vol 3 issue 02 june 2014

45
Volume 3 Issue 02 | Dec 2014 MALAYSIA & SINGAPORE : THE LANGUAGE DILEMMA (A SYNTHESIS OF MALAYSIA AND SINGAPORE LANGUAGE POLICY) Mohd Azahari Bin Azal Wan Sharifah Munirah Binti Wan Hussain MUKJIZAT PENDIDIKAN AL QU’RAN DALAM TEORI PEMBENTUKAN MANUSIA MENURUT ILMU SAINS Indriaty Ismail Mohd Hidayat Bin Mahadi DUCK EGGS GRADING USING A LOW COST VISION SYSTEM Yushazaziah Mohd Yunos Nor Aini Burok Izume Ayuna Mohd Khamil Ahmad Ilman Mohd Masri Syed Azhar Syed Abd Rahman ENERGY SAVING OF BIODIESEL PRODUCTION FROM WASTE CHICKEN FATS BY MICROWAVE TECHNOLOGY USING RESPONSE SURFACE METHODOLOGY (RSM) Nazerah Ahmad Nanthakumaran A/L Balakrisnan C M Y CM MY CY CMY K

Upload: lamkien

Post on 31-Dec-2016

222 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: vol 3 issue 02 june 2014

Volume 3 Issue 02 | Dec 2014

MALAYSIA & SINGAPORE : THE LANGUAGE DILEMMA (A SYNTHESIS OF MALAYSIA AND SINGAPORE LANGUAGE POLICY)Mohd Azahari Bin AzalWan Sharifah Munirah Binti Wan Hussain

MUKJIZAT PENDIDIKAN AL QU’RAN DALAM TEORI PEMBENTUKAN MANUSIA MENURUT ILMU SAINSIndriaty IsmailMohd Hidayat Bin Mahadi

DUCK EGGS GRADING USING A LOW COST VISION SYSTEMYushazaziah Mohd YunosNor Aini BurokIzume Ayuna Mohd KhamilAhmad Ilman Mohd MasriSyed Azhar Syed Abd Rahman

ENERGY SAVING OF BIODIESEL PRODUCTION FROM WASTE CHICKEN FATS BY MICROWAVE TECHNOLOGY USING RESPONSE SURFACE METHODOLOGY (RSM)Nazerah AhmadNanthakumaran A/L Balakrisnan

C

M

Y

CM

MY

CY

CMY

K

Page 2: vol 3 issue 02 june 2014

EDITORIAL BOARD

MARA INNOVATION JOURNAL

Volume 3 Issue 02 Dec 2014 ISSN: 2289-2818

Patron

Datuk Ibrahim bin Ahmad

Director General Majlis Amanah Rakyat

Editor-in-Chief

Kamaruzaman bin Jaffar, KMN

Editors

Dr. Dewi Izzwi Abdul Manan Dr. Faridah Salleh Dr. Fatimah Ehsan

Dr. Noorzalina Mohd Noor Dr. Sarinah Sulaiman

Faizah Abu Bakar Hanirus Osman

Hasmah Markom Khairiah Abdullah Mazni Suleiman

Roskhairul Hanafi bin Subiran Sharida Hashim

Siti Rosezaimah Ismail Wan Shahriza Wan Ab Rahman

Pewasit

Prof Dr. Zainal Abidin Talib, Universiti Putra Malaysia

Dr. Azmi Shah Suratman , Universiti Teknologi Malaysia

Dr. Azan Mat Zin, Universiti Kebangsaan Malaysia

Dr. Umi Kalthom Abdul Manaf, Universiti Putra Malaysia

Page 3: vol 3 issue 02 june 2014

ii

MARA Innovation Journal

Volume 3 Issue 02, December 2014

Welcome to MARA Innovation Journal

The MARA Innovation Journal (MIJ) is an independent, peer-reviewed journal

devoted to sharing ideas and discussing issues related to innovation. The MIJ is

also a forum for exchange of imaginative ideas readers wish to share.

Invitation to Submit Papers

The editorial board in Innovation and Research Unit, Majlis Amanah Rakyat

invites researchers and writers to contribute articles to MARA Innovation Journal

in the field of research and innovation. For further information, please visit

http://journal.mara.gov.my/Innovation/articles.html

Published by:

Innovation and Research Unit

Majlis Amanah Rakyat (MARA)

No. 21, Jalan Raja Laut

50609 Kuala Lumpur

Tel : (03) 26134480

Faks : (03) 26910486

Copyright © MARA 2014

All rights reserved. No part of this publication may be reproduced, stored in a

retrieval system, or transmitted, in any form, or by any means, electronic,

mechanical, photocopying, recording or otherwise, without the prior written

permission of the Publisher.

Page 4: vol 3 issue 02 june 2014

iii

Content Pages

Malaysia & Singapore: The Language Dilemma 1 - 7

(A Synthesis of Malaysia and Singapore Language Policy)

Mohd Azahari Bin Azal

Wan Sharifah Munirah Binti Wan Hussain

Mukjizat Pendidikan Al Qur’an Dalam Teori Pembentukan 8 - 21

Manusia Menurut Ilmu Sains

Indriaty Ismail

Mohd Hidayat Bin Mahadi

Duck Eggs Grading using a Low Cost Vision System 22 - 27

Yushazaziah Mohd Yunos

Nor Aini Burok

Izume Ayuna Mohd Khamil

Ahmad Ilman Mohd Masri

Syed Azhar Syed Abd Rahman

Energy Saving of Biodiesel Production from Waste Chicken 28 - 40

Fats by Microwave Technology using Response Surface

Methodology (RSM)

Nazerah Ahmad

Nanthakumaran A/L Balakrisnan

Page 5: vol 3 issue 02 june 2014

MARA Innovation Journal

ISSN: 2289-2818, Volume 3, Issue 02 (Dec 2014),

http://journal.mara.gov.my/Innovation/articles.html

8

Mukjizat Pendidikan Al Qur’an Dalam Teori Pembentukan

Manusia Menurut Ilmu Sains

Indriaty Ismail1 & Mohd Hidayat Bin Mahadi2 1(Universiti Kebangsaan Malaysia)

2 (German Malaysian Institute)

Abstrak

Tulisan ini menganalisis mukjizat yang terkandung dalam al-Qur‟an iaitu Kalam Allah yang terdapat di dalam surah-surah yang menjurus kepada perihal kejadian manusia bagi tujuan pendidikan dan dakwah. Hasil penulisan ini juga bertujuan menghayati kembali ayat-ayat al-Qur‟an memandangkan isi kandungan ilmu al-Qur‟an amatlah luas serta tidak terbatas oleh masa, tempat dan situasi. Tajuk ini juga dipilih dengan tujuan melihat sejauhmana peranan al-Qur‟an kepada manusia khususnya kepada para pendakwah. Tulisan ini dihasilkan menerusi analisis dokumen berbentuk kajian dokumentasi, serta penilaian para sarjana terhadap proses ciptaan manusia menerusi ilmu sains dan hujahnya menurut al Qur‟an. Hasil penulisan mendapati metod dakwah menggunakan hujah serta fakta sains dalam al-Qur‟an mempunyai potensi yang baik untuk mendidik minat masyarakat kepada menghayati keagungan Islam. Selain itu, kesepaduan antara teori-teori al-Qur‟an, dakwah dan sains dilihat mampu memperkemaskan lagi pendidikan serta dakwah pada masa akan datang khasnya pada zaman berkembangnya teknologi moden. Oleh itu, umat Islam seharusnya segera memperhalusi dan memanfaatkan isi kandungan al-Qur‟an agar warisan Nabi Muhammad s.a.w. ini tidak ditelan zaman, disamping mengelakkannya dari disabotaj dan diubah oleh musuh-musuh Islam.

Kata kunci: mukjizat, al Quran, sains, dakwah, pendidikan.

I. Pendahuluan Al Ghazali merupakan seorang tokoh ilmuan Islam yang sangat terkenal dengan ilmu falsafah

dan ilmu tasawufnya. Beliau juga merupakan seorang agamawan yang bersikap terbuka, kreatif

dan proaktif dalam menangani isu kontemporari terutamanya yang berkaitan pendidikan dalam

zamannya. Abdul Salam Yussof (2010: 58) ada memetik kata-kata al Ghazali yang menyatakan

bahawa tiada pertentangan antara disiplin ilmu aqliyyah dengan ilmu yang bersumberkan wahyu

Allah. Hujah ini amat bertepatan dengan topik utama penulisan ini yang berkaitan dengan

pendidikan dalam dakwah melalui al Qur‟an khasnya terhadap perkara yang melibatkan hal

ehwal saintifik masa kini.

Sekiranya dilihat pula dari sudut perspektif negara Islam, revolusi sains dan teknologi

hari ini kelihatan terlalu bergantung kepada teknologi Barat. Oleh itu, adalah amat penting

digerakkan suatu usaha bagi mewujudkan kredibiliti yang lebih kukuh dalam tradisi sains Islam.

Pihak orientalis Barat sengaja menggunakan dan menonjolkan karya serta teori mereka yang

dikatakan terhebat bagi mengelirukan umat Islam. Mereka mengetengahkan hujah bahawa

manusia itu berasal daripada kera sebagaimana yang terkandung dalam teori asal kejadian

manusia oleh Sir Charles Darwin. Sebagai umat Islam, bersyukur adalah satu kemestian kerana

Page 6: vol 3 issue 02 june 2014

MARA Innovation Journal Volume 3, Issue 02 (Dec 2014)

9

sebagai umat Nabi Muhammad s.a.w., baginda telah mewariskan al-Qur‟an yang penuh dengan

kemukjizatan sebagai panduan dan sumber pendidikan umat manusia. Ilmu al Quran

sewajarnya dikaji dengan pengetahuan sains supaya ianya menjadi lebih mudah apabila

berhadapan dengan para mad‟u masa kini.

Menyedari bahawa apa yang terkandung dalam al-Qur‟an mencakupi pelbagai bidang,

semestinya masa yang lama amat diperlukan untuk mengenalpasti ayat-ayat yang ada kaitan

dengan bidang yang hendak dikaji. Banyak cara dan usaha telahpun dilaksanakan bagi

membantu mengesan maklumat sains dan bidang-bidang yang berkaitan yang dapat

dimanfaatkan oleh pendakwah bagi mendidik, seterusnya menyampaikan dakwah dengan lebih

berkesan. Al-Qur‟an sebagai ibu segala ilmu pengetahuan telah memperkenalkan metodologi

kajian sains sejak 1426 tahun yang lalu dan ini membuktikan kebenaran al-Qur‟an. Salah satu

daripada hipotesis al Qur‟an yang paling hebat ialah proses dan hakikat penciptaan manusia itu

sendiri.

II. Hakikat Kejadian Dan Penciptaan Manusia Berdasarkan Al-Qu’ran Pada peringkat awal sebelum penciptaan manusia bermula, Allah swt telah berfirman kepada malaikat bahawa Dia akan menjadikan seorang khalifah di bumi ini. Sebagaimana firman-Nya:

Maksudnya: Dan (ingatlah) ketika Tuhanmu berfirman kepada Malaikat; "Sesungguhnya Aku hendak menjadikan seorang khalifah di bumi". mereka bertanya (tentang hikmat ketetapan Tuhan itu dengan berkata): "Adakah Engkau (Ya Tuhan kami) hendak menjadikan di bumi itu orang yang akan membuat bencana dan menumpahkan darah (berbunuh-bunuhan), padahal Kami sentiasa bertasbih dengan memuji-Mu dan mensucikan-Mu?". Tuhan berfirman: "Sesungguhnya Aku mengetahui akan apa yang kamu tidak mengetahuinya".

(Surah al-Baqarah: 30)

Ayat diatas menjelaskan bahawa manusia yang telah diciptakan oleh Allah SWT di muka bumi

ini adalah untuk menjadi khalifah. Khalifah Allah sebagaimana yang termaktub dalam al Quran

ini mempunyai ciri-cirinya yang tertentu. Antara ciri yang dimaksudkan ialah menguasai dan

memerintah ataupun mempunyai sifat "al-siyadah atau ketuanan". Sifat ini diakui oleh Allah

s.w.t. seperti yang telah termaktub dalam perlembagaan suci al-Quran untuk menjadi "Tuan" ke

atas segala makhluk dan segala ciptaan di atas muka bumi (Muhammad al‟Mahdi 2004:35).

