, the Lorentz curve (Fig. 28-30) describes

Fig. 8 Lorentz curve and the uniformity index value for managed stand in u.a. 50 (Vidraru Forest District).

Table 4 Structural profi le indexes for the studied tree stands

Tree stands(u.a.)

StructureType Ia Ic Id

Ī(m)

_b

(m)

_Ī /b

_ b/d

(m·cm-1)

_ he(%)

Muşăteşti15A

multi-agedvirgin 2.24 0.78 0.82 12.5 12.0 1.04 0.23 66.5

Mihăeşti213A

multi-agedmanaged 2.07 0.74 0.78 12.2 11.5 1.06 0.19 64.1

Vidraru50

multi-agedprogressive I 1.6 0.82 0.85 10.5 9.0 1.17 0.17 67.5

Note: soil covering rate index - Ia; closing crown rate – Ic; density index – Id); the biometric crown characteristics length - l; diameter - b; crown rate – l/b; developing rate – b/d, and the height of natural pruning - the.

Page 59: Volumul integral (.pdf)

60

very similar forms for the three studied stands, the deviation of the last one being very large in relation with the diagonal. From this point of view, the studied stands are within the category of various structured stands with a high degree of heterogeneity.

The structure of multi-aged beech stands defined through two-dimensional profiles

The graphical representation of the stand spatial structure models was done with the help of PROARB v. 2.1. software (Popa 1999). The characterization of stand structure diversity using structural profi les has recently become of a wider usage, and despite of the schematic graphics models, they can still give informations regarding: - the vertical structure highlight in relation with stand level distribution, maximums, crown depth and the height of natural pruning;- the way of forming stand bio-groups in relation with the tree’s biometric characteristics;- the soil roughly covering rate and the canopy closure index; - different aspects of forest design, and also the ecosystem’s space and time evolution paths. A major difference has emerged between the soil covering rate index (table 4) and the other 3 indexes of canopy closure for each analyzed situation. This fact reconfi rms the great beach

Fig. 9 The vertical and horizontal structure of the managed beech stand in Valea Cireşului experimental area (Mihăeşti Forest District, S.E. I Râul Târgului River, S.G. I, u.a. 213 A); a – Horizontal structure 60-80 m section; b – Vertical structure (b 1- 60-70 m section ; b 2 – 70-80 m section; b 3 – 60-80 m section

b1

b3

b2

Page 60: Volumul integral (.pdf)

61

versatility for growing branches to cover the free space in it’s crown. In relation with the coeffi cient values it’s has been noticed that the values for managed stand it’s between the values for the other two arboretum types. From this point of view, managed arboretum is closer to natural virgin

Fig. 10 The horizontal structure of the managed beech stand in Valea Cireşului experimental area (Mihăeşti Forest District, S.E. I Râul Târgului River, S.G. I, u.a. 213 A); a – Stand placement in the experimental area. b – Stand placement and horizontally crown projection

a b

Fig. 11 The horizontal and vertical beech structure in normal stands (progressive regeneration treatment) in Aref experimental area (Vidraru Forest District, U.P. I Aref, u.a. 50); a – Horizontal structure 0-20 m section; b –Vertical structure (b 1- 0-10 m section; b 2 – 10-20 m section; b 3 - 0-20 m section)

b1

b3

b2

Page 61: Volumul integral (.pdf)

62

arboretum, fact that leads to forming the conclusion that managed stand treatment helps create diversifi ed structures closer to unregulated stand treatment similar to nature, a subject widely discussed in the last period in foreign literature. In conclusion, the structures presented in fi g. 13-14 show regeneration patterns used by nature in

Fig. 12 The horizontal structure in normal beech stands (progressive regeneration treatment) in Aref experimental area (Vidraru Forest District, U.P. I Aref, u.a. 50); a - Stand placement in the experimental area. b – Stand placement and horizontally crown projection.

a

Fig. 13 The vertical and horizontal structure of the virgin beech in Zoruleasa experimental area (Muşăteşti Forest District, U.P. IV Vâlsan Gorge, u.a. 15A); a – Horizontal structure 0–20 m section; b – Vertical structure (b 1- 0-10 m section; b 2 –10-20 m section; b 3 0-20 m section).

b

Page 62: Volumul integral (.pdf)

63

relation with the uneven-aged stand regeneration system (Fig. 9–10) and that lead by progressive regenerations (Fig. 11–12), very similar with the regeneration methods used in uneven stand treatment with diversifi ed horizontal structures. This type of management places managed stands in very similar bunches, even identical with the patterns promoted by the European organization Pro Silva and sets the focus on the importance of managing Romanian forest in the near future, thus this principles unite the ecological and economical demands (Schütz 1997, Teuffel & Hein 2004). The management of multi-aged beech stands in uneven-aged system in bunches is in accordance with the latest European regulations regarding biodiversity preservation and improvement. Regarding this aspect, an intervention can be very easily conducted, with great success in reaching the established goals (preserving and improving the biodiversity), the main component in long-lasting management trough: maintaining a limited number of old trees; setting limits to age areas; ecological corridors; specifi c management for the forest skirt and forest strips along rivers, creeks and voids, and also removing from regeneration highly valuable stands in relation with the biodiversity (virgin ecosystems).

Conclusions

The conducted research confi rmed that natural regeneration is the effi cient solution for the preservation and establishing highly stable stands, like multi-aged stands managed in uneven-aged systems. The research regarding transformation works conducted on managed stands was also targeted on experimenting with wood harvesting in relation with the number of extracted trees. For the analyzed situation, the harvesting of two, at most three trees that form groups or bunches on surfaces of maximum 1500 m2, favors the development in time and space of uneven-aged structures, obtained trough the accumulation of pure and even-aged bio-groups, placed in all the age classes. The conducted experiments have shown that the beech stand management at the tree group level assures the following fundamental characteristics: always an uneven profi le; a sustained effi ciency on a relatively small surface; managing valuable trees. The horizontal and vertical structure profi le obtained trough this researches prove that the ideal stand managed in uneven-aged system has the appearance of a chess table, and his profi le is build from “columns” of all height categories. This profi le is specifi c to the stand scale, but is regulated at the bunch scale.

Fig. 14 The horizontal structure of the virgin beech forest in Zoruleasa experimental area (Muşăteşti Forest District, U.P. IV Vâlsan Gorge, u.a. 15A); a – Stand placement in the experimental area. b – Stand placement and horizontally crown projection.

ab

Page 63: Volumul integral (.pdf)

64

References

Barbu, I., Cenuşă, R. 2001. Regenerarea naturală a molidului. Staţiunea Experimentală de Cultura Molidului, Seria: Lucrări de Cercetare, Câmpulung Moldovenesc, 238 p.Dissescu, R. 1958. Cercetări asupra procedeelor de inventariere în arboretele pluriene. Analele INCEF , vol. XIX, Bucureşti.Giurgiu, V. 1968. Cercetări privind inventarierea statistică a arboretelor. Centrul de Documentare Tehnică pentru Economia Forestieră. Bucureşti, 215 p.Giurgiu, V. 1978a. Zonarea economică a pădurilor cu asigurarea optimă pe zone a funcţiilor de producţie şi protecţie a mediului înconjurător. Refererat ştiinţifi c fi nal. Manuscris I.C.A.S. Bucureşti.Giurgiu, V. 1978b. Conservarea pădurilor. Editura Ceres, Bucureşti, 308 p.Giurgiu, V. (sub redacţia) 1995. Protejarea şi dezvoltarea durabilă a pădurilor României. Editura Arta Grafi că, Bucureşti, 400 p.Giurgiu, V. 1999a. Biodiversitatea şi manageamentul diversităţii biologice a ecosistemelor forestiere pentru o silvicultură durabilă. Revista pădurilor 1: 11-19.Guiman, Gh. 2007. Optimizarea structurii arboretelor prin aplicarea tratamentului codrului grădinărit în făgete din bazinul mijlociu şi superior al Argeşului. Teză de doctorat, Universitatea „Ştefan cel Mare”, Suceava, 214 p.Pardé, J. 1960. Recherches sur l’application aux futaie régiliéres des inventaires par la méthode statistique. Ann de l’ecole Nat. D. Eaux et Forêts et de la Stat de Rech.et Exp.Tome XVII, Fasc. 2.Popa, I. 1999. Aplicaţii informatice utile în cercetarea silvică. Programul Carota şi Programul Proarb, Revista pădurilor 2: 41-42.Sçhütz, J.P. 1997. Sylviculture 2, La gestions des forêts irrégulières et mélangées. Presses Polytechniques et Universitaires Romandes, Lausanne, Suisse, 178 p.Teuffel, K., Hein, S. 2004. Silviculture du Hêtre proche de la nature en Baden-Wurtemberg. Revuie forestiére française 6: 519-528.Zlei, G. 2006. Analiza omogenităţii structurale specifi ce arboretelor potenţial producătoare de lemn de rezonanţă. Revista pădurilor 5: 28-32.

Page 64: Volumul integral (.pdf)

65

ICAS 2008 Conference October 23-25, 2008 Bucharest, Romania

Regenerarea (reconstructia ecologica) pinetelor de pe terenuri degradate din zona de sud-est a tarii

C. Constandache, S. Nistor

Constandache C., Nistor S. 2009. Regenerarea (reconstrucţia ecologică) pinetelor de pe terenuri degradate din zona de sud-est a ţării. [Ecological reconstruction by regeneration of pine stands located on degraded lands in the South-Eastern Roma-nia] In: Olenici N., Teodosiu M., Bouriaud O. (eds.), Proceedings of the conference “Sustainable forestry in a changing environment“, October 23-25, 2008, Bucharest, Forest Research and Management Institute ICAS, pp. 65-78.

Abstract. Forest plantations with multiple protective roles established before 1990 on degraded land in the South-Eastern part of the country are generally built, with only few exceptions, of European black pine (Pinus nigra) and/or Scots pine (Pinus sylvestris). In time it has been acknowledged a larger and larg-er area of such pine stands under decline (affected by the snow breaks, dieback or simply because of lack of management under old stands age), but recently was also noticed the initiation of a natural regeneration by seedlings of natural in-digenous forest species. Despite high promising ecological and economic value of occurring succession, it is not suffi ciently capitalized in practice. Research objective was to identify the appropriate means and ways for the promotion and improvement of natural regeneration based on characteristics of the stands, seed-lings and sites, in order to ensure the transition from provisional, pine based stands, to natural type ecosystems, in the concerned area. Research has been conducted in pine stands with different openings across concerned geographical area. In sample plots of 10 m2 an inventory and biometrical description of exist-ing seedlings was achieved. In most cases, in opened pine stands existing on cur-rently improved and stabilized lands, there are seedlings of various local indig-enous forest species (oak, sessile oak, common beech, sweet cherry, sycamore, etc.), which refl ects both success of land improvement measures and succession tendency of vegetation toward the natural type. Carried research conducts to the fi nding that the seedlings of valuable forest tree species strives in those pine stands which are established on successfully improved degraded lands, under both moderate to strongly eroded or mildly fragmented sliding soils, placed in the middle and lower third of slopes, coupled with open pine stands mixed with broadleaved or in presence of neighboring of broadleaved trees or stands.Key words: natural regeneration, opened pine stands, degraded lands

Authors. Cristinel Constandache, Sanda Nistor - Forest Research and Menage-ment Institute, Research Station Focşani, Republicii St. 7, 620018 - Focşani, Romania.

,,

^

^

Page 65: Volumul integral (.pdf)

66

Introducere

În contextul schimbărilor climatice cu care ne confruntăm, realizarea unor structuri stabile a culturilor forestiere de protecţie de pe terenurile degradate şi asigurarea continuităţii pădurii pe aceste terenuri reprezintă un obiectiv principal. Se constată existenţa unor suprafeţe mari de terenuri degradate cu arborete de pin destructurate (cu vârstă înaintată sau afectate de rupturi de zăpadă, de uscare) în care sunt necesare lucrări de reconstrucţie ecologică în vederea exercitării funcţiilor de protecţie (Constandache 2003). Aceste arborete sunt destinate să îndeplinească, în primul rând, funcţii de protecţie a mediului inconjurător, fapt pentru care alterarea, într-o măsură mai mare sau mai mica, a echilibrului realizat de arboretele în cauză, ar putea conduce la perturbări în viaţa economică şi socială a zonei. Necesitatea cercetărilor decurge din faptul că în anumite arborete de pin instalate pe terenuri degradate s-a declanşat regenerarea naturală, de regulă cu specii foioase autohtone de valoare ecologică şi economică ridicată, dar care nu este sufi cient valorifi cată. Scopul cercetărilor a fost identifi carea modalităţilor de promovare/valorifi care a regenerării naturale în raport cu caracteristicile arboretului şi ale seminţişului, în vederea asigurării tranziţiei de la ecosisteme provizorii către ecosisteme zonale, pe terenuri degradate din zona de sud-est a ţării.

Materiale şi metode

Teritorial cercetările s-au desfăşurat în arborete de pin instalate pe terenuri degradate din raza de activitate a direcţiilor silvice: Focşani (O.S. Focsani – perimetrul Andreiaşu, O.S. Dumitreşti, O.S. Nereju), Bacău (O.S. Tg. Ocna, O.S. Oituz), Vaslui (O.S. Vaslui - perimetrul Valea Caselor), Buzău (O.S. Rm. Sărat – perimetrul Livada), Tulcea (O.S. Măcin – perimetrul Cheia, O.S. Babadag, O.S. Casimcea), Constanţa (O.S. Băneasa) şi I.C.A.S. (O.S.E. Vidra – perimetrul Valea Sării, Bârseşti, Colacu). Pentru atingerea scopului propus au fost efectuate observaţii şi măsurători privind caracteristicile arboretelor, respectiv: i) investigaţii referitoare la particularităţile biometrice, biologice şi structurale ale arboretelor de pin de pe terenuri degradate, factorii destabilizatori ai arboretelor care fac obiectul cercetărilor; ii) inventarieri privind speciile forestiere instalate natural sub masiv sau la adăpostul arboretului, în benzile sau ochiurile deschise natural şi/sau prin lucrările efectuate anterior; iii) urmărirea evoluţiei culturilor experimentale instalate în anii anteriori (ajutorare şi dirijare a regenerării sub masiv sau la adăpostul masivului, în goluri create anterior prin extragerea arborilor vătămaţi de zăpadă şi vânt, în perimetrele de ameliorare a terenurilor degradate Bârseşti, Ruget-Colacu şi Valea Sării). Pentru inventarierea şi determinarea caracteristicilor seminţişului au fost instalate suprafeţe de cercetare de 10 m2, amplasate în trei zone diferite ale unei parcele, fi ind efectuate determinări asupra următorilor parametrii: specia, numărul de puieţi, modul de răspândire, starea de sănătate a puieţilor, înalţimea, diametrul coroanei ş.a. Rezultate

În lucrarea de faţă sunt prezentate rezultate privind caracteristicile regenerării naturale în arborete de pin instalate pe terenuri degradate în diferite zone fi to-climatice din sud-estul ţării (Constandache et al. 2003-2007). Regenerarea naturală s-a realizat diferit în funcţie de: condiţiile staţionale, caracteristicile (structura) arboretului, existenţa unor arbori maturi (din specii de interes) care fructifi că, poziţia fi toclimatică ş.a.

Page 66: Volumul integral (.pdf)

67

Caracteristicile regenerarii naturale în arborete de pin din silvostepa

În zona de silvostepă procesul de regenerare naturală în arboretele de pin de pe terenuri degradate a fost semnalat pe suprafeţe reduse, datorită condiţiilor pedo-climatice difi cile. Totuşi s-a remarcat regenerarea pinului negru, stejarului pufos, cerului sau altor specii xerofi te (mojdrean, jugastru, arţar tătărăsc, vişin turcesc ş.a.), în condiţii de terenuri moderat la puternic erodate, favorizate de anumite topoclimate locale. Astfel, a fost analizat arboretul din u.a. 8A, UP VI, OS Babadag, instalat pe teren puternic erodat, cu substrat calcaros, cu următoarele caracteristici: compoziţie 4 Pi.n 6 Mj, consistenţa 0,8, vârsta de 35 ani. Sub masivul rărit datorită uscării mojdreanului, au apărut puieţi de pin negru, mojdrean şi stejar pufos. Au fost identifi caţi 2-3 puieţi/m2, cu înălţimea între 5 şi 20 cm (fi g. 1). În goluri mai mari, rezultate în urma extragerii arborilor uscaţi sau cu defecte, s-a regenerat

Fig. 1 Distribuţia puieţilor proveniţi din regenerare naturală, pe categorii de înălţimi şi pe specii (ua 8a, UP VI, Os Babadag)

Fig. 2 Distribuţia numărului de puieţi (Pi.n) în raport cu înălţimea în goluri specii (ua 8a, UP VI, Os Babadag)

Fig 3. Regenerare naturală de pin negru în goluri (O.S. Babadag – U.P. VI, u.a. 8 A)

^ ^

Page 67: Volumul integral (.pdf)

68

pinul negru. Înălţimea puieţilor variază de la 0,20-1,50 m (fi g. 3), înălţimea medie fi ind de 0,52 m, cu aproximativ 3 exemplare/m2, din care 1-2 exemplare/m2 sunt viabile (seminţiş utilizabil). Diferenţa mare de înălţime a puieţilor de pin negru arată că aceştia provin din cel puţin 2-3 generaţii succesive. Legătura corelativă între înălţimea puieţilor regeneraţi natural şi numărul acestora este puternică (fi g. 2) rezultând un coefi cient de determinare R2 = 0,9462. Regenerarea naturală a apărut la adăpostul arboretului care favorizează acumularea zăpezii şi menţinerea umidităţii solului, în zonele unde panta terenului este de maxim 10 grade şi stratul de sol fertil are cel puţin 5-10 cm iar scheletul este mărunţit. O situaţie asemănătoare a fost întâlnită şi în perimetrul Livada, unde la marginea masivului (u.a 20, U.P. II, O.S. Râmnicu Sărat) s-a regenerat natural pinul negru (regenerare în margine de masiv). Înălţimea puieţilor variază de la 0,40-1,90 m iar starea de vegetaţie este foarte activă. Pe terenuri moderat erodate, în arborete de pin negru, pin silvestru sau strob, pure sau în amestec cu ulm, paltin, frasin, stejar ş.a. cu vârsta de peste 50 de ani, cu consitenţa redusă neuniform, în goluri s-au regenerat speciile foioase existente în amestec cu pinul. Într-o altă situaţie analizată în zona de silvostepă (u.a. 44 B, U.P. II - O.S. Băneasa), într-un arboret de pin negru şi pin silvestru cu vârsta de 40 de ani pe teren cu eroziune moderată, după inventarierea seminţişului (fi g. 4) se constată că ponderea cea mai mare o înregistrează cerul (34,29%) şi stejarul pufos (31,43%). Mai apar şi alte specii regenerate natural: vişinul turcesc (17,14%), cărpiniţa (11,42%), pinul negru şi jugastru având procente scăzute (fi ecare cu câte

Fig. 4 Repartiţia seminţişului pe specii în u.a. 44 B, U.P. II, O.S. Băneasa

Fig. 5 Înalţimea puieţilor pe specii în u.a. 44 B, U.P. II, O.S. Băneasa

Fig. 6 Distribuţia puieţilor pe categorii de înălţimi în u.a. 44 B, U.P. II, O.S. Băneasa

Page 68: Volumul integral (.pdf)

69

2,86%). Regenerarea naturală este semnalată în ochiuri cu diametrul de aproximativ 10 m, având forma mai mult sau mai puţin eliptică, răspândite neuniform în arboret. Sub arboretul de pin apare frecvent cerul şi stejarul pufos din regenerare naturală. Puieţii inventariaţi ai speciilor întâlnite prezintă variaţii ale înălţimilor, regenerarea fi ind din generaţii succesive. Înălţimea medie a puieţilor variază între 15 şi 35 cm (fi g. 5). Înălţimi medii comparabile înregistrează stejarul pufos şi cerul; vişinul turcesc şi cărpiniţa. Legătura corelativă între înălţimea puieţilor rezultati din regenerare şi numărul acestora este relativ puternică (fi g. 6) rezultând un coefi cient de determinare R2 = 0,8051.

Caracteristicile regenerarii naturale în arborete de pin din subzona stejarului

În subzona stejarului (perimetrele Valea Caselor – Vaslui, Livada – Rm Sărat, Ţifeşti-Vrancea), în pinete rărite de pe terenuri moderat la puternic erodate şi alunecatoare, prin regenerare naturală s-au instalat: stejar, cireş, frasin, paltin, pin negru. Astfel, în perimetrul Valea Caselor (O.S. Vaslui, UP IV Floreşti, u.a. 78), pe terenuri moderat la puternic erodate şi alunecătoare, acolo unde în modul de grupare a exemplarelor de pin au apărut goluri din diverse motive, regenerarea s-a instalat în urmă cu circa 4-5 ani, având o stare de vegetaţie foarte activă. Speciile participante la regenerare sunt paltinul (62%), cireşul (22%), stejarul (16%) (fi g. 8a, 7a). Înălţimea puieţilor proveniţi din regenerare naturală variază de la 0,2 la 1,5 m, fi ind identifi caţi 3-5 exemplare/m2, cu stare de vegetatie foarte activă. Cele mai mari înălţimi medii le realizează cireşul (1,37 m) şi paltinul (0,59 m), iar stejarul 0,38 m. Legătura corelativă între înălţimea puieţilor participanţi la regenerare şi numărul acestora este foarte

^

Foto 7 a,b Regenerare de cireş în goluri (a); stejar şi cireş sub arboret de pin negru (b); (Perimetrul Valea Caselor – jud. Vaslui)

a b

Page 69: Volumul integral (.pdf)

70

puternică (fi g. 8b) rezultând un coefi cient de determinare R2 = 0,9773. În aceleaşi condiţii staţionale, dar sub arboret de pin având consistenţa 0,7-0,8, regenerarea naturală este răspandită relativ uniform (fi g. 7b). Şi aici procesul de regenerare s-a declanşat în urmă cu câţiva ani, dar datorită umbririi au rezistat puţine exemplare. În prezent compoziţia seminţişului instalat este: 35 Pa.c 30 St 15 Ci 15 Fr 5 Fa (Fig. 8c). Aproximativ 80% din numărul total de puieţi au înălţimea de 0,1-0,3 m, provenind din fructifi caţii din ultimii ani. Înălţimile medii ale puieţilor nu variază mult situandu-se între 0,18 m în cazul paltinului (valoarea minimă) şi 0,53 m la cireş (valoarea maximă) iar legătura corelativă între înălţimea puieţilor regenerati natural şi numărul acestora este relativ puternică (fi g. 8d) rezultând un coefi cient de determinare R2 = 0,8582.

Caracteristicile regenerarii naturale în arborete de pin din subzona gorunului

În subzona gorunului cercetările au fost efectuate în arborete de pe terenuri degradate din cadrul O. S. E. Vidra. Inventarierea seminţişului din u.a. 61A, UP III Valea Sării (arboret cu compoziţia 6 Pi.n 1 Pi 1 Sc 1 Mo 1 Fa; consistenţa 0,6; vârsta 48 ani, pe teren puternic erodat), a evidenţiat existenţa regenerării naturale răspândită relativ uniform pe toată suprafaţa. Răspândirea speciilor participante la regenerarea naturală pe suprafaţă este prezentată în fi g. 9 a, constatându-se că cea mai mare parte din suprafaţă este ocupată de puieţi de gorun (44%), urmat de cireş (31%) şi fag (25%). Înălţimea puieţilor variază de la 0,2-1,8 m la gorun, la 0,5-2,5 m la fag. Diferenţa mare

^

Fig. 8 Caracteristicile regenerării naturale în u.a. 78 (Perimetrul Valea Caselor) a – repartiţia seminţişului pe suprafaţă, în ochiuri; b – distribuţia puieţilor pe categorii de înălţimi, în ochiuri; c – repartiţia seminţişului pe suprafaţă, sub arboretul matur de pin; d – distribuţia puieţilor pe categorii de înălţimi, sub arboretul matur de pin.

a

b

c

db

Page 70: Volumul integral (.pdf)

71

de înălţime la gorun şi fag arată că seminţişul provine din cel puţin 2-3 generaţii succesive (fi g. 9b, 10). Într-o altă situaţie analizată, în u.a. 64B, în arboret de pin silvestru (10 Pi), cu consitenţa 0,7, vârsta de 62 ani, pe terenuri puternic spre foarte puternic erodate, cea mai mare parte a suprafeţei este regenerată natural. În acest caz s-au inventariat puieţii din două suprafeţe de probă (10 m2 fi ecare probă) în poziţii diferite pe versant: (i) în treimea superioară a versantului: compoziţia seminţişului 22 Go 33 Fa 12 Ci 15 Sc 15 Pi 3 Me. În această suprafaţă s-au identifi cat puieţi de diferite vârste cu un procent al puieţilor utilizabili de peste 70% şi o regenerare uniformă răspândită pe aproximativ 80% din suprafaţa studiată; (ii) în treimea mijlocie a versantului: compoziţia de regenerare este 25 Go 43 Fa 18 Ci 5 Sc 9 Pi, procentele fi ind diferite de cele din treimea superioară a versantului. Înălţimile medii ale puieţilor pe specii din această suprafaţă sunt mai mari decât cele din treimea superioară a versantului, fi ind cuprinse între 0,6 m la cireş şi 3,0

Fig. 9 Caracteristicile regenerării naturale în u.a. 61 a – repartiţia seminţişului pe suprafaţă; b – înălţimea medie a puieţilor pe specii.

a b

Fig. 10 Regenerare naturală de gorun, cireş şi fag sub arboret de pin negru/silvestru rărit (O.S. Exp. Vidra, U.P. III, u.a. 61A)

Page 71: Volumul integral (.pdf)

72

m la fag. Pe terenuri cu eroziune puternică (u.a. 101 B) într-un arboret cu compoziţia 5 Pin 2 Pi 2 Ci 1 Dt, cu consistenţa medie 0,8, vârsta 40 de ani, s-a constatat regenerarea cu preponderenţă a foioaselor. Numărul de puieţi la hectar rezultaţi din regenerare naturală este diferit în cele trei parcele analizate (P1 - 12497; P2 - 14000; P3 - 21665). Vârsta puieţilor proveniţi din regenerare naturală diferă (1-6 ani), deoarece provin din fructifi caţii succesive, la fel şi înălţimile medii pe specii (fi g. 11). În staţiuni de terenuri foarte puternic erodate (u.a. 105A, UP III Valea Sării) cu erodosoluri tipice, pe versanţi cu înclinare peste 15 grade, în substrat de marne cu gresii, cu textură luto-argiloasă la argiloasă, oligotrofi ce şi distrofi ce, într-un arboret cu compoziţia 9 Pi.n, 1 D.t, consistenţa 0,8, vârsta 40 ani, regenerarea naturală este semnalată în treimea mijlocie şi inferioară a versantului, pe circa 50% din suprafaţă. În treimea superioară a versantului regenerarea se semnalează izolat, eroziunea fi ind foarte puternică. Inventarierea seminţişului în 6 suprafeţe de probă şi distribuţia speciilor participante la regenerarea naturală prezentată în fi g. 12 a, arată că şi în aceste condiţii cea mai mare parte din suprafaţă (cca. 60%) este ocupată de puieţi din specii valoroase: gorunul şi paltinul cu câte 19%; cireşul - 16% şi fagul - 6%, diferenţa fi ind reprezentată de mojdrean şi zarzăr. Înălţimea puieţilor variază de la 0,1 la 1,5 m; pe specii înălţimea medie variază de la 25 cm la exemplarele de gorun şi fag, la 85 cm – mojdrean. Celelalte specii au valori intermediare, Ci - 55 cm, Pa.c. - 60 cm, Zz - 80 cm (fi g. 12 b). Diferenţa mare de înălţime arată că seminţişul provine din cel puţin 2-3 generaţii succesive. În ceea ce priveşte starea de vegetaţie a seminţişului, s-a

Fig. 11 Repartiţia seminţişului natural pe suprafaţă în parcelele din u.a. 101 B a – repartiţia seminţişului pe suprafaţă în P1; b – repartiţia seminţişului pe suprafaţă în P2; c - repartiţia seminţişului pe suprafaţă în P3; d – variaţia înălţimilor medii pe specii şi pe parcele.

a b

c d

Page 72: Volumul integral (.pdf)

73

constat că majoritatea speciilor au o stare de vegetaţie foarte bună.

Caracteristicile regenerarii naturale în arborete de pin din subzona fagului şi amestecurilor de fag cu raşinoase

În perimetrul Andreiaşu O.S. Focşani, UP IV u.a. 87 A (61,3 ha), pe teren cu eroziune foarte puternică, cu roca la suprafaţă, panta 38 grade, expoziţie sud-estică, arboretul are compoziţia 4 Pi 3 Pin 1 Pam 1 Fa 1 Dt, vârsta 42 ani, consistenţa 0,6, cu goluri rezultate datorită rupturilor de vânt la pin şi regenerare neuniformă. În anumite goluri, s-a regenerat natural pinul silvestru (fi g. 13). Vârsta exemplarelor de pin silvestru provenite din regenerare naturală este de la 2 la 10 ani (instalat după producerea rupturilor), în unele situaţii atingând înălţimea de aproximativ 4 m, densitatea fi ind de 1-2 exemplare pe m2.

Fig. 9 Caracteristicile regenerării naturale în u.a. 105 A a – repartiţia seminţişului pe suprafaţă; b - variaţia înălţimilor medii pe specii.

Fig. 13 Regenerare naturală de pin silvestru în goluri în u.a. 87A, U.P. IV, O.S. Focşani

a b

^^

Page 73: Volumul integral (.pdf)

74

Sub masivul rărit, la baza versantului, tot pinul silvestru deţine ponderea între speciile regenerate natural (fi g. 14a): pinul silvestru (72%), paltinul de câmp (16%) şi fagul (12%). Analizand compoziţia seminişului din treimea mijlocie a versantului (fi g. 14b), s-a constatat că proporţia pinului silvestru este sensibil mai redusă (64%), comparativ cu baza versantului. Compoziţia seminţişului este: 64 Pi 16 Fa 13 Mj 7 Go. Puieţii din regenerări naturale prezintă variaţii mari ale înălţimilor medii şi ale diametrului coroanei (fi g. 14 c). Diferenţa apare nu numai în funcţie de poziţia pe versant, ci şi în funcţie de specie. Astfel, pinul silvestru provenit din regenerare naturală de la baza versantului înregistrează înălţimea medie de 0,65 m şi diametrul coroanei 40 cm, comparativ cu fagul şi paltinul care au înălţimi medii mai mici (Pa - 0,08 m, Fa - 0,24 m). Înălţimile medii ale puieţilor din treimea mijlocie a versantului sunt relativ apropiate (Pi, Fa - 0,21 m, Go - 0,20 m, Mj - 0,18 m). În subzona amestecurilor de fag cu răşinoase (O.S. Nereju, U.P. I, u.a 70 A), în arboretul de pin silvestru cu vârsta de 77 ani, consistenţa 0,7, situat pe un versant cu panta de 45 grade, moderat la puternic erodat, regenerarea este răspândită neuniform, fi ind prezentă mai ales în zonele în care consistenţa arboretului este mai redusă sau în goluri (ochiuri) cu suprafaţa de 30-200 m2.Compoziţia seminţişului sub arboretul matur şi în ochiuri mici este: 86 Fa 8 Pi 6 Ci. În această suprafaţă s-au observat puieţi de diferite vârste, cu un procent al puieţilor utilizabili de peste 50%

Fig. 14 Caracteristicile regenerării naturale în u.a. 87A perimetrul Andreiaşu a – repartiţia seminţişului pe suprafaţă, la baza versantului; b – repartiţia seminţişului pe suprafaţă, în treimea mijlocie a versantului; c – variaţia înălţimilor medii pe specii

Page 74: Volumul integral (.pdf)

75

şi o regenerare neuniform răspandită pe suprafaţa studiată. Compoziţia seminţişului în goluri (ochiuri mai mari de 100 m2) este: 55 Fa 18 Ci 10 Go 8 Mo 8 Br 1 Pam. Înălţimile medii ale puieţilor pe specii din această suprafaţă sunt mai mari decât cele din suprafaţa amplasată sub arboretul matur de pin silvestru. Procentul seminţişului utilizabil este de peste 70% iar numărul speciilor mult mai mare. Puieţii inventariaţi prezintă variaţii mari ale înălţimilor la toate speciile, regenerarea fi ind din mai multe generaţii succesive. Astfel, puieţii de fag ajung până la 2,5-3 m înălţime şi au starea de vegetaţie foarte activă. În altă situaţie (O.S. Nereju, U.P. I Paltinul, u.a 69), pe terenuri cu eroziune puternică în suprafată, dar stabilizată, sub arboretul de pin silvestru (compoziţia 10 Pi, consistenţa 0,7, vârsta 75 ani), a apărut regenerare viabilă de fag şi molid, de aproxiamtiv 1-1,5 m înălţime, cu aproximativ 2-3 exemplare/m2. În goluri, rezultate în urma extragerii arborilor vătamaţi s-a regenerat pinul silvestru, cu înălţimi ce variază de la 0,1 la 1,5 m. Pe ansamblul suprafeţei, regenerarea naturală înregistrează următoarele caracteristici: compoziţia seminţişului este 49 Fa 38 Pi 13 Mo; înălţimea medie a puieţilor variază de la 1,13 m (molid), la 1,24 m (pin silvestru) şi 1,28 m (fag).

Discutii

Arboretele de pe terenurile degradate constituite în general din pin silvestru/negru, pure sau în amestec cu diverse specii foioase plantate sau regenerate natural, îndeplinesc prioritar rolul de protecţie. În majoritatea cazurilor, în pinetele pure cu vârsta cuprinsa între 30-50 de ani, distribuţia numărului de arbori pe categorii de diametre a evidenţiat existenţa unor arborete echiene, cu numărul maxim de arbori în categoriile centrale de diametre (14-18 cm); distribuţia înălţimilor pe categorii de diametre prezintă o variabilitate scăzută iar coefi cientul de corelaţie este ridicat.Analizând valoarea coefi cientului de variaţie, în cele mai multe situaţii acesta evidenţiază o

Fig. 15 Pin negru (43 ani) vătămat de zapadă (u.a. 105 A Vl Sării

Fig. 16 Arboret de pin de 30 de ani afectat de uscare (U.P. III Cavacula, u.a 3, O.S. Casimcea)

,

Page 75: Volumul integral (.pdf)

76

variabilitate scăzută în arborete pure (omogene) în timp ce arborete amestecate variabilitatea este accentuată, fi ind explicată de neomogenitatea arboretului. În anumite situaţii (arborete pure de pini, neparcurse la timp cu lucrări de îngrijire, pe terenuri cu condiţii mai bune), pinul silvestru sau/şi pinul negru au suferit din cauza vătămărilor produse de vânt şi zăpadă (perimetrul Andreiaşu, O.S. Focşani, perimetrul Livada O.S. Rm. Sarat, perimetrul Valea Sării – O.S. Exp Vidra) sau uscare (O.S. Casimcea, O.S. Basarabi) (fi g. 15-16). În vederea prevenirii unor dezechilibre ecologice ample în aceste arborete sunt necesare lucrări de extragerea arborilor afectaţi şi refacere a arboretelor. Conducerea arboretelor de pin în aceste condiţii, până la vârsta exploatabilităţii fi ziologice (100-120 ani) nu este posibilă deoarece în unele situaţii la vârste mult mai mici (40-55 ani) au structura necorespunzătoare şi sunt predispuse în continuare la vătămări. Pinetele apropiate de vârsta exploatabilităţii sau ajunse la vârsta exploatabilităţii sunt afectate de acţiunea negativă a unor factori biotici şi abiotici vătămători (uscare datorită atacului de Blastophagus piniperda - O.S. Dumitreşti; rupturi-doborâturi izolate cauzate de zăpadă şi vânt) şi s-au rărit ca urmare a extragerii în timp a exemplarelor afectate, având consistenţa redusă sau goluri de diferite mărimi. În cele mai multe situaţii, în arboretele de pin rărite, cu goluri, în condiţii de terenuri degradate stabilizate/ameliorate, s-a instalat seminţiş din diferite specii, refl ectând atât stadiul ameliorării terenurilor în cauză cât şi tendinţa de succesiune a vegetaţiei. Cercetările efectuate au condus la constatarea că instalarea naturală a seminţişului unor specii valoroase în arborete de pin pe terenuri degradate s-a realizat, în special, în urmatoarele situaţii: pe terenuri stabilizate, moderat la puternic erodate sau alunecătoare cu masa de pământ moderat fragmentată; în treimea inferioară şi mijlocie a versanţilor; spre treimea superioară, seminţişul are densitatea şi creşterea mai redusă; în arborete de pin în amestec cu foioase sau în condiţiile existenţei unor arborete sau arbori de foioase în apropiere. O situaţie caracteristică pinetelor din subzona gorunului şi fagului o reprezintă arborete de pin în amestec cu foioase care fructifi că sau în pinete pure (rărite sau afectate de vătămări) în care s-au menţinut arbori preexistenţi (fag, paltin, cireş ş.a.), rămaşi de pe fostele păşuni degradate. În astfel de situaţii (perimetrul Valea Sării, Andreiaşu, Vizantea ş.a.) prin fructifi caţia acestor exemplare s-a instalat seminţiş (fag, cireş, paltin) la cca. 20-25 de ani de la instalarea culturilor de pin (după ce s-au rărit ca urmare a rupturilor produse la pin), astfel încât, în prezent (la cca. 45 de ani), speciile regenerate au realizat un etaj inferior (de până la 10 m înălţime) ceea ce contribuie la realizarea unei structuri dintre cele mai efi ciente.

Concluzii

Arboretele de pin cu stare de vegetaţie corespunzătoare şi consistenţa peste 0,7 pot fi conduse prin lucrări corespunzătoare (igienă, curăţiri, rărituri), astfel încât să se realizeze o structură optimă; una din cauzele uscării sau a rupturilor este şi desimea prea mare a acestora. În arboretele în care s-a declanşat regenerarea naturală se recomandă: (i) scăderea treptată a consistenţei sau lărgirea ochiurilor prin extagerea exemplarelor rău conformate, uscate sau cu defecte, pentru instalarea şi dezvoltarea speciilor instalate prin regenerare naturală; (ii) în golurile rezultate prin extragerea arborilor afectaţi de uscare sau cu defecte, în care există specii regenerate cu o stare de vegetaţie activă şi creştere viguroasă, se impune promovarea/ajutorarea acestora prin efectuarea lucrărilor specifi ce (mobilizarea solului în jurul puieţilor proveniţi din regenerare naturală, descopleşiri, degajări). În arboretele cu goluri fără regenerare sunt necesare completări cu specii corespunzătoare staţiunii, prin plantaţii sau semănături directe în teren pregătit în vetre, tăblii.

Page 76: Volumul integral (.pdf)

77

În arboretele de pin afectate de uscare sunt necesare refaceri/substituiri în benzi cu specii corespunzătoare staţiunii. Sunt obligatorii lucrările de pregătire a solului pentru instalarea culturilor şi lucrările de îngrijire a culturilor instalate. Prin aplicarea metodelor de regenerare sub masiv (promovarea şi valorifi carea regenerării naturale) şi/sau introducere la adăpostul masivului a unor specii forestiere adecvate condiţiilor staţionale, constând de regulă în plantaţii şi însămânţări directe, se urmăreşte valorifi carea optimă a potenţialului staţiunilor de terenuri degradate ameliorate, dar şi asigurarea continuităţii pădurii, evitându-se descoperirea şi expunerea solului la eroziune sau alte procese de degradare.

Bibliografie

Constandache, C. 2003. Ameliorarea şi refacerea pinetelor necorespunzătoare sub raport productiv şi protectiv instalate pe terenurile degradate din bazinul hidrografi c al râului Putna. Teză de doctorat. Universitatea Transilvania Braşov, 298 p. Constandache, C. 2004. Cercetări privind regenerarea sub masiv şi introducerea la adăpostul masivului a unor specii autohtone valoroase, în arborete apropiate de exploatabilitate, pe terenuri degradate. Analele ICAS, 47: 63-81 Constandache, C. 2003-2007. Cercetări/Asistenţă tehnică privind regenerarea sub masiv şi introducerea sub masiv a unor specii autohtone valoroase în arborete situate pe terenuri degradate. Referate ştiinţifi ce la temele 8RA/2003; 53RC/2004; 66RC/2005, 6.3/2006-2007, ICAS Bucureşti.

Page 77: Volumul integral (.pdf)

78

Page 78: Volumul integral (.pdf)

79

ICAS 2008 Conference October 23-25, 2008 Bucharest, Romania

Cercetari privind reconstructia ecologica a padurilor în declin din incintele îndiguite, aflate în Lunca şi Delta Dunarii.

M. Greavu

Greavu M. 2009. Cercetări privind reconstrucţia ecologică a pădurilor în declin din incintele îndiguite, afl ate în Lunca şi Delta Dunării. [Researches on ecological re-construction of the declining forests in embanked areas located in the Danube fl ood plain and Delta]. In: Olenici N., Teodosiu M., Bouriaud O. (eds.), Proceedings of the conference “Sustainable forestry in a changing environment“, October 23-25, 2008, Bucharest, Forest Research and Management Institute ICAS, pp. 79-88.

Abstract. The research purpose was to determine the causes of tree stand decline in the Danube fl ood plain and delta, and to fi nd technologies for ecological reconstruc-tion by the cultivation of species or clones resistant to the harsh natural conditions of the area. In the fl ood plain of Danube, the growth regulator used for locust seedlings which were planted 1.5-2 m deep has led after 2-3 growing seasons to contradictory results regarding the survival rate and the average height. The plantation depth of locust seedlings leads to differences regarding the plant growth, the ones planted 1.5-2.0 m deep having a higher survival rate and a better height growth than those planted in normal cavities. The white poplar seedlings had similar low performances like the root-suckers. The low percentage of seedling survival and their slow growth were the results of the drought, grazing and damages of cockchafer grubs. Japanese sophora, planted in normal cavities, has quite unsatisfactory results at the end of the second growing season. In the Danube’s delta, 5 years after being planted on low hillocks and depressions (former marsh bottoms), hybrid black poplar planted 2.0 m and 2.5 m deep, white poplar, European black poplar, Grayish oak, Siberian elm, privet and red dogwood, have a normal vegetation state and dimensions cor-responding to this state. In depressions (former marsh bottoms), Siberian elm, honey locust and Tartarian maple have much better survival rates than other species after 4 growing seasons. After 2 years, Siberian elm, locust and honey locust have the best survival rates on middle hillocks, while in depressions (former marsh bottoms) Siberian elm and locust have the best rates. Key words: Danube’s delta, Danube’s food plain, tree stand decline, ecological re-construction

Author. Manole Greavu - Forest Research and Management Institute, Research Sta-tion Tulcea, Isaccei st. 25, 820166 - Tulcea, Romania.

Introducere

Cercetările din comunicarea de faţă au fost determinate de apariţia în perioada anterioară a unor uscări anormale în plantaţiile forestiere instalate în incintele îndiguite din Lunca şi Delta Dunării. Aceste cercetări s-au desfăşurat în perioada 1997-2002 în Lunca Dunării şi 2003-2008 în Delta

^ ^ ^

^

,

Page 79: Volumul integral (.pdf)

80

Dunării. Scopul cercetărilor a fost de a determina cauzele care au contribuit la declinul arboretelor din Lunca şi Delta Dunării şi de a găsi tehnologii perfecţionate de reconstrucţie forestieră cu promovarea în cultură a unor specii sau clone rezistente la adversităţi. Cercetările s-au desfăşurat în incintele îndiguite: Vraţa, Maglavit, Cioace, Rast, Bistreţ-Nedeea, Trup-Incinta, Viişoara, Puini, Jirlău-Chiciu, Modelu, Cernavoda Pod, Borcea de Jos, Cotul Baciului, Grindu, Preoteasa-Lata şi Rachelu – din Lunca Dunării şi în incintele: Pardina, Sireasa, Pătlăgeanca, Păpădia, Partizani, Rusca, Pojarnic, Carasuhat, Bălteni, Km 18 Litcov, Pestriţele din Delta Dunării. Aceste cercetări au cuprins atât condiţiile staţionale din incinte, cât şi studiul vegetaţiei forestiere. Prezenta comunicare abordează doar aspectul comportării plantaţiilor din suprafeţele experimentale.

Materiale şi metode

În incintele îndiguite din Lunca Dunării unde predomină psamosolurile, în scopul valorifi cării pentru plantaţii a orizonturilor cu humus ori a nivelului apei freatice afl ate la adâncime, s-au executat experimental plantaţii cu puieţi şi sade îngropate la 1,5-2,0 m utilizându-se, manual burghiile din setul instalaţiei Eijelkamp. Diametrul rezultat al gropii a fost de 10-12 cm. Înainte de plantare rădăcina a fost mocirlită într-o compoziţie de consistenţa smântânii constituită din o parte pământ vegetal, o parte bălegar de grajd proaspăt şi o parte apă. Pentru stimularea înrădăcinării s-a utilizat stimulatorul RADI-STIM sub formă de praf ce s-a aplicat la capătul gros al sadei, iar la puieţi a fost utilizat regulatorul de creştere TRANSVITAL, dizolvat în materialul utilizat la mocirlirea rădăcinilor. Rădăcinile puieţilor au fost toaletate scurt (4-5 cm) pentru a putea pătrunde în groapa cu adâncimea de 1,5-2,0 m şi diametrul de 10-12 cm. Totodată s-au îndepărtat toate ramurile laterale. Atât în gropile adânci cât şi în cele normale (30 x 30 x 30 cm), executate cu cazmaua s-au administrat câte 4-5 kg pământ vegetal. În incintele îndiguite din Delta Dunării, unde predomină aluvisolurile, s-au utilizat tehnicile cunoscute de plantare.

Rezultate

a. Lunca Dunării Observaţiile şi măsurătorile efectuate în octombrie 2002 au constatat modul cum s-au comportat diversele specii, după cum urmează:- În incinta Vrata, pe un teren caracterizat ca duna joasă spre medie înălţimea medie atinsă după 2 ani se prezintă în tabelul 1.- În incinta Cioace, pe un teren caracterizat ca o interdună, după 2 ani măsurătorile se prezintă în tabelul 1.- În incinta Rast, pe un teren caracterizat ca o duna joasă, după 3 ani înălţimea medie atinsă se prezintă în tabelul 2.- În tabelul 3 se prezintă rezultatele măsurătorilor după 2 ani în incinta Nisipuri, pe un teren caracterizat ca o interdună (Nisipuri I) şi o dună medie (Nisipuri II).

b. Delta Dunării În urma măsurătorilor efectuate în luna septembrie 2008, modul cum s-au comportat diversele specii, se prezintă astfel :- În incinta Rachelu, pe un teren caracterizat ca fost fund de baltă, dimensiunile atinse după 5 ani se prezintă în tabelul 4.- În incinta Sireasa, pe un teren caracterizat ca fost fund de baltă, înălţimea puieţilor atinsă după 4 ani se prezintă în tabelul 5.

Page 80: Volumul integral (.pdf)

81

Tabe

lul 1

Rat

a de

supr

avieţu

ire la

dife

rite

mom

ente

şi înălţim

ea m

edie

a p

uieţ

ilor d

e do

i ani

în su

praf

eţel

e ex

perim

enta

le V

rata

şi C

ioac

e

Vari-

anta

nr

.Sp

ecii

Dis

tanţ

e de

pl

anta

re(m

x m

)

Adâ

ncim

ea

grop

ilor

(m)

Reg

ulat

or d

e cr

eşte

re

Rat

a de

supr

avieţu

ire

la 2

0.06

.200

2(%

)

Rat

a de

supr

avieţu

ire

la 0

3.10

.200

2(%

)

Înălţim

ea

med

ie(c

m)

Obs

ervaţii

Supr

afaţ

a ex

perim

enta

lă V

rata

- O

colu

l Silv

ic V

ânju

Mar

e1

Salc

âm2

x 1

2,00

Tran

svita

l92

7090

,32

Salc

âm2

x 1

2,00

Fără

regu

lato

r95

8318

1,4

3Sa

lcâm

2 x

11,

50Tr

ansv

ital

8553

59,5

4Sa

lcâm

2 x

11,

50Fă

ră re

gula

tor

8047

96,4

5Sa

lcâm

2 x

10,

30Fă

ră re

gula

tor

7527

48,8

Fără

păm

ânt

vege

tal

6Pl

op a

lb2

x 1

2,00

Tran

svita

l78

3410

7,2

7Pl

op a

lb2

x 1

2,00

Fără

regu

lato

r75

4710

0,9

8Pl

op a

lb2

x 1

1,50

Tran

svita

l72

1031

,59

Plop

alb

2 x

11,

50Fă

ră re

gula

tor

7010

32,5

10Pl

op a

lb2

x 1

0,30

Fără

regu

lato

r74

1230

,011

Salc

âm2

x 1

0,30

Fără

regu

lato

r83

4742

,3C

u pă

mân

t ve

geta

lSu

praf

aţa

expe

rimen

tală

Cio

ace

– O

colu

l Silv

ic C

alaf

at12

Salc

âm2

x 2

2,00

Tran

svita

l90

4340

,813

Salc

âm2

x 2

2,00

Fără

regu

lato

r92

2848

,014

Salc

âm2

x 2

1,50

Tran

svita

l85

2050

,015

Salc

âm2

x 2

1,50

Fără

regu

lato

r85

2270

,016

Salc

âm2

x 1

0,30

Fără

regu

lato

r71

1035

,0C

u pă

mân

t ve

geta

l17

Plop

alb

2 x

22,

00Tr

ansv

ital

7533

54,2

18Pl

op a

lb2

x 2

2,00

Fără

regu

lato

r85

4258

,819

Plop

alb

2 x

21,

50Tr

ansv

ital

6517

40,2

20Pl

op a

lb2

x 2

1,50

Fără

regu

lato

r60

1540

,0

21Pl

op a

lb2

x 1

0,30

Fără

regu

lato

r65

1457

,0C

u pă

mân

t ve

geta

l

22So

fora

2 x

10,

30Fă

ră re

gula

tor

7231

31,4

Cu

păm

ânt

vege

tal

Page 81: Volumul integral (.pdf)

82

Tabe

lul 2

Rat

a de

supr

avieţu

ire şi

înălţim

ea m

edie

a p

uieţ

ilor d

e tre

i ani

şi a

sade

lor î

n su

praf

aţa

expe

rimen

tală

Ras

t, O

. S. P

oian

a M

are

Vari-

anta

nr

.

Spec

ii(c

lone

)Pl

ante

Dis

tanţ

e de

pl

anta

re(m

x m

)

Adâ

ncim

ea

grop

ilor

(m)

Reg

ulat

or d

e cr

eşte

re

Rat

a de

supr

avieţu

ire

la 0

2.10

.200

2(%

)

Înălţim

ea

med

ie(c

m)

Obs

er-

vaţii

1Pl

opC

lona

Rap

Sade

5 x

42,

0R

adi S

tim44

104,

3

2Pl

opC

lona

Rap

Sade

5 x

42,

0Fă

ră re

gula

tor

3891

,7

3Pl

opC

lona

I 21

4Sa

de5

x 4

2,0

Rad

i Stim

3518

0,0

4Pl

opC

lona

I 21

4Sa

de5

x 4

2,0

Fără

regu

lato

r33

85,0

5Pl

opC

lona

Sac

rau

79Sa

de5

x 4

2,0

Rad

i Stim

5012

1,1

6Pl

opC

lona

Sac

rau

79Sa

de5

x 4

2,0

Fără

regu

lato

r53

97,5

7Pl

opC

lona

I LU

XSa

de5

x 4

2,0

Rad

i Stim

4616

3,3

8Pl

opC

lona

I LU

XSa

de5

x 4

2,0

Fără

regu

lato

r44

82,5

9Pl

opC

lona

Sac

rau

79Pu

ieţi

5 x

42,

0Tr

ansv

ital

3559

,0

10Pl

opC

lona

Sac

rau

79Pu

ieţi

5 x

42,

0Fă

ră re

gula

tor

3273

,0

11Sa

lcâm

Puieţi

2 x

22,

0Tr

ansv

ital

6510

5,5

12Sa

lcâm

Puieţi

2 x

22,

0Fă

ră re

gula

tor

6259

,6

Page 82: Volumul integral (.pdf)

83

Tabe

lul 3

Rat

a de

supr

avieţu

ire la

dife

rite

mom

ente

şi înălţim

ea m

edie

a p

uieţ

ilor d

e do

i ani

în su

praf

eţel

e ex

perim

enta

le N

isip

uri I

şi N

isip

uri I

I, O

.S. C

orab

ia

Vari-

anta

nr.

