volatility models

23
Volatility Models Fin250f: Lecture 11.2 Spring 2010 Reading: Brooks chapter 8

Upload: bevis-powers

Post on 31-Dec-2015

48 views

Category:

Documents


0 download

DESCRIPTION

Fin250f: Lecture 11.2 Spring 2010 Reading: Brooks chapter 8. Volatility Models. Outline. Stochastic volatility ARCH(1) GARCH(1,1) GARCH(p,q) GJR and volatility asymmetry High/low volatility time series modeling and long range persistence. Stochastic Volatility. Stochastic Volatility. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Volatility Models

Volatility Models

Fin250f: Lecture 11.2

Spring 2010

Reading: Brooks chapter 8

Page 2: Volatility Models

Outline

Stochastic volatility ARCH(1) GARCH(1,1) GARCH(p,q) GJR and volatility asymmetry High/low volatility time series modeling and

long range persistence

Page 3: Volatility Models

Stochastic Volatility

rt =μ +utut ~N(0,σ t

2 )

log(σ t2 ) =μ + ρ log(σ t−1

2 ) + ztor ARMA(p,q)

Page 4: Volatility Models

Stochastic Volatility

Very straightforwardDifficult to estimateRelated to high/low range estimation

Page 5: Volatility Models

ARCH(1)Autoregressive Conditional Heteroskedasticity (Engle)

rt =μ +utut ~N(0,σ t

2 )

σ t2 =α0 +α1ut−1

2

Page 6: Volatility Models

AR(1)-ARCH(1)Autoregressive Conditional

Heteroskedasticityrt =μ + ρrt−1 +utut ~N(0,σ t

2 )

σ t2 =α0 +α1ut−1

2

ARCH(2) :

σ t2 =α0 +α1ut−1

2 +α2ut−22

Page 7: Volatility Models

ARCH(1)

Alpha(1) < 1 Alpha(0) > 0Squared return correlations not

persistent enoughNot very useful in finance

Page 8: Volatility Models

GARCH(1,1)(Bollerslev) Generalized

Autoregressive Conditional Heteroskedasticity

rt =μ +utut ~N(0,σ t

2 )

σ t2 =α0 +α1ut−1

2 +βσ t−12

Page 9: Volatility Models

GARCH(p,q)Generalized Autoregressive

Conditional Heteroskedasticity

rt =μ +utut ~N(0,σ t

2 )

σ t2 =α0 + α iut−i

2

i=1

q

∑ + βii=1

p

∑ σ t−i2

Page 10: Volatility Models

ARMA(1,1)/GARCH(1,1)Generalized Autoregressive

Conditional Heteroskedasticityrt =μ + ρrt−1 +θut−1 +utut ~N(0,σ t

2 )

σ t2 =α0 +α1ut−1

2 +βσ t−12

Page 11: Volatility Models

Unconditional GARCH(1,1) Variance

rt =μ +utut ~N(0,σ t

2 )

σ t2 =α0 +α1ut−1

2 +βσ t−12

E(σ t2 ) =α0 +α1E(ut−1

2 ) + βE(σ t−12 )

E(σ 2 ) =α0 +α1E(σ 2 ) + βE(σ 2 )

E(σ 2 ) =α0

(1−α1 −β)

Page 12: Volatility Models

GARCH(1,1) Volatility Forecasts

σ t2 = α 0 +α 1ut−1

2 + βσ t−12

σ t−12 = α 0 +α 1ut−2

2 + βσ t−22

σ t2 = α 0 +α 1ut−1

2 + β (α 0 +α 1ut−22 + βσ t−2

2 )

σ t2 = α 0 + βα 0 +α 1ut−1

2 + βα 1ut−12 + β 2σ t−2

2

σ t2 = α 0 β j

j=0

∑ +α 1 β j−1

j=1

∑ ut− j2

Page 13: Volatility Models

More GARCH(1,1) Forecasts

Et (σ t+12 ) =α0 +α1ut

2 +βσ t2

Et(σ t+22 ) =α0 +α1Et(ut+1

2 ) + βEt(σ t+12 )

Et(σ t+22 ) =α0 +α1Et(σ t+1

2 ) + βEt(σ t+12 )

Et(σ t+22 ) =α0 + (α1 +β)Et(σ t+1

2 )

Et(σ t+32 ) =α0 +α1Et(σ t+2

2 ) + βEt(σ t+22 )

Et(σ t+32 ) =α0 + (α1 +β)Et(σ t+2

2 )

Et(σ t+32 ) =α0 + (α1 +β)(α0 + (α1 +β)Et(σ t+1

2 ))

Et(σ t+32 ) =α0 + (α1 +β)α0 + (α1 +β)2Et(σ t+1

2 )

Page 14: Volatility Models

Keep on Going

Et (σ t+s2 ) =K + (α1 +β)s−1Et(σ t+1

2 )

Page 15: Volatility Models

Volatility Diagnostics

Squared and absolute returns:Send into usual time series tests ACF PACF Ljung/Box

Engle test (TR^2): Box 8.1

Page 16: Volatility Models

Engle Test

Find residuals of linear model: u(t)Regress u(t)^2 on lags, u(t-1)^2, u(t-

2)^2,…u(t-q)^2Get R-squared from this regressionCalculate T*(R-squared)Chi-squared(q)

Page 17: Volatility Models

GARCH(1,1) standardized residuals

zt =rt −μ

σ t2

zt ~N(0,1)

Page 18: Volatility Models

GARCH(1,1)

Most heavily used volatility model on Wall St.

Estimation: maximum likelihood (not too difficult) matlab: garcheasy.m

Page 19: Volatility Models

Modifications

EGARCH (log form)TARCH (threshold nonlinearitiy) IGARCH (volatility follows random walk)Asymmetry

For stocks (only) volatility increases by larger amount on market falls

One (of many) models: GJR Glosten, Jagannathan and Runkle

Page 20: Volatility Models

GJR Model

rt =μ +utut ~N(0,σ t

2 )

σ t2 =α0 +α1ut−1

2 +βσ t−12 +γut−1

2 I t−1I t−1 =1 :ut−1 ≤0I t−1 =0 :ut−1 > 0

Page 21: Volatility Models

Volatility Modeling Beyond GARCH

Use other estimates (beyond squared returns) for volatility VIX Intraday data (realized volatility) High/low range information

Build daily estimates of volatilityApply standard time series tools to

volatility or log(volatility)

Page 22: Volatility Models

Modeling Using High/low ranges

voltests.mBack to the problem of long range

correlations and modelingSpecial methods

Multi-horizon regressions Asymmetric volatility impact

One other method Long memory/fractional integration

Page 23: Volatility Models

Volatility Summary

Lots of predictability (for finance) but, No perfect model (sort of GARCH(1,1) Do different objectives matter? What about out of sample

Some puzzles remain Long range persistence Some nonnormal residuals Sign asymmetry and other nonlinear effects Connections to trading volume

Basic issue: Why is it changing?