Tetapi sifat ini bukan menjadi sifat yang istimewa dan asasi dalam tugas khalifah. Sifat

tersebut hanya sebagai alat atau jalan kepada manusia untuk melaksanakan tugas khalifah.

Jika ketuanan dan kekuasaan itu digunakan bukan untuk melaksanakan tugas khallifahtullah di

muka bumi, maka manusia itu tidak lagi lulus sebagai khalifah tetapi dikatakan sebagai manusia

yang menentang, melawan menderhaka dan memberontak kepada Allah swt serta kepada

kekuasaan, pemerintahan, kesultanan dan kehakiman Allah swt.

Page 7: vol 3 issue 02 june 2014

MARA Innovation Journal Volume 3, Issue 02 (Dec 2014)

10

Tugas sebagai khalifah Allah ini haruslah seiring dengan konsep hamba. Bukanlah makna

khalifah itu sebagai ketua sahaja, tetapi membelakangi perintah Allah Taala pula. Khalifah itu

sebenarnya juga bermaksud menjadi hamba yang taat dan patuh kepada perintah dan juga

larangan Allah swt. Menurut Abdul Shukur Husin (1986: 21), manusia merupakan makhluk yang

mempunyai daya fikir dan juga menerima ilmu pengetahuan. Justeru, manusia merupakan

makhluk Allah swt yang mencapai taraf yang tinggi dan sempurna dalam proses kejadiannya.

Dengan martabat yang tinggi sebagai khalifah Allah di muka bumi, manusia juga tidak harus

mendabik dada sebagai ketua kerana status sebagai hamba Allah itu tetap akan dipegang

sampai bila-bila. Inilah yang menjadi pembeza antara manusia dan juga makhluk yang lain yang

terdapat di dunia ini.

III. Falsafah Dan Sejarah Kejadian Manusia

Secara objektif, manusia dijadikan oleh Allah untuk beribadat kepada-Nya. Melalui akal yang

dianugerahi Allah, membolehkan manusia membentuk nilai-nilai jasmaniah dan rohaniah yang

baik. Akal juga memberikan sesuatu fungsi atau peranan sebagaimana yang dikehendaki oleh

seseorang individu. Keistimewaan manusia itu berbanding makhluk yang lain ialah fikiran,

perasaan dan juga keyakinannya. Abdul Latiff Samian (2001: 24) menyatakan bahawa dengan

adanya kelebihan-kelebihan ini, maka manusia mempunyai kecenderungan untuk memilih dan

menilai sesuatu hinggalah mereka mampu untuk membezakan antara yang baik dan yang

buruk. Sebaliknya jika manusia melakukan sesuatu yang bertentangan dengan sifat asasinya

seperti moral, susila, sosial dan sebagainya, bererti akan terjadilah pertentangan norma.

Individu yang melanggar fitrah manusia, boleh menjadikan dirinya makhluk yang paling hina.

Kejadian manusia ini selaras dengan sifat pembawaan manusia itu sendiri. Jelasnya,

manusia secara individunya menghendaki peranan yang baik terhadap dirinya sendiri mahupun

terhadap orang lain, khasnya terhadap Allah swt. Kerana itu Allah swt menempatkan manusia

sebagai makhluk yang paling mulia dan diberikan kepercayaan yang tinggi sebagai khalifah di

dunia ini. Allah berfirman:

Maksudnya: Dan di antara tanda-tanda yang membuktikan kekuasaannya (menghidupkan kamu semula), bahawa ia menciptakan kamu dari tanah; setelah sempurna sahaja peringkat-peringkat kejadian kamu, kamu menjadi manusia yang hidup bertebaran di muka bumi.

(Surah al-Rum: 20)

Merujuk kepada ayat di atas, jelas menunjukkan bahawa aspek spiritual mengenai asal-usul kejadian manusia daripada tanah, menekankan bahawa manusia akan kembali kepada tanah selepas mati. Selain itu ia juga merujuk kepada kebangkitan manusia pada hari kiamat kelak. Allah swt berfirman:

Page 8: vol 3 issue 02 june 2014

MARA Innovation Journal Volume 3, Issue 02 (Dec 2014)

11

Maksudnya: Dia lah yang menciptakan kamu dari tanah, kemudian ia tentukan ajal (kematian kamu) dan satu ajal lagi yang tertentu di sisi-Nya (iaitu masa yang telah ditetapkan untuk dibangkitkan kamu semula pada hari kiamat); Dalam pada itu, kamu masih ragu-ragu (tentang hari pembalasan)

(Surah al-Ancam: 2) Dalam ayat tersebut, al-Qur‟an telah menerangkan hakikat manusia itu terjadi daripada

tanah. Demikian juga dalam beberapa surah yang lain, kebanyakan ayat-ayat al-Quran

menyatakan bahawa manusia dicipta daripada tanah. Sudah tentu penciptaan ini mempunyai

intisari dan falsafahnya yang tesendiri. Menurut ilmu pengetahuan moden, tubuh manusia itu

mengandungi unsur-unsur yang terdapat dalam bumi iaitu karbon, oksigen, hidrogen, fosforus,

kibrit, azur, kalsium, votasium, sodium, magnesium, besi, magnet, tembaga, sodium, florit,

kublat, zink, silikon dan alumunium. Inilah di antara unsur-unsur yang terdapat di dalam tanah

(Abu ar-Razi al-Ahmadi 2002: 21).

Dalam tubuh manusia terdapat beberapa unsur yang kemudiannya menjadi satu. Maka

di sini jelas terbukti, kejadian manusia itu adalah daripada tanah. Antara lain ialah manusia itu

terjadi dari air mani (spermatozoa) yang mengandungi sel-sel telur, baik daripada lelaki

mahupun daripada wanita. Sperma dan sel-sel ini terjadi dari tanah yang berasal dari zat-zat

makanan yang dicerna di dalam perut merupakan tumbuh-tumbuhan dan haiwan (ibid: 24).

Kejadian manusia ini pada mulanya daripada Adam a.s., manakala Adam berasal dari

tanah. Unsur-unsur tubuh manusia itu berasal dari unsur-unsur yang terdapat dalam tanah.

IV. Peringkat Kejadian Adam (A.S.)

Dalam al-Qur'an terdapat 25 tempat yang menyatakan bahawa Nabi Adam (a.s.) diciptakan dari

tanah. Antaranya dalam surah al-Baqarah, Ali „Imran, al-Ma‟idah, al-Acraf, al-Isra', al-Kahf,

Maryam, Ṭahā dan Yāsīn. Secara terpeincinya, proses kejadian Adam a.s., dihuraikan seperti

berikut :

a) Pertama: Peringkat Saripati Tanah (ṭīn)

Ia bermula dengan peringkat pengumpulan tanah bumi dalam bentuk turab iaitu tanah yang berdebu. Pada peringkat ini, Allah (s.w.t.) melakukan beberapa penyaringan debu tanah. Firman Allah:

Maksudnya: Dan Sesungguhnya Kami telah menciptakan manusia dari pati (yang berasal) dari tanah;

(Surah al-Mu‟minun: 12)

Page 9: vol 3 issue 02 june 2014

MARA Innovation Journal Volume 3, Issue 02 (Dec 2014)

12

Proses ini bertujuan untuk mendapatkan saripati tanah (sulālat min ţīn) yang bersih dan amat sesuai untuk dijadikan bahan sebagai salah satu unsur kepada penciptaan manusia. Ini menunjukkan bahawa tanah yang digunakan ini telah melalui proses penyaringan dan bukan daripada tanah biasa sebagaimana yang difikirkan manusia pada hari ini. Ini amat bersesuaian dengan kemuliaan yang diberikan oleh Allah s.w.t kepada manusia (www.abim.org.my).

b) Kedua: Peringkat tanah liat (ṭīn lāzib)

Pada peringkat ini Allah s.w.t menyaringkan debu tanah untuk mendapatkan saripatinya (sulalah min ṭīn ) dengan mengambil satu bahagian yang benar-benar suci dan bersih. Seterusnya pati itu dicampurkan dengan air membentuk tanah liat atau tanah yang melekat (ṭīn lāzib). Di peringkat ini Allah menciptakan Adam dalam bentuk manusia .

Firman Allah:

Maksudnya: (setelah nyata kekuasaan kami) maka bertanyalah (Wahai Muhammad) kepada mereka (yang ingkarkan hidupnya semula orang-orang mati): Adakah diri mereka lebih sukar hendak diciptakan, atau makhluk-makhluk lain Yang Kami telah ciptakan? Sesungguhnya Kami telah mencipta mereka dari tanah liat (yang senang diubah dan diciptakan semula).

(Surah al-Ṣaffat: 11)

Sebagaimana diketahui tanah liat pada dasarnya mempunyai sifat melekat. Al-Qurtubiyy (2006: 16) menghuraikan bahawa pada peringkat ini keadaan tanah dikatakan melekat atau menempel di antara satu sama lain. Manakala selepas itu tanah ini akan menjadi tanah yang keras. Pada peringkat ini Al-Qurtubiyy juga menerangkan di dalam tafsirnya bahawa manusia pertama iaitu yang dikaitkan dengan Adam dikatakan kekal sebagai satu lembaga yang berbentuk tanah liat. Selain itu tempoh ia berada dalam keadaan ini adalah selama empat puluh tahun sehingga sifat fizikalnya berubah menjadi keras dan kering .

c) Ketiga: Peringkat tanah yang berbau (ḥama'im masnūn)

Firman Allah:

Maksudnya: Dan Sesungguhnya Kami telah menciptakan manusia (Adam) dari tanah liat Yang kering, Yang berasal dari tanah kental Yang berubah warna dan baunya.

(Surah al-Hijr: 26)

Page 10: vol 3 issue 02 june 2014

MARA Innovation Journal Volume 3, Issue 02 (Dec 2014)

13

Menurut Maurice Bucaille ( 1982: 171), proses penyebatian di antara tanah dan air telah berlaku sejak daripada proses kejadian manusia yang pertama lagi iaitu Nabi Adam a.s. Dalam Al Qur‟an, telah dijelaskan bahawa Nabi Adam a.s diciptakan oleh Allah swt dari tanah yang kering. Tambah Maurice Bucaille lagi, tanah yang kering itu kemudiannya dibentuk oleh Allah swt dengan bentuk yang sebaik-baiknya. Setelah sempurna maka oleh Allah swt meniupkan roh kepadanya maka dia menjadi hidup. Ini menunjukkan bahawa hujah Darwin yang menyatakan manusia itu berasal daripada kera atau monyet itu wajar ditolak. Adalah tidak logik manusia yang dilantik menjadi khalifah di muka bumi ini berasal daripada monyet atau kera.

d) Keempat: Peringkat tanah yang keras (ṣalṣal)

Peringkat seterusnya ialah pembentukan struktur tanah yang keras seumpama tembikar. Peringkat ini juga mengambil masa selama 40 tahun. Oleh itu genaplah proses kejadian Adam a.s selama 120 tahun sebelum peniupan roh oleh Allah s.w.t. Dengan ini peringkat ini merupakan peringkat terakhir dalam proses pembentukan fizikal Adam (a.s.) (ibid. 174). Firman Allah s.w.t:

Maksudnya: Ia menciptakan manusia (lembaga Adam) dari tanah liat kering seperti tembikar.

(Surah al-Rahman: 14)

e) Kelima: Peringkat peniupan roh (nafkh al-ruḥ)

Setelah proses di atas selesai maka Allah swt meniupkan roh ke dalam jasad Adam a.s. Dengan peniupan roh ini bererti sempurnalah pembentukan kejadian Adam a.s., sama ada secara fizikal mahupun spiritual dan ini bermakna seluruh organ dan sistem tubuhnya mula berfungsi.

V. Kejadian Bani Adam

Berdasarkan ayat-ayat al-Qur'an yang dinyatakan, jelas di sini menunjukkan bahawa asal kejadian manusia itu ialah daripada tanah. Menurut kajian sains, tubuh manusia mempunyai unsur-unsur yang sama dengan unsur-unsur di bumi, namun kadar penyusunan unsur-unsur tanah adalah berbeza. Ia berdasarkan kepada kadar fungsi unsur-unsur tersebut di dalam tubuh manusia. Perkara ini boleh dilihat sebagaimana lampiran dalam Jadual 1.