Spec

iiD

ista

nţe

de

plan

tare

(m x

m)

Adâ

ncim

ea

grop

ilor

(m)

Reg

ulat

or d

e cr

eşte

re

Rat

a de

supr

avieţu

ire la

21.

06.2

002

(%)

Rat

a de

su

prav

ieţu

ire la

3.

10.2

002

(%)

Înălţim

ea

med

ie(c

m)

Obs

er-

vaţii

Supr

afaţ

a ex

perim

enta

lă N

isip

uri -

I - O

colu

l Silv

ic C

orab

ia

1Sa

lcâm

2 x

22,

00Tr

ansv

ital

8540

35

2Sa

lcâm

2 x

22,

00Fă

ră re

gula

tor

7433

40

3Sa

lcâm

2 x

21,

50Tr

ansv

ital

8840

35

4Sa

lcâm

2 x

21,

50Fă

ră re

gula

tor

7830

80

5Sa

lcâm

2 x

10,

30Fă

ră re

gula

tor

7328

25

6Pl

op a

lb2

x 2

2,00

Tran

svita

l60

2020

7Pl

op a

lb2

x 2

2,00

Fără

regu

lato

r65

2020

8Pl

op a

lb2

x 2

1,50

Tran

svita

l43

0-

9Pl

op a

lb2

x 2

1,50

Fără

regu

lato

r55

0-

10Pl

op a

lb2

x 1

0,30

Fără

regu

lato

r50

0-

Supr

afaţ

a ex

perim

enta

lă N

isip

uri -

II -

Oco

lul S

ilvic

Cor

abia

11Sa

lcâm

2 x

22,

0085

5080

12Sa

lcâm

2 x

21,

5085

4670

13Sa

lcâm

2 x

10,

3086

3065

14So

fora

2 x

10,

3060

515

Page 83: Volumul integral (.pdf)

84

Tabe

lul 4

Dia

met

rul m

ediu

şi înălţim

ea p

uieţ

ilor d

e ci

nci a

ni şi

a sa

delo

r în

supr

afaţ

a ex

perim

enta

lă R

ache

lu, O

.s. M

îcin

Sec-

ţiune

aVa

riant

aSp

ecii

Nr.

puieţi

plan

taţi

Dia

met

rul m

ediu

(cm

)Înălţim

ea m

edie

(m )

Obs

ervaţii

A

1Pl

op I

214

639,

68,

40S-

au p

lant

at s

ade

la a

dânc

imea

de

1 m

2Pl

op I

214

6311

,39,

36S-

au p

lant

at s

ade

la a

dânc

imea

de

1,5

m

3Pl

op I

214

6313

,310

,45

S-au

pla

ntat

sad

e la

adâ

ncim

ea

de 2

,0 m

4Pl

op I

214

6313

,810

,26

S-au

pla

ntat

sad

e la

adâ

ncim

ea

de 2

,5 m

5Pl

op I

214

6310

,38,

21Pu

ieţi

in g

ropi

nor

mal

e

B1

Plop

Sac

rau

180

10,7

7,50

Puieţi

in g

ropi

nor

mal

eSa

lcâm

180

5,9

6,10

Puieţi

in g

ropi

nor

mal

e

C1

Plop

alb

250

8,5

7,18

Puieţi

in g

ropi

nor

mal

e2

Plop

neg

ru15

09,

96,

45Pu

ieţi

in g

ropi

nor

mal

e3

Plop

cen

uşiu

200

7,6

6,30

Puieţi

in g

ropi

nor

mal

e

D1

Stej

ar b

rumăr

iu40

0-

2,40

Puieţi

in g

ropi

nor

mal

eU

lm30

06,

96,

10Pu

ieţi

in g

ropi

nor

mal

eLe

mn

câin

esc

200

-2,

85Pu

ieţi

in g

ropi

nor

mal

eSâ

nger

200

-1,

85Pu

ieţi

in g

ropi

nor

mal

e

Page 84: Volumul integral (.pdf)

85

- În incinta Partizani, comportarea speciilor forestiere după 2 ani (pe un teren caracterizat ca un fost grind mijlociu) respectiv după un an (pe un teren caracterizat ca fi ind o întinsură de grind) înălţimile medii se prezintă în tabelul 6.

Discutii

a. Lunca Dunării Din analiza rezultatelor măsurătorilor efectuate în luna octombrie 2002 în incintele îndiguite Vrata, Cioace, Rast şi Nisipuri (tabelele 1, 2, 3) se constată următoarele:- Regulatorul de creştere utilizat la puieţii de salcâm plantaţi la adâncimea de 1,5-2,0 m după 2-3 ani de vegetaţie a condus la rezultate contradictorii sub aspectul procentului de menţinere şi a înălţimii medii realizate. Înălţimea medie atinsă a fost cuprinsă între 48,8-181,4 cm (Vrata); 35,0 -70,0 cm (Cioace); 5,96-105,5 cm (Rast) şi 25,0-80,0 cm (Nisipuri).- Puieţii de salcâm plantaţi la adâncimea de 1,5-2,0 m prezintă înălţimi medii de 59,5-181,4 cm (Vrata); 40,8-70,0 cm (Cioace), 5,96-105,5 cm (Rast) şi 35,0-80,0 cm (Nisipuri), în timp ce puieţii de salcâm plantaţi la 0,30 cm au înălţimi medii de 48,8 cm (Vrata), 35,0 cm (Cioace); 25,0 cm (Nisipuri I) şi 65 cm (Nisipuri II). Procentele de menţinere la puieţii plantaţi la adâncimea de

Tabelul 5 Rata de supravieţuire şi înălţimea medie a puieţilor în suprafeţele experimentale Sireasa şi Par- dina, O.S. Tulcea

,

Sec-ţiunea

Varianta Vârtsa(ani)

Rata de supra-vieţuire (%)

Înălţimea medie (m) Observaţii

Plantaţia experimentală Sireasa – Ocolul Silvic Tulcea

ASalcâm 4 77,4 435,0Glădiţă 4 91,5 162,5

B Plop alb 4 91,2 125,0

C

Frasin comun 4 73,0 85,0Păr 4 43,7 91,0Ulm 4 98,5 280,7

Arţar tătăresc 4 61,0 105,0Tei 4 22,5 25,0

Mojdrean 4 - -

D

Stejar brumăriu 4 41,7 46,0Arţar american 4 83,0 120,0Frasin comun 4 54,0 110,0

Ulm 4 75,3 122,5Arţar tătăresc 4 73,2 121,6

Măceş 4 61,5 141,3Plantaţia experimentală Pardina – Ocolul Silvic Tulcea

A Plop alb 2 11 32

B 1Salcâm 2 84 69

Frasin pufos 2 31 47

B 2Frasin pufos 2 19 69,6

Ulm de Turkestan 2 91 63,3

C

Stejar brumăriu 2 15,0 20,3Frasin pufos 2 55,0 51,8

Ulm de Turkestan 2 83,0 38,5Măceş 2 37,0 25,6

Page 85: Volumul integral (.pdf)

86

1,5-2,0 m au fost între 47-83% (Vrata), 20-43% (Cioace), 30-40 % (Nisipuri I), 46-50% (Nisipuri II), în vreme ce la puieţii plantaţi la adâncimea de 30 cm au fost de 27 % (Vrata), 10% (Cioace), 28% (Nisipuri I), 30% (Nisipuri II).- În blocul Nisipuri II, sofora prezintă după 2 ani un procent de menţinere de doar 5%, iar înălţimea medie este de doar 15,0 cm.

b. Delta Dunării Din analiza rezultatelor măsurătorilor efectuate în luna septembrie 2008 în incinta Rachelu (tabelul 4) se constată că după 5 ani de la plantare pe grinduri joase şi lăsături (foste funduri de baltă), prezintă o stare normală de vegetaţie şi au dimensiuni corespunzătoare, sadele de plop euramerican plantate la adâncimea de 2,0 m si 2,5 m, plopul alb, plopul negru, stejarul brumăriu, ulmul de Turkestan, lemnul câinesc şi sângerul. Analizând măsurătorile efectuate în luna septembrie 2008 în incintele Sireasa şi Pardina (tabelul 5) se constată următoarele că după 4 ani de vegetaţie pe lăsături (foste funduri de baltă), prezintă procente de menţinere mai bune ulmul de Turkestan, glădiţa şi arţarul tătărăsc.- Măsurătorile efectuate în luna septembrie 2008 în incinta Partizani (tabelul 6) au dus la constatări diferite în cele două suprafeţe experimentale. După 2 ani de vegetaţie prezintă procente mai bune de menţinere pe grinduri mijlocii ulmul de Turkestan, salcâmul şi glădiţă, iar pe lăsături (foste funduri de baltă) ulmul de Turkestan şi salcâmul, iar după un an de vegetaţie prezintă procente mai bune de menţinere pe grinduri joase şi pe întinsuri de grind, ulmul, frasinul de baltă, glădiţa, plopul alb şi plopul negru.

Tabelul 6 Rata de supravieţuire la diferite momente şi înălţimea medie a puieţilor în suprafeţele experi mentale Partizani I şi Partizani II, O.S. Rusca

Sec-ţiu-nea

SpeciiNr.

puieţi plantaţi

Vârsta(ani)

Rata de supravie-ţuire la

01.06.2008(% )

Rata de supravie-ţuire la

24.09.2008(%)

Înălţimea medie(m)

Plantaţia experimentală Partizani IA Plop alb 175 2 86,1 75,0

B 1 SalcâmGlădiţă

252189

22

91,370,3

210,098,3

B 2 Frasin pufosUlm de Turkestan

189189

22

54,389,0

65,0111,7

C

Stejar brFrasin pufosUlm de TurkestanMăceş

378252192186

2222

29,555,797,034,4

18,086,7102,065,0

Plantaţia experimentala Partizani II

A

Plop alb prov. StăncuţaPlop alb prov. Letea IVPlop negru prov. Lacu SăratPlop negru prov. Vadu Oii

63156513

1111

82,565,984,373,4

76,1946,6778,4669,23

160130210200

B 1 SalcâmGlădiţă

189189

11

95,597,7

86,3 88,7

153,0118,3

B 2 Frasin pufosFrasin viridis

189189

11

60,583,7

29,771,7

76,780,0

C

Stejar brFrasin pufosFrasin viridisUlm de TurkestanMăceş

37832157189189

11111

72,449,588,593,595,7

54,36,076,481,381,1

20,020,084,063,885,3

Page 86: Volumul integral (.pdf)

87

Concluzii

Cercetările efectuate în Lunca Dunării au arătat că:• Regulatorul de creştere utilizat la puieţii de salcâm plantaţi la adâncimea de 1,5-2,0 m după 2- 3 ani de vegetaţie a condus la rezultate contradictorii sub aspectul procentului de menţinere şi a înălţimii medii realizate.• Adâncimea la plantare a puieţilor de salcâm conduce la diferenţieri în favoarea celor plantaţi la 1,5-2,0 m faţă de cei plantaţi în gropi normale. Puieţii plantaţi la adâncimea de 1,5-2,0 m prezintă atât procente de menţinere cât şi înălţimi mai mari decât cei plantaţi în gropi normale.• După completările efectuate în primăvara 2002, utilizând puieţi de plop alb numai din sămânţă (renişuri naturale), comportarea plopului alb a fost la fel de modestă ca şi în anul 2001 atunci când s-a încercat explicarea slabei comportări pe seama provenienţei puieţilor din drajoni.• Procentele de menţinere reduse şi înălţimile mici înregistrate de puieţi la controlul din toamna 2002 se pot pune pe seama secetei din prima parte a sezonului de vegetaţie, dar şi a distrugerii de către păşunat (suprafeţele Cioace, Rast) sau de către larvele de cărăbuşi (suprafaţa Nisipuri I).• Rezultatele experimentării, în blocul Rast, a diferite clone de plop e.a. cu sade şi puieţi plantaţi la adâncimi de 1,5-2,0 m sunt total infl uenţate de păşunatul din zonă. Procentele de menţinere şi înălţimea nu refl ectă potenţialul staţiunii valorifi cabil prin plantare la adâncimea de 1,5-2,0 m. O dovadă o constituie un exemplar de plop din clona I 214 provenit din sada care a scăpat de la distrugere prin păşunare şi a atins, după 3 ani de vegetaţie, înălţimea de 5,20 m. Restul exemplarelor sunt ţinute sub formă de tufă prin păşunare repetată.• Sofora plantată în gropi normale, după completarea golurilor în primăvara 2002, prezintă rezultate slabe la fi nele celui de al doilea an de vegetaţie. În Delta Dunării, după 5 ani de la plantare pe grinduri joase şi lăsături (foste funduri de baltă), prezintă o stare normala de vegetaţie şi au dimensiuni corespunzătoare: sadele de plop euramerican plantate la adâncimea de 2,0 m şi 2,5 m, plopul alb, plopul negru, stejarul brumăriu, ulmul de Turkestan, lemnul câinesc şi sângerul. După 4 ani de vegetaţie pe lăsături (foste funduri de baltă) prezintă procente de menţinere mai bune ulmul de Turkestan, glădiţa şi arţarul tătărăsc. După 2 ani de vegetaţie prezintă procente mai bune de menţinere pe grinduri mijlocii ulmul de Turkestan, salcâmul şi glădiţă, iar pe lăsături (foste funduri de baltă), ulmul de Turkestan şi salcâmul. După un an de vegetaţie prezintă procente mai bune de menţinere pe grinduri joase şi pe întinsuri de grind ulmul, frasinul de baltă, glădiţa, plopul alb şi plopul negru.

Page 87: Volumul integral (.pdf)

88

Page 88: Volumul integral (.pdf)

89

ICAS 2008 Conference October 23-25, 2008 Bucharest, Romania

Aerodynamic study of forest shelter belts (wind breaks)

T. T. Oradean

Orădean T.T. 2009. Aerodynamic study of forest shelter belts (wind breaks). In: Ole-nici N., Teodosiu M., Bouriaud O. (eds.), Proceedings of the conference “Sustain-able forestry in a changing environment“, October 23-25, 2008, Bucharest, Forest Research and Management Institute ICAS, pp. 89-90.

Abstract. The paper represents a very succinct restrospective on the aerodynamic study of forest shelter belts that was initiated in 1949 by the Romanian Academy of Science. There are mentioned the scientists involved in that project and their main activities. Their work is regarded as “of unquestionably high priority”.Key words:

Author. Titus-Traian Orădean - EUROTEC Development & Traiding, Conteşti St. 6B, 051711 - Bucharest, Romania.

Among the specifi c objectives of this conference is the presentation of the most recent achievements of forest scientifi c research. These are directed especially towards the priorities required by sustainable management in a changing environment and altered socio-economic contexts. I intend, however, to recall little-known research which was carried out nearly sixty years ago, ignored in the turmoil of the fi fties, but now making a timely comeback in the present crucial state of the natural environment. This research was concerned with the aerodynamic study of forest shelter belts and was initiated in 1949 by the Romanian Academy of Science, which had just been re-organised in line with the political constraints of that period. Rigid government policy uncompromisingly required that applicative research must take precedence over basic pure research. In order to save from outside interference some valuable basic research that was under way, including that of aerodynamics, academician Traian Săvulescu, the acting president of the Academy, introduced a clever initiative which relied on the trend to plant forest shelter belts nearly everywhere, following the Soviet example. He set up a joint team of scientists and researchers in forestry and aerodynamics which was circumstantially called the Collective for Applied Mechanics. This joint team was led by the famous scientist and academician Elie Carafoli and Dr. Ion Lupe, an enthusiastic researcher in dry climate forestry and shelter belts. Hierarchically the team belonged to the Institute for Applied Mechanics. The already existing context for justifying starting the work was that in Romania forest research had a notable tradition of achievement going back to the mid- nineteenth century and many well-grown plantations of shelter belts protecting croplands existed. Windbreaks

^

Page 89: Volumul integral (.pdf)

90

along railway lines were also available. In the fi eld of aerodynamics the theory of hyper-lift of permeable wing surfaces, elaborated by academician Elie Carafoli was recognised worldwide, and had been successfully applied in the fi eld of supersonic aviation. This theory found a most suitable application in the advanced research regarding the increase of the protecting effi ciency of penetrable and semi-penetrable shelter belts and wind breaks. The joint team included some of Carafoli’s close co-workers such as Prof. Nicolae Tipei and Ion Stroescu, while from the forestry side came Dr. Ion Lupe, Dr. Atanasie Haralamb and Dr. Teodor Bălănică. I myself was junior assistant, and I am probably the last surviving member of that team. The planning of the work had two stages: a general fi eld survey together with dendrological, anemometrical and auxological measurements, followed by a simulation in the wind tunnel of the Polytechnical School of Bucharest (nowadays the Technical University of Bucharest). The fi eldwork was performed at the Stud of Mangalia, southward of Constanza which possessed a large area for fodder crop covered by a grid of 400 x 400m precincts. These were protected by a mature vegetation of trees and shrubs which were well-adapted to the local climate and appropriate for shaping a suitable profi le of the belt. The anemometric measurements established the wind speed at varying distances from the belt itself, enabling the construction of accurate diagrams. The time of year for the fi eld work was deliberately chosen to coincide with the highest intensity and frequency of local spring winds.In order to make the air fl ow visible smoke-producing candles, made by the ingenious Ion Stroescu, were successfully used. Concomitantly, an inventory of the xerophytic trees and shrubs of the nearby forest of Comarova was also made. Back in Bucharest the foresters started an evaluation of the collected data and the physicists manufactured models for the wind tunnel simulation. The culmination of all this work on developing the effi ciency of shelter belts was Ion Stroescu’s ingenious solution of a proposed multi-layer network consisting of copper wire and textile tufts. Unfortunately the records of this experiment are not yet recovered, but the search for them is continuing because they can testify that the comprehensive research performed by this team constituted work of unquestionably high priority. It is obvious that considerable progress has subsequently been made, especially since the sixties and seventies, not only in Europe but also in Asia and Australia, as well as in both the Americas. The global changes and their impact on forests and agriculture will give a boost to large-scale afforestation projects and the planting of forest shelter belts, grounded on hi-tech methods and up-to-date approaches. Remembering the pioneering work done sixty years ago, however, serves to recognise and prize these forerunners for their tenacity and ingenuity, working as they did under stern political conditions. Their achievements surely serve to stimulate the new generation to attain the highest level in their own praiseworthy and valuable work in afforestation.

Page 90: Volumul integral (.pdf)

91

ICAS 2008 Conference October 23-25, 2008 Bucharest, Romania

Local networks of forest shelterbelts – solution to achieve a national plan

M. M. Vasilescu, C. C. Tereşneu

Vasilescu M. M., Tereşneu C. C. 2009. Local networks of forest shelterbelts – solu-tion to achieve a national plan. In: Olenici N., Teodosiu M., Bouriaud O. (eds.), Proceedings of the conference “Sustainable forestry in a changing environment“, October 23-25, 2008, Bucharest, Forest Research and Management Institute ICAS, pp. 91-98.

Abstract. The establishment of a forest shelterbelts national network seems to be one of the most indicated solution for Romanian agriculture in a changing envi-ronment. Political support (law of forest shelterbelts 289/2002), a few projects regarding the achievement of national network of forest shelterbelts elaborated by ICAS and an academic meeting regarding this topic are such a proof. The pa-per presents a proposal to achieve using the local networks of forest shelterbelts that will be afterwards integrated in a national system. This thing may happen through standard farms based on special agro-technique including forest shel-terbelts. Using FRISCO formula, the authors try to fi nd out the most important criteria that could convince the managers and landowners to adopt the system of model farms. The study is based on the experience and results regarding the infl uence of a few forest shelterbelts on protected areas during the last seven years.Key words: local networks of forest shelterbelts, multi-criteria analysis.

Authors. Maria Magdalena Vasilescu, Cornel Cristian Tereşneu - Transylvania Uni-versity of Braşov, Faculty of Silviculture and Forest Engineering, Şirul Beethoven St. 1, 500123 - Braşov, Romania.

Introduction

The plan of the forest shelterbelts national network becomes more and more visible in a changing environment. The achievement of this plan involves at least two important factors: the legislative support and the presence of specialists (Figure 1). An operational political background exists today in Romania, as the law on forest shelterbelts (289/2002) and a few legal paragraphs of the new law on forestry (46/2008) – IV Sustainable development of the national forests, chapter I, articles 90, 91 and 101 especially (Anonymous 2008) corroborate it. Thanks to that, the fi nancement of the forest shelterbelts national network is offi cially approved, supported by a better management of the fi nances related to land resources and forest conservation, by government budget allocations and other resources. Landowners are besides the persons who consent to the change of the land use and who approve the establishment of forest shelterbelts; they receive an annual compensation whose amount is close to the equivalent of the crop expected from these lands.

Page 91: Volumul integral (.pdf)

92

At the same time, ICAS specialists made signifi cant research work on the scientifi c background and elaborated feasibility studies, in order to support the establishment of a forest shelterbelts national network. Both a favorable political background and a scientifi c support ever exist today. The success of the forest shelterbelts national network might be reached through the promotion of a model of farm organized according to specifi c principles. This notion includes forest shelterbelts in the agro-technique. A model farm pilot implementation would be the best way to popularize forest shelterbelts and could generate new forest shelterbelts local networks after

Fig. 1 Diagram of the solution to achieve a national forest shelterbelts plan

Photo 1 Local network of forest shelterbelts – proposal for Romanian fi elds

Page 92: Volumul integral (.pdf)

93

requirement expressed by landowners and legal representatives of agricultural exploitations.The aim of this research paper is to mark the role of different criteria contributing to the establishment of forest shelterbelts local networks. Materials and methods

The study used the existent data regarding the political background that supports the establishment of forest shelterbelts, data regarding the situation of arable surfaces in Teleorman County, information regarding the infl uence of forest shelterbelts on climatic elements and agricultural crops in Boian and Burnaz fi elds (Vasilescu 2007, Vasilescu et al. 2007). The research paper also outlines the impact of knowledge in three process cases (the implicated persons being specialists in silviculture, agricultural exploitations representatives, landowners). This application is based on fi eld real situations (pictures 2, 3 and 4) and on agronomists concerns too. Trying to apply the FRISCO formula (created by a research group from San Francisco – SUA),

the most used and performing in the world (Bobancu & Cioc 2003, Bobancu 2008), iγ (a weight factor) was computed for different criteria.

2'

5.0crt

i Np

mpp

+Δ−

++Δ+=γ

in where: p is the sum of the points (on a row) scored by the element to be analysed; pΔ is the difference between the score of this element and the score of the element on the last level; if the element to be analysed is on the last level, pΔ will have the value 0; m is a number of criteria outranked

(standpoint of the score) by the criterion to be studied; crtN is a number of criteria; 'pΔ is the difference between the score of the criteria studied and the score of the fi rst criteria (resulting in a negative value); if the criteria to be evaluated is the one place on the fi rst level, the result will be 0. This mathematic solution gives a realistic characterization, without ambiguities. Seven criteria were analyzed in three variants: 1 - infl uence of forest shelterbelts on climatic elements; 2 - effects of forest shelterbelts on agricultural crops; 3 - legislative background; 4 - fi nancial support; 5 - feasibility studies and research on scientifi c background; 6 - model farm; 7 - popularization.

Results and discussion

The table 1 is illustrating a case of study in one county where shelterbelts are necessary, comparing the situation regarding the arable surface and the surface owned by agricultural exploitations (land managed in individual farms) between 2000 and 2004. The differences between the two categories of surface are 306,545 ha in 2000, 271,216 ha in 2001, 244,578 ha in 2002, 233,415 ha in 2003 and 221,244 ha in 2004. The new situation makes possible the establishment of forest shelterbelts in large areas. The agricultural exploitations can be either commercial enterprises (according to the law 31/1990) or joint stock and family partnership (according to the law 36/1991). The situation of agricultural exploitations in 2000-2004 emphasizes the increase of their number in comparison with 2000 (Table 2).

The weight factor of the multi-criteria analysis is assessed by calculating iγ in a Latin grid.

Page 93: Volumul integral (.pdf)

94

The criterion on a row is compared with the criterion on a column; when the fi rst one is the most important, the value 1 is assigned; when the fi rst one is equally important as the second one, the value 0.5 is assigned; when the fi rst one is less important than the second one, the value 0 is assigned. Each variant is analysed in turn, through each criterion, until all variants are assessed. At the end, the sum of these products is calculated; the sums (usually unique values, associated to each variant) will determine the fi nal classifi cation (Bobancu & Cioc 2003, Bobancu 2008). We propose brainstorming meetings to choose the best criterion to take into account and to fi nd out the importance of every criterion for each variant. We present below an example (tables 3 and 4) with three variants: 1 – specialists in silviculture, 2 – legal representatives of agricultural exploitations and 3 – landowners.

The importance of criteria from each variant, iN , can be modifi ed in a brainstorming meeting with all implicated categories. The study outlines the actual situation (refl ected in pictures 2-4) regarding the knowledge about criteria. This situation could be improved for the variants 2 and 3. There are two other actions the requestors need: pilot implementation and popularization. The

establishment of a model farm contributes with 18.53% ( ),%iγ to the calculation of fi nal top of

Year Arable surface Arable surface in agricultural exploitations

ha % from 2000 ha % from 20002000 449,855 - 143,310 -2001 449,574 99.9 178,358 124.42002 450,693 100.1 206,115 143.82003 451,653 100.4 218,238 152.22004 455,487 101.2 234,243 163.8

Table 2 Evolution of agricultural exploitations in Teleorman, 2000-2004

YearNumber of exploitations Managed surface Mean surface of

exploitations, haValues % from 2000 ha % from 20002000 185 - 143,310 - 774.62001 279 150.8 178,358 124.4 639.32002 394 212.9 206,115 143.8 523.12003 526 284.3 218,238 152.2 414.92004 531 287 234,243 163.8 441.1

Table 3 Calculation of the weight factors

Cri-teria 1 2 3 4 5 6 7 p rank ∆p m ∆p’

iγ ( )%iγ1 0.5 0.5 0 0 0.5 0 0.5 2 7 0 0 -2.5 0.416 2.932 0.5 0.5 0.5 0.5 0.5 0.5 0.5 3.5 4.5 1.5 2 -1.5 1.5 10.593 1 0.5 0.5 0.5 1 0.5 0.5 4.5 1.5 2.5 5 0 3.571 25.214 1 0.5 0.5 0.5 1 0.5 0.5 4.5 1.5 2.5 5 0 3.571 25.215 0.5 0.5 0 0 0.5 0.5 0.5 2.5 6 0.5 1 -2 0.818 5.776 1 0.5 0.5 0.5 0.5 0.5 0.5 4.0 3 2 4 -0,5 2.625 18.537 0.5 0.5 0.5 0.5 0.5 0.5 0.5 3.5 4.5 1.5 2 -1 1.666 11.56

Table 1 Arable surface and surface in agricultural exploitations in Teleorman County

Page 94: Volumul integral (.pdf)

95

Table 4 Top of the variants

Criteria iγVariant 1 Variant 2 Variant 3

iN iiN γ× iN iiN γ× iN iiN γ×

1 0.416 8 3.328 7 2.912 6 2.4962 1.5 8 12 8 12 7 10.53 3.571 10 37.71 8 28.568 6 21.4264 3.571 9 32.139 7 24.997 6 21.4265 0.818 9 7.362 7 5.726 6 4.9086 2.625 5 13.125 5 13.125 5 13.1257 1.666 6 9.996 6 9.996 6 9.996

Final top 113.66 97.324 83.877

Photo 2 Wheat crop protected by a shelterbelt in the Boian fi eld

Photo 3 Field without shelterbelt in Teleorman County

Page 95: Volumul integral (.pdf)

96

the analysed variants( )iiN γ× . The higher values of iγ are met in the case of political background

including fi nancial support (25.21%). The next criterion ( )%iγ is the popularization at two levels. We called this : “target” and “en masse”. First one is advertisement to legal representatives of agricultural exploitations. They have the quality to require political support, feasibility studies, research on scientifi c background to solve landowners problems. Popularizing shelterbelts by sending data to landowners encourages the representatives of agricultural exploitations too. Prof. dr. eng. Marian Ianculescu is the initiator of the shelterbelt law and one protagonist of the shelterbelt popularization. This emphasizes the importance of specifi c information and the obligation of the other specialists also.

Conclusion

The example of multi-criteria analysis in the problem of forest shelterbelts emphasizes the fact that establishing a classifi cation at the same time quantitative and qualitative is useful. Following seven criteria (the infl uence of forest shelterbelts on climatic elements, effects of forest shelterbelts on agricultural crops, legislative background, fi nancial support, feasibility studies and research on scientifi c background, model farm and popularization) the method involves an increased degree of objectivity by calculating the weight factor of each criterion. Political background and fi nancial support to forest shelterbelts are uncertain information for landowners and legal representatives of agricultural exploitations, even if that the effect on crops in protected fi elds is well known. The application of this method shows that a better popularization aiming at encouraging the building of a forest shelterbelts national network and pilot implementations through a model farm (a forest shelterbelts local network) are actions contributing to the achievement of the national plan.

References

Anonymous 2008. Codul silvic (Legislation in silviculture). Monitorul ofi cial, 27 March 2008, Bucharest, pp. 2-19.Bobancu, Ş., Cioc V. 2003. Inovare inginerească în design (Engineering innovation in design). University

Photo 4 Unused irrigation channel in the Boian fi eld

Page 96: Volumul integral (.pdf)

97

Transilvania of Braşov, Braşov, 274 p.Bobancu, Ş. 2008. Using the multi-criteria analysis (MCA) in the drafting of doctorate papers. Annals of the Oradea University, Fascicle of Management and Technological Engineering, volume VII (XVII), Oradea, pp.1933-1936.Vasilescu, M. M. 2007. Cercetări privind fundamentarea ştiinţifi că a instalării unei reţele optime de perdele forestiere de protecţie a câmpului şi a căilor de comunicaţie din Câmpiile Boianului şi Burnazului (Research on the scientifi c background for the optimal establishment of forest shelterbelts network to protect the plain and communication ways in the Boian and Burnaz fi elds). PhD thesis, University Transilvania of Braşov, Braşov, 257 p.Vasilescu, M. M., Tereşneu, C.C., Candrea, B. 2007. Research on the effects of forest shelterbelts on agricultural crops. In Proceedings IUFRO Conference on Forest Landscape Restoration, 7-19 May 2007, Seoul, pp. 257-258.

Page 97: Volumul integral (.pdf)

98

Page 98: Volumul integral (.pdf)

99

ICAS 2008 Conference October 23-25, 2008 Bucharest, Romania

Evolutia conceptului european de gestionare a padu-rii şi incidenta asupra silviculturii româneşti

P. Bradosche

Bradosche P. 2009. Evoluţia conceptului european de gestionare a pădurii şi incidenţa asupra silviculturii româneşti. [Evolution of the European concept of forest manage-ment and the incidence on the Romanian silviculture] In: Olenici N., Teodosiu M., Bouriaud O. (eds.), Proceedings of the conference “Sustainable forestry in a chang-ing environment“, October 23-25, 2008, Bucharest, Forest Research and Manage-ment Institute ICAS, pp. 99-116.

Abstract. It is presented a short overview of the evolution of the forest management concept since the beginning of forestry until now, at the European level, and how it affected the evolution of the Romanian forests in different periods. Highlighted are some phenomena that have negatively affected the forests and marked significant changes in how to deal with forestry, namely: overexploitation, acid rain and global climate change. Finally it is emphasizes the need, also in Romania, for the develop-ment of research programs able to give coherent answers to questions put in the front of forestry in a increasingly uncertain future.Key words: forest management, evolution, Romanian silviculture

Author. Petre Bradosche - Fr. Manoir de Lurcy, France.

,

1. Ştiinţa forestieră s-a născut în secolul al XVIII-lea în ţările de limba germană şi s-a dezvoltat, cu un puternic caracter naturalist, în secolul următor în Franţa. Ea a apărut din teama că lemnul vaEa a apărut din teama că lemnul va lipsi generaţiilor viitoare, după ce, în secolul al XVI-lea se produsese prima mare criză de lemn din Europa. Această criză, provocată de creşterea demografică, a fost amplificată de dezordinele sociale produse în Franţa de războiul de 100 de ani, iar în ţările germanice de dezvoltarea impetuoasă a industriei, care folosea lemnul drept combustibil. Mai prevăzători şi mai organizaţi, germanii s-au preocupat de timpuriu de prevenirea previ- zibilă a lipsei de lemn şi, pe lângă numeroase tratate publicate încă din secolul al XVI-lea, au înfiinţat un număr impresionant de şcoli forestiere, multe efemere, din care unele mai dăinuie şi îşi păstrează renumele până în zilele noastre. Ca un altoi pe ştiinţa forestieră germană, s-a dezvoltat şcoala franceză, aducând propria sa contribuţie, constituită din cunoştinţe aprofundate de ştiinţe naturale, în special de botanică şi de fiziologia vegetală, ajungând ca la finele secolului al XIX-lea să-şi concureze tutorele. 2. Din cele mai vechi timpuri pădurea a fost exploatată în crâng, lemnul fiind folosit mai ales drept combustibil; odată cu cererea de lemn de dimensiuni mari (în special pentru marină) tratamentul a evoluat de la crângul compus spre codru şi în acest fel s-a generalizat, pentru aproape două secole, tratamentul zis «tire et aire» (tăieri cu rezerve sau seminceri). Încă din această perioadă, se puteau distinge păduri cultivate, în care omul intervenea potrivit

,

^

Page 99: Volumul integral (.pdf)

100

unor reguli (în general prescrise pentru exploatare) şi păduri virgine sau quaşi-virgine, în care intervenţia omului era aproape nulă. În Europa, păduri virgine mai existau încă în secolul al XIX-lea în ţările din sud-estul Europei, datorându-şi existenţa lipsei căilor de acces. Pentru a cultiva pădurea, condiţia necesară este să se realizeze în prealabil lucrările de pune- re în valoare a ei, fără care intervenţia calificată a omului în pădure nu este posibilă. Acestea constau în principal din: delimitarea şi materializarea conturului pădurii, elaborarea studiului de organizare şi planificare a lucrărilor în pădure pentru ca să se amelioreze productivitatea, (amenajamentul), precum şi construcţia căilor de transport, fără care accesul în pădure şi respectiv executarea lucrărilor silviculturale nu sunt posibile. Primele rudimente de amenajament se regăsesc în rapoartele făcute cu ocazia inspecţiilor din pădurile landurilor germane.3. Începând cu a doua jumatate a secolului al XIX-lea, marele capital a fost atras de pieţele cu rentabilitate ridicată pe care le oferea exploatarea masivelor forestiere virgine, intacte, care se mai găseau în ţările din această parte a Europei. În Slovacia, Galiţia, Bucovina, Bosnia şi Ţările Române se mai găseau asemenea păduri, cu arborete îmbătrânite, inaccesibile; numai câteva căi fluviale permiteau evacuarea de cantităţi relativ reduse, de buşteni de răşinoase. Este util de ştiut cum au fost puse în valoare şi administrate pădurile din Vechiul Regat al României şi din Bucovina, începând cu a doua jumatate a secolului al XIX-lea şi până la reîntregirea României Mari. În Bucovina, smulsă ţării prin hotărârea imperiilor vecine dominante, pădurile aparţinând bisericii au rămas în proprietatea acesteia şi, fiind puse sub administraţie autonomă, erau tute- late de autoritatea imperială. Suprafaţa pădurilor Fondului bisericesc bucovinean era apreciabilă; ea reprezenta aproape o treime din suprafaţa pădurilor proprietatea Statului din Vechiul Regat. În Vechiul Regat domnitorul Cuza a adus statului, prin secularizarea averilor mânăstireşti, un important patrimoniu funciar, evaluat la ceva mai puţin de un million de ha de pădure. Acesta au fost încredinţate direct Administraţiei de stat, la început Ministerului de Finanţe, ulterior Ministerului Agriculturii, Industriei, Comerţului şi Domeniilor, fără să se stabilească politica economică a gestionarii lor. Pădurile din Bucovina au fost supuse unui rudiment de regim silvic (Orândueala lui Iosif al II-lea din 1785), cu 50 de ani mai devreme decât cele din Vechiul Regat (Legiuirea domnitorului Mihai Sturza din 1843/1847). Agenţii forestieri (silvicultori sau cu grad superior) din Vechiul Regat au fost formaţi în Franţa sau în şcolile naţionale, cei din Bucovina în şcolile din cadrul imperiului austriac. Amenajarea pădurile Fondului bisericesc (mai mult sau mai puţin detaliată) a fost complet teminată înainte de sfârşitul secolului al XIX-lea, cele din Vechiul Regat 50 de ani mai târziu. Politica forestieră urmată în cele două ţări a fost complet diferită, începând de la punerea în valoare a pădurii, a modului de valorificare a produselor şi sfârşind cu regenerarea ei. Obiectivul Administraţiei de Stat în Vechiul Regat a fost realizarea de venituri imediate, fără investiţii şi cu minimum de efort financiar (în parte şi din cauza lipsei de personal). Este de remarcat că recomandările făcute de forestieri francezi (chemaţi pentru organizarea activităţii forestiere), privind punerea în valoare (delimitarea şi materializarea fondului forestier, întocmirea de amenajamente provizorii pentru valorificarea pădurile îmbatrânite, construcţia de drumuri de acces, vânzarea lemnului prin licitaţie publică, pe număr de arbori şi nu pe suprafaţa de pădure ş.a.) nu au fost urmate şi practica dezastruoasă a concesiunilor pe suprafeţe mari şi pe termene lungi s-a continuat, timp de aproape 40 de ani, până în primul deceniu al secolului XX. Timp de zeci de ani, administraţia rigidă a Statului s-a cantonat într-un centralism şi birocratism

O situaţie deosebită prezentau pădurile din Vechiul Regat al României, situate în apropierea satelor, din care locuitorii extrăgeau, pe alese, lemnul, de care aveau nevoie, potrivit unor drepturi ancestrale. În acest fel, din numeroase păduri de câmpie şi de deal au fost eliminate exemplarele cele mai frumoase, din speciile cele mai valoroase, stejarul şi bradul.

Page 100: Volumul integral (.pdf)

101

excesiv. În Bucovina, politica Fondului bisericesc, cu prevederi pe termen lung, s-a adaptat succesiv condiţiilor pieţii adoptând o administraţie suplă, având ca preocupare punerea în valoare a pădurilor. Astfel, după o scurtă perioadă, în timpul căreia pădurile au fost puse în exploatare sub formă de concesiuni pe durate limitate la 10 ani, în scopul de a-şi asigura mijloacele financiare necesare, administraţia Fondului constatând că instalaţiile de transport construite de antreprenori nu erau satisfăcătoare şi nici durabile, a trecut la execuţia lor în regie. S-au elaborat două pro- grame de investiţii de câte 10 ani, pe baza cărora s-a obţinut finanţarea lucrărilor prin contractarea de credite pe termen lung, pe durate de 40 de ani. Instalaţiile de transport, concepute unitar pe mari unităţi forestiere, au fost realizate cu o competenţă, într-un ritm şi de o calitate care au constituit un exemplu la timpul respectiv. Executarea ansamblului lucrărilor care compun ciclul de producţie a unui arboret şi care îi asigură perenitatea: exploatarea, regenerarea şi operaţiile de cultură pe toată durata existenţii lui, au fost urmărite în Bucovina ca un tot unitar, în toată succesiunea lor, consecvent şi cu regularitate, conservând compoziţia de origine a arboretului şi perpetuarea pădurii prin specii pe care natura însăşi le selecţionase. Este necesar să se facă lectura integrală a documentelor din vremea respectivă, inclusiv a re-latărilor celor care au asistat la adunarea din 20 iunie 1897 de la Cernăuţi, pentru a se spulbera ideile greşite care sunt încă vehiculate în România. Rezultatul aplicării exemplarea a silviculturii clasice, (atât cea germană cât şi cea franceză prescriau punerea în valoare în acelaşi fel), este ilustrat prin cele trei hărţi, care arată cum s-au dispersat tăierile în cadrul ocolului silvic Suha în mai puţin de 30 de ani, ca urmare a realizării programului de construcţie a drumurilor (Fig. 1). După o perioadă în care s-au încercat diferite tratamente, cu rezultate mai mult sau mai puţin reuşite, soarta pădurilor lumii a fost marcată, începând cu cea de-a doua jumătate a secolului al XX-lea de două fenomene importante, care au perturbat substanţial ecosistemul forestier şi anume: (i) ploile acide care au afectat o parte din pădurile Europei centrale, şi (ii) deteriorareadeteriorarea generalizată a climatului la nivel planetar. Perturbări datorate factorilor abiotici (vântul, furtunile, grindina, zăpada, îngheţul ş.a.) s-au produs întotdeauna (după cum rezultă din cronica lui Hamm -1976) şi fac parte din condiţiile naturale de formare a ecosistemului forestier; o creştere a frecvenţei lor din ultima sută de ani se explică prin înregistrarea lor mai riguroasă. Este adevărat că intervenţia factorului antropic a favorizat adeseori acest lucru. Dacă silvicultura clasică s-a născut din teama ca va lipsi lemnul, silvicultura modernă se naşte din teama ca pădurea temperată1 va dispare, după cum a dispărut pădurea din Africa de nord. 4. Ploile acide, produse acum vreo 40 de ani, cu efecte dezastroase asupra pădurii temperate din Europa centrală au sensibilizat opinia europeană asupra internaţionalizării pericolului poluării atmosferei.2

În urma convenţiei de la Geneva din 1979 s-a adoptat “Programul internaţional de evaluare

1 Pădurea temperată, ocupă cea mai mare parte a fondului forestier al Europei şi se împarte în două mari zone: a. pădurea temperată rece, formată din conifere şi foioase, situată în nord-estul Europei şi pădurea de foioase şi răşinoase din centrul şi estul Europei (în care se cuprind şi pădurile României); b. Pădurea temperată de munte mijlociu şi înalt, din centrul şi apusul Europei, inclusiv pădurea din Balcani. Pădurea temperată se caracterizează printr-o structură verticală şi compoziţie foarte variabilă, este alcătuită dintr-un număr apreciabil de specii, cu o faună şi floră diversificată, cu o adaptare strictă la variaţiile sezoniere, cu numeroase perturbaţii şi stabilitate ecologică variabilă, dar cu o dinamică forestieră de succesiune intensă. Pădurea boreală din nordul Norvegiei şi al Finlandei, ca şi pădurea subtropicală, mediteraneană, prezentă în Spania, sudul Italiei şi Grecia, cu caracteristici diferite, au o pondere redusă în raport cu pădurea temperată.

Page 101: Volumul integral (.pdf)

102

Fig.

1 A

mpl

asar

ea tă

ieril

or şi

dez

volta

rea

inst

alaţ

iilor

de

trans

port

fore

stie

re în

O.s.

Suh

a (P

relu

crar

e du

pă h

arta

76

din:

J.O

plet

al “

Das

For

stlic

he T

rans

portw

esen

...”

Vie

na, 1

913)

Page 102: Volumul integral (.pdf)

103

şi supraveghere a efectelor poluării atmosferice asupra pădurilor”. S-a creat o reţea de pieţe de observare, în mai multe ţări din Europa de nord şi de vest şi prin organizarea conferinţelor mi-nisteriale intereuropeene, consacrate protecţiei şi gestionării durabile a pădurilor, s-a ajuns la generalizarea integrată a supravegherii intensive a ecosistemelor forestiere europene. Rezultatele sunt încurajatoare, precipitaţiile rămân acide dar frecvenţa lor a scăzut, sulfaţii (principala cauză a ploilor acide) au diminuat, dar depunerile de azotaţi (nitraţii produşi de circulaţia autovehiculelor şi azotaţii amoniacali produşi de agricultură) rămân la acelaşi nivel. Eutrofierea pădurilor este în progres (ceea ce contribuie la accelerarea creşterii), durata de vegetaţie se prelungeşte, climatul se încălzeşte datorită efectului de seră, compoziţia florei se modifică şi echilibrul nutriţional în solurile sărace se modifică, creşte riscul de îngheţ şi de poluare a apelor. Este evident că ecosistemele forestiere sunt în curs de modificare, ca urmare a schimbărilor produse în mediul exterior pădurii. În aceste condiţii conservarea pădurii şi gestionarea ei durabilă nu poate să neglijeze modifi- carea ecosistemului forestier în timp. Nu se mai poate vorbi de conservarea ecosistemului existent, nici de regenerarea pădurii păstrând modelele pe care natura le-a creat de-a lungul timpului în condiţii de relativă stabilitate, ci de prevederea evoluţiei lui în viitor.5. În acelaşi timp s-a constatat un nou pericol, mult mai grav, datorat intensificării încălzirii climatului ca urmare a efectului de seră. Opinia mondială s-a sesizat şi a urmat seria de conferinţe la nivel mondial, bine cunoscute. Mă voi opri asupra aceleia de la Helsinki (1993), care a abordat în mod concret problema gestionării durabile a pădurii, în funcţie de riscul previzibil. La Helsinki s-a convenit asupra următorului concept: «Gestionarea durabilă înseamnă administrarea şi utilizarea pădurilor, astfel încât să li se menţină şi amelioreze biodiversitatea, productivitatea, capacitatea de regenerare, vitalitatea, sănatatea şi să li se asigure pentru prezent şi viitor capacitatea de a exercita funcţiile multiple ecologice, economice şi sociale pertinente, la nivel local, regional şi mondial, fără a se genera prejudicii altor ecosisteme ». În lucrarea D-lui V. Giurgiu, Gestionarea durabilă a pădurilor României (Ed. Acad. Române, Buc., 2004) am avut surpriza să găsesc o modificare originală a conţinutului acestei definiţii. Autorul respectiv înlocuieşte termenul de productivitate prin stabilitate.3 Scoţând din definiţie conţinutul economic al gestionării, se elimină principala bază de existenţă a pădurii, dovedit fiind ca numai pe suportul ei economic pădurea îşi poate fundamenta durabilitatea (economic, în sensul cel mai larg posibil şi nu numai producţia de lemn). În aceste condiţii, se pune întrebarea dacă definiţia modificată mai este compatibilă cu noţiunea de gestionare.6. Silvicultura modernă, care se doreşte durabilă, a căpătat în ultimile decenii noi dimensiuni, în special ca urmare a schimbărilor fundamentale şi rapide ale factorilor abiotici. În afară de dimensiunea economică, care-şi păstrează ponderea, se adaugă cea ecologică şi cea socială. Silvicultura a inclus dintotdeauna dimensiunea timp şi implicit nu poate să ignore nici acum viitorul, respectiv modificările previzibile ale mediului economic, social şi natural în care va exista.

3 Stabilitatea este aptitudinea ecosistemului forestier de a se menţine în ciuda modificărilor intervenite din cauza unor factori exteriori obişnuiţi (doborâturi, incendii, s.a.); elasticitatea este capacitatea lui de a reveni la starea de echlibru anterior, deteriorat de o perturbare ordinară. Atât stabilitatea, cât şi elasticitatea fac parte din procesul natural de constituire şi conservare a ecosistemului forestier. Efectul de seră însă este un fenomen extraordinar, comparabil ca amploare şi consecinţe cu o interglaciatie, cu deosebirea că se produce într-un timp extrem de scurt.

2 Una dintre concluziile Congresului de la Viena din 1907 sună astfel: Dat fiind creşterea considerabilă a acizilor vătămatori răspândiţi în aer de cărbuni şi de alte materii, este de temut ca pădurile vecine să nu sufere din ce în ce mai mult; prin urmare Congresul al VIII-lea Internaţional de Agricultură de la Viena, roagă guvernele de a veghea, în modul ce vor crede de cuviinţă spre a se limita şi a se face să dispară stricăciunile cauzate pădurilor din cauza fumului şi îi supune, spre luare la cunoştinţă, deliberările congresului în această privinţă.

Page 103: Volumul integral (.pdf)

104

În legatură cu cele trei dimensiuni pe care silvicultura modernă le ia în considerare, mă voi rezuma la cea mai simplă evocare: - economia nu înseamnă numai produsele comerciale ale pădurii şi funcţiile sau servicile necomerciale pe care pădurea le oferă, ci şi valoarea fondului de producţie constituit de solul forestier şi de arboretele neexlpoatabile (a se vedea lucrarea lui M. Faustmann, din 1847); - ecologia, este un termen des utilizat, de toată lumea (în scopuri politice, de propagandă, umanitariste ş.a.), fără să fie însă definit clar. Am găsit în lucrarea lui H. J. Otto, Ecologie forestière, din 1998 o definiţie a conceptului care cred ca sintetizează cel mai bine această noţiune şi anume: «Conexiunile tuturor organismelor specifice, populaţiilor şi comunităţilor cu fluxurile de materii şi de energie, care acţionează asupra lor şi pe care ele însăşi le produc, interacţiunile lor etc. fac obiectul ecologiei sistemului». Proprietăţile esenţiale ale unui ecosistem sunt următoarele (după Kimmins 1987, citate de H.J. Otto): a) Este o unitate structurală de factori ai mediului înconjurător, vii şi fără viaţă (flora, fauna, solul atmosfera şi procesele climatice). b) Este o unitate funcţională cu un flux permanent de energie care intră şi iese din sistem, facând să se mişte un flux permanent de materii. c) Este o unitate complexă conţinând o asociaţie diversificată şi variabilă de fiinţe vii, de populaţii şi de calităţi. d) Este o unitate de echilibre instabile (echilibre de flux) ; fiinţele vii, în interdependenţa mutuală diversificată, sunt supuse la interacţiuni pozitive şi negative, constituind o reţea. e) Este o unitate dinamică, supusă la modificări în timp şi la modificări temporare a comunităţilor de specii şi a funcţionării lor. f) Este o unitate deschisă spre exterior, fără delimitare spaţială fixă, schimbând în permanenta de energie şi de materie cu mediul său înconjurator, fie sub forma vie sau fără viaţă. Fiecare pădure poate fi considerată ca un ecosistem, adică o asamblare dinamică de factori ai mediului înconjurător şi a fiinţelor vii, care se reglează el însuşi în mare măsură. El se găseşte în mod temporar în echilibru de fluxuri, supus totuşi fluctuaţiilor naturale (Fig. 2). - funcţiile şi serviciile sociale pe care le oferă pădurea, au căpătat importanţă în ultimile decenii, (activităţile recreative, protecţia apelor şi a solului, conservarea biodiversităţii) şi mai ales contribuţia pădurii la combaterea degradării climatului terestru. Cercetările din ultimile decenii, au pus în evidenţă consecinţele devastatoare ale efectului de seră produs de emanaţiile de gaze4. Contribuţia la conservarea climatului terestru este fără îndoială principalul serviciu pe care pădurea îl aduce societăţii omeneşti. Concentraţia gazelor în atmosferă a păstrat oarecare stabilitate până la revoluţia industrială de la mijlocul secolului al XIX-lea, după care creşterea s-a accelerat rapid din cauza consumului din ce în ce mai mare de carburanţi fosili, schimbării utilizării solului şi a dezvoltării fabricaţiei de ciment, amplificând efectul de seră care se traduce prin creşterea temperaturii, cu influenţă directă asupra ecosistemelor fiecărui biom terestru şi deci asupra vieţii în general pe acest pamânt. B. Saugier, în studiul despre ciclul global al carbonului, (« Rolul biosferei continentale în ciclul carbonului » 1999) estima emisia de CO2, la nivel mondial la cca.7 GtC/an şi punea în relief efectul negativ, apreciabil, al defrişărilor în raport cu schimbul global între biomasă şi atmosferă. (Fig. 3a). Mai recent (D. Lousteau, 2004) evaluează creşterea anuală la peste 8 GtC. Conferinţele la nivel mondial (Kyoto, Djakarta şi următoarele) n-au dus la rezultatele scontate şi creşterea emisiilor de CO2 continuă într-un ritm rapid. În acest bilanţ global îngrijorător, pădurea este unul dintre puţinele elemente care contribuie la diminuarea efectelor devastatoare ale civilizaţiei umane, prin sechestrarea unei părţi a carbonului din atmosferă. Contribuţia ei, deşi modestă, este cu atât mai meritorie şi rolul apără- torilor pădurii este cu atât mai apreciabil. Studii recente (C. Nys – 2002 şi P. Vallet – 2005) arată că stocul mediu de carbon sechestrat pe

4 Încă din secolul al XVIII-lea de Saussure a identificat că stratul atmosferic al pământului acţionează ca un filtru care controlează schimburile de energie între soare, pământ şi spaţiul interplanetar; în 1827 Sadi-Carnot şi Fourier au evocat eventuala amplificare a efectului de seră, datorită activităţilor antropice.

Page 104: Volumul integral (.pdf)

105

Fig. 2 Conceptul de ecosistem forestier (Sursa H.J.Otto “Ecologie forestieră”,1998, fig.1.02)

Page 105: Volumul integral (.pdf)

106

Fig. 3a Schema ciclului global al carbonului (în GtC) (Sursa: B.Sangier “Rolul biosferei în ciclul carbonului”; C.R. Acad. Agric. FR. 1999, 85, nr. 6)

Fig. 3b Evoluţia tipului de stocuri de carbon ale ecosistemelor forestiere în funcţie de vârstă (cazul unei păduri necultivate cu 100 tc/ha) (Sursa: C.Nys - Stocarea carbonului în biosfera continentală, CR-AAF, vol.88/5, 2002).

Page 106: Volumul integral (.pdf)

107

ansamblul duratei ciclului de producţie, în regim permanent, variază mult în funcţie de specie, de clasa de fertilitate a solului, de consistenţa arboretului (de la 20% la 70% între stejar şi fag, între 4% şi 14% în funcţie de clasa de fertilitate a solului) şi de vârsta arboretului. În cazul pădurilor virgine, îmbătrânite, creşterea stocării de carbon este nulă, de unde interesul pentru generalizarea pădurii cultivate (Fig. 3b). În cazul pădurii temperate europeene, al cărei ciclu de viaţă a ecosistemelor este teoretic controlat prin practicarea silviculturii, omul intervine în fiecare stadiu al ciclului de sechestrare a carbonului: (i) prin schimbarea utilizării solului, recuperând suprafeţele abandonate de alte activităţi sau improprii pentru alte culturi şi extinzând suprafaţa împădurită; (ii) prin orientarea spre codru gradinărit (fr. futaie irrégulière), în care vârstele la care sechestrarea carbonului este activă se regăsesc într-o proporţie mai mare şi prin operaţii culturale, de regenerare, întreţinere şi recoltare practicate corect şi la timp în toate pădurile cultivate; (iii) modificând probabilitatea de perturbaţie sau reducând impactul lor (atacuri de insecte, poluările locale, prevenirea incendiilor, interzicerea păşunatului, combaterea defrişărilor abuzive).7. În Franţa temperatura a crescut în ultimii 55 de ani cu 1,2°C ; în ultimile decenii s-au în- registrat cei mai călduroşi 10 ani din secolul trecut, iar precipitaţiile au o distribuţie neregulată; ele au crescut în timpul iernii şi au scăzut în timpul verii. Se pune întrebarea cu ce aproximaţie se poate prevedea schimbarea climatului şi în ce măsură această schimbare va antrena modificarea ecosistemului forestier. Grupul de experţi interguvernamental însărcinat cu evoluţia climatului (GIEC) a elaborat ipoteze asupra emisiei de gaze cu efect de seră, dar nici o probabilitate de realizare nu este asociată la aceste scenarii. Din proiectul CARBOFOR a fost totuşi reţinut scenariul B2 care se bazează pe ipoteze moderate şi ia în considerare şi evoluţia din ultimii 50 de ani. Acest scenariu prevede pentru secolul XXI o creştere generală a temperaturii şi schimbarea regimului de precipitaţii cu o diminuare în perioadele de vegetaţie şi o creştere în perioda de repaos vegetativ, ceea ce va avea ca efect un puternic stres hidric. Simulările făcute indică deplasarea zonelor de vegetaţie spre nord (cu câteva sute de km) şi în altitudine cu câteva sute de metri. Aceste schimbări vor avea efecte contrastante, pe de o parte creşterea mai rapidă în volum a arborilor datorată procentului mai ridicat de carbon şi de azot din aer, a prelungirii sezonului de vegetaţie, concomitent cu o scădere a calităţii lemnului. În aceste condiţii sunt de reconsiderat unele norme ale silviculturii, ca de exemplu, durata ciclului de producţie, care în cazul fagului realizează diametrul de 60 cm la vârsta de 85-90 de ani, în loc de 150 ani acum un secol. Din păcate, consecinţele negative sunt numeroase şi în special restrângerea arealului a nume- roase specii (Fig. 4a, 4b, 4c).8. Faţă de schimbările climatice, sunt de aşteptat schimbări în comportamentul speciilor, o aclimatizare a primei generaţii, adaptarea celei de-a doua (ca o etapă intermediară) şi in fine modificarea arealului. Ca urmare, silvicultura trebuie să-şi modifice şi ea metodele şi normele de gestionare în funcţie de previzibilele adaptări şi diversificarea genetică, ca un proces dinamic în funcţie de modificarea ecosistemului forestier. Dacă până în prezent diagnosticul unei păduri era complicat, dar fiabil, în special în ceea ce priveşte datele staţionale, în viitor problema se complică mult deoarece ecosistemul evoluează, mai ales sub efectul factorilor abiotici. La incertitudinile produse de factorii abiotici, se adaugă schimbările posibile ale comporta- mentului speciilor (care vor fi noile echilibre între plante, între organismele simbiotice sau patogene, insecte ş.a.). Studiul evoluţiei ecosistemelor devine o ecuaţie cu numeroase necu- noscute, cu atât mai greu de previzionat. Diagnosticul staţional nu mai este cert, el devine prospectiv şi luând în considerare factorii limitativi (ca de exemplu rezerva de apă, rezerva minerală ş.a.) sunt de făcut ipoteze asupra evoluţiei spre a se delimita zonele de risc. Arboretele cele mai vulnerabile sunt cele constituite din specii care s-au extins în afara sta- ţiunilor proprii.

Page 107: Volumul integral (.pdf)

108

Fig. 4c Evoluţia arealului potenţial al fagului (2005-2100). Sursa: Carbofor, Badeau et. al., 2005

Fig. 4b Evoluţia arealului potenţial al molidului (2005-2100)

Fig. 4a Evoluţia ariilor potenţiale a grupelor de specii biogeografice

Page 108: Volumul integral (.pdf)

109

Consecinţele pentru silvicultură se vor reflecta în reconsiderarea condiţiior staţionale, în alegerea speciilor (cu o netă preferinţă pentru arboretele de amestec), dozarea suprafeţei foliacee pentru a atenua stresul hidric (trebuie poate regândit regimul, ca de exemplu promovând codrul într-o formulă adaptată noilor condiţii, ca densitate, amestec de specii, structură, ciclu de producţie), adoptarea de noi referinţe în funcţie de creştere, instalarea unei reţele de supraveghere şi observaţie ş.a. Este aproape unanim acceptat, că schimbarea climatului va modifica structural amestecul speciilor şi că printr-o gestionare adecvată a acestor amestecuri s-ar putea atenua efectele nedorite ale acestui fenomen. Se deschide în acest domeniu un larg câmp de cercetare. Compoziţia specifică a unui arboret este rezultatul istoriei sale şi al mediului în care s-a desvoltat (sol, climat). Redistribuirea geografică a tipurilor de compoziţie previzionate de studiile INRA, este în realitate o mutaţie mult mai complexă (Legay, Cordonnier, Dhôte – 2007), dacă se ia în considerare că între dinamica substituirii speciilor şi evoluţia efectelor climatului s-ar putea să apară decalaje. Caracteristicile migrării speciilor (diseminarea, instalarea seminţişului ş.a.) sunt de natură diferită de cele care determină limita speciilor care se retrag (scăderea vitalităţii, mortalitatea sau eşecul regenerării), la care se adaugă schimbările probabile în comportamentul speciilor. Amestecul speciilor, condus cu prudenţă, ar putea totuşi să fie folosit ca un instrument de paliere a efectelor schimbării climatului, pentru care: (i) este necesar să se definească compoziţia luând în considerare, pentru ca acesta să fie reală, cel puţin două specii, alese ca obiectiv, să fie promovate astfel pentru ca la maturitate să ocupe, în etajul principal proporţii corespunzatoare; (ii) diferitele specii care constituie arboretul expuse la un stres să nu fie afectate în acelaşi fel. Stresul biotic este diferenţiat după specie (bioagresorii sunt, în general, adaptaţi unui număr limitat de specii, de asemenea pragul de vulnerabilitate este diferit de la o specie la alta); (iii) se apreciază ca diversitatea compoziţiei prezintă o garanţie de stabilitate prin efectul de complementaritate, oferă posibilitatea de gestionare mai suplă în timp şi în spaţiu şi poate să se realizeze o tranziţie mai uşoară introducând în arboretele vulnerabile specii adaptate condiţiilor de viitor. Silvicultura modernă trece printr-o perioadă de schimbări profunde, în care protecţia solului, alegerea speciilor, a tratamentului şi a lucrărilor de îngrijire a arboretelor, regenerarea naturală, reconsiderarea criteriilor de exploatabilitate, asigurarea biodiversităţii şi supravegherea sănătaţii pădurilor nu pot să scape cercetătorului de astăzi. 9. Se simţea nevoia să se definească un nou cadru pentru studii şi cercetare, coerent şi capabil să dea raspuns la problemele pe care viitorul îl pune pădurii. Eu nu pot exprima decât modeste sugestii:9.1. Este necesar un program naţional de urmărire şi raportare a indicatorilor gestionării durabile a pădurilor, de dorit compatibil cu cel internaţional, care să orienteze cercetările în viitor, fără de care gestiunea durabilă ramâne o vorbă goală, ca multe altele.9.2. Este de dorit cel puţin un inventar al informaţiilor necesare creării acestui program, ca de exemplu: datele cadru ale fondului forestier, informaţiile necesare despre starea de sănătate şi vitalitate a ecosistemului forestier, produsele şi serviciile pe care pădurea le poate furniza, biodiversitatea şi evoluţia ei, funcţiile de protecţie care revin gestiunii forestiere şi funcţiile socio-economice proprii păduri. Inventarierea, a făcut progrese enorme graţie informaticii şi este capabilă să furnizeze în timp record informaţii punctuale sau sintetice asupra pădurii, pe suprafeţe restrânse, de câteva ha sau pentru masive de mii de ha. Se poate cunoaşte situaţia unei păduri la nivelul fiecărui arbore prin teledetectarea aeriană sau prin satelit, sau se poate face inventarul integral, mai mult sau mai puţin detaliat, limitat la câteva date sau complet, prin diverse sisteme de eşantionaj. Este evident că urmărirea indicatorilor stabiliţi la nivel european, nu se poate face decât prin inventarieri periodice orientate, în funcţie de obiectivele fixate în fiecare perioadă.9.3. Este nevoie să se adapteze instrumentul de organizare şi planificare a lucrărilor silvice (fie el amenajament sau plan de gestiune) la noile condiţii : economice, ecologice şi sociale. Calat pe acest model trebuie modernizate mijloacele de culegere a datelor şi de prelucrare periodică a

Page 109: Volumul integral (.pdf)

110

informaţiilor. Cu titlul de exemplu se poate cita Elveţia, ţara reputată pentru calitatea gestionării pădurilor sale. Prin Legea forestieră din 1993, s-a modificat sistemul de gestionare a pădurilor prin adoptarea unui model de planificare, care înglobează toate lucrările aferente acestei activităţi: determinarea obiectivelor, elaborarea planurilor, adoptarea deciziilor, controlul lucrărilor, precum şi colectarea informaţiilor. Spre deosebire de amenajamentul tradiţional care avea ca scop planificarea şi controlul producţiei de lemn, planificarea actuală urmăreşte să garanteze că pădurile vor putea să îndeplinească, în mod durabil toate funcţiile care se cer în prezent de la ea, fără ca volumul exploatat să depăşească creşterea anuală. Manualul de planificare forestieră (1996), reglementează, în detaliu, sistemul de planificare, lasând libertatea de realizare factorilor care au sarcina să-l realizeze. El nu are caracterul unei instrucţiuni rigide, dimpotrivă presupune capacitatea de înţelegere şi de analiză a celor care o vor aplica şi mai ales un înalt spirit civic. Prin el se defineşte conceptul de planificare şi se precizează cadrul pentru realizarea planificării şi controlului în trei părţi : sistematica, metoda şi organizarea planificării. Planificarea constitue baza pentru gestiunea durabilă, iar parametrii de control definesc ţelurile şi conciliază conflictele de interese. Se consideră că gestionarea şi conservarea pădurii, nu pot fi abordate separat şi că trebuie să ţină seama de constrângerile politice, economice, culturale şi juridice. Planificarea este descentralizată la nivelul cantoanelor şi se realizează prin Planul director la nivelul Serviciului forestier cantonal şi prin Planul de gestiune la nivelul proprietarilor de pădure. Producţia de lemn (prin caracterul ei regenerabil) rămâne o cerinţă importantă, dar accentul se deplasează spre ameliorarea condiţiilor de exploatare pentru ca să se asigure conservarea ecosistemului. În acest fel, clasarea în păduri de producţie şi de protecţie pierde din importantă, oricare pădure are în acelaşi timp funcţie de producţie şi de protecţie, importantă fiind conservarea ecosistemului şi pe această cale funcţia ei de protecţie este asigurată. 9.4. Silvicultura durabilă. Mi-am pus întrebarea dacă expresia nu este un pleoanasm. Răspunsul mi-a venit din două exemple contradictorii: (i) primul, din istoria silviculturii româneşti, când s-a aplicat timp de câteva decenii, în secolul al XIX-lea, un tratament (tire et aire), deja abandonat în apusul Europei ca dăunator şi pe această cale, s-a degradat o parte din codrii de stejar de altă dată; (ii) al doilea este recent, din Franţa, şi îl constitue refacerea masivului păduros din Parcul Natural Regional Morvan. Până în secolul al XIX-lea, această suprafaţă imensă era ocupată de un crâng neproductiv, de calitate mediocră, care servea la aprovizionarea cu lemn de foc a Parisului. După război, depopularea accentuată a regiunii şi schimbarea condiţiilor economice au condus la schimbarea folosirii solului; crângul a fost înlocuit prin importante plantaţii de răşinoase. Acestea se prezintă astăzi sub forma unui impresionant codru regulat în curs de realizare (Fig.5). Masivul Parcului Natural Regional Morvan, în suprafaţă de 125.000 ha este proprietate privată în proporţie de 85% (peste 25 000 de proprietari). El este situat într-o regiune de munte, de joasă altitudine (902 m), cu un climat umed şi soluri acide. În plantaţiile făcute acum 50 de ani, s-a efectuat prima răritură acum două decenii şi în prezent se pregăteşte cea de-a doua, cu o producţie de cca. 300.000 m3/an; se prevede că, după ce arboretele vor ajunge la maturitate, în urmatoarele trei decenii, ca producţia să se tripleze. Masivul forestier este străbătut de o reţea densă de drumuri publice, dintre care, numeroase sunt drumuri comunale; dimpotrivă, reţeaua de drumuri forestiere împietruite, în interiorul pădurii este cu totul insuficientă şi se prevede desvoltarea ei. Creşterea apreciabilă a producţiei în următorii ani necesită un important efort financiar pentru construcţia noilor drumuri forestiere, care în mare majoritate vor fi ramificaţii racordate direct la reţeaua de drumuri publice (Fig. 6). Această perspectivă, care aduce o intensificare considerabilă a traficului pe drumurile comunale (în general de calitate mediocră), a incitat organele administrative şi forestiere, să analizeze împreună problema transportului de lemn, identificându-se 211 km drumuri comunale prioritare pentru transportul lemnului. Se ia în considerare că, dezvoltarea activităţii forestiere, poate şi

Page 110: Volumul integral (.pdf)

111

trebuie să contribuie la desvoltarea regiunii, din punct de vedere economic şi social, şi pentru acest motiv Parcul Natural Regional Morvan este inclus în planurile de desvoltare regională a Franţei şi va fi stimulat şi subvenţionat de Stat şi de Uniunea Europeană. Analiza şi sinteza tuturor observaţiilor privind drumurile comunale, permit să se stabilească punctele dificile (poduri cu portanţă insuficientă, traversări de sate cu străzi înguste ş.a.) şi îmbunătaţirile ce vor trebui făcute. În acest scop s-a întocmit «Carta transportului lemnului», prin

Fig. 5 Plantaţie de răşinoase din anii 1950, 29,4 ha aparţinând unui singur proprietar. Prima răritură realizată în anii 1980-90; a doua răritură prevăzută pentru 2009. Drum lung de 320 m, împietruire 3,5 m, 50 cm gros. Cost total 13216 euro (41297 E/km). Subvenţie 40%; cheltuială proprietar 271 E/ha)

Page 111: Volumul integral (.pdf)

112

Page 112: Volumul integral (.pdf)

113

integrarea reţelei de transport forestier în ansamblul căilor de transport regional având ca obiectiv elaborarea strategiei de ameliorare a condiţiilor de transport în condiţii de securitate, coordonarea în acest scop a obiectivelor şi mijloacelor fiecărui partener, precizarea obiectivelor comune şi obligaţiilor fiecărui participant. În cadrul schemei directoare a drumurilor strategice sunt determinate zonele de producţie forestieră şi identificate axele de transport, este verificată starea drumurilor comunale pe care se prevede transportul lemnului, se identifică locurile de depozitare şi se stabilesc îmbunătăţirile necesare. 9.5. Închei comunicarea mea cu ceea ce cred că reprezintă mai nobil din munca unui forestier şi anume cultura pădurii. În ţările europene, în care se face totuşi silvicultură chiar şi în pădurile particulare, orientarea este spre tratamente fine. Se urmăreşte realizarea de arborete de codru grădinărit, compus dintr-un amestec de specii corespunzătoare staţiunii (Fig.7). În crângul compus se practică «silvicultura pe arbore» folosind rezervele şi se caută în acest fel, prin cicluri scurte de 8 la 12 ani să se tindă spre codru grădinărit. Această conversiune este cu atât mai atractivă în crângurile în care rezervele, mai ales de stejar, au deja diametre variate. În codru regulat se recomandă conducerea spre codru grădinărit, prin rărituri periodice şi în cantităţi moderate, recoltând arborii maturi şi asigurând spaţiul suficient pentru exemplarele de viitor. Un arbore nu este recoltat decât dacă este ajuns la maturitate şi dacă eliminarea lui permite ameliorarea creşterii unui alt arbore mai bun decât el, sau dacă este bolnav sau contagios. Respectarea acestor intervenţii grădinărite modifică în mod progresiv acoperirea arboretului şi permite desvoltarea unei regenerări naturale în subetaj. În arborete de răşinoase plantate, conversiunea spre codru grădinărit, poate să înceapă odată cu primele rărituri. Toate aceste intervenţii, de tip grădinărit, necesită o reţea de acces densă şi judicios alcătui- tă, amplasată astfel, ca deteriorarea solului, seminţişului, arborilor şi a cursurilor de apă să fie minimă. S-ar putea spune că silvicultura modernă este orientată spre calitate, urmărindu-se realiza- rea de arbori cât mai valoroşi, valorificarea restului de lemn din pădure fiind asigurată, prin prelucrările industriale şi prin folosirea lui drept combustibil. În acest sens au apărut asociaţiile de forestieri care promovează silvicultura apropiată de natură, dintre care cea mai cunoscută în

Fig. 7 Codru grădinărit (amestec de duglas molid şi fag)

Page 113: Volumul integral (.pdf)

114

Europa, este « Pro Silva ». Obiectivele de bază ale silviculturii promovată de această asociaţie sunt două: (i) producţia rentabilă şi continuă la nivel de parcelă, de lemn de dimensiuni mari, de calitate, din specii variate şi produse din seminţiş natural cu cele mai mici costuri şi cu cele mai puţine riscuri; (ii) protecţia ecosistemului forestier natural şi a productivităţii sale (respectiv a biodiversităţii forestiere naturale a staţiunii, protecţia apei şi a solului). Se practică sistemul «QD » (Qualification-Dimesionnement), care pleacă de la principiul că în pădure focalizarea investiţiilor şi a beneficiilor este rentabilă dacă se aplică asupra unui număr redus de arbori de calitate excepţională, producând lemn de calitate cu cel mai redus cost. Principalele căi pentru atingerea acestor obiective se pot rezuma astfel:- să aplice codrul grădinărit şi să atingă sau să menţină un amestec, cu predominarea speciilor autohtone;- să atingă şi/sau să menţină un capital pe picior optim posibil, care să permită o bună funcţionare a ecosistemului, favorabil regenerării, recoltându-se numai creşterea care permite realizarea acestui obiectiv;- recoltarea individuală a arborilor groşi de calitate ajunşi la dimensiunea de exploatabilitate (şi nu în funcţie de vârstă), făcând rărituri energice de la vârste tinere;- să conserve spaţiul necesar şi poziţionarea arborilor de viitor pentru a se obţine o bună dezvoltare a lor;- să regenereze arboretele pe cale naturală, utilizând seminţişul natural în toată diversitatea lui şi admiţând plantaţiile numai local, în cazuri speciale;- să formeze semintişul sub acoperire şi să folosească procesul natural de elagaj şi de calificare a arborilor;- să lase să se dezvolte procesul de succesiune natural al speciilor, (pioniere - semiumbră – umbră) privilegiind speciile autohtone şi diversitatea lor genetică;giind speciile autohtone şi diversitatea lor genetică;- se axeze producţia pe lemnul gros de calitate;- să menţină în pădure arborii remarcabili, de mare valoare ecologică, incluzând proporţii suficiente de lemn mort şi de lemn scorburos (locuit de păsări, lilieci ş.a);- să vegheze în mod deosebit la protecţia solului (în special argilo-nisipos) şi a arborilor şi a sistemului lor de rădăcini superficiale, în timpul exploatărilor, prin stabilirea judicioasă a reţelei de colectare;- în caz de schimbare a regimului sau a tratamentului să se exploateze prin tăieri în benzi înguste sau prin tăieri rase pe suprafeţe cât mai mici. Pentru realizarea acestei silviculturi « Pro Silva » foloseşte două nivele de gestiune:a. documentaţia adaptată pentru a răspunde scopului (corespunzător amenajamentului) prin care se definesc obiectivele, se estimează capitalul pe picior şi creşterea, precum şi prevederile de încasări şi de cheltuieli;b. gestiunea cotidiană la nivelul parcelelor (sau grupuri de parcele dacă sunt mici), urmărindu-sedu-se şi controlând menţinerea capitalul optim prin regenerare naturală, amestecul speciilor şi gestiunea calităţii arborilor de dimensiuni mari.

***

Doresc să-mi exprim convingerea că silvicultura pentru a fi durabilă, trebuie să se sprijine pe o cercetare orientată spre viitor, care să o pregătească pentru a înfrunta modificările profunde pe care le vor suferi ecosistemele forestiere. Previziunea este primordială pentru o activitate ale cărei rezultate se văd după zeci de ani; tratarea cu atenţie şi discernamânt a fiecărui element nou care apare este esenţială. Să nu ui- tăm că pericolul ploilor acide a fost semnalat încă din 1907, catastrofa producându-se 60 de ani mai târziu; de asemenea efectul de seră pe care îl trăim astăzi a fost întrevăzut acum un secol şi jumătate.

Page 114: Volumul integral (.pdf)

115

Nutresc speranţa că Institutul de cercetări se va ridica la nivelul cerinţelor actuale şi va crea bazele unei silviculturi moderne, completând opera ilustrului său întemeietor, prof. M. Drăcea, care a creat baza de dezvoltare a cercetării ştiinţifice forestiere românesti.

Bibliografie

Academie d’Agriculture de France 2002. Comptes rendus – Stockage du carbone dans les forêts tempérées, Vol. 88, 5.Bradosche, P. 2008. Contribuţia şcolii franceze la formarea silviculturii româneşti, 234 p.CRPF 2008. Guide du sylviculteur en Morvan, Journée de Formation, 08.06.2008.Legay, M., Mortier, Fr. 2006. La forêt face au changement climatique, ONF – INRA, Dossiers forestiers 16Otto, H.J. 1998. Ecologie forestière, IDF, 397 p. Anonim 2002. Forêt, Economie et Environnement, Raport de la Commission des Comptes et de l’Economie et de l’Environnement, IFEN, 206 p.

Page 115: Volumul integral (.pdf)

116

Page 116: Volumul integral (.pdf)

117

ICAS 2008 Conference October 23-25, 2008 Bucharest, Romania

Resursele de biomasa lemnoasa din România - sursa alternativa de energie

G. Budau, M. Ispas, M. Câmpean

Budău G., Ispas M., Câmpean M. 2009. Resursele de biomasă lemnoasă din Româ-nia - sursă alternativă de energie. [Wood biomass resources of Romania – an alterna-tive source of energy]. In: Olenici N., Teodosiu M., Bouriaud O. (eds.), Proceedings of the conference “Sustainable forestry in a changing environment“, October 23-25, 2008, Bucharest, Forest Research and Management Institute ICAS, pp. 117-122.

Abstract. Wood biomass supplied from the forests of Romania can and should be used also in the future as a source of renewable and less polluting energy. The paper shows the main additional resources of wood biomass, other than those for primary and final processing of wood: resources from forest exploitation (still unused slash originating from the tree crown and root), but also the remains of the primary pro-cessing (cutting logs into lumber) etc. There are highlighted the global trends and the possibilities of wood waste recovery by pelletizing and briquetting as well as the possibilities to use this wood biomass for the production of renewable and less pol-luting energy. Furthermore, Romania’s strategy concerning the energy for the next period must be aligned to the European standards, including the production of at least 12% of the total energy consumption from renewable sources by 2010.Key words: energy, alternative sources, wood biomass

Authors. Gavril Budău, Mihai Ispas, Mihaela Câmpean - Transilvania University of Braşov, Faculty of Wood Industry, 29 Eroilor Avenue, 500036 - Braşov, Romania.

Introducere Primul deceniu al Mileniului III a debutat cu o serie de probleme globale legate de resursele de energie şi, mai ales, creşterea spectaculoasă a preţului produselor petroliere şi a gazului metan. Nu mai puţin importante s-au dovedit a fi problemele de mediu, poluarea şi efectele ei pe termen mediu şi lung devenind o problemă strategică globală. În acest context, orice iniţiativă referitoare la găsirea de resurse energetice puţin poluante şi accesibile ca preţ devine necesară şi interesantă. Dacă în urmă cu un deceniu (1990-2000), cercetările pe plan european în domeniul valorificării masei lemnoase erau orientate spre industria materialelor compozite şi a prelucrării chimice a lemnului (Olărescu 2007), în ultimii ani, la nivel global, se pune accentul pe “gestionarea durabilă a pădurilor”, respectiv pe valorificarea potenţialului real al resurselor lemnoase secundare. Regulamentul Consiliului European referitor la Măsurile de Promovare a Conservării şi Gestionării Pădurilor evidenţiază că resursele secundare cu potenţial de valorificare alternativă (exclusiv mobilier, materiale compozite, celuloză etc.) reprezintă aproximativ 10% din totalul rezervelor de masă lemnoasă şi recomandă extinderea cercetărilor în domeniu (Olărescu 2007).

^ ^

^

^

^

Page 117: Volumul integral (.pdf)

118

În România, Ministerul Agriculturii, Pădurilor şi Dezvoltării Rurale a elaborat un Program Forestier Naţional (http://www.mapam.ro 2005) care prevede, între altele, şi “iniţierea unor acţiuni susţinute de valorificare a deşeurilor din lemn”, inclusiv a rumeguşului. Aceste măsuri vizează atât limitarea poluării cât şi diminuarea tăierilor din păduri. În concluzie, abordarea problematicii resurselor de biomasă lemnoasă ca resursă alternativă de energie implică studierea caracteristicilor şi potenţialului de resurse secundare de masă lemnoasă. O resursă energetică ideală ar fi aceea care să fie regenerabilă şi nepoluantă sau cu un grad de poluare mic. O astfel de resursă poate fi biomasa lemnoasă.Utilizată din cele mai vechi timpuri ca sursă de căldură, biomasa lemnoasă poate şi trebuie să fie, şi în viitor, reconsiderată ca importantă sursă de energie (de căldură) pentru că este regenerabilă şi, în procesul de combustie, puţin poluantă. Pădurea este o veritabilă “uzină vie” producătoare de biomasă lemnoasă – în principal – şi biomasă vegetală, în general. Arborii, arbuştii şi ceilalţi constituienţi ai fitocenozelor forestiere au însuşirea de a transforma energia solară, în procesul fotosintezei, în energie chimică acumulată îndeosebi sub formă de lemn, dar şi sub forma altor constituienţi: coajă, frunze, flori, fructe etc. Lemnul este definit, conform STAS 5125-89, ca fiind “totalitatea ţesuturilor secundare de rezistenţă, conducere şi depozitare, situate între coajă şi măduvă, care constituie partea principală a trunchiului, ramurilor şi rădăcinii plantelor lemnoase”. În terminologia forestieră, lemnul este definit şi ca “material organic natural, de origine vegetală, constituit din celule cu membrane lignificate” (Beldeanu 1999). Dacă în ultimul secol al mileniului trecut, în perioada dezvoltării industriilor prelucrătoare, folosirea lemnului pentru foc, pentru producere de energie a fost considerată “cea mai primitivă utilizare a lemnului”, astăzi, se conştientizează tot mai mult avantajele utilizării deşeurilor de la prelucrarea lemnului – rumeguşul şi resturile de prelucrare. Aceste avantaje nu se rezumă numai la aspectul economic, ci vizează, în principal, aspecte ecologice. Prin arderea rezidurilor de lemn ce apar în procesele de prelucrare mecanică (rumeguş, talaş, aşchii, resturi de fabricaţie etc.) se elimină în atmosferă dioxidul de carbon care, prin procesul de fotosinteză al plantelor verzi, poate reintra în circuitul biologic natural. Cenuşa rezultată (mai puţin de 2% din masa iniţială!) este nepoluantă pentru sol, putând reintra în circuitul biologic al solului. Prin urmare, dioxidul de carbon emis în atmosferă pe durata combustiei unei cantităţi de biomasă lemnoasă a fost anterior absorbit de către arbore, pe dutata ciclului său de viaţă (circuitul închis al carbonului)! Având în vedere faptul că numai o parte din arbore este utilizat pentru combustie (< 20%) şi că, logic, nu este posibil să “arzi” mai mulţi arbori decât cei existenţi, prin circuitul carbonului în natură ar trebui să se reducă concentraţia de CO2 din atmosferă datorită fotosintezei. În cazul utilizării de combustibili fosili (petrol sau cărbune) aceştia emit în atmosferă CO2 care s-a stocat pe durata a milioane de ani iar emisia acestuia în atmosferă reprezintă principala cauză a “efectului de seră”. Cercetări recente au stabilit că, dacă o casă familială îşi schimbă sistemul de încălzire de la motorină (sau combustibil lichid) la sistem de încălzire pe bază de granule de lemn (pellets), de exemplu, emisia de CO2 în atmosferă s-ar reduce cu 4,8 t/an, iar dacă s-ar trece de la gaz natural la încălzirea cu granule de lemn, emisia de CO2 s-ar reduce cu ≈ 2,5 t/an (Budău & Cismaru 2004).

Resursele secundare de biomasa lemnoasa din România

După cum este binecunoscut, resursa principală de biomasă lemnoasă din România o reprezintă fondul forestier. Fondul forestier al României cuprinde toate suprafeţele de teren acoperite cu păduri, terenurile destinate împăduririi şi cele care deservesc activităţi de gospodărire a pădurilor: pepiniere silvice, drumuri forestiere, rezervaţii etc. Suprafaţa fondului forestier al României, la nivelul anului 2003, era de 6,4 milioane hectare,

^ ^

Page 118: Volumul integral (.pdf)

119

respectiv 27% din suprafaţa totală a ţării (Sbera 2003). De menţionat că ponderea fondului forestier în România este mai mică decât media europeană, 32% din suprafaţa Europei fiind ocupată cu păduri, şi decât cea mondială, suprafaţa globului pământesc fiind acoperită cu păduri în proporţie de aproximativ 29%. Deşi ca pondere a suprafaţei fondului forestier România se situează sub media europeană şi mondială, este de menţionat că masa lemnoasă totală, estimată, a pădurilor din România atinge aproximativ 1,3 miliarde m3, adică o medie de 206 m3/ha pădure, faţă de media europeană de 105 m3/ha şi cea mondială, de numai 65 m3/ha (Budău & Cismaru 2004). Acest lucru se datoreşte, în principal, creşterii medii anuale pe hectar, care atinge valori medii de 5,6 m3, faţă de media europeană care este sub 3 m3. Creşterea medie anuală de 5,6 m3/ha înseamnă creştere totală anuală, pentru cele 6,4 milioane ha de pădure, de 34,7 milioane m3 masă lemnoasă (Sbera 2003). Dacă din punctul de vedere al suprafaţei fondului forestier România se află pe locul 17 în Europa, din punct de vedere al volumului de masă lemnoasă pe picior – sau fondul de rezervă de masă lemnoasă pe picior – România se situează pe locul 3 în Europa, după Suedia şi Finlanda! Referitor la productivitatea pădurilor din România, pe baza căreia se calculează cota anuală de tăiere, aceasta este, la nivelul anului 2003, de numai 18,5 milioane m3/an, cu tendinţă de creştere în următorii ani la 20-21 milioane m3 (Sbera 2003). Principalele specii lemnose existente în fondul forestier al României şi ponderile acestora în totalul fondului forestier sunt prezentate în tabelul 1 (Sbera, 2003). Arborii ca principali constituienţi ai fitocenozelor forestiere, reprezintă şi principala sursă de biomasă lemnoasă. La un arbore se remarcă două părţi componente, purtătoare de biomasă lemnoasă: rădăcina şi tulpina. La rândul ei, tulpina este alcătuită din trunchi şi coroană (Beldean 1999). Rădăcina – reprezintă partea subterană a arborelui, serveşte la fixarea acestuia în sol, precum şi la extragerea apei şi sărurilor minerale din sol. Proporţional cu volumul arborelui, rădăcina reprezintă între 3-21% din acesta. Tulpina – partea aeriană a arborelui, este alcătuită din trunchi şi coroană. Trunchiul reprezintă porţiunea care se dezvoltă de la nivelul solului până la coroană şi constituie principala sursă de biomasă lemnoasă. Raportat la volumul de biomasă lemnoasă al unui arbore, trunchiul reprezintă între 60-90% din acesta. Este de menţionat că, în literatura de specialitate (Beldeanu 1999), porţiunea din tulpina arborelui care la doborârea acestuia rămâne la suprafaţa solului poartă denumirea de cioată şi împreună cu rădăcina care rămâne în sol formează buturuga. Aceasta, adică buturuga, reprezintă ca pondere în volumul total al arborelui, 5-21% şi este puţin valorificată la ora actuală (în cazul nucului, lemnul de buturugă este valorificat pentru obţinerea furnirului de rădăcină). Coroana reprezintă partea superioară a tulpinii arborelui şi este alcătuită din ramurile de diferite ordine, frunze, flori şi fructe. Proporţia de lemn ce revine coroanei din volumul total al arborelui variază în funcţie de specie şi reprezintă între 5-20% din volumul total de biomasă lemnoasă al unui arbore. În tabelul 2 este prezentată proporţia de biomasă lemnoasă în trunchi, coroană şi

Specificaţia U.M.Ponderea în total

fond forestier Principalele specii lemnoase

Răşinoase % 30,5 Brad, Molid, Larice, PinFag % 32,0 FagStejar % 19,0 Stejar, Gorun, Cer, GârniţăAlte specii de foioase % 18,5 Plop, Salcâm, Carpen, Cireş, Paltin, Frasin,

Nuc, Anin, Tei, Ulm etc.TOTAL % 100 Răşinoase şi foioase

Tabel 1 Principalele specii lemnoase existente în fondul forestier al României şi ponderile acestora în totalul fondului forestier

Page 119: Volumul integral (.pdf)

120

rădăcină pentru câteva din speciile lemnoase de importanţă industrială din România (Beldean 1999). Cunoaşterea părţilor componente producătoare de lemn ale unui arbore şi, mai ales, ponderea acestora în volumul total de biomasă lemnoasă reprezintă o importanţă deosebită pentru investigarea unor noi domenii de utilizare a biomasei lemnoase şi a disponibilului de biomasă lemnoasă la un moment dat. Analizând datele din tabelul 2 se poate înţelege de ce, din totalul de rezervă de masă lemnoasă dată de creşterea anuală a pădurilor României şi estimată la 34,7 milioane m3, numai o cantitate de 18,5 milioane m3 este introdusă în circuitul industrial, adică o pondere de circa 53-60%! Iată, deci, o rezervă de masă lemnoasă de circa 40-47% din disponibilul anual asigurat de fondul forestier al României care poate – şi, în viitorul apropiat va trebui – să fie utilizată în regim industrial şi pentru producerea de energie. Aceste procente reprezintă cantităţi de biomasă lemnoasă foarte mari, de 16-17 milioane m3 anual ! Din tabelul 2 rezultă că ponderea de biomasă lemnoasă din corona arborilor (între 5-20% !) constituie, un element de interes pentru valorificarea acesteia, fiind mai uşor de realizat la doborârea arborilor şi extragerea trunchiului din parcela de exploatare. În ceea ce priveşte biomasa lemnoasă din rădăcină, deşi importantă cantitativ, datorită dificultăţilor de extragere din sol, posibilităţile de valorificare sunt limitate.Interesul pentru valorificarea crengilor, ca parte componentă a coroanei, deşi mai mare în ultimul timp, nu s-a dezvoltat suficient şi datorită unor factori obiectivi, cum ar fi tehnicile de măsurare mai complicate şi variaţia procentuală a volumului de crengi, pentru arborii cu aceleaşi dimensiuni, funcţie de poziţia în arboret. Cercetări recente privind evaluarea volumului crengilor pentru diferite specii lemnoase (Olărescu 2007) au evidenţiat că: din punct de vedere al valorificării industriale, prezintă interes numai crengile cu diametru mai mare de 2cm; pentru toate speciile lemnoase studiate, volumul crengilor variază în raport cu diametrul arborelui, în sensul creşterii volumului de crengi proporţional cu creşterea diametrului; la acelaşi diametru de bază, procentul crengilor scade cu creşterea înălţimii arborelui. Pentru stabilirea potenţialului de biomasă lemnoasă din crengi, raportat la volumul total de masă lemnoasă exploatată anual, s-a elaborat un model matematic (Olărescu 2007) pentru: calcularea diametrului mediu la vârsta exploatabilităţii; a înălţimii medii a arborilor ajunşi la exploatabilitate, funcţie de diametrul mediu şi a volumului crengilor în funcţie de procentul de crengi şi de volumul arborelui. Utilizând şi tabelele de cubaj pentru crengi, procentul fiecărui sortiment dimensional al crengilor în funcţie de specie şi diametrul mediu la exploatabilitate, pe baza modelelor matematice s-a putut stabili (Olărescu 2007) posibilitatea anuală a cantităţilor de crengi din principalele specii din România: fag, brad şi molid. Rezultatele sunt prezentate sistematic în tabelul 3, în care semnificaţia

Specia Proporţia de lemn [%] conţinută în:Trunchi Coroană Rădăcină

Molid 73-83 8-11 9-16Brad 74-86 7-10 7-16Pin 69-80 8-10 12-21Larice 78-88 6-8 6-14Stejar 64-78 10-20 12-16Fag 62-76 10-20 14-18Plop 80-90 5-10 5-10Salcâm 76-88 7-14 5-10Mesteacăn 78-90 5-10 5-12Frasin 61-75 12-18 13-21

Tabel 2 Proporţia biomasei lemnoase în trunchi, coroană şi rădăcină (Beldeanu 1999)

Page 120: Volumul integral (.pdf)

121

notaţiei indicatorilor este următoarea: Dm.expl. – diametrul mediu la vârsta exploatabilităţii; hm.expl. – înălţimea medie a arborilor la vârsta exploatabilităţii; Varbore – volumul arborelui la vârsta exploatabilităţii; Pcrengi – procentul de crengi raportat la volumul arborelui; Vcrengi – volumul crengilor; Posspecie – posibilitatea anuală a speciei; Poscrengi – posibilitatea anuală a crengilor. De asemenea, pe baza algoritmului elaborat (Olărescu 2007), s-a putut determina posibilitatea anuală a celor trei specii (fag, brad, molid) cu pondere de peste 59% din fondul naţional, pentru diferite sortimente dimensionale de crengi: pentru răşinoase – diametre medii între 1-5 cm; pentru fag – diametre medii de 2-14 cm. Rezultatele estimărilor sunt prezentate în tabelele 4-6.

Concluzii

Resursele secundare de biomasă lemnoasă din România sunt semnificative ca volum (numai crengile din principalele specii reprezintă peste 3 milioane m3/an !) şi importanţa lor economică nu mai poate fi ignorată. Evident că, potenţialul fondului forestier din România este mult mai mare, luând în considerare şi restul speciilor lemnoase ( 41%) precum şi biomasa lemnoasă rezultată anual din activităţi culturale, de întreţinere a pădurilor. Găsirea soluţiilor tehnice de recuperare a biomasei din rădăcini poate contribui cu o suplimentare de 15-18% din volumul de masă lemnoasă exploatată. Cercetările privind găsirea de noi metode de determinare a cantităţilor de masă lemnoasă secundară disponibilă precum şi prezentarea unor modele matematice de calcul reprezintă un important demers în sensul valorificării masei lemnoase secundare.

Indicatorul U.M. Specia Fag Molid Brad

Dm,expl, cm 36 40 36hm.expl. m 26 36 26Varbore m3 1,36 1,993 1,247Pcrengi % 16 4,2 5,8Vcrengi m3 0,21056 0,0837 0,0723

Posspecie mil.m3/an 5,797 4,301 0,935

Poscrengi mil.m3/an 0,2975 0,180642 0,05423

Tabel 3 Posibilitatea anuală a cantităţilor de crengi din principalele specii din România (Olărescu 2007)

Indicatorul U.M. Specia: FAGDiametrul sortimentului cm 2…3 3…5 5,,,8 8…10 10…12 12…14 > 14

Psort,crengi % 20 24 17 13 14 8 4Vsort,crengi m3 0,0421 0,0505 0,0358 0,0274 0,0295 0,0168 0,0084

Possort.crengi mii.m3/an 598,4 718,08 508,64 388,96 418,88 239,36 119,68

Tabel 4 Posibilitatea anuală a sortimentelor dimensionale ale crengilor de fag (Olărescu 2007)

Indicatorul U.M. Specia: MOLIDDiametrul sortimentului cm 1 2 3 4 5Psort,crengi % 8 42 36 11 3Vsort,crengi m3 0,0067 0,0352 0,0301 0,0092 0,0025Possort.crengi mii.m3/an 14,451 75,870 65,031 19,871 5,419

Tabel 5 Posibilitatea anuală a sortimentelor dimensionale ale crengilor de molid (Olărescu 2007)

Page 121: Volumul integral (.pdf)

122

Cercetările privind biometria crengilor, deşi au evidenţiat că precizia determinărilor este relativ redusă, au demonstrat utilitatea tabelelor de cubaj al crengilor, funcţie de specie, diametrul şi înălţimea arborilor. Valorificarea biomasei lemnoase din crengi şi rădăcini se poate întâlni atât la fabricarea materialelor compozite pe bază de lemn, pentru fabricarea pastei de fibre de lemn etc., cât şi pentru producţia de energie termică, prin combustie, fie sub formă brută fie procesate prin brichetare sau peletizate (realizare de microbrichete sau peleţi).

Bibliografie

Beldeanu, E. 1999. Produse Forestiere şi Studiul Lemnului. Editura Universităţii “Transilvania” din Braşov.Budău, G., Cismaru, I. 2004. Biomasa lemnoasă, sursă complementară de energie regenerabilă şi puţin poluantă. În Buletinul Simpozionului “Cadru organizatoric, probleme şi metode de soluţionare pentru aplicaţii energetice eficiente în diferite tipuri de clădiri din România”. Editura Universităţii Transilvania din România, pp 153-161.Olărescu, A. 2007. Lemnul din crengi. Structură, proprietăţi şi mod de valorificare. Editura Universităţii Transilvania din Braşov.Sbera, I. 2003. Perspectivele de dezvoltare a industriei de exploatarea şi prelucrarea lemnului în România. În Buletinul Conferinţei Naţionale “Ştiinţa şi Ingineria Lemnului în Mileniul III”. Braşov 20 – 21 Noiembrie 2003.Anonim 2005. Program Forestier Naţional, Ministerul Agriculturii, Pădurii şi Dezvoltării Rurale, http://www.mapam.ro.

Indicatorul U.M. Specia: BRADDiametrul sortimentului cm 1 2 3 4 5

Psort,crengi % 7 46 37 8 2Vsort,crengi m3 0,0051 0,0333 0,0268 0,0058 0,0014Possort.crengi mii.m3/an 3,796 24,946 20,065 4,338 1,085

Tabel 6 Posibilitatea anuală a sortimentelor dimensionale ale crengilor de brad (Olărescu, 2007)

Page 122: Volumul integral (.pdf)

123

ICAS 2008 Conference October 23-25, 2008 Bucharest, Romania

Current structure and growth in diameter of horn-beam stands in northeast Bulgaria

H. Tsakov, A. Delkov

Tsakov H., Delkov A. 2009. Current structure and growth in diameter of hornbeam stands in northeast Bulgaria. In: Olenici N., Teodosiu M., Bouriaud O. (eds.), Pro-ceedings of the conference “Sustainable forestry in a changing environment“, Octo-ber 23-25, 2008, Bucharest, Forest Research and Management Institute ICAS, pp. 123-130.

Abstract. Hornbeam (Carpinus betulus L.) stands in Razgrad region are part of deciduous xerothermic forests in Northeastern Bulgaria. They have secondary origin and form pure and mixed stands with Quercus petraea Liebl., Tilia tomen-tosa Moench., Acer campestre L., Sorbus torminalis (L.) Crantz, Populus tremu-la L., Prunus avium L., Betula pendula Roth. Object of study are 50-60-year-old hornbeam stands, managed as recreational forests in the past (with insignifi cant interference) with specifi c structure and growth in diameter. As a result it was established, that there is a difference in the position of the average tree according to diameter, determined through Weisse’s rule. For a better precision and a quick determination of the average diameter of hornbeam stands, a new percentage was applied (50%), which refers to the condition of stands in the moment. The per-centage suggested by Weisse (60%) shifts the avereage diameter with one degree higher, what brings to systematic errors. Key words: hornbeam stands, natural thickness degrees, rank of average thick tree

Authors. Hristo Tsakov, Alexander Delkov – Forest Research Institute, BAS; St. Kliment Ohridski Blvd., 132; BG-1756 Sofi a, Bulgaria.

Introduction

Razgrad region (Northeast Bulgaria) covers the plain and hilly territory of Ludogorie geobotanical district of the Illyrian (Balkan) province (Georgiev 1977). Grey Luvisols have been formed on carbonate marl basis, which determine the distribution of mixed coniferous forests with ediphicator Carpinus betulus L. Climate is typical continental, the air contains low humidity, with summer maximum (June) and winter minimum (February) and annual mean precipitation 450–550 mm. Average temperature in January is about 20С, and mean month temperature in July reaches up to 240С (Dimitrov, 1994). Razgrad forests are formed by small forest complexes, managed as recreational periurban zones with insignifi cant silvicultural interference in the past. Investigation will give the answer about the current structure and growth of hornbeam dendrocoenoses in the region, about their thickness structure, the position of the average thick tree in the stand.

Page 123: Volumul integral (.pdf)

124

Objects and methods

Peculiarities in growth and structure of pre-mature hornbeam dendrocoenoses were analysed with the help of sample plots (SP) in Moesian forest vegetation area, growing on Grey Luvisols at altitude 350–450 m a.s.l. In spite of the monopodial character of trees, biogroups with 2 or more stems have been determined, what forms the differentiation character of the stand. To study the structure in diameter, variation curves have been applied, as well as percentage share of trees according to natural diameter degrees, what gives the possibility to determine the rank of tree average thick in the stand and the degree of approximation of Weisse’s rule (1880) for a fast determination of average diameter.

Results and discussion

Sample plot 1 (SP1) is representative for coppice hornbeam stands with solitary participation of Acer campestre L., Sorbus torminalis (L.) Crantz, Quercus petraea Liebl., Quercus cerris L., with even structure (partially with cluster character), average age of 60 years and total area 0.1 ha. 126 trees have been investigated, from which 106 hornbeam (83.5%), 13 Acer campestre L. (10.2%), 6 Sorbus torminalis (L.) Crantz. (4.7%), 1 Quercus petraea Liebl. (0.8%), 1 Q. cerris L. (0.8%) – not included in the statistical processing due to its high age and average diameter 53 cm. Some of hornbeam trees grow in 11 biogroups (with 2 stems) and the others in 8 biogroups with 3 stems each (table1). The distribution of hornbeam stands in biogroups with 2 stems according to diameter degree shows that they have together a basal area of 0.6049 m2, with average diameter 18.7 cm within the range from 10 to 26 cm. Average diameters in biogroups with 3 stems vary from 13.1 to 22.0 cm, and trees are grouped in diameter degrees from 14-th to 22-nd. Accompanying tree species have 26.4 cm average diameter (Quercus petraea Liebl.), 16.2 cm [Sorbus torminalis (L.) Crantz.] and 15.6 cm (Acer campestre L.). In spite of the bigger average diameter with 0.6 cm of Sorbus torminalis (L.) Crantz. trees, these trees show lower growth in height and development compared to Acer campestre L. Table 2 shows the generalised participation of solitarily growing (as well as their participation in groups) hornbeam trees and accompanying species, of basal areas, which form, as well as thickness structure, expressed by natural diameter degrees. Rank of an average thick tree is 54.3% (48.2+6.1). On the basis of this structure, a variation curve of tree distribution was drawn, according to

Table 1 Distribution of hornbeam stands in biogroups with 2 and 3 stemsD1.30 Biogroups with 2 stems Biogroups with 3 stems

N Basal area (m2) Dav. N Basal area (m2) Dav.10 1. 18 0.0076 9.8 - - -12 - - - - - -14 14. 9 0.0170 14.7 13 0.0135 13.116 7 0.0216 16.6 15 0.0197 15.818 11. 17 0.0276 18.7 2. 3. 10 0.0256 18.120 8 0.0331 20.5 4 0.0336 20.722 5 0.0381 22.0 12. 16 0.0380 22.024 9 0.0488 24.9 - - -26 19 0.0563 26.8 - - -G - 0.6049 18.7 - 0.6594 18.7

Page 124: Volumul integral (.pdf)

125

Tabl

e 2

Stru

ctur

e in

dia

met

er o

f tre

es a

nd th

ickn

ess s

truct

ure

of th

e w

hole

stan

d in

sam

ple

plot

1

Hor

nbea

m tr

ees

Oth

ers

Who

le st

ands

D1.

30

Num

ber

of tr

ees

N

Sing

le

basa

l ar

eas G

Tota

l nu

mbe

r N

Tota

l ba

sal

area

, G

nr. o

f tre

es

Tota

l nu

mbe

r N

Tota

l ba

sal

area G

Nat

ural

th

ickn

ess

degr

ee

Rel

ativ

e th

ickn

ess

degr

ee

Abs

olut

e nu

mbe

r of

tree

s

% fr

om

the

tota

l nu

mbe

r

dis

tribu

-tio

n in

%

61

0.00

280.

330.

31

0.7

0.7

82

0.01

002

0.01

001

30.

0150

0.44

0.4

21.

42.

110

20.

0156

60.

0468

17

0.05

460.

550.

55

3.6

5.7

127

0.07

9110

0.11

303

130.

1469

0.66

0.6

96.

512

.214

90.

1386

160.

2464

420

0.30

800.

770.

715

10.8

23.0

168

0.16

0812

0.24

124

160.

3216

0.88

0.8

1913

.736

.718

110.

2794

160.

4064

117

0.43

180.

990.

916

11.5

48.2

205

0.15

7016

0.50

241

170.

5338

1.10

1.0

1712

.260

.422

70.

2660

130.

4940

114

0.53

201.

211.