Page 11: vol 3 issue 02 june 2014

MARA Innovation Journal Volume 3, Issue 02 (Dec 2014)

14

Jadual 1. Unsur-unsur yang terdapat dalam tubuh manusia

UNSUR KANDUNGAN / KADAR

oksigen 45 000 gm

hidrogen 8 000 gm

kalsium 1 000 gm

kabrit 175 gm

sodium 105 gm

magnesium 35 gm

kuperam 0.1 gm

karbon 12 000 gm

azote 2000 gm

fosforus 140 gm

klorin 105 gm

ferum 4 gm

iodin 0.03 gm

manggenese 0.02 gm

Sumber : (Lailizah 2003)

VI. Peringkat Kejadian Manusia

Maksudnya: "Padahal Sesungguhnya ia telah menciptakan kamu Dengan kejadian Yang berperingkat-peringkat”

(Surah Nuh: 14) Allah menumpukan perhatian-Nya kepada kaum Muslimin dan ini menunjukkan bagaimana cara kejadiannya itu, agar mereka mempelajari. Di sinilah terletaknya rahsia kejadian manusia. Ayat ini menerangkan keadaan janin itu bertingkat-tingkat. Dari air mani manjadi segumpal darah, dimasukkan tulang dan disaluti dengan daging (Muhammad Ali As-Shabuni 2002: 66). Sains moden barat merumuskan pengkajian terhadap kehamilan manusia terbahagi kepada tiga peringkat yang dinamakan trimesters. Setiap peringkat (trimesters) tersebut mengambil masa kira-kira tiga bulan (Neil A. Campbell 2002: 990). Firman Allah lagi:

Maksudnya: (setelah mengetahui Yang demikian), maka hendaklah manusia memikirkan: dari apa ia diciptakan.-Ia diciptakan dari air (mani) Yang memancut (ke dalam rahim) - Yang keluar dari "tulang sulbi" lelaki dan "tulang dada" perempuan.

(Surah at-Tariq: 5-6)

Page 12: vol 3 issue 02 june 2014

MARA Innovation Journal Volume 3, Issue 02 (Dec 2014)

15

Ayat ini merupakan mukjizat al-Qur‟an yang bersifat ilmiah. Maklumat ini diketahui sejak 50 tahun kebelakangan ini. Air mani lelaki itu berasal dari sulbi tulang punggung. Manakala bagi wanita, ia berasal dari tulang dada. Hal ini telah diterangkan oleh al-Qur‟an sejak 14 abad yang lalu. Kemudian al-Qur‟an memindahkan pembicaraannya kepada bidang yang lain untuk mengisahkan hakikat kedoktoran dan penyelidikan ilmiah (Syed Qutb 2000: 201). Manusia dicipta bermula daripada persenyawaan setitis air mani yang mengandungi sperma di dalamnya. Ini disebut di dalam al Qur‟an:

Maksudnya: Sesungguhnya Kami telah aturkan cara mencipta manusia bermulanya dari air mani yang bercampur (dari pati benih lelaki dan perempuan), serta Kami tetap mengujinya (dengan kewajipan-kewajipan); oleh itu maka Kami jadikan dia berkeadaan mendengar dan melihat.

(Surah al- Insān: 2) Banyak lagi ayat-ayat lain yang menceritakan tentang penciptaan manusia bermula daripada persenyawaan sperma dalam air mani ini. Ayat ini juga meletakkan pendengaran lebih dahulu daripda penglihatan. Ini sesuai dengan hakikat penciptaan manusia yang mana mereka boleh mendengar sejak dalam rahim lagi tetapi boleh melihat hanya selepas dilahirkan. Dalam al-Qur‟an juga, secara jelas menceritakan bahawa bukan semua air mani yang digunakan untuk menjadikan manusia tetapi sebaliknya hanya sebahaginnya sahaja. Firman Allah:

Maksudnya: Bukankah ia berasal dari air mani yang dipancarkan (ke dalam rahim)?

(Surah al- Qiyāmah: 37)

Perkataan yang digunakan oleh Allah dalam ayat ini adalah “nuṭfatam min maniiyin yumna” yang bermaksud sebahagian daripada air mani yang dipancarkan. Di dalam surah as-Sajdah ayat 8, Allah menggunakan perkataan “sulalah” yang bermaksud saripati, iaitu bahagian yang paling baik dalam satu-satu campuran. Air mani tersebut tidak boleh berkembang dengan sendiri menjadi manusia seperti yang dipercayai oleh orang terdahulu semasa al-Qur‟an diturunkan tetapi sebaliknya air mani itu mesti bercantum dengan telur daripada kaum hawa untuk menjadi manusia.

Firman Allah:

Maksudnya: Ia diciptakan dari air (mani) yang memancut (ke dalam rahim) - yang keluar dari "tulang sulbi" lelaki dan "tulang dada" perempuan.

(Surah at- Tāriq: 6-7)

Page 13: vol 3 issue 02 june 2014

MARA Innovation Journal Volume 3, Issue 02 (Dec 2014)

16

Ṣulbi dan tara’ib dalam ayat ini dijelaskan sebagai tempat keluarnya salur darah yang membekalkan darah kepada testis (kilang sperma) dan ovari (kilang telur) yang terletak antara tulang sulbi dan tulang dada (Zakir Abdul Karim Naik 2004: 51). Saluran darah testicular artery dan ovary artery bermula dari satu tempat antara tulang sulbi dan tulang dada. Ini dibuktikan benar oleh sains moden bahawa saluran darah ke testis dan ovari berasal daripada abdominal aorta dan renal artery bukannya berasal dari salur darah setempat. Jantina bagi manusia ditentukan oleh sperma daripada bapa bukannya telur daripada ibu. Ini dijelaskan oleh Allah swt dalam ayatnya:

Maksudnya: Dan Bahawa sesungguhnya, Dia lah Yang menciptakan pasangan - lelaki dan perempuan, - Dari (setitis) air mani ketika dipancarkan (ke dalam rahim);

(Surah an-Najm: 45-46)

Dalam ayat lain Allah S.W.T menyebut:

Maksudnya: Bukankah ia berasal dari air mani yang dipancarkan (ke dalam rahim)?- Kemudian air mani itu menjadi sebuku darah beku, sesudah itu Tuhan menciptakannya, dan menyempurnakan kejadiannya (sebagai manusia)?- Lalu Tuhan menjadikan daripadanya dua jenis - lelaki dan perempuan.

(Surah al-Qiyāmah: 37-39)

Perkara ini dibuktikan tepat oleh sains moden iaitu jantina manusia ditentukan oleh sperma yang mempunyai genetik XY bukannya telur yang hanya mempunyai sejenis genetik XX sahaja. Perkembangan manusia di dalam rahim disebut secara jelas di dalam al-Qur‟an sebanyak tiga peringkat. Firman Allah:

Maksudnya: Kemudian Kami ciptakan air benih itu menjadi sebuku darah beku. lalu Kami ciptakan darah beku itu menjadi seketul daging; kemudian Kami ciptakan daging itu menjadi beberapa tulang; kemudian Kami balut tulang-tulang itu dengan daging. setelah sempurna kejadian itu Kami bentuk dia menjadi makhluk yang lain sifat keadaannya. maka nyatalah kelebihan dan ketinggian Allah sebaik-baik Pencipta.

(Surah a-Mu‟minūn: 14)

Page 14: vol 3 issue 02 june 2014

MARA Innovation Journal Volume 3, Issue 02 (Dec 2014)

17

Peringkat-peringkat ini di dalam istilah al-Qur‟annya disebut sebagai “calaqah”,

“muḍghah” dan “nash’ah”. cAlaqah sering disebut oleh orang Arab sebagai benda yang

bergantung seumpama lintah (Harun Yahya 2001: 59). Ini jelas menggambarkan peringat zygote

iaitu peringkat pertama setelah hasil persenyawaan melekat di dinding rahim. Mudghah pula

adalah seumpama daging atau chewing gum yang dikunyah. Ia biasanya akan meninggalkan

kesan gigi pada bahan yang dikunyah tersebut.

Peringkat mudghah ini dikenali dalam istilah anatomi sebagai peringkat embryo berlaku

daripada minggu ke lima hingga ke lapan kandungan. Bentuk seperti gigitan itu adalah peringkat

pembentukan tulang belakang primitif yang dikenali sebagai somite. Pada akhir peringkat

mudhgah terdapat peringkat pembentukan organ disebut di dalam al-Qur‟an sebagai ‘idzama.

Pembentukan organ ini berlaku dengan pembentukan daging, kemudian pembentukan tulang

dan diikuti pembentukan otot-otot yang membaluti tulang tersebut pula. Bermula dari akhir

minggu ke lapan, embryo ini menjadi seolah-olah makhluk lain. Peringkat ini disebut dalam al-

Qur‟an sebagai nash’ah. Peringkat ini hampir semua organ telah terbentuk dan mula berfungsi

(Sulaiman Nordin 1998: 33). Perkara ini dibuktikan tepat setelah teknologi mikroskop dan

endoskop berkembang dalam abad ke 20. Mustahil seorang yang tidak tahu membaca dan

menulis seperti Rasulullah s.a.w. dapat menerangkan perkembangan dengan peringkat-

peringkat yang terperinci sebegini.

Nabi Muhammad s.a.w. bersabda yang bermaksud, apabila empat puluh dua hari telah

berlalu setelah nuṭfah menetap di dalam rahim, Allah akan mengutuskan seorang malaikat untuk

membentuknya dan mencipta pendengaran, penglihatan, kulit dan tulang temulang, seraya

berkara, „Ya Allah, adakah lelaki atau perempuan?‟ dan Allah swt menentukan apa yang Dia

kehendaki (Abu ar-Razi al-Ahmadi 2002: 13-15).

VII. Perihal Kejadian Manusia Yang Dikaitkan Dengan Al-Qur’an

Sepertimana yang kita ketahui, al-Qura‟an menggunakan metodologi naratif untuk memberikan petunjuk kepada manusia. Namun begitu, banyak ayat al-Qur‟an mengandungi makna tersirat yang memerlukan kajian lanjutan antaranya ialah perihal kejadian manusia yang menjadi topik utama perbincangan ini. a) Penutup Janin. Dalam al-Qur‟an terdapat banyak kisah yang menerangkan mengenai kedudukan dan keadaan janin dengan jelas. Ketika di dalam rahim dan sebelum dilahirkan, manusia berada di dalam suasana gelap gelita dan ini memperlihatkan kekuasan Allah s.w.t. tanpa menimbulkan sebarang keraguan (Abu ar-Razi al-Ahmadi 2002: 24). Firman Allah:

Page 15: vol 3 issue 02 june 2014

MARA Innovation Journal Volume 3, Issue 02 (Dec 2014)

18

Maksudnya: Ia menciptakan kamu dari diri yang satu (Adam), kemudian ia menjadikan daripadanya - isterinya (Hawa); dan ia mengadakan untuk kamu binatang-binatang ternak lapan ekor: (empat) pasangan (jantan dan betina). ia menciptakan kamu dalam kandungan ibu kamu (berperingkat-peringkat) dari satu kejadian ke satu kejadian. Dalam tiga suasana yang gelap-gelita. Yang demikian (kekuasaan-Nya) ialah Allah Tuhan kamu; bagi-Nyalah kekuasaan yang mutlak; tiada Tuhan melainkan dia; oleh itu bagaimana kamu dapat dipesongkan (dari mematuhi perintah-Nya)?

(Surah az- Zumar : 6) Ayat ini mengandungi banyak makna yang tersirat. Allah bermaksud akan menambah bukti-bukti yang menunjukkan Allah dan juga mengenai nabi-Nya Muhammad s.a.w. dan bukti-bukti tersebut diturunkan ke dalam al-Qur‟an. Setelah meningkatnya ilmu kedoktoran dan ilmu anatomi mengenai janin yang berada di dalam rahim ibu, seseorang itu akan tunduk kepada Allah dan al-Quran (Saud, M. 1988: 25). Menurut ilmu sains moden, janin yang berada dalam perut ibunya itu dibungkus oleh tiga lapisan penutup agar tidak diresapi air dan suhu yang kurang baik baginya. Tutupan itu terkenal dengan nama placenta yang terdiri daripada lapisan mambax, amoniun dan karboniun (Khalijah Salleh 1992: 32). b) Pembentukan Tulang dan Daging Firman Allah:

Maksudnya: Kemudian Kami jadikan "pati" itu (setitis) air benih pada penetapan Yang kukuh;- Kemudian Kami ciptakan air benih itu menjadi sebuku darah beku. lalu Kami ciptakan darah beku itu menjadi seketul daging; kemudian Kami ciptakan daging itu menjadi beberapa tulang; kemudian Kami balut tulang-tulang itu dengan daging. setelah sempurna kejadian itu Kami bentuk Dia menjadi makhluk yang lain sifat keadaannya. maka nyatalah kelebihan dan ketinggian Allah sebaik-baik Pencipta.

(Surah al- Mu‟minūn: 13-14)

Ketulan daging yang dipanggil Mudghah atau Embrio Somite, membentuk sistem rangka yang kemudiannya diselaputi oleh otot-otot. Pada awal minggu keempat, somite-somite mula membeza di mana sel-sel ventromedial somit menunjukkan aktiviti pembiakan yang tinggi. Sel-sel mesenkima membeza kepada fibroblas, kondroblas atau osteoblas. Sel-sel ini berhijrah ke arah paksi di mana notokorda dan tiub neural terbentuk. Bahagian somite ini dikenali sebagai skeleton. Skeleton menghasilkan sistem tulang belulang. Kolum vertebra dibentuk oleh sel-sel

Page 16: vol 3 issue 02 june 2014

MARA Innovation Journal Volume 3, Issue 02 (Dec 2014)

19

skeleton yang berhijrah di depan notokorda dan tiub neural (Muhammad Ali As-Shabuni 2004: 72). Tiub neural kemudiannya dibendung oleh lengkung-lengkung daripada jasad-jasad vertebra, manakala notokorda merosot dan akhirnya menghilang. Sisa notokorda dapat dilihat di tengah-tengah diska intervertebra dalam bentuk nucleus pulposus. Sel-sel somit yang selebihnya yang tidak terlibat di dalam pembentukan skeleton kemudiannya membeza untuk membentuk minotom, yang menghasilkan otot-otot buah pembungkus tulang belulang yang masih dalam peringkat pembentukan. Manakala proses pembentukan tulang pula, lama kelamaan beberapa pikul tulang seakan-akan jarum akan terbentuk yang kemudiannya beransur-ansur berkembang dari pusat osfikikasi primer ke arah perferi (Hairudin Harun 1992: 67). Sistem tulang belulang mendahului sistem otot dari segi kejadiannya. Apabila tulang belulang terbentuk, ianya akan diselaputi oleh daging iaitu otot. Firman Allah:

Maksudnya: Atau (tidakkah engkau pelik memikirkan wahai Muhammad) tentang orang yang melalui sebuah negeri yang telah runtuh segala bangunannya, orang itu berkata: "Bagaimana Allah akan menghidupkan (membina semula) negeri ini sesudah matinya (rosak binasanya)? " lalu ia dimatikan oleh Allah (dan dibiarkan tidak berubah) selama seratus tahun, kemudian Allah hidupkan Dia semula lalu bertanya kepadanya: "Berapa lama Engkau tinggal (di sini)?" ia menjawab: "Aku telah tinggal (di sini) sehari atau setengah hari". Allah berfirman:" (tidak benar), bahkan Engkau telah tinggal (berkeadaan demikian) selama seratus tahun. oleh itu, perhatikanlah kepada makanan dan minumanmu, masih tidak berubah keadaannya, dan perhatikanlah pula kepada keldaimu (hanya tinggal tulang-tulangnya bersepah), dan Kami (lakukan ini ialah untuk) menjadikan Engkau sebagai tanda (kekuasaan kami) bagi umat manusia; dan lihatlah kepada tulang-tulang (keldai) itu, Bagaimana Kami menyusunnya kembali kemudian Kami menyalutnya dengan daging ". maka apabila telah jelas kepadanya (apa yang berlaku itu), berkatalah dia: sekarang Aku mengetahui-Nya (dengan yakin), Sesungguhnya Allah Maha Kuasa atas tiap-tiap sesuatu".

(Surah al-Baqarah: 259)

VIII. Kesimpulan Tanpa menolak peranan para saintis yang telah menyumbang kepada perubahan dunia, proses adaptasi isi kandungan al-Qur‟an dengan ilmu sains adalah sangat-sangat diperlukan. Menurut Zakir Abdul Karim Naik (2004: 72), ianya merupakan satu alasan yang kuat mengapa

Page 17: vol 3 issue 02 june 2014

MARA Innovation Journal Volume 3, Issue 02 (Dec 2014)

20

penelaahan sains secara kolektif itu perlu khususnya terhadap penghujahan mengenai pengetahuan sains yang terlalu ketat oleh dogma keilmiahannya. Umat Islam harus menggunakan kaedah pendidikan insan dengan menggunakan pendekatan dakwah menerusi sains dan teknologi. Pendekatan saintifik iaitu dengan memerhati kejadian dan kehidupan alam sebenarnya adalah satu daripada wadah yang sangat efektif yang boleh digunakan untuk tujuan mendidik dan berdakwah pada masa kini. Ini kerana ketepatan isi kandungan dan hujah serta teori mengenai sains akan lebih terserlah dengan adanya ayat-ayat al-Qur‟an yang menyokongnya. Sebagai contoh, proses kejadian manusia yang diceritakan di dalam al-Qur‟an adalah bertepatan dengan teori dan kajian sains moden masa kini. Contoh ini mempunyai kaitan yang amat rapat dengan elemen pendidikan yang sebenar. Perlu diingat bahawa antara elemen yang penting dalam pendidikan yang sebenar itu ialah menyiapkan anak itu dari segi ilmu agamanya, mempersiapkannya dari segi akhlaknya, dan juga mempersiapkannya dari segi pemikirannya. Maksud mempersiapkan dari segi pemikiran ini ialah memiliki ilmu umum duniawi disamping ilmu ukhrawi (Abdul Salam Yussof 2010: 96). Melalui penggunaan akal fikiran secara baik juga membolehkan manusia membina dan mempertingkatkan tamadun serta mutu kehidupan harian mereka. Khalijah Salleh (1992: 59) menyatakan bahawa penerokaan ilmu sains oleh manusia akan mendatangkan faedah yang besar kepada seluruh umat manusia. Ilmu sains yang tinggi akan memberi pengaruh kepada peningkatan teknologi bagi sesebuah negara. Walaupun harga yang perlu dibayar bagi mendapatkan hasil teknologi adalah tinggi, namun ia dianggap sebagai satu kemestian yang tidak dapat dielakkan. Hasil teknologi tersebut diperlukan untuk kemudahan pengangkutan, ketenteraan, kejuruteraan, pembangunan dan sebagainya. Maka jelaslah bahawa pendidikan dalam institusi dakwah melalui penyelidikan sains serta teknologi adalah satu keperluan. Pemikiran saintifik yang luhur adalah integrasi pemikiran berdasarkan wahyu dan ilmu sains yang bermanfaat. Ianya bukan sahaja menjangkaui kebolehan dalam membuat andaian dan menganalisa data-data saintifik, tetapi juga berupaya mencetuskan idea-idea asli yang mampu menggalakkan pembangunan tamadun dan kemanusiaan.

Page 18: vol 3 issue 02 june 2014

MARA Innovation Journal Volume 3, Issue 02 (Dec 2014)

21

Rujukan

Al-Qur‟an al-Karim.

Abu Abdillah, Muhammad Bin Ahmad Bin Abu Bakar Al-Qurthubi Al-Maliki. (2006). Al-Jami' Li Ahkamil Qur'an Wal Mubayyin Li Ma Tadhommanahu Minas Sunnati Wa Ayil Qur'an. Juz 18. Lebanon:

Mu‟assisah ar-Risalah, Beirut.

Abu Ar-Razi Al-Ahmadi. (2002). Menyingkap Kejadian Al-Quran Mengikut Kajian Sains. t.tp: Pustaka Ilmi.

Abdul Shukur Husin. (1986). Manusia menurut perspektif Islam: satu pengamatan ringkas; dalam Muhamad Nasir Omar, Tamadun Islam dan ideologi-ideologi masa kini. Bangi: Penerbitan an-Nadhi.

Muhammad al‟Mahdi. (2004). Understanding the concept of Khalifah. Selangor: The Khalifah Institute.

Abdul Latif Samian & Khairul Anwar Mastor. (2001). Perkembangan Sains dan Peradaban Manusia. Bangi: Universiti Kebangsaan Malaysia.

Harun Yahya. (2001). Miracle of The Qur’an. Canada: Al-Attique Publishers Inc. Hairudin Harun. (1992). Daripada Sains Yunani Kepada Sains Islam. Kuala Lumpur: Penerbit Universiti

Malaya. Lailizah Darman. (2003). Prinsip sains dalam pendidikan Islam. Didapatkan daripada http://lailizah.tripod.com/ prinsip_mengenal_diri.htm. Khalijah Salleh. (1992). Pemasyarakatan Sains: Satu Proses Evolusi Spontan atau Perencanaan. Kuala

Lumpur: Dewan Bahasa dan Pustaka.

Maurice Bucaille. (1982). What Is The Origin of Man. Paris: Seghers. Muhammad Ali As-Shabuni. (2002). Penjelasan Ilmu-Ilmu Al-Qur’an. Kuala Lumpur: Crescent News. Neil A.Campbell & Jane B.Reece. (2002). Biology, Sixth Edition. United State of America: Pearson

Education Inc. Qutb, Syed. (2000). Tafsir fi Zilal al-Qur’an. Terj. Yusoff Zaky Yacob. Kelantan: Pustaka Aman Press.

Sdn. Bhd. Rasid Muhamad. (2010). Menjejaki keindahan Islam. Selangor: Pusat Penerbitan Universiti (UPENA)

UiTM Shah Alam. Saud, M. (1988). Islam and Evalution of Science. Islamabad: Islamic Research Institute.

Sulaiman Nordin. (1994). Sains Falsafah dan Islam. Bangi: Universiti Kebangsaan Malaysia. www.abim.org.my

Zakir Abdul Karim Naik. (2004). Qur’an and Modern Science: Compatible or Incompatible. Kuala Lumpur: Saba Islamic Media.

Page 19: vol 3 issue 02 june 2014

MARA Innovation Journal

ISSN: 2289-2818, Volume 3, Issue 02 (Dec 2014),

http://journal.mara.gov.my/Innovation/articles.html

1

Malaysia & Singapore: The Language Dilemma

(A Synthesis of Malaysia and Singapore Language Policy)

Mohd Azahari Bin Azal1, Wan Sharifah Munirah Binti Wan Hussain1

1(Kolej Profesional Mara Indera Mahkota)

Abstract

Language planning influences how the language will be deliberately used, functioned and acquired by

a local speech community where thoughtful consideration of the language image, learning opportunity,

and social standing of the proposed language are required. The aim of this paper is to describe the

language planning and language policies adopted by Malaysia and Singapore and what sociocultural

factors had been taken into account in crafting the policies. The study provides an overview on the

language planning process prior and after the independence of both countries, followed by the

struggles to ensure the survival of the newly-embraced policy. In addition, the recent significant

changes in the policies will also be discussed. The paper concludes that the language policy of

Singapore was driven by the economic utility of the language, while Malaysia, at first, was based on

the population identity preservation and cultivating nationalism among its citizens. However, Malaysia

followed the footsteps of Singapore decades later.

Introduction

Malaysia and Singapore have a long-shared history. The two countries, which, were once

under the Federation of Malaya in 1948, have a lot in common; culture, economy, and

language. Both countries have the same ethnicity; Malay, Chinese and Indian and this

society practises the same native languages; Bahasa Melayu, Mandarin and Tamil. Since the

British occupation, dated back in 1819 for Singapore and 1874 for Malaysia, English

language had been introduced to both countries and received a higher status compared to

the native mother tongues. But almost hundred years later when both countries have

achieved their independence, Malaysia and Singapore have paved their own unique way in

crafting language policy in tandem with their cultural identity conservation and ensuring

educational equity.