116

11.5

71.9

248

0.36

1610

0.45

202

120.

5424

1.32

1.2

1410

.182

.026

10.

0531

30.

1593

14

0.21

241.

431.

313

9.4

91.4

281

0.06

161

0.06

161.

541.

47

5.0

96.4

301.

661.

53

2.2

98.6

321

0.08

041

0.08

041.

771.

61

0.7

99.3

G1.

5212

2.81

353.

2433

1.7

10.

710

0.0

N60

106

2012

613

9G

av.

0.02

540.

0265

0.02

57D

av.

18.0

18.4

18.1

Ran

k of

an

aver

age

thic

k tre

e 54

.3%

(48,

2+6,

1)

Page 125: Volumul integral (.pdf)

126

natural degrees of thickness and in connection with the average diameter of investigated stand (Figure 1). The curve is of the bimodal distribution type. Two peaks occur – the fi rst one is at natural degree 0.7, and the second one is rounded within the interval 1.0–1.1. This form of distribution shows that the total combination of the stand consists of two separate parts, each of them having its own peculiarities. Thin trees predominate in the middle-aged stands because of delayed or not carried out tending fellings. As a result of this delay, the curve has left excess (concentration of trees whose diameter is below the average diameter), because more than 45% of all trees are concentrated within the range of thickness degree 10–16. Bigger saturation of stems is observed not only in central degrees but also in the next ones, which confi rms the thesis about delayed silvicultural activities. The average thick tree has the rank 54.3 ≈ 55%. For a quick determination of the stand average diameter, the Weisse rule could be applied (60% of the number of thin trees).For better precision, the new percentage should be applied (determined through the rank of average thick tree – 50%) from the number of thin (or thick) trees, so as to avoid statistic errors and to avoid increasing the volume during calculation. Sample plot 2 (SP2) is situated in a mixed coppice hornbeam stand with participation of Tilia tomentosa Moench., Populus tremula L. and solitary occurrence of Prunus avium L., Quercus petraea Liebl. and Betula pendula Roth., with average age 50 and area of 0,1 ha.125 trees have been investigated – from them 91 (72.8%) hornbeam, 14.4% Tilia tomentosa Moench. with 2 or 3 stems cluster structure, Populus tremula L. are 8 (6.4%), Prunus avium L. – 3 (2.4%), Quercus petraea Liebl. – 4 (3.2%) and one Betula pendula Roth. (0.8%). Table 3 shows the distribution of these trees according to numbers and thickness degree. Quercus petraea Liebl (30.6 cm diameter), Prunus avium L. (20.8 cm diameter), Populus tremula L. – (20.6 cm diameter) have the biggest diameters. Hornbeam trees average diameter is 17.5 cm, and Betula pendula Roth. hardly reaches 14.2 cm. According to the thickness degree, trees are distributed from 10 to 34. Table 4 represents Tilia tomentosa Moench. trees participation in biogroups with 2 and 3 stems, as well as total. The average diameter of Tilia tomentosa Moench. in 2 stems biogroups is 18.6 cm, while the one in 3 stems biogroups is 18.3 cm. Total average diameter is 18.5 cm. Rank of an average thick tree 51.0% (42.3+8.7) Table 5 generalizes data about hornbeam, Tilia tomentosa Moench. and accompanying tree

Fig. 1 Variation curve of tree distribution in SP1

0

5

10

15

20

25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

Natural degrees of thickness

Num

ber o

f tre

es

Page 126: Volumul integral (.pdf)

127

species according to their basal areas and the number of trees. On the basis of total average diameter (18.5 cm), the natural thickness degrees are calculated and variation curve of 125 trees is drawn (Figure 2). It is also bimodal (even with 3 peaks), what shows the heterogeneity of the community. The peculiarity of this hornbeam trees cluster, is that the trees form one community whose trees have very close diameters and high saturation in thickness degrees from 14 to 18. The maximum of trees is drawn after the average diameter, showing occurrence of quite a lot of trees, which slightly move the curve to the right. After natural thickness degree 1.1, we can observe a sharp decline of the number of trees, then an even increasing and normal course to natural thickness degree 1.8. The average thick tree (18.5 cm) has rank 51.0%. This is why 50% value is recommended, when applying the Weisse’s rule, to determine as right as possible the average diameter both for thin and thick stems in the stand. If the Weisse percentage would be applied, the average diameter would be set too high with one thickness degree.

Table 3 Distribution of trees according thickness degree and basal area in Sample plot 2

D1.30Carpinus betulus L.

Populus tremula L.

Prunus avium L.

Quercus petraea Liebl.

Betula pendula

Roth.

Total of sample plots

N G N G N G N G N G N G10 3 0.234 3 0.023412 11 0.1243 11 0.124314 16 0.2464 1 0.0158 17 0.262216 15 0.3015 15 0.301518 17 0.4318 2 0.0508 19 0.482620 19 0.5966 4 0.1256 1 0.0320 24 0.754222 3 0.1140 1 0.0380 2 0.0698 6 0.221824 3 0.1356 1 0.0471 4 0.182726 4 0.2124 1 0.0531 1 0.555 6 0.321028303234 2 0.1913 2 0.1913

2.1860 0.2675 0.1018 0.2939 0.0158 2.8650N 91 8 3 4 1 107

Gav. 0.0240 0.0334 0.0339 0.0734 0.0158 0.0268Dav. 17.5 20.6 20.8 30.6 14.2 18.5

Table 4 Distribution of lime stems according thickness degree in Sample plot 2Tilia tomentosa Moench.

D1.30 2 stems 3 stems TotalN G N G N G

14 4 0.0690 4 0.069016 3 0.0602 3 0.060218 6 0.1476 6 0.014720 3 0.0978 3 0.0978222426 2 0.1114 2 0.1114

0.3280 0.1580 0.4860N 12 6 18

Gav. 0.0273 0.0263 0.0270Dav. 18.6 18.3 18.5

Page 127: Volumul integral (.pdf)

128

Conclusions

As a result of the investigations and analyses carried out with regards to the current structure and growth in diameter of hornbeam stands in Razgrad region, the following conclusions can be drawn:• Hornbeam (Carpinus betulus L.) stands are coppice premature, with single or cluster composition with two or more stems, mixed with Tilia tomentosa Moench., Quercus petraea Liebl., Acer campestre L., Populus tremula L. and Prunus avium L.; • Because of their specifi c status (periurban recreational forests), silvicultural activities in these stands have been less intensive, what has refl ected on structure and width growth; • Distribution curves of trees in hornbeam stands are bimodal, what shows that the stand

Table 5 Thickness structure of the whole stand in sample plot 2

D1.30

Carpinus betulus L. + other trees

Tilia tomentosa Moench.

Whole stand

N G N G NNatural

thickness degree

Relative thickness

degree

Absolute numberof trees

% from the

total number

∑ distribu-tion in

%10 3 0.0234 3 0.54 0.5 1 0.7 0.712 11 0.1243 11 0.64 06 7 4.7 5.414 17 0.2622 4 0.0690 21 0.75 0.7 16 10.7 16.116 15 0.3015 3 0.0602 18 0.86 0.8 19 12.8 28.918 19 0.4826 6 0.1476 25 0.97 0.9 20 13.4 42.320 24 0.7542 3 0.0978 27 1.08 1.0 26 17.4 59.722 6 0.2218 6 1.19 1.1 24 16.1 75.824 4 0.1827 4 1.30 1.2 7 4.7 80.526 6 0.3210 2 0.1114 8 1.40 1.3 4 2.7 83.228 1.51 1.4 8 5.4 88.630 1.62 1.5 7 4.7 939332 1.73 1.6 5 3.4 96.734 2 0.1913 2 1.83 1.7 3 2.0 98.7∑ G 2.8650 0.4860 1.8 2 1.3 100.0N 107 18 125 149

Gav. 0.0268 0.0270Dav. 18.5

Fig. 2 Variation curve of tree distribution in SP2

0

5

10

15

20

25

30

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

Natural degrees of thickness

Num

ber

of tr

ees

Page 128: Volumul integral (.pdf)

129

composition consists of two separate parts, each one with its own peculiarities; • In middle-aged stands, thin trees predominate because of delayed or not carried out tending fellings; • To avoid systematic errors when quickly and practically determining the average diameter, 50% value is recommended instead Weisse’s value 57.5% for mixed hornbeam stands. Otherwise, average diameter is one degree higher and the obtained volumes are not real.

References

Dimitrov, D. 1994. Climate resources in Bulgaria. Nauka i izkustvo, Sofi a (in Bulgarian).Georgiev, G. 1977. Structure and Dynamics of the Landscapes in Bulgaria. St. Kl. Ohridski University Press, Sofi a (in Bulgarian).Weisse, W. 1880. Vetragstafel fuer die Kiefer, Berlin.

Page 129: Volumul integral (.pdf)

130

Page 130: Volumul integral (.pdf)

131

ICAS 2008 Conference October 23-25, 2008 Bucharest, Romania

Consideratii privind unele probleme actuale ale ma-nagementului silvic din România

I. Machedon

Machedon I. 2009. Consideraţii privind unele probleme actuale ale managementului silvic din România [Considerations on some current problems of management in Ro-mania’s silviculture]. In: Olenici N., Teodosiu M., Bouriaud O. (eds.), Proceedings of the conference “Sustainable forestry in a changing environment“, October 23-25, 2008, Bucharest, Forest Research and Management Institute ICAS, pp. 131-138.

Abstract. Research and studies at international level and also in our country in the last period have reconfi rmed that the management is the most important factor in achieving economic performance, and increasing the competitiveness of Romanian companies in the competition they are engaged with fi rms from other EU countries and beyond. In the context mentioned above, and of previous concerns about this area, we address some problems of the current forest management in Romania. A fi rst issue is regarding the implications for the National Forest Agency (NFA) of the concrete type of relationship “under authority” in relation to the ministry. To date, nor by previous decisions of the Government, nor by the decision into effect govern-ing the organization and functioning of the ministry or by a secondary legislation (Order of the Minister), there is no explicit indication aiming to explain what type of relationship is “under authority” in terms of typical managerial act, the relation-ship between NFA as a whole, and its specialized sections on the one hand, and the ministry and its departments (in this case forest department), on the other hand. A second problem is related to deviations from normality of relations between the NFA and the ministry during the periods when - from different reasons - the general man-ager of NFA was in the fi rst plan, in relation to minister or the secretary of state for forests. One of the most important problem of the current management at the NFA is linked to fl uctuations that have characterized the composition of the management team, especially at the highest level, during the past four years. The consequences in the normal conduct of business, both at central and in the territory, can be easily predicted. Another facet of the management in the NFA during this period refers to the system and criteria for manager promotion at the direction’s level. An issue of current forest management in the NFA, which applies equally to the central authority responsible for the forestry, is related to the defective manner in which it conducts human resource management. For seven years, human resource has not been found practically in any form of advanced training. Finally we emphasize the necessity of foundation and adoption of a coherent and realistic strategy for middle and long-term, anchored in similar strategies of the EU countries with advanced forestry. Key words: management, forest management, “under authority” relationship, hu-man resource management, development strategy of forestry

Author. Ion Machedon - National Forest Agency - ROMSILVA, 31 Magheru Av-enue, 010325 - Bucharest, Romania.

,

Page 131: Volumul integral (.pdf)

132

Introducere

Astăzi, la aproape 18 ani de la reorientarea economiei româneşti către economia de piaţă şi la circa doi ani de la aderarea ţării noastre la Uniunea Europeană, se poate afi rma că, managementul reprezintă pentru societate în general, iar cu deosebire, pentru fi rmele româneşti, un domeniu de importanţă vitală, faţă de care se aşteaptă, în continuare, progrese palpabile, de natură să susţină modifi cările în plan economic, tehnic, tehnologic etc., produse în ultimii ani. Cercetările şi studiile desfăşurate la nivel internaţional şi, în egală măsură, în ţara noastră au confi rmat, în ultima perioadă (fi ind vorba, în fapt, de o reconfi rmare), faptul că managementul este poate cel mai important factor al obţinerii de performanţe economice, de creştere a competitivităţii fi rmelor româneşti, în competiţia în care sunt angajate cu fi rmele din celelalte ţări membre ale Uniunii Europene şi nu numai. Conştientizarea acestor adevăruri de către tot mai mulţi conducători, precum şi la nivelul forurilor decizionale, se regăseşte, în primul rând, în încercarea acestora de a înţelege, în adevăratele sale dimensiuni, semnifi caţia conceptului şi practicii managementului modern, în ipostaza în care, legăturile dintre agenţii economici se diversifi că şi se multiplică, iar infl uenţele mediului ambiant devin, pe zi ce trece, tot mai evidente. În contextul principiilor şi consideraţiilor de ordin general evidenţiate mai sus, precum şi al preocupărilor anterioare referitor la acest domeniu, vom aborda în cele ce urmează, unele probleme actuale ale managementului silvic din România.

Consideratii privind unele probleme actuale ale managementului silvic, la nivelul autoritatii publice centrale care raspunde de silvicultura

Aşa cum se cunoaşte de către toţi cei avizaţi, de circa un an şi jumătate, titulatura ministerului de resort s-a modifi cat, din MINISTERUL AGRICULTURII, PĂDURILOR ŞI DEZVOLTĂRII RURALE, în Ministerul Agriculturii şi Dezvoltării Rurale. Transformarea a fost, aşa cum se poate lesne constata, „benefi că” pentru sectorul silvic, PĂDURILE dispărând din titulatura ministerului, fără o explicaţie plauzibilă din partea celor responsabili. Singura justifi care încropită de ministrul de la vremea respectivă a fost aceea că, în procesul de reorganizare a Guvernului, pe fondul discuţiilor aprinse privind revenirea pădurilor în acelaşi minister cu apele şi cu protecţia mediului, decizia a întârziat să fi e adoptată, fără ca cineva dintre cei care aveau responsabilitatea, să sesizeze că între timp, titulatura Ministerului Agriculturii se modifi case, PĂDURILE fi ind scoase de pe generic.În realitate, nu există nici o scuză şi desigur, nici o justifi care obiectivă, faţă de Corpul silvic şi nu numai, pentru un asemenea gest, iar faptul că după mai bine de un an şi jumătate, factorii de decizie persistă în această gravă eroare, trebuie să ne dea de gândit. Cu atât mai mult, cu cât argumentele care justifi că pe deplin recunoaşterea silviculturii ca ramură importantă a economiei naţionale, reliefate atât de noi, cât şi de alţi specialişti şi în alte lucrări anterioare (Silvicultura şi dezvoltarea rurală, 2003, pp. 101-104), nu numai că nu şi-au pierdut nimic din actualitate ci, dimpotrivă, s-au consolidat. Şi în condiţiile în care, pe fondul efectelor grave ale schimbărilor climatice la care asistăm, mass – media naţională şi cea internaţională, opinia publică în general conştientizează tot mai mult, pe zi ce trece, rolul determinant al pădurilor în combaterea secetei, a inundaţiilor şi în diminuarea celorlalte efecte negative care însoţesc schimbarea climei, la nivel local, regional şi planetar. Reluăm în cele ce urmează, succint, principalele argumente care conferă silviculturii, statutul de ramură a economiei naţionale, în speranţa că, odată auzite şi înţelese de către factorii decidenţi îi vor determina pe aceştia, ca în cel mai scurt timp posibil, să redea PĂDURILOR, locul pe care îl merită cu prisosinţă, dacă nu într-un minister de sine stătător, măcar într-unul în care să-şi găsească armonia şi demnitatea alături de alte sectoare compatibile. În primul rând este vorba de mărimea fondului forestier al României, care aşa cum s-a

^, ,

^^

Page 132: Volumul integral (.pdf)

133

menţionat, prin cele cca. 6,3 mil. hectare, reprezentând circa 27% din teritoriul ţării (deci, aproape 1/3 din suprafaţa totală), situează silvicultura pe locul al doilea, după criteriul utilizării terenurilor, având înaintea sa doar ramura agriculturii. Dacă la aceasta vom adăuga şi cele peste două milioane de hectare terenuri puternic degradate, inapte folosinţelor agricole a căror repunere în circuitul economic se poate face numai prin împădurire, credem că orice alt comentariu este de prisos. În al doilea rând, pădurile se individualizează în structura diverselor tipuri de procese de producţie din ansamblul economiei naţionale, prin unicitatea caracterului şi mărimii ciclului de producţie, care în cazul pădurilor conduse în regimul codrului (cu o pondere de peste 93% în totalul fondului forestier naţional), are valori nemaiîntâlnite în alte sectoare de activitate, înregistrând, de regulă, peste 100 de ani (putând merge până la 180-200 de ani, în cazul unor specii). O asemenea particularitate se completează cu o alta, la fel de specifi că sectorului silvic, respectiv cea legată de caracterul seriat al procesului de producţie în silvicultură, concretizat prin existenţa mai multor procese parţiale, care se pot realiza concomitent şi independent unul de altul, chiar dacă obiectivul fundamental al fi ecăruia este unul şi acelaşi: PĂDUREA. În al treilea rând, prin serviciile utile şi efectele benefi ce pe care pădurile le furnizează societăţii, prin funcţiile de protecţie exercitate (funcţia de protecţie a terenurilor şi solurilor; funcţia de protecţie a apelor; funcţia de protecţie contra factorilor climatici şi industriali dăunători; funcţia recreativă; funcţia de interes ştiinţifi c şi de conservare a fondului genetic forestier), acestea contribuie în mod inegalabil la sănătatea, recrearea şi confortul psihic al oamenilor, realizând, totodată, prin însăşi existenţa lor, infl uenţe favorabile asupra multor altor sectoare şi activităţi economice (sectorul energetic, transporturi, agricultură, turism, sănătate, comerţ etc.), infl uenţe care se concretizează în fi nal, pentru aceşti „benefi ciari”, în economii sau chiar în venituri suplimentare, deosebit de consistente. În al patrulea rând, se impune a fi subliniat faptul, de loc neglijabil, că în toţi cei 18 ani pe care România i-a parcurs în drumul său spre economia de piaţă, în condiţiile în care numeroase sectoare şi ramuri ale economiei naţionale au suferit transformări radicale, cu consecinţe grave în primul rând sub aspectul aportului acestora la visteria naţiunii, iar altele au dispărut practic, chiar dacă în evidenţe şi pe unele raportări statistice au rămas, silvicultura s-a situat între puţinele sectoare care au contribuit cu continuitate, în mod substanţial, atât în moneda naţională, cât şi în valută, la bugetul statului. În fi ne, dar nu în ultimul rând, un foarte puternic argument, îl reprezintă importanţa deosebită, recunoscută din ce în ce mai mult, pe plan mondial, pe care o au pădurile, în atenuarea schimbărilor climatice, prin reducerea emisiilor de carbon, prin stocarea carbonului şi fi xarea acestuia, din acest punct de vedere pădurile situându-se pe primul loc, în raport cu celelalte tipuri de ecosisteme terestre.

Concretizarea tipului de relatie „sub autoritate”, cu ministerul de resort, şi implicatiile acesteia în organizarea şi functionarea Regiei Nationale a Padurilor

Aşa cum sunt identifi cate şi clasifi cate în cadrul ştiinţelor şi disciplinelor de specialitate (managementul general şi managementul fi rmei, disciplinele economice de ramură etc.) şi preluate ca atare în legislaţia naţională şi internaţională, relaţiile existente între diversele autorităţi publice centrale şi unităţile/instituţiile pendinte de acestea se regăsesc în una dintre următoarele trei categorii: (i) de subordonare; (ii) în coordonare; (iii) sub autoritate. În timp ce primele două tipuri de relaţii (de subordonare, respectiv în coordonare) sunt caracterizate printr-o dependenţă foarte pronunţată a unităţilor în cauză, faţă de autoritatea publică centrală (buget alocat din bugetul general al autorităţii; exerciţiu bugetar condiţionat şi dirijat strict de autoritatea publică centrală; număr de posturi şi încadrarea pe posturi sub

^,,

,,

Page 133: Volumul integral (.pdf)

134

aprobarea strictă a autorităţii etc.), tipul de relaţie „sub autoritate” este caracterizat printr-un grad de autonomie mult mai mare, concretizată prin: buget de venituri şi cheltuieli propriu; organigramă şi număr de posturi stabilite independent; autonomie economico – fi nanciară; autonomie managerială. Conform legii, autoritatea publică centrală îşi exercită direct dreptul de numire a managerului (directorului general) al unităţii afl ate în acest tip de relaţie, precum şi a Consiliului de administraţie al acesteia şi (lucru foarte important) aceeaşi autoritate, în calitate de reprezentant al statului, îşi exercită dreptul de control asupra modului în care unitatea respectivă (în cazul de faţă, regia) îşi îndeplineşte atribuiţiile prevăzute de lege. În cele ce urmează, vom încerca să abordăm unele aspecte şi implicaţii concrete ale tipului de relaţie „sub autoritate” pentru Regia Naţională a Pădurilor, evidenţiind, totodată, unele realităţi (pozitive sau negative) ale acestui tip relaţional în organizarea şi, mai ales, în funcţionarea regiei.a) O primă problemă care se ridică este aceea că, până la această dată, nici prin hotărârile de guvern anterioare, nici prin hotărârea în vigoare (HG nr. 385/2007), care reglementează organizarea şi funcţionarea ministerului de resort, şi nici printr-un alt act normativ derivat (ordin al ministrului), nu se face nici o precizare care să expliciteze în ce constă acest tip de relaţie, sub aspectul tipic al actului managerial, al raporturilor relaţionale între regie, în ansamblul său, şi compartimentele sale specializate, pe de o parte, şi minister, respectiv departamentele acestuia (în speţă Departamentul pădurilor), pe de altă parte. Aşa cum precizam într-un alt context, singurul lucru clarifi cat prin lege este cel legat de raportul între directorul general al regiei, respectiv consiliul de administraţie al acesteia şi ministru, ambele instituţii manageriale fi ind numite de către acesta, prin ordin al ministrului. O asemenea lacună a condus, în decursul timpului, la situaţii nefi reşti, când spre exemplu, Secretarul de Stat pentru păduri (în calitate de şef al departamentului de resort) solicita anumite informaţii de la conducerea regiei, iar aceste informaţii ori nu veneau de loc, ori veneau adresate direct ministrului (mai ales când aspectele solicitate erau deranjante pentru regie), speculându-se faptul că directorul general nu avea precizate nici un fel de obligaţii (sau alt gen de relaţii) în raport cu secretarul de stat şi cu atât mai puţin cu departamentul. Într-o astfel de situaţie, ca aceea exemplifi cată mai sus, cel puţin două dintre funcţiile managementului (comunicarea şi controlul) sunt afectate în mod evident. În opinia noastră, soluţia este strict la îndemâna autorităţii publice centrale, fi ind vorba, în mod concret, de un ordin al ministrului care să reglementeze modalităţile de manifestare în practică a acestui tip de relaţie (sub autoritate), pe întreaga structură organizatorică, pornind de la atribuţiile specifi ce ale ministerului, în domeniul pădurilor şi, desigur, ţinând cont de propunerile şi argumentele pertinente ale regiei, fără a se încălca cu nimic, legislaţia în vigoare.b) O a doua problemă, de data aceasta de sorginte eminamente subiectivă, afl ată în conexiune directă cu defi cienţa semnalată la pct. a), este legată de abaterile de la normalitate a relaţiilor regie – minister, în perioadele când, fi e pe fondul politicului, fi e pe cel al altor factori de infl uenţă, directorul general al regiei s-a afl at în prim-plan, în relaţia cu ministrul de resort şi cu atât mai mult, cu secretarul de stat pentru păduri. Se impune să facem precizarea că o asemenea abordare nu se rezumă nicidecum la sfera teoretizării şi că ea pleacă tocmai de la realităţi trăite cel puţin în câteva perioade, din intervalul celor 17 ani de funcţionare a Regiei Naţionale a Pădurilor (2001-2003; 2003-2004 şi, într-o anumită măsură, intervalul 1998-2000). În intervalele caracterizate prin „raportul de forţe” menţionat mai sus, s-a putut constata că infl uenţa dominantă a managerului regiei a avut drept consecinţă imediată (aproape simultană), o dominare (uneori netă) a autorităţii publice centrale, de către regie, în ansamblul său (centrală plus structuri teritoriale), practic în toate componentele sistemului relaţional. Această dominare a îmbrăcat, adesea, „haina” superiorităţii salariaţilor din regie, faţă de

Page 134: Volumul integral (.pdf)

135

funcţionarii publici din minister (superioritate ce avea la bază, inclusiv un sistem de salarizare net avantajos celor din regie), însoţită, nu în puţine cazuri, de realizarea sau de tratarea superfi cială a solicitărilor diverselor compartimente din minister. O asemenea stare de lucruri avea să se soldeze, în mod fi resc, cu o acumulare surdă, dar continuă, de adversitate în rândul funcţionarilor din minister, însoţită la anumite momente de răbufniri, mai ales din partea celor cu funcţii de conducere, „soluţiile” găsite în atari situaţii fi ind, ori eliminarea din sistem a „rebelilor”, ori aducerea lor la tăcere, prin transferul în structurile regiei. Deşi, în asemenea perioade, salariaţii din regie (mai ales din centrala acesteia) au avut mai multă linişte şi mai puţină bătaie de cap, în ceea ce priveşte relaţiile cu ministerul, realitatea a dovedit, cu vârf şi îndesat, că această linişte a fost doar una aparentă şi că, imediat ce s-au restabilit relaţiile normale, reacţiile structurilor din minister au devenit mult mai dure (uneori violente), presiunea mult mai mare, iar atitudinea ministerului faţă de solicitările regiei şi faţă de regie în ansamblul său, mult mai dură, mai lipsită de disponibilitate, aşa cum din păcate s-a întâmplat şi în ultimii patru ani.c) O a treia problemă este legată de evoluţia în timp a relaţiilor între regie, respectiv direcţiile silvice teritoriale ale acesteia, şi structurile teritoriale ale autorităţii publice centrale care răspunde de silvicultură (Garda Forestieră, I.T.R.S.C.- urile, respectiv I.T.R.S.V.- urile de astăzi).Sub acest aspect, trebuie precizat, încă de la început, faptul că, în general, relaţiile între direcţiile silvice şi structurile teritoriale ale ministerului de resort au purtat amprenta relaţiilor de la nivel central, între conducerea regiei şi conducerea ministerului. Astfel, în perioadele de normalitate, când au funcţionat prevederile legii, direcţiile silvice s-au subordonat, din punctul de vedere al respectării regimului silvic, controlului exercitat de către structurile teritoriale ale ministerului. Însă, atunci când regia, prin conducerea acesteia, şi-a impus punctul de vedere în relaţia cu conducerea ministerului, această atitudine a fost copiată la indigo şi în ceea ce priveşte relaţiile în plan teritorial. Consecinţele unei asemenea stări de lucruri au fost, în aparenţă, favorabile regiei (în sensul că, aceasta a scăpat de grija controalelor ministerului), dar pe fond, ele au adus mari deservicii, în primul rând prin scăderea exigenţei la nivelul echipelor manageriale (transmisă apoi spre structurile de bază), prin amplifi carea cazurilor de indisciplină şi, nu în ultimul rând, a fenomenului corupţiei, toate aceste aspecte fi ind, din păcate, speculate de unii reprezentanţi ai clasei politice şi de alţi neprieteni ai Corpului silvic şi prezentate în mass-media cu vădită rea intenţie şi mai ales, cu tendinţa de generalizare.

Consideratii privind unele probleme actuale ale managementului la nivelul R.N.P.- Romsilva

Una dintre problemele cele mai actuale ale managementului la nivelul R.N.P.- Romsilva este cea legată de fl uctuaţiile care au caracterizat în ultimii ani, componenţa echipei manageriale, mai ales la nivelul directorului general, consecinţele în planul desfăşurării normale a activităţii, atât la nivel central, cât şi în teritoriu, fi ind uşor de anticipat. Astfel, într-un interval de trei ani şi jumătate, au fost schimbaţi trei directori generali (în ianuarie 2005, în martie 2007, respectiv august 2008) situaţie fără precedent în cei 18 ani de la înfi inţarea regiei. În acest context, lipsa de continuitate în actul managerial la vârf a reprezentat principala cauză a unor disfuncţionalităţi, atât în relaţia regiei cu autoritatea publică centrală, cât şi în ceea ce priveşte sistemul relaţional cu unităţile din teritoriu, care nu au ezitat, în anumite situaţii, să „speculeze” această realitate, în favoarea intereselor locale, de moment. O altă faţetă a actului managerial, care şi-a pus amprenta în această perioadă, se referă la sistemul şi criteriile de promovare a managerilor la nivelul direcţiilor silvice. Şi în legătură cu această componentă a managementului aplicat la R.N.P. - Romsilva s-au manifestat în ultimii

,

Page 135: Volumul integral (.pdf)

136

ani atât instabilitate, cât şi o anumită lipsă de consecvenţă, în ambele situaţii, consecinţele fi ind negative în desfăşurarea actului managerial. Astfel, în perioada 2005 – iulie 2007, toate conducerile direcţiilor au fost numite „cu delegaţie, până la organizarea concursului”, concurs care s-a tot amânat, din diverse motive (cele mai multe, subiective), aproape doi ani şi jumătate. Stare de instabilitate, extinsă pe o perioadă atât de lungă, a determinat la o bună parte dintre directorii direcţiilor silvice o atitudine de espectativă, cu consecinţe de asemenea negative în procesul de management la nivelele respective. Organizarea, în cursul lunii iunie 2007, a concursului pentru defi nitivarea pe post a directorilor, directorilor tehnici şi directorilor comerciali – fapt pozitiv în sine – a reprezentat, în realitate, un veritabil şi regretabil eşec, pentru conducerea regiei. Şi aceasta, deoarece, deşi gândit şi anunţat a se desfăşura în condiţii obiective şi cu luarea în calcul numai a criteriilor profesionale şi a aptitudinilor manageriale, în fapt, concursul s-a desfăşurat şi mai ales, s-a fi nalizat, dominat de criterii politice, mai exact spus, de preferinţele conducerilor de partid de la nivel local, care şi-au impus clar opţiunile, în relaţia cu directorul general al regiei, altfel, singurul împuternicit prin lege să semneze decizia de numire a directorilor din teritoriu. Această stare de lucruri a condus la ipostaze plasate în afara oricăror principii ale managementului, mergând până acolo când, un director care nu a promovat iniţial concursul de defi nitivare, dar care a rămas pe post ca urmare a intervenţiilor de genul celor menţionate mai sus, nici măcar nu mai răspundea la apelul telefonic al directorului general al regiei. O altă problemă actuală a managementului silvic la nivelul R.N.P.- Romsilva, valabilă în egală măsură şi la nivelul autorităţii publice centrale care răspunde de silvicultură, este cea legată de maniera defectuoasă în care se desfăşoară managementul resursei umane. Referindu-ne strict la arealul resursei umane din structura Romsilva (peste 20 mii de salariaţi, din care 65% alcătuiesc personalul silvic – ingineri, tehnicieni, pădurari, iar circa 17% este reprezentat de personalul cu pregătire economică), se impune a fi subliniat faptul că, de şapte ani de zile, resursa umană a regiei nu s-a regăsit practic în nici o formă de perfecţionare a pregătirii profesionale, încă o situaţie fără precedent în istoria celor 18 ani de existenţă a Regiei Naţionale a Pădurilor. Şi aceasta, în contextul în care, au trecut deja doi ani de când România este membru cu drepturi (şi obligaţii) depline al U.E. şi, tot de doi ani de zile, Romsilva este membru al EUSTAFOR (Asociaţia Administratorilor Pădurilor de Stat din Europa). Aşa cum evidenţiam într-o lucrare publicată în anul 2005, când trăgeam încă un semnal de alarmă, consecinţele negative ale lipsei de preocupare pentru formarea profesională continuă a resursei umane din cadrul regiei se manifestă cu atât mai vizibil, cu cât, de câţiva ani buni, personalul regiei, în mod deosebit cel cu pregătire silvică, se afl ă într-o competiţie extrem de dură, în plan profesional, cu cel angajat în structurile silvice private. În fi ne, o ultimă problemă a managementului silvic, la care am considerat a fi oportun să ne oprim, deosebit de actuală, este cea care vizează necesitatea fundamentării şi adoptării unei strategii pe termen mediu şi lung, coerente şi realiste, ancorată în strategiile existente în acest domeniu în ţările Uniunii Europene cu silvicultură avansată. Astăzi este îndeobşte cunoscut, principiul conform căruia, fără o strategie (fi e aceasta pe termen scurt, mediu sau, mai ales, lung), un agent economic, un concern şi, cu atât mai mult, un sector sau o ramură a economiei naţionale nu are şanse de dezvoltare durabilă. Un alt principiu, la fel de valabil, care vine automat în completarea celui enunţat mai sus, este cel referitor la necesitatea continuităţii strategiei (mai ales în situaţiile în care aceasta s-a dovedit a fi realistă şi bine fundamentată), indiferent de schimbările care pot să apară, la un moment dat, la nivelul echipelor manageriale, din diverse motive. Abordând, în cele ce urmează, cele două principii manageriale, în conexiune, să vedem pe scurt ce s-a întâmplat în mod concret, în ultimii 18 ani, în domeniul silviculturii. Înainte de orice comentariu, se impune însă a fi făcută precizarea că, în conformitate cu legislaţia în materie apărută după anul 1990, autoritatea competentă pentru elaborarea şi promovarea strategiei

Page 136: Volumul integral (.pdf)

137

de dezvoltare a silviculturii a fost şi este ministerul de resort sau, într-un termen generic, autoritatea publică centrală care răspunde de silvicultură. Aceeaşi autoritate aprobă, în baza strategiei menţionate mai sus, strategia (pe termen mediu şi lung) a Regiei Naţionale a Pădurilor – Romsilva, în calitatea acesteia de administrator al fondului forestier proprietate de stat. După anul 1990, o strategie în sensul deplin al cuvântului pentru dezvoltarea silviculturii pe termen mediu şi lung (perioada 2000-2020) a putut fi adoptată, numai după apariţia noului Cod silvic – Legea nr. 26/1996 care, înlocuindu-l pe cel din anul 1962, depăşit de realităţile specifi ce trecerii la economia de piaţă (între care diversifi carea formelor de proprietate se regăsea pe primul plan), a putut asigura un fundament solid şi viabil pentru demersul elaborării unei asemenea strategii. Mai trebuie subliniat, în mod absolut necesar, faptul că în procesul de fundamentare şi elaborare a acestei strategii, care a presupus o amplă dezbatere la nivelul întregii ramuri (dezbateri zonale, urmate de două sau chiar trei dezbateri la nivel naţional, cu participarea neîngrădită a tuturor instituţiilor şi organizaţiilor guvernamentale şi neguvernamentale pendinte de sectorul silvic), esenţiale au fost raţiunile şi motivaţiile de ordin profesional, economic şi social şi, în niciun caz, cele de ordin politic. Acest lucru se întâmpla într-o perioadă în care presiunile politicului asupra pădurilor se situau la cote fără precedent, meritul principal revenind conducerii ministerului de la vremea respectivă şi, în mod sigur, de loc întâmplător, pentru că ministrul era de profesie silvicultor, fără a fi angajat politic. La nici doi ani de aplicare am asistat însă, la o nouă „bătută pe loc”, pritocind o nouă Strategie de dezvoltare a silviculturii. De data aceasta, din fericire, tocmai datorită condiţiilor în care fusese fundamentată şi elaborată strategia anterioară, chiar dacă factorul politic şi-a pus o anumită amprentă, venită din Programul de guvernare, îmbrăcată însă în „uniformă de serviciu” (adică profesională), noua strategie nu a fost caracterizată prin modifi cări fundamentale faţă de precedenta, fi ind păstrate obiectivul strategic fundamental şi obiectivele strategice principale, precum şi marea majoritate a acţiunilor şi modalităţilor de punere în aplicare a acestor obiective. Necazul este că, după numai alţi trei ani de punere în aplicare, am asistat la o nouă schimbare a puterii politice şi, pe acest fond, la „descoperirea” necesităţii unei noi strategii de dezvoltare a silviculturii care, din păcate, nu s-a soldat nici astăzi cu ceva concret, palpabil şi coerent, în acest domeniu. Şi iată-ne, aşadar, ajunşi în anul de graţie 2008, când avem o nouă legislaţie silvică, începând cu Codul silvic (Legea nr. 46/2008) şi, foarte probabil vom avea o nouă schimbare de forţe politice care, împreună, vor conduce automat în prima parte a anului viitor la o nouă strategie de dezvoltare a silviculturii. Din succinta prezentare a istoriei strategiilor de dezvoltare a silviculturii în ultimii 17-18 ani în ţara noastră credem că, în ceea ce priveşte respectarea celor două principii manageriale enunţate la început, nu mai este loc pentru niciun comentariu.

Page 137: Volumul integral (.pdf)

138

Page 138: Volumul integral (.pdf)

139

ICAS 2008 Conference October 23-25, 2008 Bucharest, Romania

Certification schemes - a first step towards sustain-able management of forestry in Romania

C. I. Dumitrescu, B. Leuştean

Dumitrescu C. I., Leuştean B. 2009. Certifi cation schemes - a fi rst step towards sus-tainable management of forestry in Romania. In: Olenici N., Teodosiu M., Bouriaud O. (eds.), Proceedings of the conference “Sustainable forestry in a changing environ-ment“, October 23-25, 2008, Bucharest, Forest Research and Management Institute ICAS, pp. 139-144.

Abstract. The paper focuses on the role of forest certifi cation schemes in clean sus-tainable development and carbon credit trading mechanisms.The UNCCC Bali con-ference in December 2007 has emphasized the fact that forestry is one of the tools towards mitigating the effects of global warming. The PEFC Council (Programme for the Endorsement of Forest Certifi cation schemes) promotes sustainable forest management at the international scale through independent third party certifi cation. The PEFC provides an assurance mechanism to purchasers of wood and paper pro-ducts, if they are promoting the sustainable management of forests. Romania is not a member of the PEFC Council, what we consider to be an important gap for the sustainable management of our national forestry fund.Key words: sustainable management, forestry, certifi cation schemes

Authors. Corina Ionela Dumitrescu, Beatrice Leuştean - Economics Department, University „Poiltehnică” of Bucharest, Splaiul Independenţei St., 313, 060042 - Bu-charest, Romania.

Introduction

Global warming, one of the most pressing concerns of the 21st century, is probably the combined result of CO2 emissions, of intensive deforestation and, generally of human economic activity. An organic and proved method in slowing and reversing climate change is preserving natural carbon absorbers (sinks). Among the terrestrial ecosystems, forest is, by far, the most effi cient CO2 absorber. In order to stop chaotic and environment damaging deforestation, a rigorous forest management is required. Therefore, protecting forest becomes a main issue for the climate change at stake. The international experience in forestry management proposes many solutions: eco-tourism, sustainable forest management, substitutes for both extensive agriculture and fi re wood; planting trees. The UNCCC Bali Conference in December 2007 has designated the sustainable forest management as one of the tools towards mitigating the effects of global warming. The sustainable forest management through its certifi cation schemes tends to form a valuable alliance for the carbon credit trading mechanisms in the fi ght against global climate change (PEFC 2008). The sustainable forest management is the solution the present paper focuses on as well. This

Page 139: Volumul integral (.pdf)

140

means that economic exigency may be combined with production and consumption responsibility on a pattern determining the periodicity and the intensity of cutting trees and plans for reforesting. It also means that all the representative elements of the soil ecosystem, as well as hydrological cycle and other forest elements are preserved (PEFC 2008). What exactly does sustainable forest management represent?The sustainable forest management is a couple of guidelines (International Tropical Timber Organization and Pan European Operational Level Guidelines) which refers to: (i) maintenance and appropriate enhancement of forest and their contribution to global carbon cycle; (ii) maintenance of forest ecosystem health and vitality; (iii) maintenance and encouragement of productive functions of forests; (iv) maintenance, conservation and appropriate enhancement of biological diversity in forest ecosystems; (v) maintenance and appropriate enhancement of protective functions in forest management (notably soil and water); (vi) maintenance of other socio-economic functions and conditions (PEFC 2006). A third party evaluates and certifi es if the forest management satisfi es the ecological, economic and social standards mentioned above. The forest certifi cation is the method by which this independent party performs this evaluation and verifi es it through a written document (Hansen & Juslin 1998). It comes to meet both suppliers and consumers needs (Since Rio Summit and Helsinki Process) for wood from sustainably managed sources, and has spread rapidly, mainly across Europe and North America (Rupert 2004).

Materials and methods

Forest certifi cation is a way to prove that forests are sustainably managed. Forests must be socially, environmentally and economically managed for both present and future generations, in the perspective of sustainable development. The economic, political, and social context in Africa, in the Asia-Pacifi c region, in Eastern Europe, and Latin America makes the task of sustainable forest management much more challenging. While some success stories exist, certifi cation progress in these regions has been slow and uneven, refl ecting, in various cases, a lack of resources, poor infrastructure, corrupt institutions, and environmentally insensitive domestic and foreign markets. An examination of the amount of certifi ed forest in developed and developing countries (see Figures 1a and b) underscores the challenge that certifi cation faces in the developing world. (Cashore et al. 2006). As we can see it in the previous fi gures, PEFC is the world’s largest forest certifi cation umbrella. That is why we are going to focus on this system of certifi cation in the following paragraphs. Forest certifi cation is a new policy mechanism for environmental governance. PEFC has become the world’s largest forest certifi cation organisation with 35 independent national schemes in membership from all over the world. 24 of these certifi cation schemes have been endorsed by the PEFC Council, delivering hundreds of millions of tones of wood to the market place from more than 200 million hectares of certifi ed forests. PEFC was born in 1998 as a voluntary initiative of private forest owners based on the criteria and indicators laid down at the Ministerial Conferences of Helsinki (1993) and Lisbon (1998) for the protection of European forests. PEFC offers a framework on which national certifi cation systems are based in order to guarantee mutual recognition across Europe of Pan-European criteria: 1. Forest maintenance and development and their contribution to world carbon cycles; 2. Maintenance of forest farm vitality and health; 3. Maintenance and increased value of forest productive functions; 4. Biodiversity maintenance preservation and development, 5. Maintenance and suitable development of protection functions within the forest sector;

Page 140: Volumul integral (.pdf)

141

6. Maintenance of other socio-economic functions and conditions that the forest affords society. The area of PEFC certifi ed forests reached 194 million hectares in 2007 as we can see in Figure 2. Companies with wood based products chose gradually PEFC chain of custody for their business, beginning with 108 chains of custody certifi cates in 2001 and reaching the level of 3545 certifi cates in 2007. Only between 2006 – 2007 the number increased with 644 companies (an increase of 22.2%) – see Figure 3.

Source: Cashore, B., Gale, F., Meidinger, E. and Newsom, D., 2006, Confronting Sustainability: For-est Certifi cation in Developing and Transitioning Countries, Environment, volume 48, no.9, p. 8.

Fig. 2 PEFC certifi ed forestsSource: PEFC council, Annual Review, 2007, p. 4.

Page 141: Volumul integral (.pdf)

142

We consider that there are many reasons for PEFC to be successful: 1. PEFC relies on internationally agreed criteria of certifi cation as the basis of national certifi cation schemes; 2. PEFC provides a framework for integration of national schemes into the internationally agreed criteria of certifi cation; 3. the openness and transparency of the decision making of PEFC are the framework for the active participation of many types of stakeholders at the local, national and regional level; 4. the procedures of PEFC certifi cation and the monitoring of them are independent of one another; 5. the national certifi cation schemes are independent of PEFC.

Results and discussion

Why an internationally agreed certifi cation scheme in Romania? We consider that it would be appropriate for Romania to adopt an internationally agreed certifi cation scheme because of its sustainability, credibility, accountability and adaptability.Sustainability of the international certifi cation scheme refers to the benefi ts provided for the biodiversity and environment. It also provides an independent certifi ed proof that forests are sustainably managed. Credibility is ensured because PEFC certifi cation scheme uses internationally recognized accreditation and certifi cation processes. It is supported by over 20 independent certifi cation schemes. Accountability refers to the independent certifi ed control. This means that the customers are ensured that the whole wood is taken from sustainably managed forests, from each tree of the forest to fi nal wood based products. Adaptability facilitates the active involvement of all types of forests and companies. It takes into account the diversity of forest types, cultural heritage and management objectives.We consider that using an international certifi cation schemes might have multiple positive effects (Cashore et al. 2003, 2006) at the national level: the creation of a larger, more inclusive forest policy network; promotion of cross-stakeholder dialogue and deliberation on the meaning of sustainable system

Fig. 3 PEFC certifi ed companiesSource: PEFC council, Annual Review, 2007, p.4.

Page 142: Volumul integral (.pdf)

143

based forestry management; practices in agriculture, mining and infrastructure development might be far more

environmentally and socially friendly; positive social effects in terms of community and workers rights (higher wages, development

of collective infrastructure, training); positive economic effects at both micro and macro level; microeconomic effects like improved market access, more stable contracts, favourable credit

arrangements, better public image; macroeconomic effects as improved tax collection, market transparency, employment and

wages, better working conditions, investments. Of course, not all the economic effects of forest certifi cation schemes are positive. We could mention that a negative effect of this procedure is the decrease of the forest surface available for timber production. This might have negative consequences, resulting in fewer jobs, excess of demand over supply, higher prices of timber. However we consider that is the way in which forests can be managed in the perspective of sustainable development. positive environmental effects, divided into four categories: improvement in planning and

inventorying, forestry (improved practices, as for example marking the trees which are to be protected), biodiversity protection (high conservation values, creating of protection corridors, etc., monitoring and compliance (internal check lists, employees with environmental expertise).

Conclusions

We consider that certifi cation schemes generate signifi cant attitudinal change, especially for forests managers. It includes also a considerable potential to improve forest management in transition and developing countries. To develop this potential certain diffi culties need to be overcome: market demand, illegal logging, foresters attitude, community mentality, certifi cation standards and costs. Certifi cation schemes reveal interrelationships between political, institutional and economic factors (Newsom et al. 2006). Stakeholders ought to take decisions thinking about the future generation. We did not inherit the Earth from our forefathers, we just borrowed it from our children. Certifi cation has to be interpreted as part of a bigger ensemble which could improve sustainable forest management and conserve biodiversity.

References

PEFC Position Paper. 2008. Climate Change and Certifi cation: 3.PEFC Council. 2006. Compatibility of the ITTO Provisions for the Management of Natural and Planted Forests with the PEOLG: 40.Hansen, E., Juslin, H. 1998. The Status of Forest Certifi cation in the ECE Region www.forestrycertifi cation.info. Comparative Matrix of Forest Certifi cation Schemes: 6.Cashore, B., Gale, F., Meidinger, E., Newsom, D. 2006. Confronting Sustainability: Forest Certifi cation in Developing and Transitioning Countries. Environment. 48 (9): 6-25.Newsom, D., Bahn, V., Cashore, B. 2006. Does forest certifi cation matter? An analysis of operation-level changes required during the SmartWood certifi cation process in the United States. Forest Policy and Economics. 9: 197-208.Cashore, B., Auld, G., Newsom, D. 2003. Forest certifi cation (eco-labeling) programs and their policy making authority: explaining divergence among North American and European case studies. Forest Policy and Economics. 5: 225-247. http://www.pefc.org/internet/html/

Page 143: Volumul integral (.pdf)

144

Page 144: Volumul integral (.pdf)

145

ICAS 2008 Conference October 23-25, 2008 Bucharest, Romania

Beech timber preservation during storage

O. Zeleniuc

Zeleniuc O. 2009. Beech timber preservation during storage. In: Olenici N., Teo-dosiu M., Bouriaud O. (eds.), Proceedings of the conference “Sustainable forestry in a changing environment“, October 23-25, 2008, Bucharest, Forest Research and Management Institute ICAS, pp. 145-150.

Abstract. Forests are a vital part of the world ecosystems, and without a proper management their loss could have profound economic, social and environmental impacts. To support sustainable use of forest resources, a maximal protection of timber against any external factors during storage and transportation should perform, so as to fulfi l the specifi c quality standards required by timber suppliers. Timber in the yard is susceptible to mould, stain and decay. Protecting timber by antisapstain treatments is an important activity in a saw-mill activity aiming at producing high quality products and avoiding losses. The paper presents the ad-vantages of this treatment, the assessment procedure and the results of fi eld tests regarding the effi ciency of different products compared to untreated samples. Key words: sustainability, timber, quality, antisapstain, effi cacy

Author. Octavia Zeleniuc - Transilvania University of Braşov, Faculty of Wood Industry, 29 Eroilor Avenue, 500036 - Braşov, Romania.

Introduction

Forest Wood is the most important source of wood raw material, providing 2/3 of the total wood supply compared to woody biomass, recovered wood, or industry by-products. Among wood-based industry sectors, sawmill industry is the biggest wood consumer of solid roundwood processing 206 million m³ (EU-27) and 214 million m³ (EU/EFTA), corresponding to 26% of the total consumption (FAO 2007). Sustainable forest management depends on sustainable forest products market development. Both forest and market are required short term and long term to be sustainable. These are based on environmental, social and economic pillars (FAO, 2007), and wood industry needs to respond positively to demands for sustainable management and development. Primary wood sector in Romania. The confi guration of the wood primary sector is quite different now compared to 1990; medium and small companies were developed, their main activity being sawn wood production. The present-day capacity of the primary wood processing sector is estimated at 18 millions m3/year. Timber production was 4.3 mil. m3 in 2004 with an expected increase of 4.6% for 2010 as it is shown in Table 1. As presented in Table 1, more than 50% represents timber for export. As a consequence, sawmills have to enhance the quality of their products and services, to fully satisfy customers requirements

Page 145: Volumul integral (.pdf)

146

and international quality standards. Improper grading, storage in inadequate conditions without antisapstain treatment, lead fi nally to yearly losses of 7.35 million euro only for beech timber from total production (Table 2). Sawmills are the biggest wood consumer of solid roundwood and the source of raw material for many wood industry sectors and construction industry. As a consequence they need to respond positively to demands for sustainable wood products in order to fully satisfy customers requirements. Sawn timber degradation during storage. It is well known that sawn wood is subjected to biological degradation under different humidity conditions. During air drying, storage and transportation, sawn timber with high moisture content is subjected to wood-staining and mould fungi attack. These fungi do not affect the wood structural properties, but the discoloration or disfi gurement they produce, can be of aesthetic and economic importance. Generally, they are blue-black or blue-grey but can be brownish or purple, depending on the fungus responsible (Eaton & Hale 1993). The fungi start to sprout rapidly on favourable conditions. Several studies have shown that the lowest humidity allowing mould growth is “80-85% relative humidity”, provided that the temperature is above 5°C (Wang 1992, Viitanen 1997, Park 1982, Hocking et al. 1994, Adan 1994). The objective of this study was to inform about the importance of the antisapstain procedure to obtain advantages by its correct using during beech timber storage.

Experimental methods

More recently, consumers concern about the risk of mould on timber, heightening the interest in developing safer treatments (Shujun 2007). These treatments protect timber against mould for a period of two to three months, depending on the fungicide, on concentration used, on wood species and climatic conditions. Out of laboratory test, fi eld tests represent an important procedure to evaluate the effi ciency of the antisapstain treatment and the fungicides effi ciency. Field test. For fi eld testing, steamed and unsteamed beech (Fagus sylvatica L.) was used, as this species forms a high proportion of the wood processed in the Romanian sawmills. Specimens (100 x 30 mm cross section by 1000 mm length) were cut from freshly sawn and steamed timber, having moisture content higher than 50%. Stacks without stickers were formed with unsteamed boards (packed timber). For steamed boards both systems of storage were used, with and without

Table 1 Perspective on timber production*

*data obtained from Forestry Association)

Table 2 Yearly average losses due to failure in quality requirements for timber

Products U.M. 2001 2002 2003 2004 2010

Primary wood processing capacity/ year mill. m3 16.0 16.5 17.0 18.0 18.0

-Timber mill. m3 4.1 4.2 4.2 4.3 4.5

-Timber - export mill. m3 2.35 2.35 2.37 2.40 2.45

-Timber - import 1000 m3 8.0 7.5 7.0 6.6 5.0

Timber production, [million m3/an] Timber price- total green timber high quality class,[million euro/an]

Losses by improper grading, storage and discoloration (stain and mould)

Species Total Green Dried [million m3/an] [million euro/an]

Beech 0.58 0.233 0.350 70.0 0.035 7.35

Page 146: Volumul integral (.pdf)

147

stickers (50 pieces on each stack protected by 5 untreated boards on the top). The following fungicides were tested: P1 - based on IPBC, disodium octaborate tetrahydrate – solutions of 1% and 2% concentrations (Antiblu Select provided by Arch Timber Protection); P2 - based on trimethylcocoammonium chlorure, sodium tetraborate – solutions of 4% and 6% concentrations; P3 - based on izotiazolone and additional components according to the technical sheet- solution of 1% concentration. The boards were treated by dipping for 1 minute in the treatment solutions. The stacks were stored for the duration of the trial in the open sawmill yard exposed to climatic conditions. Assessment of mould growth. Development of mould growth on the boards was assessed monthly using the evaluation scheme described in CEN/TS 15082:2005: “Wood preservatives. Determination of the preventive effectiveness against sapstain fungi on freshly sawn timber fi eld test’’. The assessment is based on the percentage of the surface covered with mould or other coloured fungi.