The Colonial Era

Before independence, the British had brought English to Malaysia and Singapore to be used

as the main medium of instruction for schools, administration and governing. Singapore,

founded by Sir Stamford Raffles in 1819, recognized the need of education and had

established its very first formal education, mainly focusing on the Straits Settlements of

Singapore, Penang and Malacca, through the Singapore Free School in 1834 with English,

Tamil, Malay, and Chinese classes (Han, 2008a). At the launch of the school, there were

only 32 students for English class, 18 students for Tamil, 12 students for Malay, and another

12 for the Chinese class. All of the students were the children of immigrants who came to the

Page 20: vol 3 issue 02 june 2014

MARA Innovation Journal Volume 3, Issue 02 (Dec 2014)

2

island (Han, 2008a) and these children were assigned to the native language class according

to their ethnicity (Malay, Chinese, and Indian) and English language class was made

compulsory to them. The students had to pay about $1.50 a month for English language

education and the other languages were offered entirely free (Han, 2009). Later, in 1837 the

school was known as the Singapore Institution Free School.

The Singapore Government established the first Government Malay Boys’ school in

1872 and Government Malays Girls’ school in 1884 (Han, 2008b: Han, 2009). Amidst the

expansion of Malay vernacular school (since Malay vernacular education was free), the

Government English Boys’ school was introduced in 1874 to support the English language

education and to enable all ethnics to learn English through their own language (Han, 2009).

Throughout the nineteenth century, the number of English Boys’ school expanded, as most

of the schools were initiated by the Christian missionary groups (Han, 2009). These

missionary groups, driven by their primary goal to promote their religion, initiated the

development of the English Boys’ school in the Straits Settlement. Until 1932, there were

about 23 English Boys’ and Girls’ school in Singapore, under the supervision of both

government and Christian missionary groups. In 1959, once Singapore was granted its

independence from the British, Singapore decided to become a multilingual state; a state

with four official languages: English, Chinese, Malay, and Tamil (Dixon, 2003).

Malaysia (also known as Malaya back then), unlike Singapore, had its own education

system prior to the occupation of British. Most of the children were sent to religious classes

conducted by the Muslim missionaries (Gaudart, 1987). But after the founding of Singapore

in 1819, there was a turning point for the British to modernise the education system in

Malaya (Ozay, 2011) and introduce the secular educational system – the vernacular school.

It was the same education system introduced in Singapore where each of the ethnics was

sent to their respective vernacular school; Malay vernacular school, Chinese vernacular

school, and Tamil vernacular school. The vernacular schools were established in various

regions and run by the government. According to Hassan (2005), the Malay were given six

years of education, six years for the Indians, and the Chinese were given the permission to

establish their own school with their own curricula from China. The reason for the

segregation of schools between the Malay, Chinese and Indian, was to keep the people

apart (Hassan, 2005). The British also established English schools in the urban areas, where

they were mostly attended by the non-Malays and the few elite Malay family (Gill, 2005).

Gaudart (1987) states that there are two types of English school during the colonial era in

Malaya: missionary schools and government schools. These two types of English schools

were regarded as more prestigious compared to the vernaculars schools; in terms of the type

and the depth of knowledge they offered.

The colonial language education system of Malaya faced a lot of twists and turns

throughout the nineteen century onwards. Hassan (2005) states that a policy was introduced

by the Cheeseman Plan after the Japanese occupation in 1946 that all first languages should

also be taught in English school as English language education was a compulsory subject in

the vernacular schools too. The policy was a failure as the glow of resentment against

Malayan Union peaked high in 1949. Prior to the opposition, Malay language was proposed

to be the national language by a movement of nationalist also known as AMCJ-PUTERA

through the People’s Constitutional Proposals in 1947 (Tajuddin, 2012). The proposal,

though rejected by the British, was successful at uniting all the ethnics to come as one and

stricken a daunting challenge to the government. And in 1981, the AMCJ-PUTERA’s

proposal was approved and preserved in the Constitution of Malaysia (Hassan, 2005).

Page 21: vol 3 issue 02 june 2014

MARA Innovation Journal Volume 3, Issue 02 (Dec 2014)

3

In 1950, in order to develop a national education system for Malaya, the British

formed a committee which then drafted the Barnes Report. The report, among other

recommendations, recommended a national school system where all the ethnics must learn

Malay language as the principal language in the primary school level, and English language

in the secondary (Gill, 2005). The non-Malay displayed displeasure as the recommendation

would have made them abandon their mother tongue and opt for the Malay language. The

Chinese community formed the Fenn-Wu Committee to preserve some provision for their

mother tongue (Gill, 2005) and this step was favoured by the Indians. The Barnes’

recommendation was not a success as it was not sensitive to the multi-ethnic society of

Malaya. In order to compromise with the non-Malay needs, the Education Committee of 1956

was formed. The committee main purpose was to establish an acceptable national education

system for all ethnicity in Malaya (Kennedy, 1997). The Education Committee drafted the

Razak Report, a report which recommended the teaching of mother tongues in all primary

school, and the teaching of Malay and English language in the secondary schools (Hassan,

2005). Since then, the Malay medium school was known as ‘National’ school and all other

schools (Chinese and Tamil) are known as ‘National-Type’ schools. Regardless of the

references, all schools used the same national curriculum.

The Post-Colonial Heyday

As Malaysia and Singapore were granted their independence, both countries had sensed the

need for planning ahead of their future; in all aspects. One of the aspects which had been

under the spotlight was the education system. Malaysia, after its independence in 1957,

quickly adopted the Education Ordinance of 1957 from Razak Report (Hassan, 2005) which

supported the development of mother tongue education and vernacular schools. The report

was clearly in favour of the bilingualism policy which has been long-practiced in the primary

school since pre-independence.

Having the same point of view, Singapore took the same step as Malaysia and

initiated its compulsory bilingual education in 1966 immediately, following its removal from

Malaysia in 1965. The Singapore’s Bilingual Policy allows the students to learn from one of

the four official languages as the medium of instruction but they have to learn Mathematics

and Science compulsorily in English (Dixon, 2003). An addition to the policy, students in

English-based and non-English-based schools are also required to learn an additional

language which they can choose from the four official languages. Later, the Singapore

government modified the language policy where students are no longer given the privilege to

choose the medium of instruction, but rather to learn all subject through English language

(Dixon, 2003). The mother tongues, however, can be learnt as a second language.

Policy Crossroads

The implementation of the newly-found language bilingual policy had sparked much heated

argument in response to the impact brought by the policy. In the first phase of the

implementation, it was well-received by the citizens of both countries. Later, after a few

years, there were many blocks to the bilingual policy’s success. Malaysia and Singapore

both had to deal with the revolt against the bilingual policy and had to make pragmatic

Page 22: vol 3 issue 02 june 2014

MARA Innovation Journal Volume 3, Issue 02 (Dec 2014)

4

measures to compromise with the language tension and disbelief of English language as the

main medium of instruction in schools.

Since Malaysia and Singapore are geographically part of the peninsular, these two

countries share the same ethnicity, languages and culture. By then, these are some of the

essential factors to be considered when outlining the language policy in a multi-ethnic nation.

Malaysia, in response to the language and cultural identities conservation, had implemented

the Razak Report recommendation where it allows the teaching of mother tongues (Malay,

Mandarin, and Tamil) in the primary school. But due to the need of integration between all

the ethnics, and in the spirit of driving the nation toward a unified character, a national

language is needed, thus leading to the recognition of Bahasa Melayu as the national

language of Malaysia under Article 152 of the Malaysia’s Federal Constitution

(Tharmalingam, 2012). This step has also been implemented, as the Malay or ‘sons of the

soil’, worried that English language has disrupted the balance between the use of languages

in political and economy thus empowered English language rather than the national

language itself (Gill, 2005). Disapproval to this alarming situation had been displayed by

many; such as the Association of Malay Teachers in 1958 and the government had well

pacified this resentment through the construction of Sekolah Alam Shah which used Bahasa

Melayu as its main medium of instruction (Hassan, 2005). Singapore, on the other hand, had

identified the multi-ethnic and cultural identities factors and tailored its language policy to this

need. The Singaporean were granted the privilege to learn their mother tongue but the

languages (Mandarin, Malay, and Tamil) had been set to a ‘second language’ level. The

languages had been classified as non-official languages, that government did not provide

any fund, facilities and experts for the teaching of the languages (Kaur and On, 2001 as cited

in Dixon, 2003). Due to this factor, there was a big cultural gap between the ethnics

generation who spoke varied languages (Manfred Wu, 2014). Since Malay was the only

ethnic granted to study by using their mother tongue, they outperformed the Chinese and

Indian in the study of the native language (Dixon, 2003). To add to the situation, the

Singapore government restricted the EM1 bilingual stream to only 20% of top students where

they were given the opportunity to learn both English and Chinese at ‘first language’ level in

primary school (Dixon, 2003).

Since day one, Singapore had decided that English language will be able to help the

students in the country to be excellent in their academic field. Thus, the amendment was

made to the bilingual policy where students were required to learn all the subjects through

English and to learn their mother tongues at second language level was to enforce the use of

English language in school to the maximum. In reflection to the change, Singapore’s

students were able to master English language as they were given rich exposure to the

language, where it started as in their primary education. Even though only 20% of

Singapore’s students practice the language at home, the students managed to be the best in

Mathematics and Science on IEA’s Third International Math and Science Study-Repeat

(Dixon, 2003). The excellent proficiency of English language had helped the students to

achieve great performance in the other subjects. As for primary school, 95% of Singaporean

students passed their Primary School Leaving Exam (PSLE) and made into the top EM1 and

middle EM2 stream (Dixon, 2003). When it comes to the secondary level of education, about

80% -96% of Singapore’s students have passed their General Paper (GP), a university

entrance exam (Dixon, 2003). In general, due to the implementation of English language as

the medium of instruction in schools, Singapore’s students were able to out-perform the other

English-speaking countries in the key area of education and academic performance.

Page 23: vol 3 issue 02 june 2014

MARA Innovation Journal Volume 3, Issue 02 (Dec 2014)

5

Malaysia, in light of academic performance, does not share the same perspective as

Singapore. After independence, the Malaysia government was struggling to bring the

population together. Once the national language was established, which was one of the

steps of national integration, Bahasa Melayu has been used as the medium of instruction in

schools. English, which was one of the languages used in the bilingual policy, has been used

only in English-medium schools gradually, as Malay-medium schools flourished (Hassan,

2005). In 1983, due to the conversion of Bahasa Melayu lead by University of Malaya, all

subjects in schools and universities were taught in Bahasa Melayu (Gill, 2005). This change

of language policy has given a negative impact to the students’ academic performance,

where the Malay students were not able to be competent in English compared to the other

ethnics, such as Chinese and Indian who attended English-medium schools. The Malay was

seriously handicapped to pursue their higher education in English-speaking environment,

unlike the Chinese and Indian who became trilingual (Hassan, 2005). Since university

requires students to be able to function in English language learning environment, and the

learning materials are mostly in English, especially science and technology, thus the Malay

tend to suffer from this great disadvantage as they do not master the language (Hassan,

2005). The translation program initiated by Dewan Bahasa Dan Pustaka had made the

situation worse as the translation progress was slow and did not help Bahasa Melayu to

impart the access to knowledge and information in the field of science and technology (Gill,

2005). Due to this alarming situation, Malaysian government had decided once again to fine-

tune the language policy, by reintroducing English as a medium of instruction to teach

Mathematics and Science in 2003 (Gill, 2005) in order to meet the demand of both the

knowledge and English language in education field.

On-Going Language Shift

In 2009, the Malaysian government decided to change the medium of instruction for

Mathematics and Science to Bahasa Melayu and mother tongues, rather than English (The

Star, 2009). The reversal will be made gradually until its total implementation in 2012. The

step was mainly taken due to inadequate English language proficiency of the teachers in

primary and secondary school to teach both subjects in the said language, and the expanded

gap between the rural and urban students. Despite the reversal, the English language will be

given greater emphasis, by increasing the meeting hours for English class to 90 minutes per

week, the re-introduction of English Literature, and more focus will be laid on English

grammar and composition. In general, the Ministry of Education will pilot a strategic plan to

uphold the national language and at the same time strengthen the use of English language.

Singapore, on the other hand, has been able to maintain its bilingual policy to this

very day (Ministry of Education, 2014). However, the emergence of Singaporean English

(also known as Singlish) has been under the government radar as it does not represent the

standard of English recommended by the ministry of education. Singlish, a localized variety

of English which gives a sense of identity to Singaporean, has been discouraged by the

government as it is a sign of declining of local English standard (Manfred Wu, 2014). The

Singapore government responded by bringing in native speakers from English-speaking

countries to train the Singaporean teachers in raising the standard of English in the country.

Unfortunately, this has caused the students to be confused to the many accents used in

Page 24: vol 3 issue 02 june 2014

MARA Innovation Journal Volume 3, Issue 02 (Dec 2014)

6

teaching the language (Gopinathan, 1980). In an effort to curb the epidemic of Singlish, the

government launched a campaign named Speak Good English Movement (SGEM), a

campaign to encourage Singaporean to use proper English albeit most Singaporean believed

they have good command of English and Singlish did not interfere with their use of Standard

English (Wee, 2005).

Conclusion

In crafting the language policy, Malaysia and Singapore have to address a lot of factors such

as the economic utility of the language, government efficiency, population identity as well as

input from language teachers (Shohamy, 2009). These factors are vital in ensuring the

success of the language policy as it is going to be the pillar of language use and education in

the country. In the case of Singapore and Malaysia, crafting the language policy has always

been a ‘Top-Down’ approach where the opinion of the multi-ethnic population will not be

attended to, prior to the implementation of the new language policy. When the government

imposes the language policy on schools, universities and the education system of the

country without attending to the needs of those impacted by the policy, it is going to cause

little impact to the language learning as the students and the community failed to see any

cause for the said policy. Under the circumstances, language learning is going to progress in

a slower pace and challenges will arise from existing communities for they have to adjust and

adapt themselves to the conditions of which they were not originally suited for (Kennedy,

2011). By then, the government has to understand the complexity of crafting a language

policy as it involves a lot of issues to be managed. It is vital for the government to evaluate

the appropriateness and relevance of the proposed language policy as it will be imposed to

the local context, and in Malaysia and Singapore case, a multi-ethnic society. Therefore, it is

crucial for the government to look into the local issues, and at the same time consider the

roles of mother tongues in the language policy as it may affect the nation’s socio-economic

and socio-cultural life.

References

Dixon, L. Q. (2003). The Bilingual Education Policy in Singapore: Implications for Second Language

Acquisition. ERIC.

Gaudart, H. (1987). English language teaching in Malaysia: A historical account. The English Teacher,

16, 17--36.

Gill, S. K. (2005). Language policy in Malaysia: Reversing direction. Language Policy, 4 (3), 241--260.

Gopinathan, S. (1980). Language Policy in Education: A Singaporean Perspective. In: Afendras, E. A.

& Kuo, E. C. eds. (2014). Language and Society in Singapore. Kent Ridge: Singapore

University Press.

Page 25: vol 3 issue 02 june 2014

MARA Innovation Journal Volume 3, Issue 02 (Dec 2014)

7

Han, L. P. (2008a). Elementary Malay Vernacular Schools and School Libraries in Singapore Under

British Colonial Rule, 1819-1941. School Libraries Worldwide, 14 (1).

Han, L. P. (2008b). Malay Schools and School Libraries in the Straits Settlements under British

Colonial Rule before the Second World War, 1876-1941. Malaysian Journal Of Library \&

Information Science, 13 (1).

Han, L. P. (2009). The beginning and development of English boys' and girls' schools and school

libraries in the Straits Settlements, 1786-1941. Malaysian Journal Of Library \& Information

Science, 14 (1).

Hassan, A. (2005). Language planning in Malaysia: The first hundred years. English Today, 84 p. 3.

Kennedy, C. (2011). Challenges for language policy, language and development. Dreams And

Realities: Developing Countries And The English Language, 24--38.

Kennedy, K. J. (1997). Citizenship, education and the modern state. London: Falmer Press.

Manfred Wu, M. (2014). A Critical Look At Singapore's Language Policy & Its Implications For

EnglishTeaching - Karen's Linguistics Issues. [online] Retrieved from:

http://www3.telus.net/linguisticsissues/singapore.html [Accessed: 25 Mar 2014].

Ministry Of Education (2014). Ministry of Education, Singapore: Returning Singaporeans - Mother-

Tongue Language Policy. [online] Retrieved from:

http://www.moe.gov.sg/education/admissions/returning-singaporeans/mother-tongue-policy/

[Accessed: 26 Mar 2014].

Ozay, M. (2011). A revisiting cultural transformation: education system in Malaya during the colonial

era. World Journal Of Islamic History And Civilization, 1 (1), 37--48.

Shohamy, E. (2009). Language teachers as partners in crafting educational language policies?.Ikala,

14(2), 45--67.

Tajuddin, A. (2012). Malaysia in the world economy (1824-2011). Lanham: Lexington Books.

Tharmalingam, S. (2012). Language policy changes in Malaysia: progressive or regressive?.

The Star (2009). Math and Sience back to Bahasa, mother tongues. [online] 8th July 2009. Retrieved

from:

http://www.thestar.com.my/story.aspx/?file=%2f2009%2f7%2f8%2fnation%2f20090708144354&

sec=nation [Accessed: 26 Mar 2014].

Wee, L. (2005). Intra-language discrimination and linguistic human rights: The case of Singlish Applied

Linguistics, 26 (1), 48--69.

Page 26: vol 3 issue 02 june 2014

MARA Innovation Journal

ISSN: 2289-2818, Volume 3, Issue 02 (Dec 2014),

http://journal.mara.gov.my/Innovation/articles.html

22

Duck Eggs Grading using a Low Cost Vision System

Yushazaziah Mohd Yunos1, Nor Aini Burok1, Izume Ayuna Mohd Khamil1, Ahmad Ilman Mohd Masri1, Syed Azhar Syed Abd Rahman1

1(Universiti Kuala Lumpur, Malaysian Institute of Chemical and Bioengineering Technology) [email protected]

Abstract

The duck eggs industry in Malaysia has been done in a small scale farm. And, the duck eggs production

has usually involved a manually grading system using naked eyes. This research work develops a duck

eggs grading system using a vision system. A low cost vision system captures an image using a web

camera. Image processing method is used to calculate the surface area as the size of egg. Using this

surface area value, backpropagation neural network is trained to classify the egg into three grades - A, B

and C. The results show that the developed duck eggs grading system has achieved classification rate at

nearly 90% and above. This system is believed to be highly applicable for the duck eggs grading system.

Keywords – Duck eggs, Egg grading, Image classification, Backpropagation neural network

Introduction

Duck eggs industry in Malaysia is commonly operated in the rural areas as the duck laying egg

activities are more appropriate to be done in areas of a less dense population. In Malaysia, most

of the duck eggs industry is still in small scale industry under Small Medium Enterprise (SME)

scheme. Shape inspection of eggs is hard work in farms. Manual inspection suffers from visual

stress and tiredness which inevitably causes low accuracy and greater time consumption (Yu et

al., 2008). Human visual checking tends to result in errors (Patel & Goodrum, 1998). Even by

using a machine, no matter how fast the machines can do to grade the eggs, grading a sample

visually by humans is deemed necessary.

Through a visit to several small scale duck farms around Melaka and Johor states, it is

discovered that duck egg grading is commonly done by using a weight scale. This is done

accordingly to the expected standard by Institute of Teknologi Unggas. As the work is tedious

and time consuming, farmers would simply use their naked eyes to grade the eggs based on the

size which may likely cause human errors or mistakes. To some, bigger size of duck eggs would

mean more weight. To overcome this limiting condition, this work proposes a grading egg

classification by using a low cost machine vision system.

Page 27: vol 3 issue 02 june 2014

MARA Innovation Journal Volume 3, Issue 02 (Dec 2014)

23

Figure 1. Weight scale used for duck’s egg weight measurement in a farm.

Basically, this machine vision system involves three steps which include image

enhancement, feature extraction and feature classification (Chen et al., 2002). The image is

captured by a camera. The image processing is then applied to extract the studied feature. In

this research, the feature is a duck egg shape. The feature classification used is

backpropagation neural network, a type of artificial intelligence which mimics the neuron inside

the brain. Backpropagation neural network is a structure which consists of input layer, hidden

layer and output layer. The hidden layer connects the input and output layers through a number

of neurons. The input and output data are weighed and the error is propagated back until it

reaches the minimum value. The trained network is then used as a database and tested by new

data unknown to the network for the accuracy.

Review

Egg grading can be measured by using the interior and exterior characteristics of the eggs.

Previously, some researchers used machine vision in egg grading and measurement. For

interior checking, they used an illumination technique to check the blood spots inside the egg

(Patel & Goodrum, 1998). As duck eggs are harder and thicker than other animal types of eggs,

the illumination technique is considered unsuitable. For exterior grading, the researchers looked

at other conditions such as dirt (Dehrouyeh et al., 2010) and micro cracks (Lawrence et al.,

2008). Egg grading can also be measured using a volume. Bridge et al. (2007) used a shape

index to determine the egg volume. They used a shape index based on the conversion between

pixels of the egg image and length in millimeters.

A work done by Yu et al (2008) also used a shape index to determine the egg size. They

utilized a shape index by taking the ratio between the longest and shortest diameter

measurement of the egg. This shape index and the radius differences are then used as an input

to Genetic Algorithm Neural Network to classify the shape. Ibrahim et al. (2012) classified the

egg size by comparing the white pixel area with the diameter of the egg. They developed the

grading system by using an algorithm and comparing the pixel size and grade. Omid et al.

(2013) used HSV (Hue, Saturation and Value) colour image in their paper to calculate the

nonzero pixel as the egg size. They also classified the egg based on dirt. The egg size and the

dirt condition were used in fuzzy logic as a classification tool to classify the eggs into 5 classes

Page 28: vol 3 issue 02 june 2014

MARA Innovation Journal Volume 3, Issue 02 (Dec 2014)

24

of egg quality. Most of the research work done cited above used no specific types of livestock

eggs.

Methodology

The common species of duck being used for duck eggs industry in Malaysia is Khaki Campbell

species. In this research, 98 eggs of this species were collected from a duck farm. Each egg

was then weighed by balancing it in Analytical Lab, UniKL MICET. The eggs were graded

according to weight by following the standard set by the Institute of Teknologi Unggas Malaysia.

These eggs were graded into three different groups – Grade A, B and C.

Table 1. Grade of egg base on weight from Institut Teknologi Unggas

Grade Weight (grams)

AA 73 and above

A 66 - 72

B 60 - 65

C 50 - 59

D 49 and below

The egg was placed on black surface as to easily differentiate the object and

background. As this was a low cost system, a Logitech 8 MPixel web camera was used as it is

cheap and easily handled. No additional lightning equipment was needed. The web camera was

placed 105 mm from the egg as this is the optimum height for a clearer captured image. A

computer set with Matlab software was used for this grading system.

Figure 2. Different size of duck's egg. The right figure shows an arrangement of web camera and egg sample

The egg image was taken in RGB (red, green, blue) colour image. It was converted to

grayscale image before applying the threshold image. Threshold image is the image with only

white and black. Then, any hole inside the white ground was filled in with the white colour. The

Page 29: vol 3 issue 02 june 2014

MARA Innovation Journal Volume 3, Issue 02 (Dec 2014)

25

surface area was measured by calculating the white pixel area which represents the egg size.

These image processing steps are shown in Figure 3.

Figure 3. Image processing steps

This white pixels value was then fed into the backpropagation neural network as an input.

From 98 eggs, 60 were used in training the neural network and another 38 eggs were used for

testing. The neural network structure consisted of 1 hidden layer with 2 neurons. 2 neurons were

enough as the data fed were small in size.

Results and Discussion

From the calculation of surface area of the egg, a good match is found when comparing weight

with pixel values – higher weight, larger pixel size. The pixel value was different from the result

of Ibrahim et al. (2012) as the value for this research paper was much higher. The possible

difference was largely due to the distance of camera from the sample and the camera resolution.

The trained network was then tested with another 38 size of egg which consisted of 11

eggs in A size, 9 in B size and 8 in C size. The egg image was captured, and image processing

steps as mentioned in previous section were applied. The value of white pixel size was then

tested into the trained neural network. From the results shown in Table 2, it showed that grade

recognition for grade A was 91%, 89% for grade B and 100% for grade C.