Results and discussion

The presence of mould and blue stain fungi, on each set of boards according to product and concentration, was evaluated after 1, 2, and 3 months exposure. The stain activity is very signifi cant, when we look on the untreated control boards after 60 days (Figure 1). Attack of mould increased from one month to another if improper treatment solutions and concentrations are used. The growth of fungi is more prominent on steamed beech boards compared to unsteamed ones. Examination of Figure 2 reveals that all the products reduce the sapstain colonisation compared to untreated timber, but it also shows that there are performance differences depending on species and exposure time. Only the product P1 had a very good performance on unsteamed beech, after 3 months exposure in open air, rating being under 0.5 compared to the other products rated with 3. The infestation of the boards surfaces started after 30 days in different percentages, depending on concentration and on product type (Figure 2). The quality of the antisapstain treatment was improved with about 30% for beech boards by increasing the product concentration. Packed steamed beech boards were rapidly covered by mycelium, after 30 days, the rating reaching 1 for all products (Figure 3). Better performance of products was obtained in case of steamed beech, in boards staking on stickers as is illustrated in Figure 3 and Figure 4 b. Slight protection was observed even after 30 days exposure in packed steamed beech boards (without stickers), compared to those stacked on stickers (Fig. 4 a, b). Steaming infl uenced to a great extend the fungi development. In fi gure 5 the differences in fungal growth on steamed beech boards compared to unsteamed ones are clearly distinguishable. Very limited fungal growth was

Fig. 1 Untreated boards (control): a. steamed beech; b. unsteamed beecha b

Page 147: Volumul integral (.pdf)

148

Fig. 2 Degree of fungi growth for packed unsteamed beech

Fig. 3 Steamed beech. Infl uence of stacking on rating, after 30 and 60 days exposure in open air

Fig. 4 Treated beech boards after 30 days: a) packed steamed beech; b) steamed beech on stickers

a b

Page 148: Volumul integral (.pdf)

149

observed on unsteamed boards after 60 days for P1 and P2 products (at high concentration). The rating reached after 60 days was under 0.2 for unsteamed beech and more than 2, for the steamed ones. Specifi c exposure conditions and climate parameters infl uenced the started of mould or blue stain growth on wood surfaces. After 1 month only slight infection was observed on the treated unsteamed boards and steamed on stickers (excepting Product P3 and P2 at low concentration). The differences in performance became more apparent after 2 months. Product P1 has maintained its good performance (more evident at high concentration), with a rating under 0.1, whilst products P2 and P3 have allowed more colonization. Studies showed that IPBC alone is an effective fungicide. However it is susceptible to losing its effi cacy with time. The combination of different fungicides even at low concentrations could be more effective than single fungicides alone (Weissenborn et al. 2003, Viitanen et al. 1997, Gobakken et al. 2007). Some studies have demonstrated that the use of other anti-sapstain chemicals in conjunction with borates can enhance their performance signifi cantly (case of products P1) (Lloyd 1996, ESP 2006).

Conclusions

The primary aim of anti-sapstain treatments is to maintain freshly sawn timber in a clean condition during storage such that the value of the timber is maintained when delivered in green state or until it is dried. The fi eld tests have shown that the problems encountered on treated steamed beech concerning the mould growth can be avoided by stacking timber on stickers. Higher effi ciency can be reached by increasing the products concentration. Protection of timber by antisapstain treatments should be an important task for each sawmill interested in producing high quality products. No anti-sapstain treatment can ensure a long lasting protection. However the risk of colonisation can be minimised knowing the required protection period and end-use of the timber, combined with a careful choice of products and concentrations.

Acknowledgements

The authors would like to thank Arch Timber Protection Ltd for guidance and support to this research.

Fig. 5 Packed beech boards. Infl uence of steaming on rating evolution, after 60 days exposure in open air

Page 149: Volumul integral (.pdf)

150

References

Adan, O.C.G. 1994. On the fungal defacement of interior fi nishes. Thesis. Eindenhoven, University of Technology, 223 p.Eaton, R A., Hale, M.D.C. 1993. Wood. Decay, pests and protection. Chapman & Hall, pp.130-144. ESP- Environment Sensitive Pest Control. 2006. Fungi Performance with and without Borate http://www.environmentsensitive.com/BoratePerformance.htmlFAO - Food and Agriculture Organization. 2007. Wood resources availability and demands - implications of renewable energy policies UNECE /FAO Policy (UNECE-United Nations Economic Commission for Europe/ FAO - Food and Agriculture Organization of the United Nations).Gobakken, L.R., Jenssen, K.M. 2007. Growth and succession of mould on commercial paint systems in two fi eld sites. Norwegian University of Life Sciences, Department of Ecology and Natural Resource Management.Hocking, I.D., Mixcamble, B.F., Pitt, J.I. 1994. Water relations of Alternaria alternata, Cladosporium spharospemum, Curvularia lunata and Curvularia pallescens. Mycological Research 98(1): 91-94.Lloyd, J D. 1996. International Status of Borate Preservative Systems. In: Proceeding of the Second International Conference on Wood Protection with Diffusible Preservatives and Pesticides Alabama, Nov. 6-8, pp.45-54. Park, D. 1982. Phylloplane fungi; tolerance of hyphal tips to drying. Trans. Br. Mycol. Soc 79(1), 174-179.Shujun, Li. 2007. Preventing fungal attack of freshly sawn lumber using cinnamon extracts. In: Proceeding of the International Research Group on Wood protection, IRG, Jackson Lake Wyoming USA, Doc. No. IRG/WP 07-30432.Viitanen, H., Ahola, P. 1997. Resistance of painted pine sapwood to mould fungi. Part 1. The effect of water-borne paints and fungicides on mould growth. In: Proceedings of the International Research Group on Wood Preservation, Whistler, British Columbia, Canada, Doc. No. IRG/WP 97-10233.Wang, Q. 1992. Wood-based boards-Response to attack mould and stain fungi. Dissertation. Department of Forest Products. Uppsala, the Swedish University of Agricultural Sciences, 25 p.Weissenborn, P., Östberg, G., Bardage, S. 2003. Fungal Growth on Exterior Coatings for Wood. Proceedings of the 17th SLF Congress: “Future Trends in Coatings Technology, Stockholm, Sweden, pp. 117-125.*** CEN/TS 15082: 2005. Determinarea efi cacităţii preventive a produselor de protecţie a lemnului împotriva ciupercilor de albăstreală la cheresteaua verde, testul în câmp/ Wood preservatives determination of the preventive effectiveness against sapstain fungi on freshly sawn timber fi eld test.

Page 150: Volumul integral (.pdf)

151

ICAS 2008 Conference October 23-25, 2008 Bucharest, Romania

Assessment of anthropogenic and climatic changes impacts on forest systems by satellite and biogeo-physical data

M. Zoran, M. Caian

Zoran M., Caian M. 2009. Assessment of anthropogenic and climatic changes im-pacts on forest systems by satellite and biogeophysical data. In: Olenici N., Teodosiu M., Bouriaud O. (eds.), Proceedings of the conference “Sustainable forestry in a changing environment“, October 23-25, 2008, Bucharest, Forest Research and Man-agement Institute ICAS, pp. 151-158.

Abstract. In the contemporary world, geospatial information gathered by different sensors and numerous observation missions has become an imperious need for sci-entifi c investigation and application fi elds. Remote sensing technologies are used for natural resources management, ecosystem change detection, environment preserva-tion. Forest vegetation monitoring is among the priorities of remote sensing being associated with environmental pollution and climatic changes impact assessment. The climate system responds in complex ways to changes in forcing that may be natural or human-induced and climate-induced changes at the forest land surface may in turn feed back on the climate itself through changes in soil moisture, veg-etation, radiative characteristics, and surface-atmosphere exchanges of water vapor. Thresholding based on biogeophysical variables derived from time series satellite data is a new approach to classifying forest land cover via remote sensing .The input data are composite values of the Normalized Difference Vegetation Index (NDVI). Classifi cation accuracies are function of the class, comparison method and season of the year. The aim of this paper is to investigate the relationship between forest veg-etation spectral and biogeophysical features with landcover/landuse changes due to climatic and anthropogenic stressors. By this, the paper is devoted to assess, forecast, and mitigate the risks of environmental pollution and climatic changes and extreme climate events on forest ecosystems in Prahova Valley, Romanian Carpathians as well as in periurban Bucharest forest test areas and to provide early warning strate-gies on the basis of spectral information derived from multispectral, multiresolution and multitemporal satellite data over 1990-2007 period as well as numerical simula-tions by the regional climate model RegCM3.Key words: climate and anthropogenic changes, forest systems, environmental im-pact, satellite remote sensing, biogeophysical parameters

Authors. Maria Zoran - National Institute of R&D for Optoelectronics, Satellite Remote Sensing Department, Bucharest, Măgurele, Romania; Mihaela Caian - National Meteorological Administration, Bucharest, Romania.

Page 151: Volumul integral (.pdf)

152

Introduction

Environmental pollution and its consequences such as climate change, ozone depletion, land vegetation cover degradation, provides a framework for future research strategies in the frame of international cooperation, involving scientists, research agencies and policy-makers on the necessary measures to be taken at the interface of the Kyoto and the Montreal Protocols. Forest protection represents one of the most important aim involving practical aspects of pest prevention and control, as well as aspects of fundamental and applicative scientifi c research to fi nd the best solutions for maintaining the appropriate fi tosanitary condition of the national public forest area in Romania. Changes in the atmospheric abundance of greenhouse gases and aerosols, in solar radiation and in land surface properties alter the energy balance of the climate system. These changes are expressed in terms of radiative forcing, which is used to compare how a range of human and natural factors drive warming or cooling infl uences on global climate (IPCC 2007). Climate changes can be initiated by external factors forcing the climate system. These climate forcing include natural factors such as changes in energy fl ux from the sun, variations in the Earth’s orbit, and volcanic eruptions, as well as human activities, such as production of greenhouse gases and aerosols and modifi cation of the land surface. Over the next century it is likely that forcing of the climate system by human activities will greatly exceed changes in forcing caused by natural events. Processes in the climate system that can either amplify or damp the system’s response to changed forcing are known as feedbacks. According to estimates generated by current climate models, more than half of the warming expected in response to human activities will arise from feedback mechanisms internal to the climate system, and less than half will be a direct response to external factors that directly force changes in the climate system (NRC 2001).Moreover, a substantial part of the uncertainty in projections of future climates is attributed to inadequate understanding of feedback processes internal to the natural climate system (IPCC 2001).Therefore, it is of central importance to understand, model, and monitor climate changes as well as feedback processes.

Biogeophysical information from satellite data

Quantitative remote sensing involves the forecasting of in situ quantities based on remote measurements of radiation. This prediction task relies on a model (either statistical or physically based) relating remote and in situ measurements. In remote sensing data analysis, the estimation of biophysical parameters is of special relevance in order to understand better the environment dynamics at local and global scales. So, remotely sensed images can be used to estimate forest parameters: defoliation, biomass, leaf area index, water content, pollution, and chlorophyll concentration. In order to relate the image acquired by the satellite sensor to biophysical parameters, model-based estimation algorithms are commonly used. Two different approaches can be considered. In physical modeling, predefi ned direct models of the estimated biophysical parameters are adopted. These models are designed to account for all parameters affecting the radiometric characteristics of the remote sensing data, such as atmospheric conditions, sun angle, sensor gain and offset, and viewing geometry. In empirical modeling, regression techniques are commonly developed. These techniques relate the remotely sensed data with the investigated biophysical parameter according to interpolation methods applied over a training set constituted by pairs of in situ measurements and collected radiances. Forest vegetation land cover can be mapped directly at different scales from the apparent brightness measured by satellite imagery in several spectral bands. The refl ectance ( ρ ) from satellite images is:

Page 152: Volumul integral (.pdf)

153

(1)

where: Lsat = spectral radiance at satellite, Ld = upwelling atmospheric radiance, vτ = atmospheric

transmittance along the target–sensor path, zτ = atmospheric transmittance along the sun–target path, Eo = exoatmospheric solar spectral irradiance, cos θ = cosine of the solar zenith angle, and Ed = scattered downwelling spectral irradiance. Some of these variables can be derived from satellite images themselves or from published data (Moran et al. 1992). A more realistic interpretation of path transmittances would be to assume a Rayleigh scattering atmosphere, with

zτ and vτ defi ned as:

and vvre θτ τ cos/−= (2)

Optical thickness for such an atmosphere is defi ned as: (3) where λ is wavelength, Ed is calculated for a Rayleigh atmosphere from the radiative transfer code (RTC) 6S (Song et al. 2001). While optical bands of satellite sensors are very useful for assessment of forest vegetation cover health and seasonal changes, thermal infrared bands are providing information regarding forest system dynamics. The assessment of biophysical parameters via the analysis of remote sensing data for forested areas plays a fundamental role for estimation of: biomass concentration and soil moisture content, which represents a key parameter in environmental studies characterized by the soil–vegetation–atmosphere system. Forest cover dynamics is studied by means of vegetation indices (VIs) developed based on combinations of two or more spectral bands, using radiance, surface refl ectance (r), or apparent refl ectance (measured at the top of the atmosphere) values in the red (R), and the near infrared (NIR) spectral bands . This study used NDVI expressed as:

(4) The ability to translate anthropogenic and climatic changes and projected variations in climatic conditions into forest ecosystem responses can provide valuable information to natural resource managers. Synergy use of satellite remote sensing and ground based observations provide information about the past or at best current conditions. Recent advances in climate forecasting elicited strong interest in such sectors as forest biomass prediction. One of the key problems in adapting climate forecasts to natural ecosystems is the “memory” that these systems carry from one season to the next (e.g. soil moisture, etc.). Simulation models are often the best tools to carry forward the spatio-temporal ‘memory’ information. In order to estimate possible future states of forest systems we need a system that integrates spectral/climatic models with frequent satellite observations, which will allow us to determine vulnerabilities of different socio-economic and forest resource systems, and help in mitigating potential impacts.

Study areas and data used

Prahova Valley test area is located in Southern Carpathian Mountains (45040’N-45038’N, 25065’E-26031’E) (see Figure 1). Cernica, forest test area is placed in the North-Eastern part of Bucharest cit, Romania (see Figure 2). The investigations were focused on the analysis of forest biophysical parameters and spatio-

Page 153: Volumul integral (.pdf)

154

temporal changes in relation with climatic and anthropogenic changes extracted from satellite data: Landsat TM 12/04/1990 and 23/05/2000, and Landsat ETM+ 12/09/2004 as well as MODIS TERRA and AQUA data for ten years period till September 2007 and IKONOS image 20/09/2004. Data were digitally processed and classifi eds with ENVI 4.5, and IDL 6.3 softwares.The images were geometrically corrected to fi t a topographic map with a scale of 1:50 000, on which vectors were digitized for the subsequent geocoding of the satellite images.

Fig. 1 a) Prahova Valley forest test area; b) NDVI map on Landsat ETM+ 12/09/2004.

Fig. 2 a) N-E Bucharest forest test area on IKONOS image 20/09/2004 ; b) NDVI map

a b

a b

Page 154: Volumul integral (.pdf)

155

Methodology

The vegetation indices were calculated from Earth Observation satellite taking into account jointly the features of vegetation responsible for refl ection in various bands and combining this information from several spectral bands. Difference Vegetation Index (NDVI) is well known and widely used for vegetation monitoring on a global and local scale (Nackaerts et al. 2005).Weakness of NDVI is its sensitivity to atmospheric effects. Thresholding based on biophysical variables derived from time trajectories of satellite data is a new approach to classifying forest land cover via remote sensing.The input data are composite values of the Normalized Difference Vegetation Index (NDVI). Associated with these values are radiances in three thermal bands that are used to estimate surface temperature. The classifi cation algorithm accepts mean growing-season NDVI, mean growing-season near-infrared radiance, NDVI amplitude and surface temperature as input parameters for the composite NDVI and surface temperature data. The units recognized are broad life-form vegetation classes, such as evergreen needle leaf forest, evergreen broadleaf forest, shrubs etc. Classifi cation accuracies are function of the class, comparison method and season of the year. Our analysis indicates a potentially application of threshold techniques to land-cover classifi cation and changes analysis due to climatic effects for selected forest test areas. Forest system change detection analysis requires: at least two independent data sets acquired under different conditions; satellite data with different ground resolution; the position of the pixel array has an important role and changes from image to image; even with high dynamics, land and forest cover changes only occur in the space and time range of: per km, per year; for greater periods of observation appear technical changes of sensors which may lead to differences in image quality; the selection of data require frequently nearly the same seasonal date, which is not always possible from different technical and economic reasons. The primary tools to study climate changes are the coupled global (GCMs ), regional nested models and the transient climate-change simulations obtained when those models are run with projected anthropogenic forcing. Regional Climate Models (RCMs) offer a better understanding of feedbacks between climate and mountain forest systems for the assessment of climate change and anthropogenic effects impacts. RegCM3 used in this study offers higher spatial resolution allowing simulations for greater topographic complexity and fi ner-scale atmospheric dynamics, very useful for regional impact studies. The climate quality simulated by regional models depends on the internal dynamics and physics of the regional model and also on the quality of the driving data at the lateral boundaries. In spite of the errors in climate models, climate-change signal is usually evaluated as differences between future and current simulated climates and is based on the assumption that systematic errors in the underlying model may partially cancel between the current and future simulations.

Results To evaluate the impacts of the management practice on biophysical properties of the forest systems, a set of biophysical variables were estimated from Landsat TM and ETM+ and MODIS data. The data included vegetation indices, surface broadband albedos. To study climatic and anthropogenic impacts, several classifi cations of forest vegetation over tested areas have been done. Image pairs of the same vegetation index, for subsequent years, were subtracted producing continuous maps indicating areas of change. Statistical analysis was carried out to see if there is a correlation between the two sets of output. The analysis of different classifi cations over selected test area have shown forest changes due to high levels of atmospheric pollution mainly close of main road traffi c and some local industries, air masses dynamics at local and regional level as well as due to deforestation for land-use conversion, insect and disease epidemics. This

Page 155: Volumul integral (.pdf)

156

type of digital change detection has the advantage of (1) being repeatable; (2) facilitating the incorporation of biophysically relevant features from the visible, infrared and microwave parts of the electromagnetic spectrum ; and (3) requiring relatively low operational costs. Forest cover has also a great impact on local climate. In this paper we studied the sensitivity of projected climate-change signal, associated with the annual and monthly climatology of various surface forest fi elds and pollution (dray and wet deposition, CO2, SO2, CO - organic carbon, BC - black carbon, dust). Based on meteorological data and regional climatic model RegCM3 simulations have been analized changes in temperature and precipitation regime in association with aerosols circulation and dynamics. For mountain forest test area was concluded: 80% of total direct radiation is absorbed by forest cover; comparative with non-forested areas daily temperature is lower in forested areas and greater during night time, while humidity is higher in forested areas. Also, have been studied the changes induced on the regional climate corresponding to forest – types (deciduous, coniferous and mixed forests.) land cover by the air pollution .Was simulated a 10-year summer season regional climate using ECMWF analysis as lateral boundary conditions, for six forcing cases: background and dust ; background and anthropogenic; background, anthropogenic, biomass and dust, without forests (grass cover was put in place); with doubled background, and only background (control case) aerosols. As an illustration, Figure 3 shows difference of radiative forcing (Forest - NonForest) for mixed forests in Prahova Valley. The inter-comparison of these simulations demonstrated: the direct effect of the aerosols on the forest regional micro-climate, the individual radiative and climatic effect of each aerosol type, and the effect of increasing the amount of forcing. Although the rapid climate change scenarios are purely theoretical, they are useful for demonstrating the direction of change. Comparison of different climate scenarios shows that the effects are in the same direction regardless of the level of change or the initial composition of forests. For Bucharest periurban forest test area, Figure 4 shows difference of radiative forcing (Forest - NonForest). The analysis regarding forest land cover change impact on regional climate

Fig. 3 Difference radiative forcing (Forest–No For est) mixed forests on Prahova Valley, 1-11/07/2006

Page 156: Volumul integral (.pdf)

157

suggested that due to deforestation in some areas precipitation decreased in the intra-forest areas and slight increased in the deforested areas (total water soil content increases leading to increased evaporation). Another analysis referred at climate change impact on micro-climate as well as for air pollution effects modelling at regional scale in the both forest test areas. Romanian mountain and periurban forest systems are under continuous infl uence of characteristic meteorological-climatic fl uctuations of continental climate. Periodically, are registered dry or excessive dry seasons during summer with serious impact on existent forests vitality and more over new plantations and forest regeneration process in progress. For long dry seasons there are several high risks like: forest fi re and insects mass multiplication. For management and decision making is important to be done medium and long term changes forecasting.

Conclusion

Multifunctional role of forest is revealed by: short and long-term responses and reactions to a fast changing environment. Long-term monitoring systems of ecosystems and landscapes is developing (as a combination of intensive and in-situ observations and more global techniques, e.g. remote sensing). Satellite remote sensing represents an important investigation tool of forest cover monitoring at regional, national, and global scales, based on building spectral databases, global large datasets, refi ning validation, calibration procedures in multi-source, multi-temporal environment. Regional Climate Models (RCMs) offer a better understanding of feedbacks between climate and mountain forest systems for the assessment of climate change and anthropogenic effects impacts. The accelerating impact of the available enabling technologies is very important in Earth’s features extraction, interpretation by digital image processing, pattern recognition and features identifi cation.

Fig. 4 Difference radiative forcing (Forest–NoForest) for N-E Bucharest forest, 1-11/07/2006

Page 157: Volumul integral (.pdf)

158

References

IPCC 2001. Climate Change 2001. IPCC [Houghton, J.T.,Y. Ding, D.J. Griggs, M. Noguer, P.J.van der Linden, X. Dai, K. Maskell, and C.A. Johnson (eds.)], Cambridge University Press, Cambridge, UK and NY, Kingdom and New York, NY, USA, pp. 112-116.IPCC 2007. Climate Change 2007, The Physical Science Basis. Paris, February 2007, pp. 18.Moran, M.S, Jackson, R.D., Slater, P.N., Teillet, P.M. 1992. Evaluation of simplifi ed procedures for retrieval of land surface refl ectance, factors from satellite sensor output, Remote Sensing of Environment 41: 169-184.NRC 2001. Climate Change Science: An Analysis of Some Key Questions. Committee on the Science of Climate Change, NRC, Academy Press, Washington, pp. 24-25.Nackaerts, K., Vaesen, K., Muys, B., Coppin, P. 2005. Comparative performance of a modifi ed change vector analysis in forest change detection. Int. J. Remote Sensing 26(5): 839-852.Song, Woodcock, C.E., Seto, K.C., Pax-Lenney, M., Macomber, S.A. 2001. Classifi cation and change detection using Landsat TM data: when and how to correct atmospheric effects. Remote Sensing of Environment 75: 230-244.

Page 158: Volumul integral (.pdf)

159

ICAS 2008 Conference October 23-25, 2008 Bucharest, Romania

Aspects regarding the use of digital orthophotomaps in forest cadastre

I. Vorovencii

Vorovencii I. 2009. Aspects regarding the use of digital orthophotomaps in forest cadastre. In: Olenici N., Teodosiu M., Bouriaud O. (eds.), Proceedings of the confer-ence “Sustainable forestry in a changing environment“, October 23-25, 2008, Bu-charest, Forest Research and Management Institute ICAS, pp. 159-168.

Abstract. In this paper are presented aspects regarding the use of digital ortho-photomaps in forest cadastre, especially for the mountains zones where these pieces, like product of photogrammetry, are not specifi c. There were used the orthophotomaps drown up for Romanian Paying and Intervention Agency for Agriculture (RPIAA), georeferenced in the “Stereografi c 1970” reference system and which cover the parts of forest found of Braşov district considered to be rep-resentative from different points of view. In this sense, it was analysed the kind of acquisition of data for drown up the orthophotomaps, the conditions for docu-ment obtaining, the indices used for estimation the value of the orthophotomaps and the factors which infl uence their quality. For comparison, the researches zones were measured by topographic survey using the total station Trimble M3, in the end drown up of the plans. With a view to assure a base of comparison, the measuring was taken in national geodesic network by the points which was determined by GPS technique and the points determined by back intersection. Taken into account the digital format of this, it was established that utilisation of orthophotomaps in forest cadastre offers both advantages and disadvantages. Between advantages can be mentioned: the digital format which allows to work at different scale without another fl ight, the easiness in exploitation and the uti-lization in forest found without special problems. Inadition, these can be used in periodical checkings because there are put in evidence the changing appeared in time. Between disadvantages can be mentioned: part of these have a poor quality and in many of cases there are the difference between this and the classic topo-graphic survey at the borders of property where the shadowing is present and are necessary the topographic survey; the orthophotomaps aren’t a standardised product four mountain zones, these being a resultant of technique which is at disposition, and can comply with the requirements of different utilization but they can be proved unusable for other.Key words: digital orthophotomaps, photogrammetry, forest cadastre, accuracy, boundary

Author. Iosif Vorovencii - Transylvania University of Braşov, Faculty of Silvicul-ture and Forest Engineering, Şirul Beethoven St. 1, 500123 Braşov, Romania.

Page 159: Volumul integral (.pdf)

160

Introduction

The orthophotomap is a photogrammetric scale product consisting of a picture or a series of aerial images in which the displacements caused by the scale, differences in level and orientation of airphotogrammetric camera have been removed or reduced. Orthophotomaps contain rich visual information, like an aerial photo and they present the geometric characteristics of a landmark plan. These can be played in an analog form, like photogrammes, sometimes including level curves and information on the grid or other specifi c details of plans. They are prepared in a standardized format (Vorovencii 2005). In a digital form, the ortophotomaps can be used in the interpretation, metric measurements, checking the quality or combined with a vector data as backup for geographical information systems or CAD models. Orthophotomaps drawing is done on the basis of projects that typically consist of blocks of aerial photographs that have been both corrected and inlaid using the digital photogrammetric stations. Today, orthophotomaps are generated in a digital context. The image is adjusted on the base of the orthogonal projection by processing each individual pixel using photogrammetric calculations which are derived from the identifi cation of land control points, calibration of airphotogrammetric camera and from the digital terrain model (Vorovencii & Pădure 2005). Production of digital orthophotomaps proves to have a greater fl exibility than the analog techniques if we take into account the main advantages of the processing techniques of digital image. Getting these pieces is an automated operation, the fl ow of technology including the following steps: making topographic survey, scanning the analog photogrammes, making air triangulation, obtaining the digital terrain model and inlaying the images. During the performance of certain steps it may occur some problems related to the automatic inlay, radiometric treatment or in the way of working with data in the production. The creation of digital orthophotomaps is not an easy task if we take into account the hundreds or thousands of aerial images as data entry and the diverse requirements of customers and users (Lillesland & Kiefer 1987, 1994). The mapping land based on digital orthophotomaps is a relatively new method used in some countries since 1993. Starting with the 29th of January 2007, in our country The National Agency for Cadastre and Estate Advertising (N.A.C.E.A.) has introduced mandatory to integrate topographic measurements in the “Stereographic 1970” projection system which means that any work done, including those from the forest fund must be placed in the system. In this sense, the works undertaken are verifi ed using the digital orthophotomaps prepared for The Agency for Payments and Intervention for Agriculture (A.P.I.A.). The main purpose of this paper is to analyze digital orthophotomaps (prepared for A.P.I.A.) in order to determine whether these pieces ensure (in particular) adequate precision for the use in forestry cadastre. The orthophotomaps are not yet standardized as products that support mountain area maps. Besides accuracy were analyzed other elements specifi c for orthophotomaps that may infl uence the quality of determination of certain data in forest fund cadastre such as setting limits with other owners, the land area, the establishment of the categories of use, other issues such as the comparison of digital orthophotomaps with the main plans used as a spatial map in the forest planning etc. Basically, this is the essence of this article because the digital orthophotomap is based on a similar technique but using the digital terrain model as a support to highlight the differences in level. Due to this view, the digital orthophotomaps were examined giving a special attention to the topographic land raisings because they were given as reference in determining the orthophotomaps’ accuracy.

Instruments and methods

Place research has considered several areas that were seen as representative in line with the

Page 160: Volumul integral (.pdf)

161

purpose. Thus, topographic measurements were made in Poiana Braşov, at the edge of the forest fund and built on about 300 hectares, in the “Valea Cetăţii” neighborhood by “Noua” neighborhood, at the edge of the Brasov city’s built on about 250 hectares and in the “Scheii Braşovului” neighborhood in the place called “După Grădini” on an area of about 50 hectares. In the fi rst two cases the raisings have completed with plans that defi ne the site and the building property, including details about plan-metric bordering (roads, fences, buildings etc.). In the third case it has drawn up a comprehensive plan event which included 4500 points, including altimetry. The topographical raising from the “După Grădini” place did not take place in the forest but in city’s built. The slope land in plan is limitary to the forest fund, which allowed tracing the limits and at the same time pursuing the obvious details of the discovered land in order to make comparisons. The slope land in plan varies from 10-20°, in the case of the topographic survey from “Valea Cetăţii”, to 30-40° in the other two cases. The materials used are digital orthophotomaps made for A.P.I.A., georeferenced in the “Stereographic 1970” projection system and which covers portions of the forest fund of the county of Braşov which are considered to be representative from many points of view of the goal. These were purchased in the tiff format from The Offi ce for Cadastre and Estate Advertising Braşov (O.C.E.A.). The features of the digital orthophotomaps that were used are: 1: 5000 scale, 0.5 meters pixel resolution, they are colored and provide ± 1.5 meters accuracy. These are based on aerial images that were acquired between 2002-2005 through seven different airphotogrammetric projects (Table 1 and Fig. 1-2) (Gacichevici 2006). Their analysis was done with the Erdas Imagine v. 8.7, Leica LPS, Terra Model, Intelicad and AutoCad Land programs. In terms of percentage of coverage with orthophotomaps for Romania, this is about 98.8% of which about 97.0% are images that correspond to quality and about 1.8% were returned for quality problems. From that 1.8% some of them were remade and others were entirely recreated and processed. For the remaining percentage of 1.2% the images are missing. The methods used in this paper are observation, analysis and specifi c methods of photogrammetric (Rusu 1978, 1988, Chiţea et al. 2003) and topography (Vorovencii 2006, Boş & Iacobescu 2007). Ground measurements were made with the Trimble M3 total station which allows measurement of angles with a 3 seconds accuracy and distance with accuracy of ± (3 + 2 ppm x D) mm for temperatures in the range (-10°C to +40°C) and ± (3 + 3 ppm x D) mm where the temperature ranges (-20°C to -10°C) and (+40°C to +50°C). The projection system used is “Stereographic 1970”, the orthophotomaps being georeferenced in this system, thus looking to ensure the same basis of comparison in the pursuit of orthophotomaps’ precision. In this sense, the points used in the inclusion for the national system of projection were determined by GPS technology, and where it was not possible, were made Pothenot intersection in order to determine the points’ coordinates. The materialization of points on land is made trough concrete borne, the landmark being materialized by a bolt of iron. The topographic surveys were performed using the traverse method in combination with the radiated method. The control of these methods has been made by creating closed traverses on the starting point (Poiana Braşov and partly “După Grădini”) or by making traverses supported at the end by coordinated points which are known and with visa guidance taken in both ends (“După Grădini” and “Valea Cetăţii”). The end of traverses are part of the Braşov’s thickness and they are determined by GPS technology. Their coordinates are offi cial, they exist in Braşov’s O.C.P.I. database. In the case of the topographic survey from “După Grădini” place, which was much more complex, have been made secondary (cross) traverses supported on the main traverse (fi g. 3). During the creation of traverse, where was possible and were was visibility to other known and indicated points by the geodetic support network, there have led visas to these points in order to ensure an intermediate control. Some station points from the way were determined

Page 161: Volumul integral (.pdf)

162

also by Pothenot intersection (“După Grădini”). For these points there were obtained closely coordination (± 2-5 cm) and it was taken into account the average of these values. The calculation and compensation of topographical survey were made depending on their type: closed or supported. It was used the Terra Model software in which the permitted tolerances for measuring the distances and zenital angles for the return visa have been established from the beginning. The non-closings on coordinates were included in the permitted tolerances. Therefore, no other reference in the pursuit of digital orthophotomaps precision was given special importance to the topographic raising lands which constituted the only basis for comparison. Results and disscution

The orthophotomaps’ quality is defi ned by parameters including the height of fl ight, analog photogrammes scanning techniques, the geodetic control, the aerial triangulation, the digital terrain

Table 1 Situation of the fl ights effected for data acquisition for drown up the orthophotomaps

The fi rm which effected the fl y Surface(km2) Time of fl y The type of aerial camera

FIN MAP (Aero 03) 17000 March – May 2003 Zeiss LMK 1015Leica RC 30

MARMANET/OFEK (Aero 05) 23850 April – May 2004 Zeiss RMK TOP 15EUROSENSE (Aero 05) 21575 April – September 2004 Leica RC 30EADS/BLOOM 8000 April – May 2004 Leica RC 30EUROSENSE (Aero 05) 27700 May – September 2005 Leica RC 30

KLM (Aero 07) 44700 May – Septembre 2005Zeiss LMK 1000Sistem 1000Zeiss LC 1015

GEODIS (Aero 07) 34880 May – September 2005RMK TOP 15Z/I Imaging DMCPancromatic

OFEK (Aero 07) 62430 May – August 2005 RMK TOP 15

Total 240135

Fig. 1 Flight status 2003-2005 (Gacichevici 2006)

Page 162: Volumul integral (.pdf)

163

model and the way of generating the orthophotomaps (Kiss & Vorovencii 2000, Chiţea & Kiss 2001). Since the detailed elements of these parameters are unknown, the digital orthophotomaps used in this paper have been studied using the existing resources, such as analysis, comparison and, in particular, with topographic survey. The way of purchasing the data took into account the type of equipment that was used. Thus, the photogrammes were taken with airphotogrammetric cameras appropriate to the analog ones and after that they have been scanned to be converted into digital format. The fact that fl ights were made in several projects of different companies has led to the obtaining of orthophotomaps of different qualities. Regarded throughout the country, they present a very heterogeneous situation due to the scattered covering on the project and to the images of different qualities. The fact that these orthophotomaps became offi cial, because they exist in N.A.C.E.A.’s database ANCPI, leads to an analysis in terms of forest fund cadastre as work performed in the sector can

Fig. 2 Situation of the country cover with fl ights in 2005 year (Gacichevici 2006)

Fig. 3 Scheme of topographic survey – The place “După Grădini”

Page 163: Volumul integral (.pdf)

164

be verifi ed through these digital products. Therefore, the forestry sector is directly interested in using current and future generations of orthophotomaps because, compared with the basic plans at a 1: 5000 scale achieved in the years 1970-1975, orthophotomaps are based on images taken in recent years. The issue that is raised is, in essence, if these products meet the requirements of the forestry sector, particularly those of forest cadastre, in various ways such as accuracy and other issues concerning the identifi cation and delineation of cadastral land parcels, highlighting the limits with other owners, defi ning the categories of service, determination of areas, parcels and subparcels etc. All these are taking into account that a high percentage of forest area is found in mountain where the ortophotomap is not specifi c. The accuracy provided by digital orthophotomaps is perhaps the most important aspect to be taken into account. It represents the determinant factor in the use of these pieces in some areas including forest fund cadastre. The importance lies in the fact that digital orthophotomaps being georeferencial in the “Stereographic 1970” system, it is necessary to know the limits to where these photogrammetric products can be used. According to technical specifi cations, digital orthophotomaps should provide an accuracy of ± 1.5 meters. Starting here it has sought to establish whether these values are provided in the inclined land and very inclined and if they are suffi cient for forest fund cadastre. In this sense, it tried to fi nd the position of the most easily identifi able details on the ortophotomap, details which were determined on the fi eld by topographic measurements, followed by their overlapping. The election of details was conditioned by the possibility of identifying them on the ortophotomap and by determining the position by measuring the land. Because in the inside of the forest fund the non-existence of the clearly identifi ed details causes problems, there were used details from the vicinity of the forest fund Differences in the positioning of the same depth of fi eld which was recorded on the ortophotomap, unlike the offi cial ones, generally appear where the quality of images that were used to obtain orthophotomaps was poor or there was not enough attention given to the image processing or where the digital terrain model shows some errors etc. Given the circumstances presented, it was found that these differences are, in some places, quite large, which includes the granting of an increased emphasis in the way of using such parts for each case. In some cases the accuracy referred to these digital products (± 1.5 m) is much lower the and difference is even ± 4-5 meters. This result was reached after the overlapping of the topographic surveys on orthophotomaps or after some of the limit details materialized on the ground through obvious fences, construction, etc., raised in the terrestrial and quite clear on the orthophotomaps, appeared displaced by about 4-5 meters. Even large differences in position could be seen in the lands with a pronounced fragmentation and in those where the digital model used as a basis for achieving orthophotomaps did not clearly present the microrelief. The establishment of forest’s fund limits with the lands belonging to other specialized cadastres or private owners is a major task of forest fund cadastre because in the realization of this cadastre the operation starts from the delimitation of other specialized cadastres. Also, most litigations in these conditions when private ownership of forests has been widespread, start form the unrecognizing of borders. In this sense, the use of digital orthophotomaps may be, in some cases, a way of verifying the establishment of limits and tracking the changes. As in the case of analogical aerial photogrammes here are, also, a number of problems in setting limits. Among the most important factors affecting their establishment are the trees’ shade from the forest, the land tilting that could mask parts of or all of the side slope, the existence of coppice on certain limits such as land for hunting food, nurseries, expansion of limits of the forest fund by the emergence of a new brush which is in various stages of development etc. This last issue was referred from measurements made in “După Grădini” place where the forest’s limit has spread and where the establishment of forest using orthophotomaps is very diffi cult, if not impossible. Such a situation can be generalized, particularly when the sapling-covered fi nds a shelter and conditions to live at

Page 164: Volumul integral (.pdf)

165

the edge of the mature stand. Another issue addressed in the paper was the establishment of the category of use of land inside the forest fund and the establishment of limits between the forest fund cadastre and other specialized cadastres (of roads, water, etc.). In this respect, were examined a number of orthophotomaps which include forest and other categories of use as pasture, hay-fi elds, land, etc. Following this analysis was found that establishing the category of use on ortophotomaps can be done in pretty good conditions, in some cases being required to decipher the images that formed the basis of orthophotomaps obtaining. In general, there are no problems in determining the category of use in the inside of the forest. There exist, as I already noted, at the forest’s limits where they cannot be clearly distinguished. A common issue is determining the limit of the border with particular forest land or property belonging to other land cadastre specialist. From the fi ndings I noted that the establishment of limits represent a dispute between forest owners and those of forest bordering land because the lasts consider the boundary line as being the trees’ trunk, but looking to the aerial images the boundary can be established only at the edge of the crown and this only if there is no shadow from the trees. Moreover, because the crown of trees limit grows it leads to a change in the threshold limit. Therefore, this aspect is quite common in practice and quite often it raises problems between the ownership of land and thot of forest. The use of ortophotomaps to establish forest roads in the forest also rises problems because there cannot be distinguished the roadsides, the images used to obtain orthophotomaps being acquired during the summer when the trees are in leaf. In this case the situation was met in Poiana Braşov, on the “Old Road” and on the “Red Road” where virtually no way can be seen. As a result the location cannot be established and hence not the threshold between the two owners of the forest. The situation can be generalized to such cases where measurements must be made absolutely on ground. Determination of areas is a critical operation in forest fund cadastre because depending on the value of these other elements are determined to be taken into account in forest management. In this case, the areas for all the parcels that were measured on terrain were calculated with the help of the AutoCad Land program. It was found that these areas are quite close to those determined by digital orthophotomaps even for the very inclined lands. This leads indirectly to the fact that these orthophotomaps from mountains, although made for other purposes, act as the orthogonal projections and they can also be used in the forest fund cadastre. The determination of those areas that can be compared with the areas in general cadastre was possible in those cases where the limits of parcels on land and on ortophotomaps were done. The differences were accepted in a limit of 2%, according to the N.A.C.E.A. rules. Other issues raised on the use of digital orthophotomaps in forest cadastre resume to their comparisons with other basic plans equipped with parcels and orthophotomaps quality. Compared with the basic plans made in between 1970-1975 which were conducted by the Institute of Geodesy, Photogrammetry, Cartography and Planning Organization Bucharest (G.P.C.P.O.B.) and which have been used as a cartographic support in forests management it was found that digital orthophotomaps made so far, considered on trapezes, do not overlap completely over these. This means that the absolute position of the details on the basic plan differs from that of the same details recorded on orthophotomaps. This result was reached by the overlap of a very large number of orthophotomaps over the basic plans. In advance it was used a special program that allowed the georeferenciation of the basic plans that were in a raster format. The differences are between 5-10 meters, so that for the units which household forest fund and which have made GIS data base using old data base plans should be given an increased attention in the use of digital orthophotomaps. All these inconsistencies and non-overlaps, as noted, must be seen in the “Stereographic 1970” system projection in terms of absolute positioning and not relatively. Such differences may arise from the ortorectifi cation process of the digital images and from the

Page 165: Volumul integral (.pdf)

166

fact that the points used as land reparation in preparing the basic plans and those used for the georeferention of aerial digital images used in the preparation of orthophotomaps have not been determined with the same precision. From a qualitative point of view, it was found that not all the images that formed the basis of creation of orthophotomaps were appropriate. In this sense were met orthophotomaps obtained on the basis of some photogrammes which present the brush recorded more as a side view rather than as a central projection (Fig. 4). This issue has been brought no only in areas where the determinations presented in the paper have been measured but also on other orthophotomaps. It was seen that the phenomenon is much stronger as the picture becomes more of a side view. Moreover, on the same ortophotomap are encountered situations where crowns are facing different directions fact that arises problems in getting the information by using it. In the cases found at the edge of forest, it is very diffi cult to set limits with other properties because the projection of crowns is not perpendicular to the ground.

Conclusions

The issues addressed in the paper were to analyze the possible use of the digital orthophotomaps in the forest fund cadastre. Basically, it went the way of making them, but because it was not enough information (orthophotomaps being made by various companies) there were used different methods to analyze the accuracy, such as topographic land measurements. There were treated issues related to the establishment of items included in the defi nition of specifi c land parcels which are typically for such a cadastre. Benefi ts of using the digital cadastre orthophotomaps forest are obvious: they can be obtained quickly, it creates large pictures, they may be used as primary sources of information to the produce of returned plans or to regulate the existing ones, they present georeferential and complete information for documentation purposes, they can be used to make summary checking regarding the topographic survey, the scale can be easily changed, easy integration into geographic information systems and they have a relatively low cost due to the highly degree of automation. Furthermore, the regulation of orthophotomaps can be achieved quite easily if the land area has no major changes and the digital terrain model must be updated only in certain places. If the necessary information must be under the form of a vector, it can be extracted immediately. The

Fig. 4 Portion from ortophotomap with poor quality

Page 166: Volumul integral (.pdf)

167

possibility is of great interest if the requirements on accuracy are not major and if the problem needs special knowledge for interpretation that cannot be a joint by a photogrammetric operator.The specifi ed accuracy for the digital orthophotomaps (± 1.5 m) was found to be respected, in general, even if the orthophotomaps that were analyzed are from the mountain area where these photogrammetric products are not common. This result was reached after the completion of land topographic measurements on several areas (totaling about 600 hectares) were made. There were obtained situation plans and plans for site and of delimitation of the ownership bodies that overlapped over the digital orthophotomaps all of them being located in the “Stereographic 1970” system projection. To verify the accuracy of orthophotomaps there were determined the details that were outside the forest. So the measured is not necessarily to be made in the forest fund, but it is necessary that the ortophotomap to be prepared for an inclined area. As such, in order to follow the precision provided by orthophotomaps on a inclined land or very inclined is indicated to use orthophotomaps that include already discovered lands because there can be clearly identifi ed the details measured by land and then compared their positions. Tracking other targets on the use of orthophotomaps in the forest fund cadastre, other than how to ensure accuracy in a tilted land, was made taking into account the topographic arising made in the forest fund. In terms of accuracy, digital orthophotomaps can be used in the forest fund cadastre as long as the works that are used allow this. The use of such digital photogrammetric products at a 1: 5000 scale, whose specifi ed accuracy is ± 1.5 meters and which in most cases is respected except when were used photogrammes of low quality, it has to be always reported to the time when it was used. The works must be reported to the respective periods, too. This has to be noted since these orthophotomaps will be replaced with others. A part of the country will be covered with aerial images at a 1: 5000 scale which will probably include the forest fund. The in built will be made at scales of 1: 1000 and 1: 2000. It should be noted that these are the fi rst digital orthophotomaps made at the level of our country and, like any product that is perfectible preparation of a new generation of orthophotomaps in the near future will require the achievement of some superior products in terms of quality and insurance of accuracy. So, between the fi rst generation of digital orthophotomaps and the second will probably be differences as there are between the current basic and the present digital orthophotomaps. Because the ortophotomap is not a specifi c photogrammetric mountain areas product, with a tilted relief, their evaluation was done by measurements made by land. Then they were compared by overlapping with the informational content of digital orthophotomaps. All issues related to accuracy’s precision presented in this article are references made at the use of orthophotomaps in mountain areas where this product is not representative. In the case of horizontal and plane lands these pieces can be used without reservation because the level differences are very small and the infl uence of the relief has no importance. Establishing the category of use using digital orthophotomaps in the forest cadastre does not pose major problems because in the inside the area is generally covered with forest. Some problems may arise where, because of the forests crumbling, the owners of private forest, private meadows or pastures appear or where you must pay special attention in determining the limits of the categories of service. The determination of areas using the digital ortophotomaps can be done easily as long as the land parcels have been established. Although they are made on slope areas of land or on heavily sloped ones, the surface can be determined taking into account the limit of the percentage of ± 2% according to the technical N.A.C.E.A. rules. The purpose for which these digital orthophotomaps were created should not be neglected. Mainly, these photogrammetric products have not been completed for cartographic purposes but with the purpose of identifying the lands used by different owners. Due to the way of working with them and probably due to the less cost (the money were received from the European Community), the orthophotomaps are used by several sectors that have specialized cadastre. Because the forest

Page 167: Volumul integral (.pdf)

168

fund cadastre is a specialized one and because its achievement is conditioned by the achievement of general cadastre and by the connection with the specialized border cadastres, we have to bear in our minds that while N.A.C.E.A. believes that these products are appropriate in several ways, they can be used also in forest’s domain. It should also be noted the fact that these were and are used by N.A.C.E.A. for summary paper checks, particularly where, for certain territorial administrative units, there are no measurements in the database. If it is drawing up a new generation of orthophotomaps mainly with cartographic purposes, they will certainly have a high accuracy that the current orthophotomaps. In conclusion, the issues discussed in this article were the checking of precision of digital orthophotomaps taken into the mountains and the examination of the possibilities of using these products in the establishment of certain elements necessary for the forest fund cadastre. By tracking the ensurence of accuracy, practically, I wanted to see whether the digital orthophotomaps comply, across their way, the orthogonal projection as in the case of the orthophotomaps obtained using the means of analogical photogrammetry that were recovered on tapes.

References

Bos, N., Iacobescu, O. 2007. Topografi e modernă. Editura C.H. Beck, 542 p.Chitea, Gh., Kiss, A. 2001. Cadastru general şi forestier. Editura Universităţii “Transilvania” din Braşov, 224 p.Chitea, Gh., Kiss, A., Vorovencii, I. 2003. Fotogrametrie şi teledetecţie. Editura Universităţii “Transilvania” din Braşov, 230 p.Gacichevici, S. 2006. Status of LPIS in Romania. Status of LPIS Implementation Workshop, Ispra, 16-17 Octomber.Kiss, A., Vorovencii, I. 2000. Fotogrametrie. Universitatea “Transilvania” din Braşov, 116 p.Lillesland, T.M., Kiefer, R.W., 1987. Remote sensing and image interpretation, 2nd edn. Wiley and Sons, New York, pp. 112-210.Lillesand, T., Kiefer, R. 1994. Remote sensing and image interpretation. Third edition. Editura John Wiley & Sons, Inc. SUA, pp. 50-78.Rusu, A. 1978. Fotogrametrie forestieră. Editura Ceres, 282 p.Rusu, A. 1988. Fotografi a aeriană şi teledetecţia în economia forestieră. Editura Ceres Bucureşti, 197 p.Vorovencii, I. 2005. Cercetări privind posibilităţile de utilizare a imaginilor satelitare în lucrările de amenajarea pădurilor. Teză de doctorat. Universitatea “Transilvania” din Braşov, 304 p.Vorovencii, I. 2005. Noi perspective ale utilizării înregistrărilor de teledetecţie în lucrările de amenajarea pădurilor. In: Silvobiologie Vol. 4B – Amenajarea pădurilor la începutul mileniului al III-lea. Editura Academiei Române, pp. 324-330.Vorovencii, I., Pădure, I. 2005. Exploatarea modelului digital al terenului în cadastrul forestier. Lucrări prezentate la Simpozionul de măsurători terestre şi cadastru: “50 de ani de învăţământ geodezic superior civil din Bucureşti; 15 ani de la reînfi inţarea Facultăţii de Geodezie”. Bucureşti 17-18 noiembrie 2005. Revista de Geodezie, Cartografi e şi Cadastru – volumul 14 anul 2005, nr. 1-2, pp. 344-355.Vorovencii, I. 2006. Topografi e. Editura Universităţii “Transilvania” din Braşov, 364 p.

Page 168: Volumul integral (.pdf)

169

ICAS 2008 Conference October 23-25, 2008 Bucharest, Romania

Integrated forest planning and management system: pathway to the future in Romania?

E. Iordache, M. Petrila

Iordache E., Petrila M. 2009. Integrated forest planning and management system: pathway to the future in Romania? In: Olenici N., Teodosiu M., Bouriaud O. (eds.), Proceedings of the conference “Sustainable forestry in a changing environment“, October 23-25, 2008, Bucharest, Forest Research and Management Institute ICAS, pp. 169-176.

Abstract. Forests are dynamic systems. They constantly evolve and change through time in response to both internal and external forces. It is necessary to have a clear understanding of forest conditions at a particular point in time. To better know the changes occurring in forests helps to conceive appropriate management plans and helps to the implementation of the actions prescribed in these plans. The Integrated Forest Planning System is recommended to be used by Forest Research Units. A GIS could answer to the needs of information about the geographic situation of an object of study, its characteristics, its status, the analysis of its development trends, about evaluation and modeling. The final result of the work is a database in GIS environment including the following main components: administrative subdivisions; forest fund (forest management plan, game breeding plan); property; road network; hydrographic network and watershed basins; forests (tree species composition, age classes and forest treatment); territories having special functions and purposes and limitation regimes; topographic map; relief digital model, satellite images; conflict zones and specific objects. Thematic maps, tables, charts etc. are developed.Key words: map base, thematic maps, cartographical appendices to GIS, forest plan-ning, multifunctional management.

Authors. Eugen Iordache - Transylvania University of Braşov, Faculty of Silvi-culture and Forest Engineering, Şirul Beethoven St. 1, 500123 - Braşov, Romania, Marius Petrila - Forest Research and Management Institute, Bucharest, Romania.