Table 2. Comparison of results obtained from standard egg grade and classification by neural network

Standard grade Egg Grading System

Pixel Value Grade A B C Number % Recognition

120,000 and above A 10 1 0 11 91% 119,999 – 110,000 B 1 8 0 9 89%

109,9999 and below C 0 0 8 8 100%

The number of egg testing was decidedly small because raw eggs have a limited span of

life and are easily rotten; the eggs cannot be stored longer even inside the freezer. From the

results obtained, this research work is successful in grading the duck eggs with nearly 90% and

Page 30: vol 3 issue 02 june 2014

MARA Innovation Journal Volume 3, Issue 02 (Dec 2014)

26

above accuracy. The image processing steps applied are simple and extra lighting is

unnecessary even though it uses a simple web camera application.

Conclusion

This low cost grading system can be applied for a small scale duck farm as it uses a simple web

camera and a trained network. For recommendation, the future work will include more range

from AA until D egg grade. Future work to increase the accuracy can be done by applying other

types of intelligent system. To ease the operation of the grading system, the extended work is

planning to build a graphical user interface (GUI) system.

Acknowledgement

This project is under Short Term Research Grant (STRG) from Universiti Kuala Lumpur. The authors

would like to express their appreciation to the Institute of Teknologi Unggas, Melaka and Jabatan

Veterinar Alor Gajah Melaka for the furnished information related to duck farm industry in Malaysia.

Page 31: vol 3 issue 02 june 2014

MARA Innovation Journal Volume 3, Issue 02 (Dec 2014)

27

References

Bridge, E.S., Boughton, R., Aldgrege, R., Horrison,T., Bowman, R. & Schoech, S. (2007). Measuring egg size using digital photography: testing Hoyt’s method using Florida Scrub-Jay eggs. Journal of Field Ornithology, 78(1), 109–116.

Chen, Y., Chao, K. & Kim, M.S. (2002). Machine vision technology for agricultural applications. Computers and Electronics in Agriculture, 36, 173–191.

Dehrouyeh, M.H., Omid, M., Ahmadi, H., Mohtasebi, S.S. & Jamzad, M. (2010). Grading and Quality Inspection of Defected Eggs Using Machine Vision. International Journal of Advance Science and Technology, 16, 43–50.

Ibrahim, R., Mohd Zin, Z., Shamsudin, M.Z. & Zainuddin, M.Z. (2012). Egg’s Grade Classification and Dirt Inspection Using Image Processing Techniques. Proceedings of the World Congress on Engineering 2012, II, pp.4–7.

Lawrence, K.C., Yoon, S.C., Heitschmidt, G.W., Jones, D.R. & Park, B. (2008). Imaging system with modified-pressure chamber for crack detection in shell eggs. Sensing and Instrumentation for Food Quality and Safety, 2(2), 116–122.

Omid, M., Soltani, M., Dehrouyeh, M.H.,Mohtasebi, S.S. & Ahmadi,H. (2013). An expert egg grading system based on machine vision and artificial intelligence techniques. Journal of Food Engineering, 118(1), 70–77.

Patel, V.C. & Goodrum, J.W. (1998). Color Computer Vision and Artificial Neural Networks for the Detection of Defects in Poultry Eggs. Atificial Intelligence Review, 163–176.

Yu, Z., Wang, H-G., Feng, J-Q. & Li, Y. (2008). Study on Automatic Shape Identification of Hatching Eggs Based on an Improved GA Neural Network. 2008 Fourth International Conference on Natural Computation, pp.575–578.

Page 32: vol 3 issue 02 june 2014

MARA Innovation Journal

ISSN: 2289-2818, Volume 3, Issue 02 (Dec 2014),

http://journal.mara.gov.my/Innovation/articles.html

28

Energy Saving of Biodiesel Production from Waste Chicken

Fats by Microwave Technology using Response Surface

Methodology (RSM)

Ahmad, N.1, Nanthakumaran, B.1

1(Universiti Kuala Lumpur, Malaysia Institute of Chemical and Technology (MICET), Melaka)

[email protected]

Abstract

Transesterification of waste chicken fat oil into biodiesel using a batch microwave system was investigated

in this study. A response surface methodology (RSM) was used to analyze the influence of the process

variables in term of reaction temperature, catalyst concentration, methanol to oil molar ratio and reaction

time on the yield of waste chicken fats biodiesel. Based on RSM analysis, the optimal conditions were

determined at reaction temperature of 64.69°C, catalyst concentration of 0.18 w/w %, methanol to oil

molar ratio of 8.58:1, and reaction time of 10 min. Under these conditions, the experimental yield of waste

chicken fat ester was 92.3%, which is within the value predicted by the model. This indicates that use of

microwave technology to assist the transesterification process resulted in faster reaction times while the

yield of waste chicken fats into methyl ester compares favourably with the conventional heating methods.

Keywords: Biodiesel, Chicken fat, Microwave, Response surface Methodology, Transesterification

Introduction

Energy consumption has increased steadily over the last century as the world population has

grown and more countries have become industrialized. Fossil fuel has been the major resource

to meet the increased energy demand. However, the depletion of world fossil fuel reserves

together with extremely volatile crude oil prices, and increased environmental concerns has

stimulated the search for alternative renewable and environmentally friendly fuels. Biofuel has

recently attracted huge attention in different countries all over the world because of its

renewability, better gas emissions and its biodegradability. It is estimated that biodiesel/bio-

ethanol could replace approximately 10% of diesel fuel consumption within Europe and 5% of

Southeast Asia’s total fuel demand (Anh & Tan, 2008).

Biodiesel is defined as a mixture of fatty acid ester with carbon chain length of 12 to 20

produced from renewable sources such as vegetable oils or animal fats; and can be utilized both

Page 33: vol 3 issue 02 june 2014

MARA Innovation Journal Volume 3, Issue 02 (Dec 2014)

29

as an alternative fuel and as an additive for petroleum diesel. Biodiesel offers many benefits

such as serving as alternative to petroleum-derived fuel, which implies a lower dependence on

crude oil foreign imports, providing favourable energy return on energy invested, reducing

greenhouse emissions, biodegradability, negligible sulfur content, superior flashpoint and

higher combustion efficiency. The most widely used method to produce biodiesel is the

transesterification of vegetable oils or animal fats with methanol, which can be catalyzed by

bases, acids or enzymes (Gao et al., 2010).

Even though biodiesel has offered a new renewable and sustainable energy resource,

still there are two major challenges that restrain biodiesel production. They are cost of the

feedstock; and conversion process of oils to biodiesel. Cetinkaya et al. (2004) reported that

approximately 60-75% of total biodiesel production cost arises from the cost of feedstock.

Therefore, one way to reduce the cost is to use inexpensive feedstock and there has been

extensive research regarding the potential use of inexpensive feedstock such as waste cooking

oils and non edible oils for biodiesel production. For example, Anh et al. (2008) showed that

biodiesel could be produced using waste cooking oil and more recently, several non edible oils

such as jatropha, tallow and lard have been investigated for biodiesel production (Alcantara et

al., 2000; Canakci and Gerpen, 2001; Dorado et al.,2002; Mittelbach et al., 1992). However,

less attention is given to waste chicken fats as feedstock for biodiesel production compared with

other non-edible oil feedstock. The use of inexpensive feedstock such as waste chicken fats

(WCF) should help make biodiesel competitive in price with petroleum diesel.

Despite the fact that using low cost feedstock like recycling waste cooking oils and

animal fats can be an alternative to reduce the feedstock costs; process improvements and

optimization help reduce the biodiesel conversion process costs. A conventional heating method

is one of the most applicable and usual techniques of biodiesel production. There are several

conventional heating methods for biodiesel transesterification to be carried out such as

convection and conduction techniques. These heating methods such as direct heating require

longer reaction time, higher energy consumption and longer preheat period in order to produce

higher conversion biodiesel of more than 95%( Hernando et al., 2007; Refaat et al., 2008).

Microwave irradiation, in contrast, have received increased attention due to their ability to

complete chemical reactions in a very short times, offer short preheat period and therefore,

higher energy saving (Shakinaz et al., 2010).

Usually, the processing variable of transesterification for production of biodiesel was

optimized by the conventional method, which changed only one variable while fixing the rest to

determine the effects of the reaction conditions on a desired value. The results of one-factor-at-

a-time experiments did not reflect the actual changes under the reaction conditions as they

ignored interactions between factors, which are simultaneously present (Gwi-Taek Jeong et al.,

2009). One of the best ways to complement conventional method is to perform statistical

process optimization employing experimental designs and numerical approximation techniques.

This method has been applied because it allows the simultaneous consideration of many

variables at different levels and the interaction between those variables, using a smaller number

of observations than conventional procedures (Fan X et al., 2011; Alptekin & Canakci, 2011;

Jeong et al.,2009).

Therefore, in this study, optimization of chicken fats ester from waste chicken fats via

microwave assisted transesterification using Response Surface Methodology(RSM) has been

Page 34: vol 3 issue 02 june 2014

MARA Innovation Journal Volume 3, Issue 02 (Dec 2014)

30

carried out with four parameter variables which include methanol to oil molar ratio (A), catalyst

amount (B), reaction temperature (C) and reaction time (D). The effects of these variables on the

yield of Chicken Fats Methyl Ester (CFME) response were studied concurrently in rotatable

central composite design (RCCD) and subsequently an empirical mathematical model

correlating the response to the variables was developed and presented as well.

Methods

Materials

Waste Chicken fats were obtained from a slaughterhouse in Alor Gajah Province, Melaka. The

analytical reagents used in this study are Potassium Hydroxide purchased from J.T Baker, and

Methanol with purity 99.9% purchased from Merck.

Chicken Oil Extraction

The chicken fat was heated to 65°C in a drying oven for 24 hours to obtain the oil. Melted fats

were then filtered, centrifuged and decanted.

Pretreatment of Free Fatty Acid

Due to the fact that chicken waste feedstock contains large amount of free fatty acids (FFAs)

where the percentage of FFA is about 5 - 30%, pretreatment was done through glycerolisis

technique where an amount of melted fat was mixed with 13 g glycerol and 0.1 g ZnCl. Then,

tempe atu e as set up to C. By using a vacuum oven, the pressure was operated to 11 psi

vacuum within 2 hours.

Microwave Assisted Transesterification

Microwave assisted transesterification was performed on a MARS5 (1200W, 2450MHz)

microwave accelerated reaction system. Potassium hydroxide (KOH) was used as a basic

catalyst in this study. Catalyst (KOH) and alcohol (methanol) was first mixed prior to

transesterification to reduce moisture absorbance. Potassium methoxide and oil of relevant ratio

was brought into contact in a 100 mL beaker at various experimental conditions. The mixture

was reacted in a microwave digester according to the reaction time designed. According to the

experimental design, the transesterification process includes three reaction times (10, 15, 20

minutes), three different temperatures (60, 70, 80°C), three catalyst concentrations (0.10, 0.15,

0.20 % wt/wt of oil) and three methanol to oil molar ratios (3:1, 6:1, 9:1). After reaction was

completed, the mixture was transferred to a separating funnel and the glycerol phase was

removed and chicken fats (CFME) methyl ester phase was washed with deionized water to

remove impurities, then centrifuged and dried under vacuum pressure.

Page 35: vol 3 issue 02 june 2014

MARA Innovation Journal Volume 3, Issue 02 (Dec 2014)

31

Experimental Design

The range and levels of variables investigated are listed in Table 1. The experimental design

was carried out by utilizing CCD to find out the influence of the operational conditions of the

transesterification process, such as the methanol to oil molar ratio (A), catalyst amount (B),

reaction temperature (C) and reaction time (D) on the WCF yield. In a CCD consisting of four

independent variables and five levels, the total number of experiments needed was determined

to be 30 experiments.