Introduction

The Integrated Forest Planning System (IFPS) is a spatially-based modelling system consisting of several computer applications linked together through a common database (Lau et al. 1994).The system follows a “tool kit” approach, permitting the basic building blocks to be quickly fitted with new models and components according to the needs and objectives of the analysis. Such an approach has proven that it can be practical and beneficial. The main benefits are the relatively low costs and the flexibility of adapting the system to new applications and analyses. IFPS uses spatial and non-spatial data stored in a database to evaluate a range of alternative management options. IFPS is used to describe and analyse forest resources such as timber, water, wildlife, conservation, and recreation. It enables us to look at interactions between these values,

Page 169: Volumul integral (.pdf)

170

to evaluate alternative management options, to optimize immediate and long term benefits and to determine the impacts of various management decisions through time. This system offers forest planners a structured approach to manage forests. It provides a scientific basis to: (i) forecast sustainable timber yields; (ii) analyse impacts of forest harvesting on water; and (iii) monitor changes in forest estates over time. Alternative management options and different scenarios can be evaluated by providing answers to “What if?” questions. This way, the probability to reach the objectives of an ecologically-based forest management is enhanced. IFPS offers many advantages in relation to forest planning and management (Sutton 1998), namely: (i) Identity and spatial location of each forest land unit is maintained as it is modelled over time; (ii) Inputs to and outputs from the system can be readily displayed on the computer screen or as printed maps; (iii) IFPS is a useful strategic or long-term forest management planning tool; (iv) Outputs from IFPS can be used at the regional and local levels for short term and operational planning; (v) IFPS enables to evaluate options for management and scheduling of various forest activities, by taking into account policy, environmental, social, economic and operational considerations. All the activities and stages of the development as well as the implementation of the forest management plans are more effective when appropriate graphic and attributive database are established in GIS environment. The Geographic Information System (GIS) is a powerful modern tool supporting the development and presentation of forest management plans at all the stages (inventory, mapping, activities planning) in the process of planning activities elaborated by State Forestry Enterprises, municipal and non-state forestry structures. Presenting detailed and multiple information in a form of thematic maps, charts, general tables, analyses and visualization. During the development of the “Implementig GIS in Romanian forests” project and during public discussions, workshops and other meetings, information about territory and forests in a given object has been presented. The maps and data are usually readable and understandable for a limited number of specialists, aware with the peculiarities of forest cadastres. Presenting data about the object of study in a GIS environment enables the different participants in the process to easily understand the information. It permits to shorten the time necessary during discussions to spot conflict points, to foresee the future ones and to delineate current and future problems. It also facilitates the adequate and fruitful participation of potential stakeholders, interested in the multifunctional forest management. It contributes to a maximum of transparency and makes the forest policy implemented by the responsible administration to be well understood, so as the confidence of the participants increases. Integration of data of different type and from different sources. In the framework of multifunctional forest management appears the need of additional specialized information about forest territories and adjacent zones. During the starting period of implementing GIS it is not possible to clearly know which information will be necessary. Therefore all the data available about one territory are collected and integrated in common models and databases. Performing spatial analyses and revealing relationships and tends. One of the most important tasks of GIS technology is to answer to questions, to help trends revelation and delineation in forest development and to obtain new types of quality information regarding one territory. Using the options of GIS for simulating of a “virtual forest”. The three-dimensional presentation of the information attracts visual interest, and different processes are stimulated in real time. GIS capacities are used to forecast and to project different objects and activities (routes, cuttings, engineering infrastructure). Forest is a complex of resources and factors, which are dynamic along the time and are interrelated. A correct preliminary assessment regarding potential disasters inside the forest status

Page 170: Volumul integral (.pdf)

171

(forest fires, snow breaks, windfalls) and predicting “scenarios” as responses to different crisis situations, could introduce a part of realism in the way of planning activities in multifunctional forest management. Otherwise, some of these activities will be inadequate.

Technical tools and data

Hardware and software An appropriate hardware with peripheral devices and a software are necessary to develop GIS in multifunctional forest management. Microsoft Windows (98,2000,NT,XP) operation system, with a minimum of 526MB RAM (for XP 1GB), 60GB HD, Pentium processor, CD-ROM and specialized software (ArcGIS, MapInfo, Autodesk Map) are recommendable.

The primary database The primary database for GIS development is putting together information about the object of study in the current forest management plans and game management plans, digital models and data from the municipal services, territorial development plans of the object of interest, available cartographic materials, texts and numerical data, field measurements results, aerial photographs and photo-charts, ortho-photo-plans and satellite images, relief digital models. The Regulation for forest land planning management and game land management in Romania identifies geodesic and photogrammetry methods as the basic ones in the development of forests map background. A management plan is developed for every forest management unit on the territory of the country, and forest thematic maps are substantial parts of its contents, together with the data inventory regarding stands and activites planned therein. Forest thematic maps are themselves situation maps on 1:10 000, 1:25 000 scales and smaller. Their elaboration is based on topographic maps on М 1:5 000 and М 1:10 000 scales, on digital models of land division plan, and on the maps of the restored property on forest lands, geodesic field measurements and other sources. They are updated every ten years by a new forest management planning of the territory. Information from State Forest enterprizes, Regional Forestry Directorates and from the National Forestry Board. The main forest-related information, necessary for the development of multifunctional forest management is taken from digital models of the forest management plan and game management plan of the object of study and its attributive database developed in the adopted standard formats. The information supplied by state forestry institution is a source for: (i) obtaining information regarding the spatial distribution of forest complexes, the borders among the properties of different owners and users; (ii) determining the forest fund area and its subdivisions from the point of view of forest and game management planning; (iii) linking the activities planned in the multifunctional forest management of the area to the planning of forestry and engineering activities; (iv) identifying territories with forest use limitation regimes (protected and protection territories, water supply zones, water catchments, protected localities, natural sights, zones restricted for grazing, zones restricted for collection of medicinal plants, mushrooms etc.); (v) marking areas according to fire risk, access to water basins, platforms for aviation techniques, observation towers, tourist fireplaces; (vi) determining hunting areas, game habitats, zones for game breeding, zones with restricted access, hunting routes, equipment, activities. Data from the municipal administration. An important part of the general model development of the object of study is the identification of the properties in the forest territory based on the file in a standard format: (i) digital map models of the restored property of the land in the object of study; (ii) digital models of land division plans regarding the land in the object of study.

Page 171: Volumul integral (.pdf)

172

Data from aerial photographs and images: (i) new (or available in archive) aerial photographs and ortho-photo-plans of the forest fund; (ii) new (or available in archive) satellite images. Supporting data and materials. Additional information concerning the object during the development of GIS is provided by different services and subdivisions of the local authorities, unions and NGOs: (i) Municipal administration - data about municipal objects and areas of responsibility (forests, waste deposits, single constructions out of regulation etc.), data from the “Ecology” municipality service with regard to the state of water, air and soil; (ii) Mayors and mayor representatives - information about the objects of local importance, pastures; (iii) Regional service for fire control and public safety - data about fire control activities and objects; (iv) Regional service for environmental protection data about environmental pollution and ecological problems, data about environment monitoring; (v) Hunting unions - data about the areas managed by hunting unions; (vi) Tourist clubs - tourist routes, paths and sights around, recreation places, camps, caves, rock-climbing objects, bicycle tracks, ski-tracks etc.; (vii) Regional road service; (viii) Water service - water network and sewerage out of regulation, canals, water power stations , dams, springs; (ix) National Energy Company – power lines, power distribution stations, zones of responsibility of the National Energy Company; (x) Union of hoteliers and tour-operators - objects (hotels, country houses, guest houses), services and sightseeing; (xi) Other stakeholders - private forest owners, timber harvesting companies.

Development of GIS in Romanian forest

GIS could respond to the necessity to have data and information about the situation of an object, its characteristics and status. Later on, after the developmental trends analysis, assessment and modeling, of a new level of knowledge about the object is achieved.

Working project of GIS

Establishment of a working model and database

The object selected, Experimental Forest Service, is usually situated on the territory of one or more settlement lands belonging to one or more municipalities. The primary files for graphics with cadastral information (provided by cadastral units) are generated at settlement territory level (layer cadastre), and the files of forest/game management plan (with the main area units - management subunits) are collected at the level of management units (layer forest management). The files of all the settlement territories are united and converted, so as to obtain a united model for the management unit. Some difficulties appeared when the current forest management has been developed before ownership restoration of forest lands. In such a case, a new layer was created (layer ownership). This is necessary because the forest management operational units in the current plan are not classified according to their ownership. According to the rules, there cannot be different ownership within an elementary management unit. Therefore this information needs updating. This layer contains the information about the ownership of forests and forest lands, according to the file containing the map displaying restored ownership. Thus, at this stage (Table 1) three main components of the graphical database are identified, namely: (i) forests (forest management plan) - borders of the management operational units and subunits in the management unit, administrative subdivision following forest management and game management principles; (ii) cadastre of agricultural land - cadastral units; (iii) forest cadastre - (a map of the restored ownership) - management operational subunits, classified by ownership. The general attributive database is obtained through converting and combining data of two

Page 172: Volumul integral (.pdf)

173

main levels: (i) cadastral units; (ii) management operational subunits. Development of a common model of territory, activities and requirements

According to the objectives and tasks of multifunctional forest management, the main layers are set with surface elements: cadastre layer, forest management layer and ownership layer. For a better visualization and to complete the maps, additional layers are developed containing the

Table 1 Stages of development of GIS proposed in the project

Stage Activities ResultsPreliminary investigations and analysis

Analysis of the potential of ideas, information available, particular topics Data in different formats

Presentation of GIS technologies

Informing the participants in management and increasing their awareness with the capacity of GIS technologies.

Demonstration of GIS software products

Tasks for GIS development

Defining the parameters of GIS - objectives, extent and contents Tasks list

Preliminary concept for GIS

1. Development of a common model of territory - data conversion in a unified format

Common model and database

2. Presenting the list of the necessary information for GIS developing Necessities list

3. Development of the matrix with the requirements Matrix of requirements

4. Conflicts identification and mapping Detailed and general maps and information

Dynamic implementation of GIS

1. Presentation of GIS during public discussions - information tables

Thematic maps, tables, charts, analyses2. Logistic support to the workshops

3. Defining zones of “agreement” and conflict zones

Working project of GIS

1. Mapping affected territories; solving conflicts, achieving compromises

Working model and database

2. Planning, designing and mapping the activities taken into account in multifunctional forest management

Implementation of GIS

1. Implementation of the final variant of GIS General model and database

2. Implementation of partial models according to the requirements defined in multifunctional forest management Partial models

3. Updating GIS4. Development of the final variant after the public discussion and presentation Final model and database

Providing information service to users

1. Practically-oriented training about the ‘way to work with GIS’ intended to be given to the staff at local level

Short-term courses, deposition of data in a final variant

2. Information service during the project implementation Presentations

Maintaining GIS Monitoring and updating GIS

Page 173: Volumul integral (.pdf)

174

following elements: (i) linear and surface object – situation elements of anthropogenic origin (ordinary and forest roads, paths, cutting rides, fences, engineering constructions); borders of open areas within the forest territory (meadows, pastures, cutting yards, windfalls, snow breaks, fired places, clearings); hydrography, skeletal lines of the relief (watershed lines and ridges) and relief elements (rocky areas, screes etc.); (ii) inscriptions – numbers of cadastral units, operational management units and subunits, area, names of settlements, adjacent administrative units, localities, hydrographic information, typical objects, out of frame inscriptions; (iii) conventional signs – from topographic background, from forest thematic maps, specially designed conventional signs refering to multifunctional forest management; (iv) horizontals (in a vector type); (v) topographic background (in raster type); (vi) satellite images – transformed into the common model coordinate system; (vii) three-dimensional model of the relief. The main components of GIS, corresponding to the requirements defined, are: administrative subdivision (counties, municipalities and lands); forest fund management plans (forest subdivision, forestry sections, guarding sections, operational management units and subunits); forest game fund management plans (game management subdivision into hunting sections and hunting areas); ownership (according to the cadastral and forestry units); roads (main and forest road network, routes); watershed basins (hydrographic network, borders of watersheds); forests (tree species, composition, age classes and forest system); territories with special functions and purposes; territories affected (conflict zones, zones of particular attention); three-dimensional models; satellite images. Development of partial territory models according to the different requirements in multifunctional forest management. According to the particular requirements set in multifunctional forest management, new components of GIS are developed. They contain layers representing samples and combinations of the layers developed in the working model, as well as completely new layers. In each component of the system, data are arranged in respective layers with linear, text and symbolic objects, as well as surface objects. To present graphically and visualize the components related to the specific requirements of multifunctional forest management, new layers including necessary surface and linear objects, conventional signs, text and digital indications are created in the partial models. Appropriate scales and subdivisions can be selected, together with the respective frame and out-of frame design for each sheet.

Conclusions

The development of integrated forest planning and management system is an obligatory element. At the same time, the contents of multifunctional forest management should be incorporated into the current and future regional plans. The results of multifunctional forest management are presented to the higher organizations – County administration, RNP, MADR etc. In decision-making, in discussions about regional plans and in implementing directives, the multifunctional forest management decisions are of substantial importance. Therefore, GIS of multifunctional forest management appears to be the single alternative in the management of the forest resources to optimize the development and the effective implementation of integrated forest planning and management system. The main advantages provided by GIS for the optimization of integrated forest planning and management system are: (i) establishment of new databases with spatial data about the respective territory; (ii) flexible visualization of the information and thematic mapping; (iii) management of databases; (iv) numerical and spatial analysis and statistics; (v) development of graphical and attributive databases, based on the new information and aimed at supporting decision-making process. The effect of using GIS in the implementation of integrated forest planning and management system could be expressed by: (i) a better understanding of the objectives of multifunctional forest

Page 174: Volumul integral (.pdf)

175

management; (ii) a definition of multifunctional forest management capacities and requirements; (iii) a decreasing of the time needed to analyse conflictual situations and to reach compromises; (iv) an exclusive information service for the participants in multifunctional forest management; (v) information service of the multifunctional forest management.

References

Lau, J.A., Vandenberg, W.G. Willig, R.U. 1994. Visual and Spatial Techniques in Multiple-Use Planning. Resource Technology ‘94: New Opportunities Best Practice, University of Melbourne.Lau, J.A., Vandenberg, W.G. Willig, R.U. 1999. Linking different scales of planning using an integrated forest planning system approach in Victoria. Proceedings of the IUFRO Working Party S4.12.00 Workshop on Assessment Methods of Forest Ecosystem Status andSustainability: Krasnoyarsk, Russia.Sutton, M.W. 1998. What’s in the black box? Forest News.

Page 175: Volumul integral (.pdf)

176

Page 176: Volumul integral (.pdf)

177

ICAS 2008 Conference October 23-25, 2008 Bucharest, Romania

Inventory of primary and secondary forest ways us-ing GPS/GIS in Romanian mountainous forests

E. Iordache

Iordache E. 2009. Inventory of primary and secondary forest ways using GPS/GIS in Romanian mountainous forests. In: Olenici N., Teodosiu M., Bouriaud O. (eds.), Proceedings of the conference “Sustainable forestry in a changing environment“, October 23-25, 2008, Bucharest, Forest Research and Management Institute ICAS, pp. 177-182.

Abstract. The non-existence of a cadastre of primary (forest roads) and secondary (strip roads and skid trails) forest ways represents a huge problem in planning for-est communications in economic forests of Romania. It is also almost impossible to carry out an intensive and rational management of forest ecosystems based on con-tinuity and biodiversity principles, if we do not have a good insight into the existing forest road infrastructure. This paper suggests contemporary methods of surveying forest ways using GPS device Trimble GeoExplorer and the so-called return survey method with differential correction. It also proposes to map this road network us-ing an ArcGis programme package and previously established GIS of the area of research. A forest ways classification system has also been suggested. Researches have been carried out in Braşov forest county (Săcele forest district). A classical and relative opening-up (through forest roads and strip roads) of the area of research has been observed. These research works emphasized the advantages of forest ways cadastre and GIS, both for forest opening-up and forest works planning, as well as towards multi-disciplinary, comprehensive forestry.Key words: forest road network , forest roads information system, cadastre, GIS, GPS.

Author. Eugen Iordache - Transylvania University of Braşov, Faculty of Silviculture and Forest Engineering, Şirul Beethoven St. 1, 500123 - Braşov, Romania.

Introduction

An appropriate accessibility has an important role in the concept of forest management. It is realized through an adequately dense network of forest ways, among which forest roads represent the basic skeleton. In Romania, there are 32082.6 km of forest roads implying an important forest management and representing a kind of national wealth, which has to be adequately kept and planned in an optimal way, at the same time respecting ecological and economical considerations. In the past, many forest areas do not have been well or sufficiently opened, or do not have been opened at all. The only way to successfully and efficiently manage forests is the building of new ways. To do this, we firstly have to know the number and distribution of the existing forest ways and we consequently need a cadastre displaying them. Such a cadastre does not always exist, or

Page 177: Volumul integral (.pdf)

178

sometimes is incomplete, being unuseful in both cases. The basic aims of this paper are defined as follows: (i) carrying out the full cadastre of primary forest roads and reporting their drawing in a digital form on forest-economic maps, to the account of Doftana, Management unit VI, Săcele forest district, Brasov forest county; (ii) carrying out the full cadastre of secondary forest roads and reporting their drawing in a digital form on forest-economic maps, to the account of certain departments of the same management unit; (iii) determining the classification criteria for a special category of forest roads and categorize these roads; (iv) analysing secondary opening of special departments of Doftana management unit VI, suggesting a methodology to elaborate a forest ways cadastre.

Materials and methodsArea of research

The research was carried out in the area of Doftana Management unit VI, Săcele forest district, Braşov forest county. To survey forest roads we used GPS device - Trimble GPS Pathfinder Pro XRS and GPS device Trimble, GeoExplorer 3. Afterwards the data we gathered were processed in a package GPS Pathfinder Office 2.80 programme, and then corrected by measures made in base stations, in order to eliminate mistakes and to increase data preciseness, so as to report these data on previously scanned maps. Forest roads were surveyed by an external antenna put on a vehicle registering data every 5 seconds, while points of separating forests from public roads were surveyed by GPS device Trimble GPS Pathfinder Pro XRS.

Fig. 1 Doftana Management Unit VI, Săcele forest district, Braşov forest county - actual situation of infrastructure components

Page 178: Volumul integral (.pdf)

179

Strip roads were surveyed by GPS device Trimble, GeoExplorer 3 which, unlike in the case of forest roads, was not put inside the vehicle; we indeed walked along each tractor road. For strip roads we also corrected differential mistakes using the results of base stations continuing survey. Both primary and secondary forest ways were surveyed by so-called return method (recording was carried out in both directions) during the vegetation resting stage, according to a previously determined almanac (satellite position above the area of research at a various time of the day). Forest ways are structures used for traffic. There are many definitions and divisions according to various criteria depending on their purpose, their location in a stand, their technical characteristics, etc. Forest roads belong to primary forest ways. These are permanent structures permitting a constant traffic of motor vehicles to carry out the tasks established by management plans (timber transport, hunting, forest protection, forestry). They are made up of superstructure and substructure having all road technical characteristics and permanently occupying forest fertile ground (for instance for road width). Secondary forest ways are structures which are used from time to time for tasks determined by a management plan. They are primarily intended for tractor skidding. They include strip roads and skid trails. Strip roads are structures in which ground works are present, what means that they consist only of a substructure. They are just drawn into maps and are not planned. Skid trails are temporary structures resulting from cutting through a forest, which are then maintained through the continuous passage of tractors along the same trace. After these structures have completed their purpose, the forest takes again over the ground surface previously ceded to skid trails.

Results and discussion

The inventory of the forest ways of the area of research carried out using GPS-a Trimble GeoExplorer 3, data processed through Pathfinder Office 2.80 programme package and mapped using ArcGIS software on previously scanned and geocoded maps (on 1:5000 scale) provided all together very precise data. Adding forest ways onto large-scale maps requires surveying on the field through the so-called return method, i.e. surveying the route of a forest way in two directions, in order to decrease the number of forest way sections about which we have no surveyed data or low quality surveyed data and in order to fit in differential corrections into original terrain databases. Once established, the cadastre of primary and secondary forest ways enables us: (i) to precisely visualize existing resources in specific forest areas; (ii) to analyse actual conditions of primary and secondary forest opening; (iii) to notice potential needs, failures and inadequacies regarding traffic infrastructure; (iv) to plan and control the costs of maintaining forest ways and repairing strip roads; (v) to make studies on working sites regarding harvesting in specific forest areas etc. The method of bordered areas in combination with a relative forest opening for which a quality evaluation system has been developed, represents an exceptionally efficient mean of analysing the actual network of primary and secondary forest ways, separating not opened areas and areas about to be opened up.

Table 1 Inventory and classification of the roads of Doftana management unit VI

National road Regional road Forest road Tractor road Total

km 6.4 12.6 22.0 30.0 71.0

% 9.1 17.7 30.9 42.3 100

m/ha 1.3 2.6 4.5 6.2 14.7

Page 179: Volumul integral (.pdf)

180

Like forest management, forest roads management cannot be conceived without appropriate information permitting a more rational and optimal work. Therefore Romania’s Forest Service must design a forest roads information system made up of two main modules. The first module consists of forest road registers (EGC, supported by graphic information layer). The second module is intended for monitoring forest roads maintenance. Both modules have to be connected, but each one is also operational by itself. The concept of forest roads information system is open, dynamic and modular. It is also treated as a sub-system of the broader forestry information system which is based on the principle of relational databases. Data gathering on a road are run by the stationary system, as the individual events are recorded on the spot.

The Sloven Model of FOREST ROADS REGISTER (EGC) is presented below

Forest ways data are gathered in information databases forming an individual module in a forest ways information system called Forest Roads Register. This module is regulated by the rules on forest traffic ways. It consists of an attribute part and a graphic part, which are interconnected by an identification field (by the road code in the case of forest ways). Attribute part of EGC. The attribute part of the EGC is defined by the elaboration of an information database model based on the points where the necessary elements, which should be incorporated in the system, were determined. The formation of the information database model comprises: (i) System realization and definition of “objects” – information databases; (ii) Record and definition of attributes for individual information databases and conceptual execution of codes legends; (iii) Scheme of relational interconnections between individual information databases.

Fig. 2 The actual situation of opening-up in the Management Unit VI, Doftana

Page 180: Volumul integral (.pdf)

181

Data gathering or data acquisition for the needs of EGC must be very rational because of high work and equipment costs. Forest ways data are gathered from the field and from office. The field data acquisition can be done classically through inventory and geodetic survey or through global positioning system (GPS) use. Work at the level of the forest district mainly consisted in processing digital ortho-photo images (DOF, M 1: 5,000). Since data in the information system constantly change, a road can be included deleted or remodeled in the EGC, according to a specific procedure. Building the forest roads information system we tried to gather all the data necessary for a comprehensive overview of the forest roads network. The system being open and dynamic, it is easy to include additional data, which may be important and useful. The addition of basic forest ways data and data regarding the spatial arrangement of forest ways into the system, is of greatest importance, as these data represent the basis for the whole information system. Links and harmonization with the information layers of the public traffic routes network on the formal level are also factors of great importance. This harmonization refers simultaneously to the inclusion of diverse road categories in the joint register of economic public infrastructure. A precised image of forest roads network cannot be obtained before harmonization on this level. Therefore this is a priority task which should urgently be completed.

Discussions and conclusions

The inventory of forest ways present on the area of research carried out using GPS-a Trimble GeoExplorer 3, data processed through Pathfinder Office 2.80 programme package and mapped using ArcGIS software on previously scanned and geocoded maps on 1:5000 scale, gave all together very precise data. Forest ways data are gathered in information databases forming an individual module in a forest roads information system called Forest Roads Register. This module is regulated by the rules on

Table 2 List of information databases in FOREST ROADS REGISTER

Information database DescriptionGeneral data

ROAD Basic road dataR PROPERTY Property dataR USE Forest roads use

Administrative and forest management divisionR FMU Affiliation in forest management unitR DISTRICT Affiliation in districtR MUNICIPALITY Affiliation in municipalityRDEMOG Data on demographically endangered areas

Data on road objects and road construction elements

R LAYER Data on wear or blocking layers of roadway construction

R DRAINING Data on surface water draining devicesR POROUSNESS Data on forest road porousnessR BRIDGE Data on bridges and tunnelsR WALL Data on supporting constructions

Forestry Technological dataR CHARACTER Data on forest road productivity

Traffic signalization

R SIGN Data on site and contents of traffic signalization on the road

Page 181: Volumul integral (.pdf)

182

forest traffic ways. It consists of an attribute part and a graphic part, which are interconnected by an identification field (by the road code in the case of forest ways).

References

Becker, L., Jaeger, D. 1992. Integrated design, planning and evolution of forests roads and logging activities using GIS- based interactive CAD-systems. Proceedings of the IUFRO Workshop on Computer Supported Planning of Roads and Harvesting, Feldafing, Germany, pp. 159-164.Gunnarson, P. 1992. GIS as a tool for transport planning. Proceedings of the IUFRO Workshop on Computer Supported Planning of Roads and Harvesting. Feldafing, Germany, pp. 151-158.Hurn, J. 1989. GPS - A Guide to the Next Utility. For Trimble Navigation, 2-69.Hurn, J. 1993. Differential GPS Explained. For Trimble Navigation, 5-49.Martin, A. A., Holden N. M., Owende, P. M., Ward, S. M. 2000. Measuring DGPS performance with respect to peripheral canopy on forests roads. Workshop of Forestry Information Systems, 16-19 May 2000, Hytiälä, Finland, pp. 1-4.Pičman, D., Pentek, T. 1996. Factors influencing the necessity of building a forest road network. Proceedings of workshop Care for Croatian forests since 1846. to 1996., Zagreb, Book 2, pp. 293-300.Pentek, T. 2002. The computer models for forest road network optimisation with regard to the dominant influential factors. PhD Thessis, Forestry Faculty of Zagreb University, 271 p.

Table 3 The most appropriate way of getting data for the attribute and graphic parts of the forest road information system

Attribute Graphic

General data on forest road

-office work on the basis of available sources(maps, projects, older information)-field inventory

-DOF5 combined with GPS field recording or digitalization of road line course from a quality map basis, also DTKS line transfer

Administrative and forest management division

-office work on the basis of data from appropriate maps

-use of information layers from other modules of forestry information system and layers from other branches (municipality)

Objects on the road and road construction elements

-office work on the basis of projects and older information-field inventory

-transfer of attribute data into the graphic form-field work with GPS

Forestry and technological data

- office work on the basis of evaluation

Traffic signalization

-field inventory - transfer of attribute data into the graphic form-field work with GPS

Page 182: Volumul integral (.pdf)

183

ICAS 2008 Conference October 23-25, 2008 Bucharest, Romania

Model operational pentru evaluarea impactului asupra mediului la executia drumurilor forestiere

V. Alexandru, R. Bereziuc, V. Ciobanu

Alexandru V., Bereziuc R., Ciobanu V. 2009. Model operaţional pentru evaluarea impactului asupra mediului la execuţia drumurilor forestiere. [Operational model for assessment of environmental impact in forest road construction]. In: Olenici N., Teo-dosiu M., Bouriaud O. (eds.), Proceedings of the conference “Sustainable forestry in a changing environment“, October 23-25, 2008, Bucharest, Forest Research and Management Institute ICAS, pp. 183-188.

Abstract. The present paper sought to submit to specialists a more complete model for quantifi cation of the intensity of environmental impact caused by the construc-tion of forest roads on the environment. This model should be the basis for the stud-ies conducted in order to obtain the environmental agreement. The proposals made in the paper are susceptible of improvements and may be partially or fully supported by the designer teams working in the fi eld of forest road construction. Accepting of the proposals by the decision-making institutions and their introduction into forest roads designing normative, which presently is in a review process, will be a guide for using a uniform working methodology.Key words: operational model, impact, environmental protection

Authors. Valeria Alexandru, Rostislav Bereziuc, Valentina Ciobanu - Transylvania University of Braşov, Faculty of Silviculture and Forest Eneneering, Şirul Beethoven, st. 1, 500123 - Braşov, Romania.

Obţinerea „acordului de mediu”, devenit obligatoriu pentru proiectele de drumuri forestiere, presupune elaborarea unui studiu de impact, în cuprinsul căruia se evaluează şi se cuantifi că impactul prognozat şi se precizează măsurile ce se impun. În prezent evaluarea propriu-zisă a impactului produs asupra mediului se face după metoda de tip cantitativ care ia în considerare principalii factori de mediu supuşi impactului (apă, aer, sol şi biodiversitate) exprimând intensitatea acestora prin dimensiuni convenţionale, respectiv note de bonitate (Nb) pentru fi ecare factor în parte. În funcţie de acestea, în fi nal se determină, prin metoda grafo-analitică, indicele de poluare globală (IPG). Apreciem că procedura actuală, pe lângă faptul că ia în considerare un număr redus de factori astfel încât nu surprinde toate aspectele fenomenului, prezintă şi unele aspecte discutabile cum ar fi : (i) folosirea confuză a indicelui de calitate; (ii) exprimarea unor dimensiuni tehnice în procente, care sunt dimensiuni relative şi nu pot înlocui dimensiunile tehnice într-un caz dat; (iii) utilizarea unei singure scale de conversiune, indiferent de dimensiunea tehnică considerată. Faţă de cele menţionate, ne propunem să prezentăm un model operaţional de evaluare a impactului care, pe lângă factorii folosiţi actualmente (apă, aer, sol, biodiversitate), să ia în considerare şi „întreruperea integrităţii masivelor păduroase” şi „degradarea peisajului natural”.

,,

Page 183: Volumul integral (.pdf)

184

În acest caz se iau în considerare 6 factori, recurgând la determinarea indicelui de poluare globală (IPG) prin „metoda hexagonului”. Modelul operaţional propus conţine: (i) graful arborescent al modelului care precizează factorii de mediu supuşi analizei, dimensiunile tehnice de exprimare a impactului şi limitele de variaţie ale acestora (fi g. 1); (ii) scalele de conversiune a dimensiunilor tehnice în unităţi convenţionale (u.c.), diferenţiate în funcţie de factorul considerat; (iii) grafi cul de agregare a notelor de bonitate Nb, stabilite pentru fi ecare factor în parte pe cale grafo-analitică, în vederea determinării indicelui de poluare globală (IPG), care cuantifi că intensitatea impactului. Scala generală de bonitate, precum şi scalele de conversiune a indicilor de poluare (Ip) în unităţi convenţionale, respectiv note de bonitate (Nb) sunt redate tabelar şi fac parte integrantă din modelul operaţional. De asemenea face parte din model şi fi gura geometrică utilizată (hexagon), gradată în unităţi convenţionale, precum şi scala de evaluare a calităţii mediului. Astfel în tabelul 1 este redată scala generală de bonitate, iar în tabelul 2 scalele de conversiune a dimensiunilor tehnice în note de bonitate pentru fi ecare factor în parte. Reprezentarea grafi că pentru determinarea indicelui de poluare globală (IPG), respectiv hexagonul, este redată în anexa 1. În baza modelului operaţional se stabilesc, în conformitate cu determinările din teren sau de laborator (pentru factorii „apă” şi „aer”), limitele de variaţie ale dimensiunilor tehnice, prin care se măsoară intensitatea impactului asupra factorului considerat. Având aceste limite, dimensiunile tehnice se convertesc, conform cu scala aferentă factorului respectiv. În cazul apei şi aerului, conversiunea se face pentru fi ecare factor poluant în parte şi se ia în considerare media notelor de bonitate. Pentru factorul sol nota de bonitate fi nală este media ponderată a notelor de bonitate

Tabelul 1 Scala generală de bonitate

Nota de bonitate Nb Efecte asupra omului şi mediului înconjurător

10 - calitatea factorilor de mediu: naturală, de echilibru- starea de sănătate pentru om: naturală

9 - fără efecte

8 - fără efecte decelabile cazuistic- mediul este afectat în limitele admise - nivel 1

7 - mediul este afectat în limitele admise - nivel 2- efectele nu sunt nocive

6 - mediul este afectat peste limita admisă - nivel 1- efectele sunt accentuate

5 - mediul este afectat peste limitele admise - nivel 2- efectele sunt nocive

4 - mediul este afectat peste limitele admise - nivel 3- efectele nocive sunt accentuate

3 - mediul degradat - nivel 1- efectele sunt letale la durate medii de expunere

2 - mediul degradat - nivel 2- efectele sunt letale la durate scurte de expunere

1 - mediul este impropriu formelor de viaţă

Page 184: Volumul integral (.pdf)

185

Fig.

1 M

odel

ul o

peraţio

nal c

u fa

ctor

ii de

med

iu su

puşi

ana

lizei

, dim

ensi

unile

tehn

ice

de e

xprim

are

a im

pact

ului

şi li

mite

le d

e va

riaţie

ale

ace

stor

a

Page 185: Volumul integral (.pdf)

186

Tabe

lul 2

C

onve

rsiu

nea

indi

cilo

r de

polu

are

Ip a

i fac

toril

or d

e im

pact

asu

pra

med

iulu

i în

note

de

boni

tate

Nb

Page 186: Volumul integral (.pdf)

187

parţiale pentru volumele de săpături şi volumul resturilor de exploatare din zonă. De asemenea, în cazul factorului „sol”, conversiunea volumelor de săpătură se poate face, în funcţie de situaţia din teren, în următoarele ipoteze de calcul:1. se ţine seama numai de săpăturile în pământ pentru platformă, nefi ind necesare ziduri de sprijin;2. săpături pentru platformă, fără să se ţină seama de săpăturile efectuate pentru amplasarea eventualelor ziduri de sprijin, considerând că impactul provocat de săpătura suplimentară este compensat de sporul de atractivitate al unui zid de sprijin faţă de taluzul denudat;3. se au în vedere ambele categorii de săpături, respectiv atât pentru platforme cât şi pentru ziduri de sprijin, acordându-se în schimb la nota de bonitate o unitate în plus, datorită sporului de armonie estetică a zidului de sprijin. În cazul în care condiţiile de teren impun rezolvări diferite, nota de bonitate este media notelor de bonitate parţiale, corespunzătoare fi ecărei situaţii în parte.Volumele de săpături, în vederea conservării, se exprimă în m3/hm de drum. În cazul factorului biodiversitate se recurge la o apreciere mai mult sau mai puţin teoretică a procentului de afectare a biodiversităţii existente P şi determinarea indicelui de poluare (Ip) cu relaţia:

Factori Apa Aer

Sol Întrerupereaintegrităţiimasiv.păd.(m2supraf.ampr./hm)

Peisaj(m3de

rocă/hm)

Bio-diver-sitate

Volum de săpătură (m3/hm)

Volum resturi de exploatare(mst/ha)

Indice poluare Ip 3,0 5,5 Ip12,50

Ip24,25 750 117 0,20

Nota de bonitate Nb 4,50 4,75 7,50 6,75 7,50 8,66 9Ip = 7,275

Anexa 1 Calculul indicelui de poluare globală IPG

Metoda grafo - analitică (varianta hexagonului)

Page 187: Volumul integral (.pdf)

188

(1)şi a notei de bonitate corespunzătoare, conform scalei specifi ce. Pentru întreruperea integrităţii masivelor păduroase, elementul caracteristic s-a considerat suprafaţa medie a amprizei, exprimată în m2/hm de drum. Deteriorarea peisajului se apreciază prin volumul de săpătură în stâncă, care este convertit conform scalei specifi ce. Determinarea indicelui de poluare globală (I.P.G.) se face în baza fi gurii geometrice regulate (hexagon) a cărui suprafaţă exprimă situaţia ideală (fără poluări) şi care se raportează la suprafaţă hexagonului oarecare obţinut prin unirea din aproape în aproape a punctelor ce marchează notele de bonitate medii pe scările gradate aferente fi ecărui factor şi care semnifi că situaţia reală (afectată de poluări). Indicele de poluare globală (IPG) se determină în baza relaţiei:

(2)şi a scalei calităţii mediului (tabelul 3).

Bibliografie

Anonim 2002. Procedura de evaluare a impactului asupra mediului şi de emitere a acordului de mediu (O.M. MAPM nr. 860).Bereziuc, R., Alexandru, V., Oprea, I., Olteanu, N., Ciubotaru, A. 1995. Model operaţional pentru estimarea efi cienţei sociale şi ecologice a reţelei de drumuri forestiere. Revista Pădurilor 1: 40-48.Bica, I. 2000. Elemente de impact asupra mediului. Editura Matrix Rom, Bucureşti.Bereziuc, R., Alexandru, V., Ciobanu, V., Ignea, Gh., Abrudan, I., Derczeni, R.. 2006. Ghid pentru proiectarea, construcţia şi întreţinerea drumurilor forestiere. Editura Universităţii Transilvania, Braşov.

Valoare Calitatea mediuluiIPG = 1 Mediu natural neafectat de activitatea umană1 < IPG ≤ 2 Mediu supus activităţii umane în limite admisibile2 < IPG ≤ 3 Mediu supus activităţii umane provocând stare de disconfort formelor de viaţă3 < IPG ≤ 4 Mediu afectat de activitatea umană provocând tulburări formelor de viaţă4 < IPG ≤ 6 Mediu grav afectat de activitatea umană, periculos formelor de viaţă6 < IPG Mediu degradat, impropriu formelor de viaţă

Tabelul 3 Scala calităţii mediului

Page 188: Volumul integral (.pdf)

189

ICAS 2008 Conference October 23-25, 2008 Bucharest, Romania

Possibilities of estimating discharge in small water-sheds by means of TR-55 model

C. C. Tereşneu, ŞT. Tamaş, I. Clinciu, M. M. Vasilescu

Tereşneu C. C., Tamaş Şt., Clinciu I., Vasilescu M. M. 2009. Possibilities of estima-ting discharge in small watersheds by means of TR-55 model. In: Olenici N., Teo-dosiu M., Bouriaud O. (eds.), Proceedings of the conference “Sustainable forestry in- a changing environment“, October 23-25, 2008, Bucharest, Forest Research and Management Institute ICAS, pp. 189-194.

Abstract. The paper fi rstly outlines the model types that can be used for producing the stream discharge hydrograph, specifying for each model its application fi eld. Once created the digital terrain model of the studied area (Valea Porţii watershed, Braşov county), the model was used to delineate hydrographic sub-basins, to de-termine terrain slopes, to produce the unit hydrograph, identifying the primary and secondary fl ow tracks and the drainage area. All these data were aggregated with the necessary hydrological data and, in the end, the discharge for the whole watershed was determined.Key words: small watersheds, discharge estimating, TR-55 model

Authors. Cornel Cristian Tereşneu, Ştefan Tamaş, Ioan Clinciu, Maria Magdalena Vasilescu - Transylvania University of Braşov, Faculty of Silviculture and Forest Engineering, Şirul Beethoven 1, 500123 - Braşov, Romania.

Introduction

To determine the discharge of a watershed, the following alternatives may be taken into account (Anonymous 1986): (i) The rational model; (ii) The TR-55 model (to produce hydrographs graphically); (iii) The TR-55 model for tabular hydrograph method; (iv) The TR-20 model. TR-55 (Technical Release 55) model, designed as a rule for urban or urbanized watersheds, may be used with good results in other watersheds too, provided that necessary restrictions are respected. The model is based on simplifi ed methods to estimate discharge (SCS method) and peak discharge (graphical method), to produce hydrographs (tabular method) and determine retained volumes (expeditious method). The model enables to estimate the discharge from a watershed resulting from a meteorological event, regardless of the conditions and the specifi c management standards applied within the watershed. The model was developed by the Natural Resources Conservation Service NRCS – USA (Anonymous 1986) and enables the unit hydrograph to provide data worked out both in tabular and graphical formats.

Page 189: Volumul integral (.pdf)

190

Analysis of the area of research

A small watershed of 65 ha, located in the middle third of the Valea Porţii brook, Braşov county, has been considered in the present research. This area is bordered by Bucegi Mountains to the east and Piatra Craiului Mountains to the west. Identifying and quantifying the elements regarding watershed morphometry and the morphometry of the hydrographic network are problems that can be solved relatively easily provided that the digital terrain model is available (Tereşneu 2005, Tereşneu & Brad 2006) (Figure 1). To produce the model, 5 m contour lines have been digitized according to the topographic plans of the area of research, plans L-35-87-D-b-1-I and L-35-87-D-b-1-II, the superimposition with the 539-442 ortophotomap being also achieved. Other components of interest like the hydrographic network and the stands subcompartment boundaries inside the watershed have also been digitized. The next step was the delineation of the hydrographic sub-basins existing in the area of research. The Watershed function of the AutoCAD Land Desktop software has been used for both the delineation of the component sub-basins and the exclusion of the neighboring areas having no infl ow into the watershed under consideration (Figure 2). Afterwards the slopes of each component sub-basin have been determined using the Create Surface function. Its output window includes, in the Extended Surface Statistics zone, some statistical data for the watershed such as the number of triangles in the TIN model, the maximum and the minimum triangle area, the maximum, minimum and average slope etc. (Figure 3). Determining the interest of TR-55 model’s use

The hydrological module of the AutoCAD Civil Design software enables to adjust the hydrograph so as it produces data worked out in graphical format or through the tabular hydrograph method. This particularity is typical of the TR-55 model. For Romania’s torrential watersheds, the peak discharge forecast is performed using indirect methods, which take into account the depth of the rainfall generating the fl ood and the watershed characteristics infl uencing fl ood generation and propagation (Clinciu & Lazăr 1999).

Fig. 1 The digital terrain model

Page 190: Volumul integral (.pdf)

191

Fig. 2 Exclusion of the neighboring areas having no infl ow into the watershed

Fig. 3 Average watershed slope output

The watershed discharge is the rainfall depth over the watershed diminished by the volumes represented by soil infi ltration, vegetation interception and stagnant water in the existing sinks. To determine the value of the discharge, many elements like intensity, duration and distribution of the rainfall, geological and soil conditions, soil initial water content, vegetation covered area, type of vegetation and watershed morphometry should be taken into account. The TR-55 model requires the following values (Anonymous 1986) to be specifi ed: rainfall distribution model, drainage area, runoff curve number, runoff coeffi cient, concentration time,

Page 191: Volumul integral (.pdf)

192

time of runoff travel, area of pond sand swamps and of fl ooded zones, rainfall frequency and intensity for each sub-basin (Figure 4). With regard to the AutoCAD input data specifi ed above, the following issues should be taken into account: (i) For the rainfall distribution, model type II has been chosen, as it is characteristic for high amount, high intensity and short duration rainfalls. Models of types I and IA are suitable for the maritime (Pacifi c) climate, with humid winters and rainy summers, while type III is suitable for the Atlantic coastline and the Gulf of Mexico, with tropical storms and high amounts of daily rainfall; (ii) The drainage area has been determined by establishing the watershed boundary by means of the Select Polyline (or Draw) function; (iii) The number of runoff curve has been specifi ed according to land use type and soil type. As the watershed under consideration is covered by stands aged 60 to 100 years, with stand densities in the range of 0.6 (sometimes even 0.4) and 0.9, the soil being a typical eutricambosoil, the 76 runoff curve has been adopted; (iv) As far as the time of concentration for the watershed is concerned, AutoCAD permits its automated determination by means of the Hydrology module (Hydrology - Runoff Time of Concentration (Tc)…). By applying this method, the resulted output is Tc = 11.65 min, i.e. approximately 12 min (Figure 5). The data for rainfall frequency for Bran area have been provided by the Vf. Omu and Fundata weather stations and have been reported into the dedicated fi eld of the Rainfall-Frequency Editor window (Figure 6). The computation of discharge by means of the TR-55 model is base on the equation:

where Q represents the discharged volume (mm) P- the rainfall depth (mm) S – the maximum retention potential after runoff initiation Ia – the initial abstraction, expressed by losses in discharge before the initiation of the runoff,

Fig. 4 Input data for the graphical format of the hydrograph by means of the TR-55 model

Page 192: Volumul integral (.pdf)

193

Fig. 5 Determination of time of concentration in AutoCAD

including retention by vegetation, soil infi ltration and evapotranspiration. The adopted value was Ia = 0.2S. The amount of rainfall recorded in the area of research is converted into discharged volume by means of a numeric curve – NC. This curve takes into account a series of factors of infl uence such as soil type, proportion of vegetation cover, vegetation type, area of impermeable zones, rainfall interception and drainage area. Figure 7 shows the variation of Ia/P by rainfall depth and the numerical curves. All these input data permit to determine the discharge for the area of study, resulting a value of

Fig. 6 Specifi cation of rainfall frequency data for the research area

Fig. 7. The variation of Ia/P by P and CN

Page 193: Volumul integral (.pdf)

194

3.0464 cm (Figure 4).

Conclusion

The quantifi cation of discharge from a watershed is a problem which, with a classical approach, implies elaborate computation efforts and an extended processing time. The alternative approach offered by the TR-55 model is a feasible one, provided that the digital terrain model is available. To apply this automated approach, a series of input date, some of general characters, like the type of method to be used, and others with specifi c signifi cance should be specifi ed, as for example the size of the drainage area, the number of the numerical curve to be used, the runoff coeffi cient, the time of concentration for the watershed, the time of runoff travel, the area of ponds, marshes and fl ooded zones, the frequency and intensity of rainfall and the intensity-runoff-frequency curve. The suggested method is user-friendly, its successful implementation being straightforward and strongly infl uenced by the operating abilities of the user.

References

Anonymous 1986. TR-55: Urban hydrology for small watersheds. In HydroCAD Manual (http://www.hydrocad.net/hcmanual.htm).Clinciu, I., Lazăr, N. 1999. Bazele amenajării torenţilor. Editura LuxLibris, Braşov, 208 p.Munteanu, S., Clinciu, I., Gaspar, R., Lazăr, N. 1979. Calculul debitului maxim de viitură prin formula raţională. Îndrumar de proiectare. Universitatea din Braşov, 178 p.Munteanu, S., Traci, C., Clinciu, I., Lazăr, N., Untaru, E. 1993. Amenajarea bazinelor hidrografi ce torenţiale prin lucrări silvice şi hidrotehnice (vol. II). Editura Academiei Române, Bucureşti, 310 p.Tereşneu ,C.C. 2005. Avantajele realizării modelului digital al terenului în AutoCAD. În Lucrările celei de a 7-a Conferinţe naţionale pentru protecţia mediului prin biotehnologii şi a celei de a 4-a Conferinţe naţionale de ecosanogeneză, Editura Pelecanus, pp. 437-442.Tereşneu ,C.C., Brad, M.L. 2006. Realizarea modelului digital al terenului în AutoCAD în vederea explorării bazinelor hidrografi ce torenţiale. În Studia Universitatis “Vasile Goldiş” Arad, Editura Universităţii “Vasile Goldiş” Arad, pp. 77-86.

Page 194: Volumul integral (.pdf)

195

ICAS 2008 Conference October 23-25, 2008 Bucharest, Romania

Contributions to the kinematics study of the blade borers for seedling planting holes

I. Popescu, R. Derczeni, E. Iordache, H. Şotoc

Popescu I., Derczeni R., Iordache E., Şotoc H. 2008. Contributions to the kinematics study of the blade borers for seedling planting holes. In: Olenici N., Teodosiu M., Bouriaud O. (eds.): Proceedings of the conference “Sustainable forestry in a ch-anging environment“, October 23-25, 2008, Bucharest: Forest Research and Management Institute ICAS, pp. 195-202.

Abstract. In this paper is presented the evolution of the preoccupations linked to the mechanization of the digging process of holes for planting seedlings. At the same time, there are emphasized constructive forms of digging borers realized under the form of blades. The fi nal part of the paper describes an analysis of a calculus model of kinematics elements which can be integrated into a unitary system for the full range of digging blade borers.Key words: blade borers, mechanization, seedling planting

Authors. Ilie Popescu, Rudolf Derczeni, Eugen Iordache - Transylvania University of Braşov, Faculty of Silviculture and Forest Engineering, Şirul Beethoven, St. 1, 500123 - Braşov, România; Horia Şotoc - University of Oradea, Faculty of Environ-ment Protection, Romania.

Introduction

Machineries that realize digging holes to plant seedlings are part of the large group of ground working machines whose active components have a moving rotation generated by a power source. The specifi c of these machineries is the fact that the soil is prepared by chipping, action from which the soil mobilization and aeration is carried out with or without putting out the soil from the hole. The principle of this action is not exclusively reserved to machineries digging holes for seedlings. This principle exists in other machineries whose destination is to prepare the soil to be a germinating bed, to maintain crops along rows gap, a.s.o. The same principle has applicability on a large scale in the wood and metal industries. The interest regarding soil preparation machineries started 130 years ago (Tămăşanu 1971). The year 1875 was an important one; in this year a machinery for soil preparation having a blade borer mounted on vertical rotor driven by two steam engines was fabricated in England. Afterwards during the 1920’s and the 1930’s, researchers constructed different mill types, especially experimental models, in the U.S.A. and in Germany. In our country, the fi rst systematic research regarding soil mills were made by Prof.Ph.D. Gheorghe Dragan, who experimented different motor – mill types in the frame of the Agronomical Research Institute of Romania.

Page 195: Volumul integral (.pdf)

196

In the forest fi eld, some preoccupation regarding the use of machineries with driven rotary tools could be mentioned after 1960. It started with digging holes machineries and machineries to plant seedlings, made in Germany and Italy. These were experimented in different relief conditions in our forest found (Chiru et al. 1963, Comănescu & Mecotă 1961, Popescu & Mihai 1966). Mills to prepare the soil to be a germinating bed in forest nurseries then attracted attention. In the fi eld of mills, the fi rst preoccupations are remarkable for their thoroughness in the theoretical basis of the soil mill process (Popescu & Mihai 1966, Popescu & Curtu 1968). Systematic and ample researches on mills for germinating bed preparation were made after 1969, following the infl uences of the works regarding physical-chemical soil properties, and regarding seedlings emergence, growth, and soils quality for some important forest species (Popescu 1975). Nowadays, as a result of the impetuous development of the machine industry fi tted out with driven rotary tools for soil preparation, the existence of some distinguished types easily leading 100 should be noted. From these, approximately 20% are made up of digging holes machineries having different destinations. The present paper is dealing with one of these types: the hole digging machineries for seedling planting, manually carried and fi tted out with active tools as knifes having a cutting blade form. Experiences proved that this type of machineries, as a result of their low weight, is useful especially on steep terrains with roots and skeletal residues on the working soil profi le. Motor borers with active tools were in attention of the researchers starting from 1963-1969. After this period, a substantial diversifi cation of the active tools having a cutting blade form was noted. This is why a study on them was lead, in order to observe how much some of the constitutive and functional characteristics could be improved to reduce the energy consumption during the hole digging operation when planting seedlings. From a theoretical point of view, the problem generally imposes to clarify three main aspects: kinematics, dynamic and power consumption elements. In the fi rst stage, the study will be limited at the knowledge regarding kinematic characteristics, which could be generalized to all borer categories fi tted out with cutting blade form for forest seedling holes.

Constitutive characteristics of blade borers

As it was explained above, blade borers are used for motor borers which, because of their underweight (under 20kg), are especially adapted to dig holes on steep terrains not accessible to tractor – driven digging machineries. 30 cm diameter and 20-40 cm depth holes are usually digged.Consequently, the use of blade borers is limited to normal size seedling planting. These types of borers dig holes from which the earth is not put out. The soil remains mobile and aerated inside the holes. The subsequent operations to evacuate the soil and to plant seedlings have to be made manually. In many cases, the borer is made up of a vertical axle driven by a two stroke motor with small capacity, having approximately 3 PH power. A fl ange or a support bar on which the single side sharpened blades are mounted, is fastened on the driving axle. Taking into account the mounting position, there are borers with horizontal blades and with vertical cutting blades (Figure 1). Horizontal blades borers frequently have one construction form. The posterior part of the horizontal cutting blade slowly dips in order to pull up the soil chip detached by the knife’s cutting edge. The active parts (the blades) are also frequently used in combined borers, which are used to dig holes with cavities to plant seedlings (Figure 2). These groups are used in very sunny areas, frequently submitted to air courses. Horizontal blade borers are recommended to dig planting holes in light soils having a middle resistance to digging, fallowed on surface but without any wooden roots and gravel on the working

Page 196: Volumul integral (.pdf)

197

soil profi le. These kinds of borers can sometimes be used only to cut the surface layer, in places where holes will later be made using vertical blade borer or other borer type, but with a lower performance rating in grassed soil. Vertical blade borers get active tools having the most diversifi ed constructive forms. The observations made on different informative materials (articles, prospects and constructive models being in usage) lead to express that their evolution start from vertical blade borers with fl oating apex to vertical blade borers joining at the apex. The explanation of this situation could be the twisting of vertical blades borers with fl oating apex during the usage. Vertical blade borers with fl oating apex (Figure 1, II, a –c) let the conviction (Chiru et al., 1963) that they have a relative good comportment in soils with low and medium resistance, low fallowed, with roots and gravel on the digging depth. The authors named above recommend the stone diameter to be under 10 cm, and the roots diameter not to exceed 6 cm. Vertical blade borers joining at apex (Figure 1, III, a – b) have almost the same working qualities as vertical blade borers with fl oating apex. The superiority of the last ones is put in evidence in the case of soils having a high resistance. It is also necessary to mention that in case of planting holes’preparation on loamy and clayed soils whose humidity is around 22%, it is also possible to evacuate more than 30% of the bored soil. When the borer is extracted, the soil that was cut remains on the borer’s blades and it could be put near the hole. Concentrating the soil in a single place will make the planting work much easier.

Kinematics of the earth chipping process

At least one chipping technological cycle occurs during a kinematic cycle. The geometrical form of the earth removed depends on the elementary generating line form (the knife edging) and on the generating line curve form. During the digging process, the borer makes two characteristic moves: a rotating one which is considered as the main move and a feed motion one in soil, considered as a secondary move (Figure 3). The effect of these moves is pointed out through a successive chipping of the soil layers. Each

Fig. 1 Representative blade borersI – horizontal blades; II – vertical blades with fl oating apex: a – circular; b – straight inclined at 90°; c – straight with slanting inclination; III – vertical blades joint at apex: a – circular; b - with slanting inclination; IV – polygonal blades joint at apex

Fig. 2 Combined borer1 – axle; 2 – apex; 3 – horizontal blade; 4 – knifes; 5 – helicoidally transporter; 6 – fl ange; 7 – hole; 8 – mobilized earth

Page 197: Volumul integral (.pdf)

198

point of the blade makes a screw movement. The axles of this screw correspond to the blade rotation axis (Figure 4). The position of each point on the knife which has a helicoidal movement could be determined with the following relations:

(1)

(2)

(3)in which:- rx is the radius of the considered point, in cm;- δ is the referent angle in radians;- un is the advance speed, in cm/rot.The helicoidal paths that result during the chipping movement, realize a helicoidal surface (Figure 5). Each of the knife’s movement is characterized by his proper speed. Thus, the tangential speed corresponds to the rotation movement and the advance speed for the feed motion in soil.Tangential speed value is determined through the relation:

(4)

Feed motion speed:

(5) where: un – feed motion speed, in cm/rot; rx – radius of a certain point, in cm; n – borer speed, in m/s.The real chipping speed is obtained in basis of the resultant between vx and u: (6)

Fig. 3 Main movements of the borers Fig. 4 Way of chipping the soil layers

Page 198: Volumul integral (.pdf)

199

The relation (6) takes into account the fact that the digging is made in the feed motion way when the speeds are added, and against the feed motion way when the speeds are subtracted. The speed on the paths of the chipping soil varies according to a complicate law. Therefore, it is useful to determine the real chipping speed in a specifi c moment to simplify the calculus. For this purpose, the tangential speed in the considered point, whose radius is known should be determined fi rst. There are some diffi culties to determine the radius, especially on the horizontal part of the blade. This point of the calculus will be developped below (Figures 6-7).After a thorough and meticulous observation it could be ascertained that

(7)where: e is the blades eccentricity in plan αx – the angle between the vector radius of a point and the borer axis in plan

Fig. 5 Movement of the earth inside the hole

Fig. 6 Cutting speed variation

Fig. 7 Cutting speed variation on the horizontal part of the blade

Page 199: Volumul integral (.pdf)

200

Changing the rx in relation (4) provides an expression equal to the the tangential speed value (vx), respectively:

(8) It results from the expression (8) that the variation of the borer tangential speed occurs after a rising function. The decrease of the radius vector angle αx from αr to αR generates an increase of the speed in exterior of digging. This situation will push the digging earth to the middle of the hole where the tangential speed is much lower. The real chipping speed will be obtained by summing up the relation (5) and (8) and making the calculus:

(9) If αx values are very low, calculus in relation (9) will be made with cossec αx = 1.In the case of small diameters borers in which knife’s advance values are 1.2 cm, in which the number of knifes is usually 2 and the rotative speed is around 60 rot/min, the value of the product un x n attending to be added or subtracted from the value of vx is around 1%.According to these considerations, the real value of the chipping speed could be calculated without big errors with the relation:

(10) The way the soil layer is cut at the fi rst borer rotation could give some information regarding some specifi c parameters of the digging process with blade borers. The speed –act on rotation (cm):

, where (11)in which: z is the number of blades; ud – speed act on blade; H – hole depth (cm) Thickness of the detached soil layer:

Fig. 8 Blade types and geometrical parameters of detached soil layers. The horizontal portion is: a – curve; b – straight inclined; c – horizontal

Page 200: Volumul integral (.pdf)

201

(12)where ξ is the angle of the apex. The width of the detached soil layer could be determined with the following relations which depend on the blades form:- for borers with vertical parallel blades and free apexes curved in interior:

(13)where Rc is the radius of the curve - for borers with vertical parallel blades an apexes curved in interior:

(14)- for borers with vertical parallel blades an apexes curved in interior with 900:

(15)- for borers with polygonal blades closed at basis an for borers with vertical blades closed at apex:

(16) The notation that were used in relations (13 … 16) are: R – the radius of the curve; r – the existing coarse between the blades apex; RM – the maximum radius, respectively the distance between the blade and borer axis; θ – the blade curvature angle; ξ – the angle at the blade apex. For most of the borers with vertical blades and apex, the constructive parameters have the following values: R = 14 cm, RM = 15 cm, r = 2cm, θ = 80...90° and ξ = 60...70°.For borers with vertical blades joint at apex it is recommended to calculate the width of the soil detached layer using the relation (16). The surface of the detached earth layer:

(17) By carefully observing the relation (13 … 17), it could be noted that the earth prism has the lower surface in the case of blades bent at 90°. Therefore in this case the power action is expected to be the less.

Conclusions

The research works that were made and the results that were analyzed in this paper lead to some important conclusions:- The mobile mills for soil mobilization as for example hole digging machineries fi tted out with spiral drills are in many aspects similar with the machineries with rotary tools used in wood and metal working. In contrast with these, the blade borers have some characteristics which differenciate them from the others soil machineries with rotary tools. The infl uence of these functional – constructive characteristics points out especially the working process study from the kinematics point of view.- Along the time a balanced development of the digging machineries equipped with spiral and blades could be noted. Even they do not put out the soil from the hole, as a result of a small contact with the soil, the blade borers reduce the digging effort. The advantage of letting the soil in the hole is more important in hilly and mountain areas.- The diversifi cation of vertical blade borers could be explained also by the tendency to reduce the

Page 201: Volumul integral (.pdf)

202

mass of digging machineries manually carried, and by the permanent effort to reduce the engines power. - Knowing in details the kinematics elements of each blade borer model permits to make some conclusions which will lead to a better choose of a borer in specifi c conditions.

References

Chiru, V., Duda, A., Popescu, I. 1963. Cercetări privind plantarea mecanizată în regiunea de munte. Lucrări ştiinţifi ce, vol. 4, Institutul Politehnic Braşov.Comănescu, A., Mecotă, T. 1961. Folosirea motoburghielor la executarea gropilor pentru plantat în regiunea de munte, Revista pădurilor, nr. 7.Popescu, I., Mihai, S. 1966. Cercetări privind mecanizarea lucrărilor de pregătire a terenurilor de împădurit în regiunea de deal. Lucrări ştiinţifi ce, vol VIII, Institutul politehnic Braşov.Popescu I., Curtu, I. 1968. Contribuţii la studiul unor organe active ale maşinilor purtate, de forat gropi în vederea plantării. Buletin de informare CDF, Seria Silvicultură nr. 5.Popescu, I. 1975. Cercetări privind folosirea frezelor de sol la pregătirea patului germinativ. Teză de doctorat, Universitatea Transilvania din Braşov.Tămăşanu, D. 1971. Maşini cu organe rotative pentru prelucrarea solului, Editura Ceres, Bucureşti.

Page 202: Volumul integral (.pdf)

203

ICAS 2008 Conference October 23-25, 2008 Bucharest, Romania

Gully erosion in Suceava Plateau – a case study

O. Iacobescu, I. Barnoaiea

Iacobescu O., Bărnoaiea I. 2009. Gully erosion in Suceava Plateau – a case study. In: Olenici N., Teodosiu M., Bouriaud O. (eds.), Proceedings of the conference “Sus-tainable forestry in a changing environment“, October 23-25, 2008, Bucharest, For-est Research and Management Institute ICAS, pp. 203-210.

Abstract. Land degradation by means of gully erosion and alluvium transport is a complex phenomenon, influenced by a multitude of factors related to geology, geomorphology, soils, land cover and, not last, the human factor. The characte-ristics and the functionality of the process are studied before, but less is known about the spatial extension and the temporal evolution of the affected areas. The studies done before show a tendency of regressive erosion, with less intensity in the downstream area and very intense degradation phenomena in the origin area. The paper’s general objective is a multi-scale approach to ravine monitoring from gully erosion point of view. The means of solving the general and spe-cific objectives proposed within the paper are represented by complex methods, including ground inventory by surveying and GPS, aerial remote sensing and topographical maps, all integrated within the data frame of the Geographical Information System. The comparison is done from a horizontal point of view, using the information contained in the materials used. The total station survey-ing of the ravine is processed within the 3D Analyst extension of the ArcGIS 9.3 software application, generating the three dimensional profile of the terrain. The evolution analysis showed a maximum extension of about 10 m on the sides of the ravine in the 30 year between the two analysis moments. The highest hori-zontal extents appears in the high declivity areas (around 80o), with elevation differences of 30 m; the extension rate is not as intense as it would be expected, giving perspectives for ecological rehabilitation. The use of exact same mark points in the repeated ground inventory allows quantification of further evolution and an area classification by land displacement units (separated according to the amount of the displaced land). The methods used show good results in the com-parison of ravine characteristics at certain moments and could also be extended in obtaining proper visualization of the phenomena, needed in the raising of the public awareness towards the problem.Key words: gully erosion, monitoring, digital images, multiscale analysis

Authors. Ovidiu Iacobescu - Ştefan cel Mare University Suceava, Forestry Faculty, Ionuţ Bărnoaiea - Ştefan cel Mare University Suceava, Forestry Faculty, 13 Uni-versity St. 720229 - Suceava, Romania.

Introduction

The importance given to soil erosion on a global scale and in our country is shown firstly by the loss in fertile soil due to pluvial water. On a world scale, the phenomenon presents a special

^

Page 203: Volumul integral (.pdf)

204

importance, affecting 2 billion hectares, representing a larger area than United States and Mexico together (Maftei 2007). A comprehensive understanding of soil erosion is still very difficult because the approaches used differ in terms of scaling, short term versus long term, small scale – large scale, regional perspectives, experimental – monitoring – modeling, development of restoration measures, management practices and socio-economic processes and impacts. In nowadays conditions, in Romania, the stakeholders in land and environment management domain are interested in the ecological rehabilitation of degraded lands and consider this among the national priorities. In this context it is obvious that any solid action in this direction should start with the inventory of the affected areas within the specific conditions of each geomorphologic unit. The Land Parcel Identification System (LPIS) provided the materials needed for extending the land degradation inventory on a national level, repeated on a five years period – digital orthorectified photos, taken for the entire country. Specific objectives: (i) Installing a repeated inventory plot area containing complex degradation phenomena (gully erosion as prevalent degradation process); (ii) Assessing the behavior of the slopes (in time) and the major changes in the ravine morphology; (iii) Identifying useful instruments in ravine dynamics monitoring. The researches presented is engaged within the preoccupations of the authors to inventory the degradation forms in the limits of the Suceava Plateau, based on the digital ortophotos taken through the LPIS program. The image resolution and details positioning accuracy are sufficient for the needs of the inventory.

Materials and methods

The mapping of any terrestrial phenomenon on remote sensing basis is bound by the same general research protocol, protocol that includes (Rusu et al. 1981, Boş et al. 1985, Boş et al. 1986): (i) terrestrial study of the phenomenon in representative areas from the mapping point of view; (ii) comparison of the ground data with the data resulting from image processing and interpretation; (iii) construction of a model that should be applied in similar cases; (iv) testing the model in similar situations, in other areas than the ones used in the construction of the model. A supplementary task that has been included in this research is represented by the comparison of data obtained in different moments regarding the same phenomenon – soil erosion. In respect to this objective, a gully erosion form in Suceava Plateau has been monitored in different moments of its evolution: 1978, 2005 and 2008. The materials used for the monitoring have been diverse and had to take into account the availability of the data. The oldest moment taken into account is represented by the preparing, in 1978, of the general topographic maps (scale 1:5000), based on aerial photointerpretation and stereorestitution (Fig. 1a). The general objective of the mapping was not the identification and characterization of the land degradation phenomena, but the major forms of gully erosion and land displacements have been outlined (exterior contour). The Balaceana Ravine taken into study within the present research is present in the 1978 mapping with a sufficient accuracy if we consider the areas that have been stable in the last decades. In 2005 the entire national territory has been inventoried within the Land Parcel Identification System using color orthorectified aerial images (Fig.1b). These images have been obtained by georeferencing and geometrically correcting aerial photographs taken in 2004-2005 and have been made available through the National Agency for Cadastre and Land Registration. The spatial resolution of the images is 0.5 m, accurate enough for the mapping of the land erosion forms, forms that are visible due to the high contrast with the surrounding areas. The corresponding scale of the images is considered approximately 1:5000, comparable with the scale of the general topographic plans. The present day’s inventory has been done terrestrially, by means of GPS and survey points

Page 204: Volumul integral (.pdf)

205

(Surdeanu 1998, Rădoane et al. 1999). The precision of the coordinates of the points determined is less than 0.5 m, assuring comparability with the aerial images. The GPS points have been determined with a handheld GPS receiver using differential corrections – TOPCON GMS2. The estimated RMSE (Root Mean Square Error) has been less than 0.5 m for each point, fact proven by overlaying the points on the orthophoto (Fig. 1c). The surveying has been done by using the LEICA TCR 407 total station, within a closed transverse started on a geodesic point and oriented by the local topographic signals (churches and high buildings with known coordinates). The precision of the surveying is high due to the possibilities of accurate determinations of angles and distances. The entire surveying was based on topographic points in order to establish a permanent monitoring network for the ravine; also, the points measured within the field data collection have a sufficient density for a being used in Digital Terrain Model generation – a point was installed in every change of slope or ravine contour. Data processing. The data processing stage was designed to bring the mapping and inventory materials in a compatible format for the monitoring of the gully erosion process. The most accurate comparison method involves the use of GIS modeling of the phenomenon. In such a case, every material must be transformed and georeferenced for overlaying in the same data frame. The general topographic maps (1:5000) have been scanned and georeferenced in the Stereographic Coordinate System. The data has been extracted from the materials used by means of digitization in the ArcGIS 9.3 Software, obtaining GIS databases regarding the extent and the parameters of the phenomenon. The surveying measurements acquired in the field have been processed with specialized software within the official Romanian data frame - the Stereographic Coordinate System, in order to ensure

Fig. 1 Materials used in ravine study: a. General topographic maps (1:5000 scale); b. Ortorectified aerial images (1:5000 scale); c. survey and GPS ground control points; d. general image of the ravine

Page 205: Volumul integral (.pdf)

206

the accurate overlaying on the digital images with the same data frame. The traverses used have used geodesic mark points with high precision on all three axes of coordinates. The 3D coordinates of the surveying points have been further used for computing the Digital Elevation Model (Fig. 3), model that should represent a start point for the monitoring of the ravines. The ArcGIS 3D Analyst offers the possibility to drape a georeferenced digital image over the three-dimensional model of the area. The result is of little interest from a technical point of view, but can be really useful in raising public awareness in concern to the problem.

Results

The terrestrial study of the ravine showed spectacular erosion and land displacement phenomena. The length of the main course is approximately 1.5 km and is accompanied on both sides by high declivity slopes, affected by massive landslides, gully erosion and superficial flows. The gravity of the phenomena is accentuated by the very close proximity with the Balaceana village, with important implications in defending the houses downstream. Two ramifications of the ravine have been consolidated by low height dams in the past 20 years. The surveying inventory has taken into account the entire area of the ravine and not only the exterior limit and the talweg. The measured points (Fig. 2) have been classified into five classes: contour, talweg, breakpoints, altimetry points and points around the areas with excessive water. The interior details of the ravine can be noted by joining the points according to the field sketches or it could be obtained by analyzing the three-dimensional model of the terrain.

Fig. 2 Comparison between the limits of the Balaceana ravine in 1978 and 2008

Page 206: Volumul integral (.pdf)

207

The evolution analysis has been done by comparing the data acquired in the field campaign (2008) with digital aerial images taken in 2004 and the topographical maps done in 1980 (based on the photogrammetric flight campaign in 1978). The comparisons between the three sets of data has been done by means of GIS systems, bringing al the data formats in the same data frame within the ArcGIS 9.3 software. The accuracy needs have been satisfied by relying on points with precise coordinates within the same national coordinate system, points found on each of the data sets processed. The results are interesting, especially when taking into account the disastrous aspect of the ravine. The ravine side banks are practically turned into very steep slopes, with a maximal altitudinal difference of about 30 m. The steepest slopes are found on the right side of the ravine, side significantly different form the other one in respect to this criterion (Fig. 3). The evolution of the phenomenon is differentiated along the sides of the ravine (Fig. 2). The high declivity of the slopes would suggest an increased instability and rapid evolution of the phenomenon. The maximum distance between the contour lines corresponding to 2008 and 1978 is 11 m, obtained especially by displacement of the terrain on the high slopes. Four distinct situations have been identified along the contour lines: (i) areas with a high degree of extension, located on the slopes with crumbling phenomena; some of the situations are relatively recent, since it doesn’t appear on the orthorectified aerial images in 2005 (Fig. 2b); (ii) relatively stable areas, encountered on the stabilized banks due to the human intervention (dams) or by reaching a stable declivity line, according to the internal abrasion angle (Fig. 2c); (iii) stabilized areas, with low slopes, covered by herbal vegetation (Fig. 2e); (iv) areas with significant differences between the two moments taken into account (Fig. 2e); this could be explained by the details inventoried within the stereographic restitution – some of the areas could have had erosion and land displacement phenomena of lower intensity, leading to a low separability on the analogical aerial photos. The most active phenomenon that can be noticed in the ground inventory is a very intense

Fig. 3 Digital elevation model of the Balaceana ravine area

Page 207: Volumul integral (.pdf)

208

superficial flow. Practically the upper soil layers are carried downstream by excessive rain, together with the herbal vegetation. This process appears to be continuous and spreading on all high declivity areas. The vegetation is extending by natural dissemination on the bare geological strata and develops into a thick herbal layer, apparently consolidated, but fragile and susceptible of flowing with the sandy underlayer. The two dams present on the left-side branches of the ravine had the purpose of consolidating the rapid landslides and soil erosion on that side. The effects of the dams are noticeable in raising the lowest transversal level of the secondary valley, but do not solve the problem of ravine expansion, especially in the origin area. On the 3D terrain model is relatively easy to measure the compensation slope above the dams, given the fact that these hydro-technical works have functioned for long enough for retaining the maximum amount of alluviums. The evolution analysis showed an increase in length due to the origin expansion. As in other cases, the ravine remains the most active part of the ravine, requiring separate restoration techniques (Băloiu 1967, Rădoane 1999, Grudnicki 2007). Concerning the slopes, the attenuation of the erosion intensity is noticeable in downstream part of the main ravine, with lower declivities and higher stability. In contrast, the river bed is the most affected in this part due to the increase water flow – it concentrates the flows from the entire watershed. The erosion in the talweg area is increased, leading to a vertical distance between the banks and the bottom of about 2 m. The riverbed alluvium transport and the increased depth lead to losses in the stability of proximity areas. Consequences to that are the frequent sliding ruptures on the slopes, in the proximity of the talweg. The land displacement process is intensified also by the excess of pluvial water, kept on the slopes by the slope’s declivity discontinues – the past landslides have formed natural flow obstructions, retaining water in their upper part. The increased water content raises the density of the terrain increasing also the rapidity of the land slide and the alluvium transport trough the main water course.

Discussion

The comparison materials tend to be different when analyzing the amount of details contained in each material. The surveying inventory done in 2008 is the most complete, but required a large amount of field work. The problem is found in the other materials. The orthophotos taken in 2005 have a single spectral channel, corresponding to the visible portion of the electromagnetic spectrum (Iacobescu 2006). The details that can be identified on it are the extent of the eroded

Fig. 4 Ortophoto drapped on the digital elevation model of the area

Page 208: Volumul integral (.pdf)

209

lands, the wetlands, the land displacement zone and the riverbed. It is practically impossible to extract any altimetry data, given the fact that these images are 2D. The topographical maps done in 1978 have altimetry details as contour lines, but with a high vertical distance between the curves, which has a smoothing effect on the terrain details. Also, the maps contain information only about the major degradation phenomena inside the ravine, not being able to represent the small areas with erosion or displacement processes. The ravine evolution process is different than one would expect, taking into account the high declivity and apparent instability of the slopes. The expansion of the ravine, even in the area with high elevation differences, is not as intense as it would be expected – the width of the extension area is maximum 10 m in 30 years of evolution. Among other causes that could explain the slow horizontal evolution, one should take into account the geological layer. This result gives perspective for ecological restoration through aforestation using wood species with high protective functions (Traci & Costin 1966, Untaru 1988). The ground inventory using the total station is practically a basis for further research in the matter. The repetition of this inventory with a certain periodicity can offer exact information about the metrics of the torrential watershed: erosion evolution, alluvium transport, alteration of the transversal and longitudinal profile. The accurate altimetry measurement, with a network of permanent mark points in the geodetic network, insures land displacement quantification on repeated inventory on the entire area of the ravine, with graphic display of differences in elevation. An efficient land degradation analysis procedure should include the use of aerial photographs, as being cost efficient and accurate enough for the required measurement (Yengxiang 1996, Perlado 1998). Another advantage is the potential of extending the inventory and monitoring to a national level, given the periodical aerial photo acquisition campaign done by the National Agency for Payments and Interventions in Agriculture within the Land Parcel Identification System.

Conclusions

The multi-scale analysis of the ravine evolution showed good results in using remote sensing methods for the inventory of the land degradation in its complexity. Even tough the main degradation process is the gully erosion, within the exterior limits of the study area one can find different types of processes – superficial flows, landslides, excessive humidity areas. The conclusion following the present research show good perspectives in using these methods in land degradation lands’ inventory and it’s ecological rehabilitation: (i) using the complex analysis methods described, one can delineate the areas with high susceptibility to ecological rehabilitation; (ii) the lack of origin protection works causes rapid regressive erosion; (iii) the effect of the hydro technical works can be quantified by comparison with non-consolidated areas; (iv) the geologic layer constituted by consolidated sandstone delays the slope displacements and increases their declivity; (v) monitoring of the gully erosion by survey works will offer quantitative information regarding land displacement and allows the estimation of transported alluviums; (vi) continuous monitoring possibilities in the context of Land Parcel Identification System, system that requires a 5 years repeated of agricultural land resources.

Acknowledgements

The researches presented in this paper have been done in the frame of the project DEGRATER 31-047/2007, PNCDI II, “Partnership in Prioritary Domains”.

Page 209: Volumul integral (.pdf)

210

References

Băloiu, V. 1967. Combaterea eroziunii solului şi regularizarea cursurilor de apă. EDP, Bucureşti. Boş, N., Kiss, A., Clinciu, I., Chiţe, Gh. 1986. Posibilităţi de fotointerpretare a unor elemente necesare la amenajarea unor bazine hidrografiice torenţiale. Revista Pădurilor 101(3): 151-155.Boş, N. et. al 1985. Cercetări privind aplicarea fotogrammetriei în amenajarea bazinelor hidrografice torenţiale. Referat final temă cercetare. Universitatea Transilvania din Braşov, 200 p.Grudnicki, F. 2007. Consideraţii privind amenajarea obârşiilor formaţiunilor torenţiale. Simpozionul „Pădurea între tehnic, economic şi politic”, Facultatea de Silvicultură Suceava, 26 Octombrie 2007.Iacobescu, O., Ciornei, I., Barnoaiea, I., Hogaş, Şt. 2006. Metode de cartare a eroziunii prin mijloace ale teledetecţiei satelitare. Simpozion Internaţional al Facultăţii de Silvicultură şi Exploatări Forestiere, Braşov, (sub tipar).Maftei, C. 2007. Eroziunea de adâncime. Măsuri de protecţie, Editura Matrix Rom, Bucureşti, 137 p.Perlado, C.C. 1998. Remote sensing and GIS applications in the erosion studies at the Romero river watershed. ACRS. pp. 141-152.Rădoane M., Rădoane Nicolae, Ichim I., Surdeanu V. 1999. Ravenele: forme, procese, evoluţie. Editura Presa Universitară Clujeană, Cluj-Napoca, 266 p.Rusu, A., Kiss, A., Chiţea, Gh. 1981. Identificarea surselor de aluviuni în cuprinsul bazinelor hidrografice torenţiale, după fotograme. Aspecte de principiu, Revista Pădurilor, 4: 234-237.Surdeanu, V. 1998. Geografia terenurilor degradate. Presa Universitară Clujeană, Cluj Napoca, 274 p.Traci, C., Costin, C. 1966. Terenurile degradate şi valorificarea lor pe cale forestieră. Editura Agro-silvică. 275 p.Untaru, E., Traci, C., Ciortuz, I., Roman, FL. 1988. Metode şi tehnologii de instalare a vegetaţiei forestiere pe terenuri degradate cu conditii staţionale extreme. ICAS, Seria II, Bucuresti, 54 p.Yengxiang, Y. 1996. Mountain Soil Erosion Mapping in Central Tibet Using Remote Sensing and GIS, The 4th International Symposium on High Mountain Remote Sensing Cartography. Karlstad - Kiruna - Tromsø, August 19-29, pp. 255-264.

Page 210: Volumul integral (.pdf)

211

ICAS 2008 Conference October 23-25, 2008 Bucharest, Romania

The importance of some endemic plant taxa in main-taining the identity of Dacian Beech forest (Symphy-to-Fagion)

A. Paunescu

Păunescu A. 2009. The importance of some endemic plant taxa in maintaining the identity of Dacian Beech forest (Symphyto-Fagion). In: Olenici N., Teodosiu M., Bouriaud O. (eds.), Proceedings of the conference “Sustainable forestry in a chang-ing environment“, October 23-25, 2008, Bucharest, Forest Research and Manage-ment Institute ICAS, pp. 211-218.

Abstract. Within Europeean beechwood, Dacian Beech forests has an individualised position which determined their affi liation to a regional alliance Symphyto-Fagion Vida 1959 (syn. Fagion dacicum Beldie 1951). For this alliance was described the suballiance Symphyto-Fagenion (Vida 1959) Soó 1964 characterised by some en-demics as diferential species (Symphytum cordatum, Ranunculus carpaticus, Pulmo-naria rubra, Dentaria gladulosa, Hepatica transslivanica, Aconitum moldavicum). Inapropiate forestry practices like extensive deforestation endanger the structure and the stability of Dacian beech forest threatening the vegetal associations that give their syntaxonomic identity. In this paper are described the Dacian beech forests with emphasis on their ecological and patrimonial value. Some conservation measures are also proposed.Key words: Dacian Beech forest, endemics, conservation

Author. Anca Păunescu - Institute of Biology - Bucharest, Splaiul Independenţei 296, 060031 - Bucharest, Romania.

^Introduction

Forest area in Romania covers about 27% of the total land of the country forested area amounting 6 368 000 ha (Enviromental Report, 2007). Woody plants from forests composition consist of about 60 native tree species. Five major groups were distinguished: conifers of about 31%, beech (pure and mixed forests) 31%, oak species 18%, other hard broadleaves 15% and soft broadleaves 5% (Borlea et al. 2006). Romania’s forest resources include 10 groups of natural forest and 150 types of forest ecosystems (Doniţă et al. 1990). Presently, Romania has the largest natural forested area and the largest natural beech forest in all Europe covering an area of 1 915 657 ha. The syntaxonomy of mesophilous forests united the European beech forests in a single order named Fagetalia sylvaticae Pawlowski 1928. Fagetalia include a number of regional alliances (Török et al. 1989) as follows: • Scillo-Fagion Oberdorfer 1957, described from western Europe;• Fagion austro-italicum Soó 1962, from central and southern Italy;

Page 211: Volumul integral (.pdf)

212

• Fagion medio-europaeum Soó 1960, from central Europe with several ecologically distinct suballiances such as Carpinion, Cephalantero-Fagion, Eu-Fagion, Luzulo-Fagion, Abieti-Fagion, and Acerion;• Fagio illyricum Horvat 1938 from southeastern Alps, southwestern Hungary, Yugolsavia, Albania, Greece;• Fagion dacicum Soó 1962 (Syn Symphyto-Fagion Vida 1959) described from eastern and southern Carpathians and eastern Balkan. Beech forests from northern Asia Minor, southeastern Balkan, Crimeea and Caucasus are assigned to order Fagetalia orientalis Soó 1962. The communities of Fagus orientalis are markedly different from the communities of Fagus sylvatica, have a distinct fl oristic composition, and belong to the Euxinian alliance Fagion orientalis (Soó 1964). It is noted that the mesophilous forests of the eastern Balkan were subsequently included into a separate alliance named Fagion moesiacum (Török et al. 1989). More recent syntaxonomical approaches, includes the alliances Luzulo-Fagion (acidophilous beech forests), Asperulo-Fagion (nutrient-rich beech forests), and Cephalanthero-Fagion (thermophilous beech forests) as characteristic for the southern Central European beech forests (Willner 2002).

Dacian beech forest characterization

Beech forests are well represented in Carpathian Mountains, their spreading area being known as beech sub-zone. The inferior limit of beech sub-zone is 240 m high, sometimes lower (in Danube Valley for example is 60 m). The most accepted superior limit of beech spread in Romania is 1200-1400, with a maximum of 1700 in Apuseni Mountains. Beech Carpathian forests are united by Moor (Moor 1938) in a group of distinct vegetal associations named Fagetum carpaticum with fi ve distinct subunits (List 1). Beech forests include in the herbaceous synusia some elements with selective or preferential fi delity. These species are considered characteristics for Fagion alliance and their list (as shown in List 2) are proposed for the fi rst time by Moor (1938). These fl oristic elements constitute a fundamental stock of mid-European and Baltic species that survive the glaciations and followed the expansion of beech. Herbaceous layer of beech forests include also other elements with different origins: Atlantic, Mediterranean, Illyrian, Pontic, Dacian etc. These elements are considered to be essential to distinguish the regional association from beech forests (Boşcaiu 1971). The vegetal association that individualize the Dacian beech forest was named Fagetum dacicum and described for the fi rst time by the reputed Romanian botanist Al. Bedie (1951). The described

List 1. Subunits of Fagetum carpaticum

1 Fagetum carpaticum Fatrae Klika 19362 Fagetum carpaticum Cortusae Klika 19363 Fagetum tatrticum Szafer et Sokolowski 19274 Fagetum carpaticum babiogorense (Wallas 1933) Moor prov. 19385 Fagetum carpaticum orientale (Zlatnik 1935) Moor prov. 1938

List 2. Characteristic species for Fagion alliance

Abies alba Corydalis cava Festuca silvatica Neotia nidus-avisActaea spicata Daphne mezereum Lysimachia nemorum Phyteuma spicatumAsarum europaeum Elymus europaeus Melica unifl ora Sanicula europaeaAsperula odorata Euphorbia dulcis Mercurialis perenis Veronica montana

Page 212: Volumul integral (.pdf)

213

association was subscribed to the Fagion silvatice (Pavl. 1928 n.n.) Tx. 1937 alliance, Fagetalia (Pavl. 1928 n.n.) Tx. 1936 order, and Querceto-Fagetea Br-Bl.et Vlieger 1937 class, respectively. Some species characteristic for Fagion are cited as part of the Fagetum dacicum association (See Table 1). In order to defi ne Fagetum dacicum, Beldie proposed as characteristic species for the association three endemics and a mid-European species (Table 2). Beldie describes also within Fagetum dacicum four subassociations (Table 3). According to the most accepted nomenclatural principles in fl oristic phytosociology reviewed by Neuhäus (1968), the conception of a unit, given by the diagnosis, is considered to be the most important criterion for the choice of a correct name. Names containing regional references like dacicum should be excluded. In the light of these principles the name of endemic association Fagetum dacium was replaced by Symphyto-cordati-Fagetum Vida 1959 and the adjacent alliance name with Symphyto-Fagion.For the newly described alliance Symphyto-Fagion together with the characteristic species cited for Fagion dacicum are added a few new ones (Table 4, adapted from Sanda 2002). Consecutively 8 types of Dacian beech forest are recognized as present in Romanian woods (Table 5). The association Symphyto cordati-Fagetum includes pure or mixed beech forests from

Table 1 Species from Fagetum dacicum given as fl oristic support to affi liate the association to Fagion alliance

Species name Constancy classFagus silvatica VAsperula odorata IVActaea spicata IIFestuca silvatica IIMercurialis perenis IIDaphne mezereum INeotia nidus-avis IStelaria nemorosum ICorydalis cava +Sanicula europaea +

Table 2 Characteristic species for Fagetum dacicum

Table 3 Subassociations within Fagetum dacicum

No Name Description1 Fagetum dacicum normale Dacian beech forest almost pure, normally develloped2 Fagetum dacicum bietosum Dacian beech forest with Abies alba, normally develloped

3 Fagetum dacicum festucetosum Degraded Dacian beech forest with Festuca silvatica

4 Fagetum dacicum luzuletosum Degraded Dacian beech forest with Luzula albida

Species Constancyclass Areal/obs

Symphytum cordatum III Endemic for Oriental CarpathiansRanunculus carpaticus III Endemic for Oriental CarpathiansRubus hirsutus III Mid-European

Pulmonaria rubra I Endemic (Illyrian vicariant)/differential for Southern association variants

Page 213: Volumul integral (.pdf)

214

Southeastern Carpathians between 600-1100 m altitude (Coldea 1991). The adjacent phytocenoses are developed on mollic brown soil, deep pseudogleic, rich in mull type humus. In the tree layer (24 m high and 70-80% coverage) the monodominant species is Fagus sylvatica. Other tree species from the phytocenoses are Acer pseudoplatanus, Picea abies, Abies alba and Carpinus betulus (Boşcaiu et al. 1982). In the herbaceous synusia the species Symphytum cordatum has coverage of about 20%. There are also a number of species characteristic for the suballiance Symphyto-Fagenion. Some of these species have coverage of about 30% like: Galium odoratum, Dryopteris fi lix-max, Anthyrium fi lix-femina (Boşcaiu & Täuber 1985). Based on their dominance in herbaceous synusia Vida (1963) delimits a number of subassociations. A detailed analysis of

Table 4 Characteristic species for Symphyto-Fagion

Species Constancy classSymphytum cordatum IVFestuca drymeja IVEuphorbia carniolica IIIDentaria glandulosa IIPulmonaria rubra IIHepatica transsilvanica IIAconitum moldavicum IRanunculus carpaticus ICrocus heuffelianus IRubus hirsutus ISilene heuffelii IHelleborus purpurascens I

Table 5 Dacian beech forests types (adapted from Doniţă et al., 2005)

Nature 2000code

Nature 2000name

Romanian code Romanian

Habitat name

91V0

Dacian beech forest(Symphyto-Fagetum)

R4101

South-East Carpathian spruce (Picea abies) beech(Fagus sylvatica) and fi r (Abies alba) forests with Pulmonaria rubra

R4103

South-East Carpathian spruce (Picea abies) beech (Fagus sylvatica) and fi r (Abies alba) forests with Leucanthemum waldsteinii

R4104South-East Carpathian beech (Fagus sylvatica) and fi r (Abies alba) forests with Pulmonaria rubra

R4108South-East Carpathian beech (Fagus sylvatica) and fi r (Abies alba) forests with Leucanthemum waldsteinii

R4109South-East Carpathian beech (Fagus sylvatica) forests with Symphytum cordatum

R4116South-East Carpathian beech (Fagus sylvatica) forests with Phyllitis scolopendrium

R4119Dacian beech-hornbeam (Fagus sylvatica, Carpinus betulus) forest with Carex pilosa

R4120 Moldavian beech-silver lime (Fagus sylvatica, Tilia tomentosa) mixed forest with Carex brevicollis

Page 214: Volumul integral (.pdf)

215

the phytocenologic material lead to the conclusion that the described subassociations are in fact facies because the differential species are present in most of the analyzed beech forests (Sanda et al. 2001).

Conservation measures

In 1998 the European Community adopted a Communication on a European Biodiversity Strategy (Com (90)42), as required by the ratifi cation of the Convention on Biological Diversity. In a small section on forests, it is acknowledged that forests contain the greatest proportion of biological diversity in terms of species, genetic material and ecological processes and have an intrinsic value for the conservation and sustainable use of biodiversity. With global concern growing over deforestation, loss of carbon stored in forests and the role of forests in climate change, the spotlight has been turned on forest monitoring in a bid to safeguard forests and monitor emissions from deforestation (Skov & Svenning 2004). The main function of forests is to protect different ecosystems from soil erosion, pollution, to create watershed protection and biomass production. Aerial pollutants are a serious thread in some industrial areas (Ohlemüller et al. 2006). It is estimated that 250 000 ha are heavily affected by pollution, and more than three million ha show foliar signs of pollution (FAO 2001). Pollution, global warming and inappropriate forestry practices are the main causes for forest destruction. Forest protection was legalized in Romania by the Act of Constitution from 1907. The National System of Natural Parks and Reservations was initiated in 1990 and presently Romania’s network of protected areas include a number of 27 parks (14 national and 13 natural) and reservations (55 scientifi c and 617 natural) totaling about 15000 km2 (each park and reservation has 80% forest cover). The major types of Dacian beech forests are conserved in situ within national parks and biosphere reserves. The main protected areas where Dacian beech forest is preserved are given in Table 6. In all these areas silvicultural practices are restricted and directed to conservation purposes. As a consequence we can assume that Dacian beech forests are well conserved in these areas. For the Dacian beech woods that are not included in protected areas and conservation areas a sustainable forestry should be applied. These include the monitoring of natural evolution of vegetal association in order to apply the proper forestry practices. Dacian beech forests are evaluated to be in the ultimate successional stage named climax. Clearcutting critically disturb the established balance damaging the structure of the associations and removing the climax stage

Table 6 National parks and biosphere reserves

Name Type Area (ha)Retezat Biosphere Reserve 54 400Rodna Biosphere Reserve 56 700Domogled - Valea Cernei National Park 60 100Cheile Nerei - Beuşniţa National Park 45 561Apuseni National Park 37 900Bucegi National Park 35 700Semenic - Cheile Caraşului National Park 30 400Ceahlău National Park 17 200Cozia National Park 17 100Călimani National Park 15 300Piatra Craiului National Park 14 800Cheile Bicazului National Park 11 600Grădiştea de Munte National Park 1 000

Page 215: Volumul integral (.pdf)

216

(Godefroid et al. 2005). Inappropriate forestry practices had consequences also on beech forests spread. In some forests the beech moves to lower altitude favoring the pine (Jahn 1985). In this way beech forests were replaced by pine forests that are not a reliable Piceetum, from phytosociological perspective. These lost beech forests could be recognized by the presence of species Asperula odorata in pine forests. Silvicultural practices should be as conservative as possible for the established climax associations within Dacian beech forests. For example selective cutting (harvesting individual trees or groups of trees from time to time on a regular basis over a long period of time) is preferable. Recently developed approaches like ex situ methods are not effi cient in conservation of Dacian beech forest. Ex situ conservation measures like preservation within Botanic gardens, seed banks, in vitro cultures collections, cryopreservation etc. could be applied to individual species only, not to the entire vegetal association.

Conclusions

Dacian beech forest has an individualized position within European beech forests. The presence of some endemic species in the herbaceous synusia of the beech forest is a prerequisite for the identity of the Romanian endemic vegetal associations and adjacent regional alliance Symphyto-Fagion that characterize the Dacian beech forest. In situ conservation of the characteristic endemic plants for the Symphyto cordati-Fagetum association is an essential condition for preserve the individual position of Dacian beech forest within European beech woods. Silvicultural systems should be adapted to limit any interference with natural ecosystems and forest herbs generally and endemic species especially in order to enable the in situ preservation of the characteristic associations. To achieve this goal, management without large clear harvesting methods that never leave the ground completely bare is proposed as alternatives to the clearcutting system. The forest conservation programs should include Dacian beech forest as one of the main important objectives because of their patrimonial, scientifi c and ecological value.

References

Beldie, Al. 1951. Făgetele montane superioare dintre Valea Ialomiţei şi Valea Buzăului – Studiu fi tosociologic comparativ. Ed. Acad. Rom, Bucureşti, 112 p.Borlea, G.F., Radu, S., Stana D. 2006. Forest biodiversity preservation in Romania. Not. Bot. Hort. Agrobot. Cluj 34: 21-27.Boşcaiu, N. 1971. Vegetaţia Munţilor Tarcu, Godeanu şi Cernei. Ed. Acad. RSR, Bucureşti, 494 p.Boşcaiu, N., Boşcaiu, V., Coldea, Gh., Täuber, F. 1982. Sintaxonomia făgetelor carpatine. In Preda V., Boşcaiu, N. (eds.) Făgetele carpatine. Semnifi caţia lor bioistorică şi ecoprotectivă. Cluj-Napoca, pp. 228-303.Boşcaiu, N., Täuber, F. 1985. Die zönologischen Verhältnisse der dazischen und dazisch-balkanischen Arten aus dem rumänischen Karpatenraum. Vegetatio 59: 185-192Coldea, Gh. 1991. Prodrome des associations vegetales des Carpates du sud-est (Carpates Roumaines). Documents Phytosociologiques, Camerino 13: 317-539.Doniţă, N., Chiriţă, C., Stănescu, V. (eds.) 1990. Tipuri de ecosisteme forestiere din România, ICAS, seria II, Bucureşti, 390 p.Doniţă, N., Popescu, A., Păuca-Comănescu, M., Mihăilescu, S., Biriş, I.A. 2005. Habitatele din România. Ed. Tehnică Silvică, Bucureşti, 442 p.Environmental report 2007 - http://www.recromania.ro/programe/sea2007FAO, 2001. Global forest resources assessment 2000. Main report. Food and Agriculture Organization of the United Nations, Rome.Godefroid, S., Rucquoij, S., Koedam, N. 2005. To what extent do forest herbs recover after clearcutting in beech forest? Forest Ecol. Manag. 210: 39–53.

Page 216: Volumul integral (.pdf)

217

Jahn, G. 1985. Chorological phenomena in spruce and beech communities.Vegetatio 59: 21-27.Moor, M. 1938. Zur Systematik der Fagetalia, 1938. Ber. Schweiz. Bot. Ges. 48: 417- 469.Neuhäus, R. 1968. Draft proposals for nomenclature principles in fl oristic phytosociology. Folia Geobot. 3(1): 47-55.Ohlemüller, R., Gritti E.S., Sykes M.T., Thomas, C.D. 2006. Quantifying components of risk for European woody species under climate change. Global Change Biol. 12: 1788-1799.Sanda, V., Popescu, A., Stancu, D.I. 2001. Structura cenotică şi caracterizarea ecologică a fi tocenozelor din România. Ed. Conphis, Rm. Vâlcea, 359 p.Sanda, V. 2002. Vademecum ceno-structural privind covorul vegetal din România. Ed. Vergiliu, Bucureşti, 331 p.Skov, F., Svenning, J.C. 2004. Potential impact of climatic change on the distribution of forest herbs in Europe. Ecography 27: 366-380.Soó, R. 1964. Die regionalen Fagion-Verbinde und Gesellschaften Stidosteuropas. Stud. Biol. Acad. Sci. Hung. I.Akóadmiai Kióad, Budapest. 104 pp.Vida, G. 1963. Die zonalen Buchenwalder des ostkarpatischen Florenbezirkes (Transslivanicum) auf Grund von Untersuchungen im Prang-Gebirge. Acta. Bot. Acad. Sci. Hung. 9 (1-2): 177-196Tőrők, K., Podani, J., Borhidl, A. 1989. Numerical revision of the Fagion illyricum alliance. Vegetatio 81: 169-180.Willner, W. 2002. Syntaxonomische Revision der südmitteleuropäischen Buchenwälder. – Phytocoenologia 32: 337–453.

Page 217: Volumul integral (.pdf)

218

Page 218: Volumul integral (.pdf)

219

ICAS 2008 Conference October 23-25, 2008 Bucharest, Romania

Formarea, dezvoltarea şi caderea prematura a ghin-dei de gârnita (Quercus frainetto) în decursul unui sezon de vegetatie

M. S. Nica, M. O. Badele, C. Netoiu, I. Cioc, C. Şoanca

Nică M. S., Bădele M. O., Neţoiu C., Cioc I., Şoancă C. 2009. Formarea, dezvoltarea şi căderea prematură a ghindei de gârniţă (Quercus frainetto) în decursul unui sezon de vegetaţie. [Formation, development and early abscission of the Italian oak (Quer-cus frainetto) acorns during vegetation season]. In: Olenici N., Teodosiu M., Bouri-aud O. (eds.), Proceedings of the conference “Sustainable forestry in a changing environment“, October 23-25, 2008, Bucharest, Forest Research and Management Institute ICAS, pp. 219-226.

Abstract. The paper presents the evolution of the formation, development and early abscission of the italian oak acorns during vegetation season, from May to October. In order to study these physiological processes we isolated the fi rst set of fl owering braches from the carpophagous insect’s attacks and compare the results with natural fl ower development from the second set of branches. Results showed that non-fecundated fl owers, represented 27% from the initial number of fl owers and 36% felt down in the different stage of the acorns development. In the autumn only 8% of the fl owers developed in mature healthy acorns in natural observation plots and in the isolated fl owers/acorns variant 28%; the difference is represented by the acorns with carpophagous insects larvae: Balaninus glan-dium, Carpocapsa sp., and Cynips sp..Key words: Querqus frainetto, fl owers, development, acorns viability, fructifi cation season

Authors. Marius Sorin Nică, Marcel Octavian Bădele, Constantin Neţoiu, Ionel Cioc, Cornel Şoancă - Forest Research and Management Institute, Bucharest, Craiova Station, Romania.

Introducere

Este cunoscut faptul că regenerarea naturală şi artifi cială a pădurilor de cvercinee depinde în principal de periodicitatea şi adundenţa fructifi caţiei, dar şi de calitatea, viabilitatea ghindelor rezultate în anii de fructifi caţie. Sporirea calităţii şi cantităţii de ghindă produsă în aborete sursă de seminţe, rezervaţii şi plantaje a reprezentat şi reprezintă o preocupare constantă a silvicultorilor. În acest scop, la noi în ţară studiile şi cercetările s-au concentrat numai pe protejarea ghindei stocate, iar în ultimi ani cercetările s-au extins asupra protejării ghindei de atacurile insectelor seminofage, prin aplicarea de stropiri succesive în plantaje (Neţoiu 2005). Speciile de cvercinee indigene fructifi că abundent la cca. 4-8 ani, “cu stropeli” mai mari sau mai

,,

^^

^

^

,

^ ^

Page 219: Volumul integral (.pdf)

220

mici intermediare. Periodicitatea şi abundenţa fructifi caţiei variază cu specia, condiţiile staţionale şi de arboret şi cu vitalitatea arborilor. Gorunul, în general, are producţia de ghindă mai constantă, cu o periodicitate de 3-6 ani, benefi ciind de condiţii mai favorabile fi toclimatic ale arealului său. Stejarul pedunculat fructifi că abundent mai rar, la 3-8 ani, însă în conditii de vegetaţie favorabile produce stropeli slabe aproape anual. Cerul fructifi că abundent la 3-5 ani sau mai des iar gârniţa fructifi că foarte rar, la 6-10 ani iar stropelile sunt slabe şi rare (Enescu 1982). Abundenţa fructifi caţiei depinde în primul rând de numărul de fl ori ce apar primăvara, ca primă condiţie a dezvoltării unui număr cât mai mare de fructe (ghinde). Numărul şi periodicitatea apariţiei fl orilor este un caracter fi xat genetic în decursul evoluţiei speciilor şi, într-o mică măsură, infl uenţat de factori de mediu. Gârniţa (Quercus frainetto) formeză fl ori grupate în infl orescenţe, din care se dezvoltă 1-4 (rar 5) ghinde pe un peduncul scurt, celelalte fl ori fi ind nefecundate sau ghindele formate nu se dezvoltă. Acest fapt reprezintă, cel mai probabil, o formă de selecţie naturală la nivelul formării fructelor, din 4-6 fl ori din infl orescenţă, chiar dacă sunt fecundate toate, numai 1-4 ghinde ajung la maturitate, în funcţie de anumiţi factori fi ziologici şi/sau de mediu. Apariţia de fl ori numeroase primăvara nu garantează o producţie sporită de ghindă în acel an, cele mai multe specii de cvercinee având periodicităţi relativ mari cu fructifi caţie abundentă (Stephenson 1981, Cecich 1991, Loftis & McGee 1993, Johnson et al. 2002). Într-un studiu făcut de Kossuth în 1974, la stejar alb (Q. alba), 80% din fl orile iniţiale au fost avortate nefi ind fecundate în prima lună de la formare iar procentul de ghindă matură din fl orile iniţiale a fost de 1-6%, în patru ani consecutivi. Fecundarea fl orilor începe imediat după apariţia acestora, în luna mai, dar, conform unui studiu făcut de Jovanovic & Tucovic (1975) la Quercus robur fertilizarea (formarea zigotului), începe la 5-6 săptămâni de la germinarea polenului, sugerând că creşterea tubului polinic are loc după ce ovulule s-au dezvoltat complet. Având în vedere că, din totalul fl orilor din infl orescenţă o parte rămân nedezvoltate, iar la altele dezvoltarea ovarului s-a oprit în diferite stadii, este posibil ca numai fl orile fecundate primele să se dezvolte în ghinde iar cele la care fecundarea s-a produs mai târziu, în funcţie de aportul de substanţe nutritive de care dispune planta, să fi e avortate în diverse stadii de dezvoltare ale ghindei. La numeroase specii de arbori, factorii cu cel mai mare impact asupra cantităţii de fructe ce ajung la maturitate sunt de natură edafi că şi climatică, dintre aceştia, cantitatea de substanţe minerale şi apă din sol fi ind deteminaţi (Rauscher et al. 1997, Cecich & Sullivan 1999). Stephensen, în 1981, într-un studiu de sinteză a literaturii din domeniu, a ajuns la concluzia că, deşi lipsa polenizării, vătămarea fructelor şi seminţelor de către diverşi agenţi fi topatogeni şi entomofagi şi climatul nefavorabil infl uenţează considerabil producţia de fructe, principalul factor care limitează numărul fi nal de fructe, seminţe viabile este determinat de resursele minerale de care dispune planta. Dintre factorii biotici care infl uenţează producţia şi, în special, viabilitatea (puterea de germinare) ghindelor, insecte seminofage au o pondere însemnată. În literatură sunt citaţi ca principali dăunători ai ghindei insectele din genul Curculio şi Conotrachelus (Feret et al. 1982, Csoka & Hirka 2006, Bonal & Munoz 2007). La noi în ţară principalele specii ce afectează producţia de ghindă sunt Balaninus glandium (sin. Curculio glandium), Carpocapsa amplana şi Carpocapsa splendana (sin. Laspeyresia sp., sin. Cydia sp.) (Neţoiu 2005). Deşi speciile de insecte amintite mai sus pot provoca căderea prematură a ghindelor şi diminuarea considerabilă a viabilităţii ghindei prin reducerea (consumarea) cotiledoanelor embrionului, aceste afectează doar 20% din posibila producţie de ghindele, întrucât din numărul iniţial de fl ori, în medie doar 20% devin ghinde (Kossuth 1974). Având în vedere că, prin aplicarea de măsuri şi tratamente pentru combaterea dăunătorilor seminofagi se poate mări procentul de ghindă sănătoasă, viabilă dar nu şi numărul total de ghindă ce ar putea fi obţinut într-un an, este necesar să se identifi ce complexul de factori ce acţionează

Page 220: Volumul integral (.pdf)

221

asupra formării, dezvoltării şi menţinerii ghindei. Cunoaşterea factorilor care infl uenţează producţia de ghindă, de la înfl orire până la căderea tuturor ghindelor formate, precum şi evoluţia dezvoltării acestora în decursul sezonului de vegetaţie, reprezintă un prim pas în adoptarea unor măsuri diversifi cate de sporire a producţiei de ghindă în arborete sursă de seminţe şi plantaje. Având în vedere periodicitatea mare de fructifi caţie a cvercineelor, determinată atât de factori genetici cât şi de factori climatici şi edafi ci care, de cele mai multe ori, nu pot fi “îmbunătăţiţi”, prin studierea şi determinarea factorilor ce infl uenţează procesele de formare şi dezvoltare a ghindelor putem să intervenim cu o serie de măsuri în scopul creşterii producţiei de ghinde viabile în anii în care au loc fructifi caţii abundente sau stropeli. În cadrul studiului s-a urmărit determinarea procentului de ghindă viabilă care rezultă din numărul iniţial de fl ori, a cauzelor care au condus la căderea prematură a fl orilor/ghindelor şi dinamica căderii acestora pe parcursul unui sezon de vegetaţie.

Material şi metoda

Studierea factorilor ce infl uenţează formarea, dezvoltarea şi căderea prematură a ghindelor s-a făcut pornind de la identifi care a 10 arbori care au prezentat fructifi caţie (fl ori) în anul 2007, în plantajul de gârniţă de la Balasan, O.S Perişor, D.S Craiova. Dintre aceştia s-au selectat cinci ramuri (de la cinci arbori diferiţi) pe care s-au instalat coşuri (fi g. 1), respectiv cinci ramuri pe care s-au instalat saci (fi g.2). Coşurile, instalate în scopul recoltării fl orilor/ghindelor căzute, au fost confecţionate din sârmă şi plasă, având un diametru şi lungime variabilă, în funcţie de lungimea ramuri pe care au fost instalate. Sacii au fost confecţionaţi din plasă de pânză cu ochiuri mici pentru a nu permite pătrunderea insectelor şi pentru a colecta fl orile/ghindele căzute. Prima variantă, constituită din cinci ramuri pe care s-au instalat coşuri, denumită variantă martor, a încercat să surprindă procesele naturale ce au loc de la fecundarea fl orilor până la căderea tututor ghindelor de pe ramuri. Cea de-a doua variantă, constituită din cinci ramuri pe care s-au instalat saci, denumită fl ori/ghinde izolate s-a amplasat în scopul protejării totale a ghindelor de acţiunea insectelor seminofage. Odată cu instalarea coşurilor şi sacilor s-a făcut şi numărarea fl orile de pe fi ecare ramură (tabelul 1). Numărarea ghindelor rămase pe ramuri şi colectarea celor care au căzut în coşuri şi saci s-au făcut în datele de 29.05.2007, 12.06.2007, 25.06.2007, 17.07.2007, 02.08.2007, 14.08.2007, 29.08.2007, 19.09.2007, 15.10.2007. Ghindele şi fl orile recoltate din coşuri şi saci au fost aduse în laborator unde, prin secţionare s-au analizat cauzele care au condus la căderea acestora. Pentru aceasta s-a utilizat bisturiu pentru secţionarea ghindelor şi lupă 50x pentru observaţii. Florile

^

Fig. 1 Coş pentru colectarea fl orilor/ghindelor Fig. 2 Sac instalat pe ramură

Page 221: Volumul integral (.pdf)

222

nefecundate au fost identifi cate prin examinarea cu lupa a ovarului, fi ind considerate nefecundate acele fl ori la care creşterea, dezvoltarea ovarului nu a început, chiar dacă, este posibil ca aceste să fi fost polenizate. Ghinde avortate (fl ori fecundate) au fost considerate fl orile la care a început dezvoltarea ovarului, dar ghindele afl ate în diverse stadii de dezvoltare au căzut. Florile, respectiv ghindele căzute au fost împărţite în 6 categorii, după cum urmează: (i) nefecundate - fl orile la care, prin examinarea cu lupa, s-a constatat că ovarul nu a început să se dezvolte, procesul de formare a embrionului nefi ind declanşat; (ii) avortate - ghinde căzute care au prezentat ovar în dezvoltare (ghindă în formare), embrionul fi ind în diverse stadii de dezvoltare; (iii) Cynips - ghinde atacate de larve de Cynips sp.; (iv) Carpocapsa - ghinde atacate de larve de Carpocapsa sp.; (v) Balaninus - ghinde atacate de larve de Balaninus sp.; (vi) mature - sănătoase ghinde ajunse la maturitate fi ziologică care nu au prezentat vătămări biotice. . Rezultate şi discutii

Pornind de la numărul de fl ori existent la data de 29.05.2007 cu două variante de lucru, neizolate (varianta martor) şi izolate de acţiunea insectelor seminofage (varianta ghindă izolată), pe parcursul sezonului de vegetaţie s-au numărat şi analizat fl orile/ghindele prezente pe ramuri şi cele care au căzut, la diferite date calendaristice. În cazul variantei martor (fi g. 3) se observă că numai 8% din numărul iniţial de fl ori au devenit ghinde mature sănătoase. Din numărul iniţial de fl ori, 29% au fost nefecundate iar cel mai mare procent (33%) deşi fecundate, au fost avortate de către plantă în diverse stadii de dezvoltare a ghindei. Procentul relativ mare de fl ori nefecundate este caracteristic speciilor de stejari, fi ind infl uenţat de o serie de factori de natură biotică şi abiotică. Avortarea ghindelor se datorează, cel mai probabil, unor cauze fi ziologice determinate de aportului de elemente nutritive şi/sau de umiditate din sol. Dintre insectele seminofage, Balaninus glandium a fost specia care a atacat cele mai multe ghinde, deteminând căderea prematură a ghindelor şi consumarea cotiledoanelor ghindelor mature (23% din fl orile iniţiale), urmată de Carpocapsa sp. (6%) şi Cynips sp. (2%). Dacă scădem fl orile nefecundate şi ghindele formate dar avortate, rezultă că 38% din fl orile iniţiale ar fi putut deveni ghinde mature, sănatoase dar, datorită infl uenţei insectelor seminofage, numai 8% au ajuns la maturitate, sănătoase, restul fi ind atacate de insecte, în special de Balaninus glandium. În funcţie de cauzele care determină căderea fl orilor/ghindelor în decursul sezonului de vegetaţie, acestea cad preponderent în anumite perioade de timp (fi g. 4). După cum era de aşteptat, 30% din totalul fl orile nefecundate au căzut în intervalul 12.06-25.06, iar un procent aproximativ egal în perioada următoare, 25.06-17.07, în total 60% din totalul fl orile nefecundate, restul de 40% au rămas pe ramuri, pe pedunculii care au ghinde dezvoltate, căderea acestora având loc gradual până în toamnă. Cele mai multe ghinde (40% din total) sunt avortate când se afl ă în stadiul incipient, în intervalul 25.06-17.07, 20% în intervalul următor (17.07-02.08), iar restul gradual până la fi nalul sezonului

Ramura nr. Varianta martor Varianta ghindă izolată1 127 932 203 1473 170 1044 193 1635 104 40

TOTAL 797 547

Tabelul 1 Numărul de fl ori existent la data de 29.05.2007, pe fi ecare ramură, respectiv variantă

,

Page 222: Volumul integral (.pdf)

223

de vegetaţie. Ghindele atacate de Balaninus încep să cadă în intervalul 02.08-14.08 (20%), urmând o curbă ascendentă cu un maxim în intervalul 29.08-19.09 (60%), când ghindele au ajuns la maturitate

Fig. 3 Evoluţia numărului de fl ori/ghinde pe parcursul sezonului de vegetaţie 2007 la varianta martor

Fig. 4 Dinamica căderii fl orilor/ghindelor în cursul sezonului de vegetaţie la varianta martor

Page 223: Volumul integral (.pdf)

224

fi ziologică, respectiv larvele de Balaninus au consumat o cantitate însemnată din cotiledoanele embrionului. Comparativ cu ghindele atacate de Balaninus, cele atacate de Carpocapsa încep să cadă mai târziu, în perioada 17.07-02.08, iar cele mai multe (50% din numărul total de ghinde atacate) în ultimul interval, adică 19.09-15.10. La varianta fl ori/ghinde izolate, deşi a fost constituită cu scopul izolării totale a fl orilor/ghindelor de acţiunea insectelor seminofage, se observă că Balaninua glandium a depus ouă în ghindele din interiorul sacului cel mai probabil prin ochiurile sacului, la contactul dintre acesta şi ghindă, fi ind găsite larve în ghinde ce reprezintă 4% din numărul de fl ori iniţial (fi g. 5). Ghindele atacate de Cynips sp. (3% din numărul iniţial de fl ori) se explică prin faptul că această specie depune ouă în muguri fl orali, deci înainte de data de 29.05.2007 când s-au izolat fl orile. Ghindele mature sănătoase reprezintă 28% din numărul iniţial de fl ori, cea ce reprezintă un procent considerabil mai mare decât în cazul variantei martor (8%). În cea ce priveşte fl orile nefecundate căzute şi ghindele avortate de către plantă, acestea au reprezentat 40%, respectiv 25% din numărul de fl ori iniţiale. Aceste procente sunt aproximativ egale cu cele înregistrate la varianta martor, izolarea fl orilor/ghindelor în saci fi ind făcută pentru a proteja ghinda de atacurile insectelor seminofage, neinfl uenţând fecundarea fl orilor sau avortarea ghindelor. Din ghindele ajunse la maturitate (35% din fl orile iniţiale) în acest caz, 28% au fost sănătoase, fără a prezenta urme de atacuri. Acest fapt conduce la concluzia că, prin protejarea ghidei de atacurile insectelor seminofage prin combaterea acestora cu diverse insecticide, se poate mări procentul total de ghindă, în special de ghindă sănătoasă. Căderea fl orilor nefecundate s-a produs relativ constant, între 15-20% din totalul ghindelor în fi ecare interval studiat, tot parcursul sezonului de vegetaţie (fi g. 6). Acest fapt se explică prin protecţia oferită de saci împotriva curenţilor de aer, care în acest caz nu au mai scuturat fl orile de pe pedunculi şi ramuri, acestea căzând gradual şi nu în prima lună, ca în cazul variantei martor. La varianta ghindă izolată, cele mai multe ghinde au fost avortate în intervalul 25.06-17.07 (30% din totalul ghindelor avortate) şi în intervalul 14.08-29.08 (28%). Comparativ cu varianta

Varianta flori/ghinde izolate

100 96 92

74 70 66

47

17

4 8

1315

16

19

23

25

13 15 18

28

36

40

1

3

2

4

4

4

1828

0

10

20

30

40

50

60

70

80

90

100

29.05 12.06 25.06 17.07 2.08 14.08 29.08 19.09 15.10

Data

% d

in n

umar

ul in

itial

de

flori

MATURE SANATOASECARPOCAPSABALANINUSCYNIPSAVORTATENEFECUNDATERAMASE

Fig. 5 Evoluţia numărului de fl ori/ghinde pe parcursul sezonului la varianta fl ori/ghinde izolate

Page 224: Volumul integral (.pdf)

225

martor, se observă un al doilea maxim în intevalul 14.08-29.08, când ghindele erau aproape de maturitate, lucru datorat probabil stresului hidric la care a fost supusă planta în a doua parte a sezonului de vegetaţie. Rezultatele studiului indică faptul că, deşi insectele seminofage joacă un rol important în dezvoltarea, căderea prematură şi sănătatea ghindelor mature, cele mai multe ghinde au fost avortate de către plantă (33-40 % din fl orile iniţiale) ceea ce înseamnă că factori edafi ci (cantitatea de elementele minerale din sol) şi climatici (cantitatea de precipitaţii) exercită, în ansamblu, cea mai mare infl uenţă asupra producţiei fi nale de ghindă. Concluzii

Deşi în anii de fructifi caţie gârniţa produce multe fl ori, majoritatea nu ajung să se dezvolte în ghinde, cantitatea totală de ghindă produsă într-un an de fructifi caţie şi viabilitatea acesteia depinzând de o serie de factori care acţionează în momente diferite asupra formării şi dezvoltării acestora. Principalii factori care infl uenţează producţia fi nală de ghindă şi în special calitatea acesteia sunt numărul de fl ori ce apar primăvara, determinat de periodicitatea de fructifi caţie a speciei, fi xată genetic, condiţiile pedo-climatice şi activitatea insectelor ce atacă ghinda. Pe parcursul sezonului de vegetaţie, în perioada mai-iunie polenizarea este infl uenţată de factori climatici ca vântul şi precipitaţiile; în iunie-iulie căderea prematură a ghindelor formate este determinată, în principal de factori pedo-climatici şi fi ziologici, iar în perioada iulie-septembrie de insectele seminofage şi de cantitatea de precipitaţii (Larsen & Cecich 1997). Analizând procentul de fecundare a fl orilor, s-a observat că acesta a fost de 75%, respectiv 79% din numărul de fl ori iniţiale. Tinând cont de faptul că polenizarea fl orilor este infl uenţată şi de factori climatici (vânt, precipitaţii ) acest proces nu poate fi controlat sau îmbunătăţit în scopul creşteri producţiei de ghindă. Ghindele avortate au reprezentat cel mai mare procent din numărul iniţial de fl ori, fi ind de 33% la varianta martor, respectiv 40% la varianta ghindă izolată. Diferenţa dintre cele două variante se poate explica prin faptul că o parte din ghindele căzute datorită atacului de Balaninus sp. în intervalul 14.08-29.08, oricum cădeau, probabil din cauza stresului hidric din această perioadă. 35-40% din numărul total de ghinde avortate au căzut în perioada 25.06-17.07, când condiţiile climatice, în special umiditatea au fost favorabile. Într-o sinteză a literaturii din acest domeniu, Stephensen (1981) a concluzionat că în cazul speciilor arborescente resursele minerale de care dispune planta reprezintă un factor principal ce determină cantitatea de seminţe viabile produse de către plante, deci şi în cazul de faţă avortarea ghindelor, la începutul dezvoltării acestora se datorează cel mai probabil factorilor fi ziologici legaţi de nutriţia minerală a plantei. Un factor important care infl uenţează cantitatea de ghindă ce ajunge la maturitate, şi în special

Fig. 6 Dinamica căderii fl orilor/ghindelor în cursul sezonului de vegetaţie la varianta ghindă izolată

Page 225: Volumul integral (.pdf)

226

gradul de viabilitate al acesteia, îl reprezintă acţiunea insectele seminofage, larvele acestora acţionând asupra reducerii viabilităţii ghindelor prin consumarea cotiledoanelor embrionului şi determinând căderea prematură a acestora. Ghindele atacate de Balaninus sp., Carpocapsa sp. şi Cynips sp. au reprezentat 30% din numărul iniţial de fl ori (din 38% câte ar fi putut fi atacate), iar în cazul variantei ghindă izolată numai 7% (maximul 35% din numărul iniţial de fl ori), 3% reprezentând atacuri de Cynips, care a depus ouăle în fl ori înainte de izolare şi 4% Balaninus care a înţepat ghinda la contactul acesteia cu sacul. Studii privind acţiunea insectelor seminofage asupra căderii prematuare şi viabilităţii ghindei arată că 36-61% dintre ghindele căzute prematur sau mature au prezentat diverse grade de vătămări provocate de larvele acestor insecte (Csoka & Hirca 2006), deci combaterea acestor insecte la momentul optim (iunie), poate spori considerabil cantitatea de ghindă viabilă obţinută în special din livezi semincere şi plantaje. Dintre cauzele care conduc la diminuarea producţiei de ghinde de gârniţă, căderea prematură reprezintă unul dintre cei mai importanţi; 33-40% din procentul iniţial de fl ori, deşi s-au format ghinde, acestea au fost avortate de către plantă, în diverse stadii de dezvoltare. Având în vederea că acest proces este determinat, în principal de cantitatea de substanţe minerale pe care plante poate să le asimileze, pentru a mări producţia de ghindă, alături de combaterea insectelor seminofage, trebuiesc aplicate măsuri de asigurare a optimului de elemente minerale în sol, în funcţie de cerinţele fi ecărei specii de cvercinee.

Bibliografie

Bonal, R., Munoz, A. 2007. Seed growth suppression constrains the growth of seed parasites: premature acorn abscission reduces Curculio elephas larval size. Ecological Entomology 33: 31-36.Cecich, R.A. 1993. Flowering and oak regeneration. In Loftis, D., McGee, C.E. (eds.) Oak regeneration: serious problems, practical recommendations. Symposium proceedings. Asheville, NC: U.S. Dept. of Agriculture, Forest Service, Southeastern Forest Experiment Station Gen.Tech. Rep. SE-84, pp. 79-95. Cecich R. A., Brown G. L., Piotter B.K. 1991. Pistillate fl ower abortion in three species of oak. In Mc Cornick L. H., Gottschalk, K.W. (eds.) Proceedings, 8th Cantral Hardwood Forest Conference. U.S Department of Agriculture, Forest Service, Northeastern Forest Experiment Station, Gen. Tech. Rep. NE-148, pp. 578.Cecich, R. A., Sullivan, H. N. 1999. Infl uence of weather at time of pollination on acorn production of Quercus alba and Quercus velutina. Canadian Journal of Forest Research 28(12): 1817-1823. Csoka, G., Hirka, A. 2006. Direct effects of carpophagous insects on the germination ability and early abscission of oak acorns. Acta Silv. Lign. Hung. 2: 57-68.Enescu, V. 1982. Producerea seminţelor forestiere. Editura Ceres, Bucureşti, 323 p.Feret, P.P., Kreh, R.E., Merkle, S.A., Oderwald, R.G. 1982. Flower abundance, premature acorn abscission, and acorn production in Quercus alba L. Botanical Gazette 143(2): 216-218. Johnson, P. S., Shifl ey, S. R., Rogers, R. 2002. The Ecology and Silviculture of Oaks. CABI Publishing. www.books.google.com. Jovanovic, M., Tucovic, A. 1975. Genetics of common and sessile oak (Quercus robur L. and Q. Petraea Liebl.). Annales Forestales 7: 23-53. Kossuth, S.V. 1974. Premature acorn abscission in white oak. (Quercus alba L.). Ph.D. dissertation, Yale University.Larsen, D. R., Cecich, R. A. 1997. Model of white oak fl ower survival and maturation. In: Pallordy S. G., Cecich, R.A., Gorrett, H.G., Johnson, P. S. (eds.), Proccedings of the 11th Central Hardwoods Forest Conference, Univ. Missouri, Columbia, MO. March 23-26, USDA, Forest Service, North Central Forest Experiment Station, Gen. Tech. Rep. NC-188, pp. 262-268. Neţoiu, C., Stoenescu, M. 2005. Vătămări produse de dăunatorii seminofagi ai cvercineelor şi măsuri de control a acestora. Simpozion cu participare internaţională, “Agricultura durabilă - Agricultura viitorului”, ediţia I, Universitatea din Craiova, (CD) ISSN 1582-9391 Rauscher, H.M., Loftis, D. L., McGee, C. E., Worth, C. V. 1997. Oak regeneration: a knowledge synthesis. The Compiler 15(1): 52-53. Rauscher, H.M., Rogers, R. 2009. Oak reproduction biology. www.forestencyclopedia.net/p/p2204. Stephenson, A.G. 1981. Flower and fruit abortion: proximate causes and ultimate functions. Ann. Rev. Ecol. Syst. 12: 253-279.

Page 226: Volumul integral (.pdf)

227

ICAS 2008 Conference October 23-25, 2008 Bucharest, Romania

Physiological aspects of Quercus species under chemical and integrated pest control in North-Eastern Romania’s forests

L. Acatrinei

Acatrinei, L. 2009. Physiological aspects of Quercus species under chemical and integrated pest control in North-Eastern Romania’s forests. In: Olenici N., Teodosiu M., Bouriaud O. (eds.), Proceedings of the conference “Sustainable forestry in a changing environment“, October 23-25, 2008, Bucharest, Forest Research and Man-agement Institute ICAS, pp. 227-234.

Abstract. Ecophysiological studies were made in Quercus species in oaks forest un-der chemical and integrated pest control treatments. The ecophysiological response of the trees to pesticide treatments was evaluated in Şanta forest (chemical treated) and Poieni forest (integrated control on insect defoliator) stations, Ciurea forest dis-trict, Iaşi county. Studies are dealing with the analysis of photosynthetic parameters (chlorophyll a, chlorophyll b and carotenoids pigments), hydric metabolism (dry matter content and humidity of leaves) and indicators of sugars metabolism (mono-, di- and polysaccharide. Fresh and oven dried leaves as well as one-two years old branches taken from the middle part of the trees during three growing cycles, (2006-2008) were used as biologic material. The photosynthetic parameters analyzed have shown relatively higher values of chlorophylls and carotenoids in Poieni forest oaks (mainly, Q. robur) than in Şanta forest oaks (mainly, Q. petraea). Dry matter ac-cumulation rate is relatively faster in one year old branches from Poieni forest oaks. Oak branches relative humidity is higher due to Poieni forest conditions. Until now, ecophysiological studies have shown a constant rhythm of dry matter and sugars accumulation and higher values in Quercus sp. in Poieni forest than in Şanta forest. Integrated pest management in Poieni forest have probably determined these eco-physiological responses in plants and have not affected the plants capacity to adjust to defoliators attacks and to diseases. More studies about physiological behavior of oaks over different growing cycles will be needed to certify this point.Key words: Quercus petraea, Quercus robur, pshyology

Author. Ligia Acatrinei - Biological Research Institute, Iasi, Lascăr Catargi st. 47, 700107 - Iaşi, Romania.

Introduction

In Poieni forest (Ciurea Forest District, Iaşi County) the last treatment with a biological insecticide (Thuringin) was done in 1990 on T. viridana, Geometridae and L. dispar caterpillars, in medium infestation conditions (higher defoliations under a treatment with an organophosphorous product Silvetox were registered one year before). Because of the stand structure (Quercus petraea, Fagus sylvatica, Q. robur of 60-140 years) and of the favorable conditions in this forest (insectivorous

Page 227: Volumul integral (.pdf)

228

birds stimulation), no growing of the defoliators populations was registered in the last 17 years and consequently the application of some pest control works was not necessary. Our study approaches oak forest physiological capacity through photosynthetic parameters and carbohydrates, and finally evaluates the metabolic potential of oak forests after many years of treatment and climatic change in this part of Europe.

Material and methods

The samples were collected in Şanta and Poieni forests (Ciurea Forest District, Iaşi county, in the NE of Romania) mostly in oaks stands. In Şanta Forest (oak stands in which trees are mostly 150 years old) the last treatment with Rimon (synthesis product) was given in 2003 against T. viridana and Geometridae. The previous treatment with Dimilin (insect growth regulator) was in 1997. We also used physiological methods like the analysis of chlorophylls and carotenoids pigments.physiological methods like the analysis of chlorophylls and carotenoids pigments. Photosynthetic parameters as chlorophyll a, chlorophyll b and carotenoids complex were analized through the method with acetone 85% Meyer-Berthrand modified by Ştirban (1985). The results were expressed in mg/g fresh weight (mg/g fr.w.). The analysing of sugars metabolism about monosaccharides, dissacharides and polysaccharides by the method Bertrand & Borell (1953) was also performed. The results were expressed in g of glucosis per cent (g%) of dry matter. The water and dry matter content in branches were appreciated by gravimetric methods. The studies were performed in the framework of a national project, CEEX type, in collaboration with the Forest Research and Management Institute (ICAS).Forest Research and Management Institute (ICAS).

Results

Investigations focused especially on the sites which suffered the highest insect attacks during the last years. To do that, some oak species from different ua’s and up’s (forest organized in landscape units = ua’s) of Şanta and Poieni forests (Ciurea Forest District, Iaşi county) were analyzed. Physiological researches regarding the plant responses investigated the content of assimilatory pigments (chlorophylls and carotenoids) and also the sugar metabolism by analysing some indicators (monosaccharides, di- and polysaccharides). These studies aimed at analysing oak branches water content and dry mass, in order to evaluate the physiological response of the trees after many years of pesticide treatment in these woods. The water regime parameters analyzed in pedunculate oak (Q. robur) branches show normal physiological activities in early spring (Fig.1). In this period of buds formation we observe an increasing of physiological activity parameters from the basis to the top of the tree crown, in the same time with the circulation of the phloem sap.. The dynamics of branches water and dry content was analyzed through the variation of these parameters during the spring of 2007. The water content increased and dry matter decreased by 1.04-1.45 times (Fig.2) in Q. robur trees from Şanta forest between January and April 2007. In Poieni forest, the dynamic of water content in branch and dry matter decreased with 0.98 to 1.57 times during the period January-April 2007. This process was due to sap circulation and buds opening in the spring once with sugars translocation in branches. The variation interval of dry mass and water content respectively is higher in tree branchesThe variation interval of dry mass and water content respectively is higher in tree branches from Poieni forest than in Şanta forest tree branches, although the differences are not significant (Fig. 2-3). Analysis of water content and dry mass showed a slightly larger variation in Poieni forest tree branches than in Şanta forest branches. The values of those parameters are closer for the trees of two of the forests but dynamics during the January-April period had some variation. The increasing of water in tree branches in Poieni forest could be due to pedoclimatic conditions insofar as where the quantity of precipitations was higher (587 mm) and the altitude higher (300

Page 228: Volumul integral (.pdf)

229

m) than in Şanta forest case (100 m altitude, 450-500 mm precipitations). Figure 4 shows that chlorophylls and carotenes values in early oak leaves grown before trees blossoming and after trees blossoming are close in the two stations Şanta and Poieni. In thisIn this phenophasis no significant differences between the trees under chemical (Şanta Forest) and integrated control (Poieni Forest) were observed. Chlorophyll b in Q. robur leaves at Şanta forest is two times lower than values registered in oaks leaves at Poieni forest even that the chlorophyll a is higher in the first case (Fig. 4). This could be happened because of the exposition SE and SV and other site conditions (temperature, altitude, density of the trees). The participation of the chlorophyll b, known as shadow pigment, could be reduced in trees more exposed to sun and if the foliage density is low. In this case the most active pigment in photosynthesis is chlorophyll a. In June, in the phenophasis of the total foliage development, the values of total assimilatory pigments are more reduced in oaks from Şanta forest than in Poieni forest (Fig. 5). The decreasing

Fig. 1 Variation of water and dry matter content in Quercus robur branches in Şanta Forest on March 200�in Şanta Forest on March 200� Şanta Forest on March 200� Forest on March 2006 Legend: I- basis of tree crown, II-middle of tree crown, III-top of tree crown

Fig. 2 Variation of water and dry matter content in branches ofin branches ofbranches of Quercus robur from Şanta forest, Ciureafrom Şanta forest, Ciurea Şanta forest, Ciurea forest, Ciurea Forest District (Iaşi county)

Page 229: Volumul integral (.pdf)

230

is due to the smaller values of all the pigments (chlorophylls and carotenes), but moreover of chlorophyll b which is three times lower than the same parameter registered in oaks from Poieni forest. Sugar metabolism was studied through the analysis of the monosaccharides, disaccharides andSugar metabolism was studied through the analysis of the monosaccharides, disaccharides and polysaccharides. Sugar metabolism showed an increasing of the disaccharides by almost 3 times than monosaccharides in one year branches of trees in early spring at Şanta forest. The higher content of sucrose (represented by disaccharides) increased from basis up to top of tree crown

Fig. 3 Variation of water and dry matter content in branches ofin branches ofbranches of Quercus petraea from Poieni forest, Ciureafrom Poieni forest, Ciurea Poieni forest, Ciurea forest, Ciurea Forest District (Iaşi county)

Fig. 4 Average quantities of assimilatory pigments in Quecus robur and Q. petraea leaves at studied forests, Ciurea Forest District (Iaşi county), in April

Page 230: Volumul integral (.pdf)

231

once with starch hydrolysis from annual wood and buds opening (Fig. 6). The sugar assimilation in the oak leaves showed higher quantity with 5 % of total sugarsThe sugar assimilation in the oak leaves showed higher quantity with 5 % of total sugars in leaves of analyzed species from Şanta forest than analyzed species from Poieni forest. The differences are not significant but showed greater accumulations of polysaccharides in oaks at Şanta forest. The possible explanations could be the attack of the Microsphaera abreviata and injurious insects observed at that time on the oaks leaves in trees from Poieni forest (Fig. 7).(Fig. 7).Analyses of the carbohydrate parameters in Q. petraea in neighborhood of Ciurea Forest District showed comparable values of the same parameters in other oak forests from Northeastern of Romania (Antohe et al. 1995).

Fig. 5 Average quantifies of assimilatory pigments in Quecus robur and Q. petraea leaves at studied forests, Ciurea Forest District (Iaşi county), in June.

Fig. 6 Variation of carbohydrates content in branches ofcarbohydrates content in branches ofcontent in branches of Quercus robur at Şanta forest, Ciurea Forestat Şanta forest, Ciurea Forest Şanta forest, Ciurea Forest forest, Ciurea Forest District (Iaşi county)

Legend: I- basis of tree crown, II-middle of tree crown, III-top of tree crown

Page 231: Volumul integral (.pdf)

232

Discussion

Studies of physiology of trees from this period were limited concerning the observation of the chlorosis, dryness phenomenon, the decrease of the foliage density, debilitation and decline of trees (Murariu et al. 1997, �ance 2003).Murariu et al. 1997, �ance 2003)., �ance 2003). Our results regarding the chlorophyll content and sugar metabolism showed closer values with those registered in forest ecosystems from Central Moldavian Plateau in Q. petraea stands, also from North-Eastern part of Romania (Murariu et al. 1997). Regarding the pollution matter, our analyses showed some differences between trees treated with chemicals and those with integrated pest control. The amount of chlorophylls and carotenoids in Q. robur from Şanta forest (chemical treatment) are lower than those registered in Q. petraea from Poieni forest (integrated control). That decreasing is due by a lower quantity of chlorophyll b during the leaves elevation until fully development foliage in studied oaks from Şanta forest. Biosynthesis of chlorophylls depends of species, site conditions and the studies should be approached to be sure if the differences are related with the type of pest control (chemical or integrated) or have other causes. Some authors revealed that pesticides actioned through blocking mechanisms of photosynthesis, assimilatory pigments synthesis and were inhibitory over plant metabolism (Murariu et al. 1997, Ivănescu et al. 2003, Acatrinei 200�). Our studies cannot certify what were the actions of the pesticides and the interaction in tree over time, but exist obvious differences between trees chemically treated and those integrated treated. After years of applications of DDT, the pest control in Santa forest was achieved with metamorphosis inhibitors as Dimilin and Rimon (Ciornei et al. 2007). Some studies in oak forests in Northeastern Romania showed that undecomposed DDE, the metabolite of DDT still exist in soil after twenty years of applications (�ance 2003). Pesticide’s remanence in soil in Şanta forest could be incriminated by the lower values of the assimilatory pigments and the inhibition of some physiological mechanisms that regulated the water regime in branches of oaks from this site. After 1990’s Poieni forest was managed by integrated pest control and there was no chemical treatment and grace to that, may be trees responses have a higher variation of physiological parameters. Anyway, it could seem the multiple stress factors action than one in these circumstances. TheThe

Fig. 7 Average content of carbohydrates in leaves of Q. petraea (Şanta Forest) and Q.robur (Poieni Forest) at studied sites, Ciurea Forest District (Iaşi county)

Page 232: Volumul integral (.pdf)

233

pesticide applications and soil depositions besides climatic conditions (drought and winds) will influence each time the ecophysiological response of Quercus petraea and Q. robur trees.

Conclusions

Pesticides act like inhibitors in trees metabolism. In this case, after years during which the last treatment was administrated (2003, at Şanta forest) the values of physiological parameters in two species of oaks are smaller than those in trees without chemical treatment (Poieni forest). The multiple stressor action is a more realistic hypothesis. The pesticide applications and soil depositions besides climatic conditions (drought and winds) and biotic actions (insects and diseases) will always influence the ecophysiological response of Quercus petraea and Q. robur trees.

References

Acatrinei, L., Andor, I. 2006. Physiological researches at varieties of grapes in Cotnari vineyards under pesticides treatments (in Romanian with an English abstract). Lucrările Ştiinţifice USAMV ”Ion Ionescu de la Brad”, Seria Horticultură 1(49): 317-322.Antohe, A., Murariu, A., Pisica-Donose, A. 1995. Recherches sur la biosynthese des pigments d’assimilation et sur l’intensite de la photosynthese au Quercus petraea, Carpinus betulus et Tilia tomentosa dans certains ecosystemes forestiers du Plateau Central de la Moldavie (Roumanie). An. Muz. Naţ. al Bucov., Fasc. Ştiinţele Naturii 13: 97-107.Ciornei, C., Ciucă, L., Hance, Th. 2003. Predator soil fauna with impact on defoliator populations from oak forests of Moldavia. Analele ICAS, Seria I 46: 187-196.187-196.�ance, Th., Cambier, V. 2003. Relationships between soil fauna and Apethymus filiformis outbreaks in Romania. Analele ICAS, Bucharest, Seria I 46: 39-48.�ager, A., Meyer-Bertenrath, T. 1966. Die Isolierung und quantitative Bestimmung der Carotenoide und Chlorophylle von Blättern, Algen und isolierten Chloroplasten mit �ilfe dünnschicht-chromatographischer Methoden. Planta 69: 128-217.Ivănescu, L., Toma, C. 2003. Influence of air pollution in plant structure (in Romanian). Ed. Fund.”Andrei Şaguna”, Constanţa, 394 p. Murariu, A., Ştefan, M., Ştefan, N., Davidescu, G. 1997. Physiological and Biochemical modifications in leaves of woody species under air pollution (in Romanian). Stud. cerc., Seria biol. Veget. 49: 1-2, 77-89Ştirban, M. 1985. First processes in photosynthesis (in Romanian). Ed. Did. Ped. Bucureşti.

Page 233: Volumul integral (.pdf)

234

Page 234: Volumul integral (.pdf)

235

ICAS 2008 Conference October 23-25, 2008 Bucharest, Romania

Principii de management al populatiilor piscicole din apele de munte

I. Cristea

Cristea I. 2009. Principii de management al populaţiilor piscicole din apele de munte. [Management principles of fish populations in mountain waters]. In: Olenici N., Teodosiu M., Bouriaud O. (eds.), Proceedings of the conference “Sustainable for-estry in a changing environment“, October 23-25, 2008, Bucharest, Forest Research and Management Institute ICAS, pp. 235-240.

Abstract. The studies already carried out permit to estimate that salmonides popula-tions will be recreated by applying specific recommendations regarding mountain water fish-breeding management, according to the ecology of the species and ac-cording to the action plan elaborated through this research work by better protecting fish-breeding populations and by facilitating salmons migration to their reproduction places. As an example, by guaranteeing longitudinal connexion between mountain-ous torrents, regarding the EU Water Framework Directive (WFD), the capture rate by recreative-sportive fishing (TAC) will significantly increase. Adopting ecological reconstruction measures for mountainous aquatic ecosystems regarding both the bio-tope (river/creek; lake) and the aquatic biocenosis (ichtyofauna mainly represented by salmons, and benthic invertebrate fauna, main source of food for the ichtyofauna) has generated a considerable improvement in environmcnt conditions. Ecological reconstruction was established to be made on the fishing funds with a higher level of trout potenţial. It was established a number of ecologica! reconstruction measures on short, medium and long term, both in the rivers and lakes. Minimum ecological water flow, down stream of the systematic dams from the mountain running waters, was established different, according to with trout productivity and in direct relation with the reliability of the forest area. So, on the fishing funds from the first category, water usage for energetic purpose will be < 1/3 from the natural water flow up stream the dam. For the fishing funds from the second category of trout productivity, water flow used will be between 1/3 and 2/3 from the natural up stream water flow. For the fishing funds from third category, water flow used can be > 2/3, till the total usage. In this situation, hydro-electric-power has a benefic purpose, to improve the water flow balance. As a conclusion, we can state that in order to harmonize the national legisla-tion with the European one regarding environment, and more precisely regarding the protection of aquatic ecosystems in mountainous hydrographic basins, it is necessary Io adopt a plan of sustainable management, so as this study does. Key words: mountain water, fish populations, management principles

Author. Ioan Cristea - Forest Research and Management Institute, Bd. Eroilor 128, 077190 - Voluntari, Romania. Colaboratori RNP – Romsilva: Drd. Petre Gărgărea, Ing. Sabin Bratu, Ing. Mugurel Minca, Colaboratori ICAS Bucureşti, tehn. pr. Adri-ana Gruia, silv. Victoria Dobre

,

Page 235: Volumul integral (.pdf)

236

Consideratii generale

Pentru realizarea unui echilibru durabil în timp, implicit a stadiului de “climax” al ecosistemului acvatic montan, este necesar să se asigure o integrare in ecosistemul forestier zonal, corespunzător bonităţii staţionale naturale, a amenajărilor hidrotehnice, astfel încât impactul antropic să fie cât mai redus, prin optimizarea soluţiei tehnice cu cerinţele ecologice conform Directivei Cadru pentru Apă a Uniunii Europene. Astfel, problematica actuală prioritară constă în asigurarea conectivităţii longitudinale şi laterale a cursurilor de apă, practic a migraţiei păstrăvului comun în amonte de baraje şi menţinerea unui debit minim ecologic în aval de aceste captări. Productivitatea salmonicolă medie în apele de munte din ţara noastră este în prezent de 14 kg/km, conform ultimei cartări efectuate de ICAS, în anul 2003. Aceasta reprezintă de fapt recolta de extras prin pescuit recreativ-sportiv (TAC - Total Admisible Capture), dintr-un fond gospodărit raţional. Prin măsurile de reconstrucţie ecologică aceasta poate reveni într-o primă etapă la 17 kg/km, valoare estimată în anul 1992, ca obiectiv ţintă. Pentru refacerea populaţiilor piscicole în scopul realizării acestui obiectiv, s-a propus recoltarea a 25% din recolta calculată de pe fiecare fond de pescuit, productivitatea calculată fiind mult peste cea reală.

Stadiul cunoştintelor

ICAS a efectuat studii privind debitele minime ecologice în aval de baraje (Cristea 1988-1998) şi migraţia păstrăvului comun (Salmo trutta fario L.) toamna la boişte în amonte de aceste captări (Vişoianu et al. 1982). Marcarea peştilor s-a efectuat prin tăierea vârfului nodălcii. Specialiştii de la Facultatea de Piscicultură Galaţi şi Institutul de Biologie Bucureşti au constatat, în perioada 1970-1980, impactul nefavorabil al barajului Porţile de Fier asupra migraţiei sturionilor. Recent s-a efectuat un studiu privind migraţia sturionilor in Delta Dunării. Pentru realizarea conectivităţii longitudinale şi laterale a cursurilor de apă, conform directivelor Uniunii Europene, de exemplu în Franţa, pentru refacerea cursului de apă Garonne, s-a dezafectat prin dinamitare un baraj al unui lac de acumulare colmatat. În Olanda există un pasaj pentru peşti tip “by-pass” pe lângă barajul de pe insula Maurik. În SUA, pentru tranzitul peştilor anadromi (care trăiesc în mări şi oceane, şi care migrează pe distanţe de peste 1500 km la izvoarele cursurilor de apă dulcicole, de exemplu somonul de Atlantic (Salmo salar) pentru depunerea icrelor în vederea reproducerii), în amonte de localitatea Conowingo, barajul pe râul Maryland s-a amenajat cu un lift în valoare de 12 mil. $, prin care tranziteaza anual peste 100.000 de peşti. Un alt tip de pasaj pentru peşti, functional prin lungime şi înălţimea treptelor, este de exemplu cel din Scoţia de pe râul Clunie.

Scopul cercetarilor

Se preconizează realizarea unui management durabil al resurselor acvatice vii, conform legislaţiei UE, principiul de bază fiind protejarea acestora.

Obiectivele cercetarii

Pentru atingerea scopului acestei lucrări conform Directivei Cadru pentru Apă 60/E.C. s-au stabilit următoarele obiective de management, pe următoarele etape de realizat: Etapa a I-a. Date generale privind fauna piscicolă existentă. Evaluarea stării de sănătate a ecosistemelor acvatice montane: (i) biotop (râu, pârâu, lac) ca mediu de viaţă; (ii) biocenoză - fauna: vertebrate (peşti), conform cartării din studiul făcut de Cristea (2003).

,

,

^

^

Page 236: Volumul integral (.pdf)

237

Etapa a II-a. Măsurile şi obiectivele de management pentru pescuitul sportiv. Elaborarea măsurilor manageriale pentru refacerea populaţiilor piscicole la nivelul optim, corespunzător categoriei de productivitate salmonicolă. Restabilirea conectivităţii longitudinale a cursurilor de apă montane. Etapa a III-a. Monitorizarea ecosistemului acvatic după implementarea măsurilor manageriale

Metoda de cercetare

S-a utilizat metoda analitică pe teren şi în laborator şi a constat în analize, observaţii şi evaluări specifice. Pe teren activitatea s-a desfăşurat în staţii de lucru şi pe “itinerar”, pentru evaluarea bonităţii salmonicole, conform punctajului obţinut prin utilizarea cheilor de determinare elaborate de ICAS. Pentru evaluarea populaţiilor piscicole, s-a folosit metoda Leger-Huet completată de ICAS (Vişoianu, Cristea) şi metoda anchetei sociale în rândul pescarilor localnici. În faza ulterioară s-au sintetizat şi prelucrat datele înregistrate în urma lucrărilor de teren şi s-au concluzionat rezultatele în urma efectuării analizelor de laborator.

Rezultate preconizate - principii manageriale

Etapa I - Identificarea factorilor limitativi care contribuie la scăderea productivităţii salmonicole a apelor de munte, în scopul diminuării sau eliminării impactului acestora. Barajele amenajate pe cursurile de apă montane constituie una din principalele cauze ce afectează fauna piscicolă. Acestea constituie obstacole pentru salmonide toamna la “boişte”, prin fragmentarea ecosistemului acvatic, prin absenţa scărilor de peşti fracţionate şi a debitelor în aval de acestea. Poluarea chimică a cursurilor de apă montane se produce prin deversarea în apele râurilor a rezidurilor industriale locale (ex. pârâul Novăţ-Vişeu) şi menajere (hotelieră etc.) care sunt extrem de periculoase asupra faunei şi florei acvatice. Deasemenea poluarea se poate produce prin braconaj, folosindu-se diverse substanţe chimice. Poluarea se poate produce şi prin precipitaţii pluvio-nivale cu metale grele (Zn, Pb, Cu, Cd) provenite din halde de steril minier, antrenate în atmosferă de vânt. În general, sursa cea mai importantă de poluare cu reziduuri industriale în zona montană este reprezentată de întreprinderile miniere (ex. Întreprinderea minieră Borşa de pe Vişeu) prin sterilul de flotaţie, prin substanţele chimice utilizate în procesul de spălare a minereului. Astfel s-a produs catastrofa ecologică din anul 2000, prin spargerea barajului de pe pârăul Novăţ, când cianurile rezultate din spălarea minereurilor neferoase au ajuns în Ungaria. Printr-o lucrare vizând protecţia lostriţei, finanţată de Ministerul Mediului şi efectuată de ICAS în perioada 1993-1996, s-a avertizat asupra pericolului de poluare prin amenajarea acestei captări pe pârâul Novăţ. Exploatările forestiere abuzive provoacă o serie de fenomene negative cum ar fi degradarea solului, formarea de torenţi şi viituri, cu modificări majore ale albiei râului. Datorită creşterii vitezei apei, în urma unor cantităţi sporite de precipitaţii, creşte şi cantitatea de suspensii din apă (> 80 g/l), producându-se asfixia piscicolă şi colmatarea albiei. Altă consecinţă a despăduririlor montane este şi creşterea temperaturii apei, prin absenţa umbririi, ceea ce limitează posibilităţile de supravieţuire în apa râului a salmonidelor şi a nevertebratelor bentonice, prin absenţa detritusului, resturi vegetale care constituie hrana acestora. În zona izvoarelor, despădurirea are adeseori consecinţe dezastruoase, modificându-se nivelul pânzei freatice, având ca urmare o afectare a biotopului încă din zona din amonte a cursului de apă. Exploatările balastiere ilegale accentuează caracterul torenţial al cursului de apă, afectează habitatul peştilor şi diminuează oferta trofică constituită de nevertebratele bentonice din albia minoră. Pragurile artificiale sunt construite pentru a diminua viteza şi puterea erozivă şi a crea bulboane

Page 237: Volumul integral (.pdf)

238

pentru adăpostul peştilor şi o mai bună oxigenare a apei. Praguri de acest tip s-au constatat pe fondurile de pescuit Putna mijlocie şi Ialomiţa superioară la Horoabe. Aceste praguri de beton nu reprezintă însă o soluţie ecologică, putându-se alege o altă variantă, mai simplă, şi anume amplasarea de bolovani din albia majoră sau bucăţi de stâncă, din poieni învecinate în albia minoră a râului, încastrate în mal. În acest fel se înbunătăţeşte coeficientul de sinuozitate al malurilor, creindu-se astfel locuri de adăpost pentru puiet, în primul rând, şi pentru instalarea nevertebratelor bentonice, sporindu-se aportul trofic pentru salmonide. “Igienizarea” şi dragarea albiilor minore influenţează nefavorabil fondul piscicol. Bolovanii, stâncile etc. modifică regimul de curgere creind alternarea zonelor cu faună lotică, de repeziş şi de contracurent, bulboane, cu cele cu fauna lentică, de curent redus. Un efect similar îl au şi arborii căzuţi în albie, rădăcinile. Plantele acvatice din zonele lentice, în cantitate şi diversitate suficientă, pot oferi habitatul optim pentru o largă biodiversitate în râu, de la puiet până la specii de peşti de mari dimensiuni. Este indicată scoaterea din albie numai a buştenilor mari şi a arborilor care prin aglomerări în faţa podurilor ar putea duce la ruperea acestora şi pot produce inundaţii locale. Etapa a II-a - Conservarea şi ameliorarea bonităţii naturale a populaţiilor piscicole montane. Pentru reconstrucţia ecologică a fondurilor de pescuit care au un potenţial natural peste cel actual, este necesar să se aplice şi să se respecte următoarele principii: (i) evitarea barării cursurilor de apă pentru amenajări hidrotehnice sau piscicole. Singurele baraje care se justifică vor fi cele care ameliorează caracterul torenţial accentuat al râurilor/pâraielor; (ii) debitul minim de servitute în aval de baraje se va asigura în funcţie de productivitatea salmonicolă a fondului de pescuit respectiv şi de debitul natural din amonte (Tabel 1). Debitul minim necesar în aval de barajele microhidrocentralelor se poate realiza prin adaptarea unei ecluze suedeze Vattenkraftkonsult-AB (Schweden Technica Suedia nr. 5/86, p. 4). Această poartă de ecluză reglează automat nivelul apei din bazinele de retenţie (în cazul nostru din lacul de acumulare din amonte). Ecluza poate realiza un nivel determinat al apei în bazin (implicit şi în aval de acesta) fără surse exterioare de energie. Scurgerea este cu atât mai mare cu cât nivelul din bazin creşte. Când nivelul revine la valoarea prescrisă, poarta se ridică, presiunea asupra ei fiind mai mică. Poarta din ecluză este din oţel inoxidabil; (iii) volumul apei din lacurile de acumulare nu trebuie să scadă sub 1/3 din cel corespunzător NNR pentru protecţia faunei piscicole; (iv) amenajarea de pasaje tip “ecologic” pentru accesul în amonte al păstrăvului comun (Salmo trutta fario L.) la depunerea icrelor, la “boişte”, în situaţia în care există baraje de tip “micro” şi care nu au scări de peşti, sau nu sunt funcţionale. Baza scării va fi în aval în şuvoiul principal, deoarece păstrăvul alege instinctiv traseul cel mai dificil, dar care îi asigură protecţie maximă, supravieţuirea speciei. Fiecare treaptă va avea prundiş din albia pârâului, pentru simularea “sitului” natural care va menţine un nivel al apei de cca. 20-30 cm în contrapantă, pentru odihna şi adăpostul peştilor în tranzit; treapta nu va avea mai mult de 30 cm înălţime, pentru ergonomizarea migraţiei salmonidelor; scara va trece peste baraj direct sau prin lateral, în arc de cerc, cu capătul din amonte deasemenea în şuvoiul principal, la “coada” lacului de acumulare. Panta maximă a pasajului nu o va depăşi pe cea maximă a albiei cursului de apă; (v) protejarea şi îmbunătăţirea procesului de reproducere naturală a salmonidelor. Prin amenajări specifice în albie, numărul locurilor favorabile pentru depunerea icrelor poate fi crescut. Prin folosirea la reproducerea artificială în păstrăvării a reproducătorilor de păstrăv capturaţi din liber din pârâu, se poate obţine un randament mai mare decât prin folosirea de reproducători proveniţi prin creştere artificială. Aceasta atât în ce priveşte procentul de supravieţuire începând din primăvară până toamna, cât şi în privinţa parametrilor somatometrici; (vi) amenajarea de topliţe cu efect salmonicol şi hidrotehnic pe pâraie afluente, de formă ovală şi mai adânci, astfel încât să preia o parte din viituri; (vii) amenajarea de poldere în poieni concave, prin decopertarea malului din meandrele pârâului, pentru protecţia faunei piscicole, în caz de viituri; (viii) amenajarea de perdele forestiere de protecţie a malurilor, fiecare în lăţime variabilă din amonte spre aval, similară lăţimii medii a albiei majore, cu specii forestiere din etajul climatic zonal (de ex. puieţi de molid - Picea excelsa, butaşi de anin alb - Alnus incana

Page 238: Volumul integral (.pdf)

239

etc.).

Concluzii

Prin aplicarea acestor măsuri specifice de reconstrucţie ecologică, productivitatea salmonicolă a fiecărui fond de pescuit va creşte considerabil. Amenajările hidrotehnice se vor putea efectua, din punct de vedere ecologic, salmonicol, integral pe fondurile de categoria a III-a şi partial pe cele de categoria a II-a. Fondurile de categoria I se vor proteja pentru a nu se deregla echilibrul ecologic stabilit în timp. Asigurarea pasajelor pentru salmonide se poate realiza în prezent doar la microhidrocentrale (MHC). Se poate aprecia faptul că debitul minim ecologic în aval de baraje, se poate asigura prin pasaje de tip by-pass, eficienţa ecologică fiind maximă, conform legislaţiei Uniunii Europene.

Bibliografie

Cristea, I. 2003. Studiu privind rebonitarea şi recartarea fondurilor de pescuit din apele de munte. ICAS Bucureşti. Cristea, I. 2007. Managementul fondurilor piscicole din apele de munte Ed. Silvică Bucureşti;Cristea, L. 1988. Stabilirea debitelor minime în aval de captările executate pe apele de munte. Studiu ICAS Bucureşti.Cristea, I. 2007. Reconstrucţia ecologică a fondurilor de pescuit din apele de munte, studiu ICAS.Directiva Cadru pentru Apă 2000/60/EC.H.G. 202/2002. Norme Tehnice privind calitatea apelor de suprafaţă care necesită protecţie şi ameliorare în scopul susţinerii vieţii piscicole.

Tabelul 1 Debitele în aval de baraje, recomandate pentru menţinerea productivităţii salmonicole la nivelul natural

N

r. cr

t.

Debite (l/s) minime necesare în aval de baraje (% din Q natural în amonte)

Condiţii ecologice

Categoria de productivitatesalmonicolă

Productivitate salmonicolăP (kg/km)

Productivitate nevertebrate

p ( g/m2)

Capacitate biologică

(B) habitat

(h)

1. ≥ 2/3 Vmn = 0,5-1 m/shmn = 0,5-1,5 m I ≥ 60

≥ 1≥ 7

≥ 0,7

2. 1/3-2/3 Vmn = 0,5 m/shmn = 0,2-,0,5 m a-II-a 40-60

0,5-15-6

0,5-0,6

3. ≤ 1/3 Vmn = 0,25-0,5 m/shmn = 0,2-0,5 m a-III-a ≤ 40

≤ 0,54

≤ 0,4

Note: Q = debit; Vmn = viteza minimă a apei necesară în aval de baraje; hmn = adâncimea minimă a apei necesară în aval de baraje