Table 1. Experimental range and level of independent variables

Variables Symbol coded Range and levels

-1 0 1

Methanol/oil molar ratio A 3 6 9

Catalyst amount (w/w) % B 0.1 0.15 0.2

Temperature( °C ) C 60 70 80

Reaction time (min) D 10 15 20

Statistical Analysis

Experimental data (Table 2) were analyzed via response surface methodology, in order to fit the

following second order polynomial equation generated by Design-expert 7 software (Stat-Ease

Inc., USA). The responses (Y) of the transesterification process were used to develop a

quadratic polynomial equation that correlates the yield of biodiesel as a function of the

independent variables and their interaction as shown in the following equation (1)

jx

ii

xkij

ii

x

ikii

k

ii

xkiko

Y

3

1

2

1

23

1

3

1

(1)

where Y is the response factor (waste chicken fats methyl ester yield), xi is the ith independent

factor, β0 is the intercept, βi is the first-order model coefficient, βii is the quadratic coefficient for

the factor i, and βij is the linear model coefficient for the interaction between factors i and j. The

quality of developed model was determined by the value of correlation (R2) while analysis of

variance (ANOVA) was used to evaluate the statistical significance of the model by the values of

regression and mean square of residual error.

Page 36: vol 3 issue 02 june 2014

MARA Innovation Journal Volume 3, Issue 02 (Dec 2014)

32

Table 2. Central composite with rotatable, quadratic polynomial model experimental data,

actual and predicted values for five level four factors response surface methodology

Standard Molar

Ratio

(A)

Catalyst

Concentration,

wt/wt % (B)

Temperature,

°C

(C)

Reaction

Time, min

(D)

Response

Predicted

Yield

Actual

Yield

1 6.00 0.10 70.00 10.00 82.10 81.90

2 3.00 0.15 70.00 10.00 67.59 67.02

3 6.00 0.20 70.00 10.00 83.79 84.46

4 6.00 0.10 60.00 15.00 80.04 79.96

5 9.00 0.10 70.00 15.00 88.99 89.01

6 9.00 0.15 80.00 15.00 89.22 89.24

7 6.00 0.15 70.00 15.00 83.51 85.20

8 3.00 0.15 60.00 15.00 63.29 64.08

9 6.00 0.10 70.00 20.00 84.99 85.13

10 6.00 0.20 60.00 15.00 80.63 80.29

11 3.00 0.10 70.00 15.00 70.30 69.87

12 6.00 0.15 80.00 15.00 83.97 84.54

13 9.00 0.15 70.00 20.00 91.35 92.12

14 6.00 0.20 70.00 20.00 85.93 86.93

15 3.00 0.15 80.00 15.00 73.06 74.45

16 9.00 0.15 70.00 10.00 90.61 91.01

17 6.00 0.15 80.00 15.00 86.02 86.32

18 6.00 0.15 60.00 10.00 79.84 80.32

19 9.00 0.20 70.00 15.00 92.88 92.30

20 6.00 0.15 70.00 15.00 83.51 84.83

21 9.00 0.15 60.00 15.00 89.66 89.07

22 6.00 0.15 80.00 10.00 83.06 82.29

23 6.00 0.15 70.00 15.00 83.51 82.04

24 3.00 0.20 70.00 15.00 69.04 68.02

25 6.00 0.15 70.00 15.00 83.51 81.20

26 6.00 0.15 70.00 15.00 83.51 84.29

27 6.00 0.15 60.00 20.00 80.92 80.69

28 6.00 0.15 80.00 20.00 87.02 85.54

29 3.00 0.15 70.00 20.00 71.85 71.68

Results And Discussion

Development of Regression Model Equation

The results obtained in the experiments are summarized in Table 2. The data in Table 2 were

used to fit into a second order quadratic model representing the yield biodiesel percentage

(response) as a function of molar ratio, catalyst concentration, reaction temperature and reaction

Page 37: vol 3 issue 02 june 2014

MARA Innovation Journal Volume 3, Issue 02 (Dec 2014)

33

time. According to Response surface Methodology (RSM) results, polynomial regression

modeling was operated between the responses of the corresponding coded values of the four

different process variables, and finally the optimum fit model equation was obtained as given in

equation (2):

Yield (Y) =83.51+10.64A+0.66B+2.33C+1.26D+1.28AB+ 3.46AC+0.89AD+0.36BC-

0.19BD+0.72CD-3.53A2+0.33B2-1.17C2+0.37D2 (2)

In order to ensure the statistical significance and adequacy of the quadratic model

employed, the model was tested by analysis of variance (ANOVA) results. The analysis of

variance (ANOVA) of regression parameters of the response surface methodology quadratic

model for yield chicken fats methyl ester (CFME) is shown in Table 3. As shown, it was

observed that the regression was statistically significant at an F-value of 67.75 with a very low

probability value (Pmodel<0.0001) show a very high significance for the regression model. The

fitness of the model was examined by using R2 values that implies within the sample variation.

Based on the ANOVA results, the model reports a high R2 value of 98.55% for the yield chicken

fats methyl ester (CFME). Also, an acceptable agreement with the adjusted determination

coefficient is necessary. In this study, the adjusted R2 value of 97.09% was found. The value of

R2 is close to 1.0, which means good agreement between the observed values and the predicted

values. This indicates that the regression model provides an excellent explanation of the

relationship between the independent variables and the response (Tan et al., 2010).

Table 3. ANOVA for response surface quadratic model

Source Sum of

Squares

Degree of

Freedom,

df

Mean

Square

F Value p-value

Prob> F

Model 1582.52 14 113.04 67.75 <0.0001 significant

A-molar ratio 1357.45 1 1357.45 813.60 <0.0001

B-Catalyst weight 5.21 1 5.21 3.13 0.0989

C- Temperature 65.19 1 65.19 39.07 <0.0001

D- reaction time 18.98 1 18.98 11.37 0.0046

AB 6.60 1 6.60 3.96 0.0665

AC 26.01 1 26.01 15.59 0.0015

AD 3.15 1 3.15 1.89 0.1910

BC 0.53 1 0.53 0.32 0.5835

BD 0.14 1 0.14 0.087 0.7729

CD 2.07 1 2.07 1.24 0.2837

A2 80.93 1 80.93 48.51 <0.0001

B2 0.69 1 0.69 0.41 0.5317

C2 8.84 1 8.84 5.30 0.0372

D2 0.89 1 0.89 0.53 0.4774

Residual 23.36 14 1.67

Lack of Fit 10.65 10 1.07 0.34 0.9266 Not significant

Pure Error 12.70 4 3.18

Page 38: vol 3 issue 02 june 2014

MARA Innovation Journal Volume 3, Issue 02 (Dec 2014)

34

Interactions between Process Variables

The effect of varying molar ratio and catalyst concentration on the yield of chicken fats methyl

ester at constant reaction time of 15 minutes and reaction temperature of 70 oC is shown in Fig.

1. From the figure, it is obvious that at any designed quantity of molar ratio from 3 to 9, the yield

of biodiesel increase proportionally with catalyst concentration. The lowest CFME yield recorded

was 64.08 % at 3:1 molar ratio and 0.15 wt/wt % catalyst concentrations while other constant

variables were set at temperature of 60°C and reaction time of 15 minutes. Further increase in

both molar ratio and catalyst concentration to 6:1 and 0.2 wt/wt % respectively showed

significant increase in CFME yield, 83.12 %. Catalyst concentration of more than 0.18 wt/wt %

proved to have negative impact on CFME yield. Higher catalyst concentration promotes the

saponification process (Alptekin, E. et al., 2011). The highest CFME yield of 92.3 % was

obtained at 0.2 % catalyst concentration and 9:1 molar ratio.

Figure 2 represent the response surface plot of CFME yield for interaction between molar

ratio (A) and temperature (C) at reaction time of 15 minutes and catalyst concentration of 0.15

wt/wt %. It can be seen from the figure that CFME yield increased proportionally with increasing

molar ratio and temperature. However, when the temperature was above its maximum range, a

reverse trend was observed. Similar pattern was observed when molar ratio was increased

above its maximum level. The optimum reaction temperature as suggested by Zheng et al.

(2006) was at methanol boiling point, 65°C. At this temperature, methanol vaporizes more

vigorously under high pressure and thus reaction proceeds at its maximum level. Further

increase in temperature resulted in decomposition of CFME (Zheng et al., 2006).

Figure 1. Response surface plots for interactive effect of molar ratio (A) and catalyst

concentration (B) and their effect to chicken fat methyl ester yield. Other factors are

constant at zero level

Page 39: vol 3 issue 02 june 2014

MARA Innovation Journal Volume 3, Issue 02 (Dec 2014)

35

The effect of ranging reaction time and molar ratio on the biodiesel yield at constant

catalyst concentration (0.15 wt/wt %) and reaction temperature (70°C) is shown in Figure 3.

Increment of CFME yield with increasing molar ratio and reaction time was observed from this

figure. The maximum yield, 92.3 % was obtained at molar ratio 9:1 and reaction time, 15 min.

Further increases in reaction time proved to show negative trend in the response surface plot. At

high reaction time of 20 minutes, CFME yield obtained was only 85.93 % at 70°C. Most of the

yield obtained at 15 minutes reaction time was in between of 85 % to 93 %. Inversely, at lower

reaction time, the yield recorded was comparably lower, less than 80 %. Low reaction time tend

to have fewer contact time thus resulted in lower yield.

Figure 2. Response surface plots for interactive effect of molar ratio (A) and reaction

temperature (C) and their effect to chicken fat methyl ester yield. Other factors are

constant at zero levels

Page 40: vol 3 issue 02 june 2014

MARA Innovation Journal Volume 3, Issue 02 (Dec 2014)

36

Figure 3. Response surface plots for interactive effect of methanol to oil molar ratio (A)

and reaction time (D) and their effect to chicken fat methyl ester yield. Other factors are

constant at zero levels

Figure 4. Response surface plots for interactive effect of reaction temperature (C) and

reaction time (D) and their effect to chicken fat methyl ester yield. Other factors are

constant at zero levels

Page 41: vol 3 issue 02 june 2014

MARA Innovation Journal Volume 3, Issue 02 (Dec 2014)

37

On the other hand, the effect of differing reaction time and reaction temperature on the

synthesis chicken fats methyl ester at constant molar ratio, 6:1 and catalyst concentration, 0.15

wt/wt %. is provided in Fig 4. Increment in temperature and reaction time at zero level (methanol

6:1, catalyst concentration 0.15 wt/wt %) resulted in significant increase in CFME yield. It can be

observed that when the temperature was about 70°C, the biodiesel yield was greater than 85 %

with reaction time less than 15 minutes. The study conducted under the temperature of 80°C

and 20 minutes reaction time proved to have negative effect on CFME yield. CFME under high

temperature and pressure for prolonged period caused the particles inside the reaction vessel to

be very aggressive (Dennis & Xuanwu, 2010). Some of the yields escaped through the filter cap

thus resulted in lower yield obtained.

Optimization of Process Variable

In this work, variable condition for transesterification of waste chicken fat oil was optimized for

obtaining the highest CFME yield. An additional experiment was carried out to validate the

optimization result obtained by the response surface analysis. These are presented in Table 4

along with their predicted and actual values. Among the various optimum conditions, experiment

7 was chosen as optimum condition which a reaction condition of 64.69 ◦C, 10 min, methanol to

oil molar ratio 8.58:1 and 0.18% amount of catalyst. The obtained optimum yield of 92.84% is

well in agreement with the predicted value, with a relatively insignificant error of 0.93%. As the

experimental error is less than ±1%, it can be concluded that the proposed statistical model was

adequate for predicting the yield of Methyl ester in chicken fats transesterification reaction.

Table 4. Solution of optimum conditions

No Molar Ratio Catalyst

Concentration,

wt/wt%

Temperature,

°C

Reaction

Time, min

Response

Predicted

Yield %

Actual Yield %

1 8.59 0.18 65.36 10.00 91.00 89.12

2 8.59 0.18 65.50 10.00 91.01 89.23

3 8.61 0.18 65.34 10.00 91.06 90.56

4 8.56 0.18 65.26 10.00 91.02 90.87

5 8.61 0.18 64.47 10.00 91.03 90.58

6 8.57 0.18 66.31 10.00 91.02 91.54

7 8.58 0.18 64.69 10.00 91.98 92.84

8 8.53 0.18 66.64 10.00 91.98 90.12

9 8.59 0.18 65.01 10.00 90.77 89.02

10 8.57 0.17 65.36 10.16 91.01 90.14

Page 42: vol 3 issue 02 june 2014

MARA Innovation Journal Volume 3, Issue 02 (Dec 2014)

38

Properties of Biodiesel Analysis

The properties of the biodiesel were compared with ASTM biodiesel standard and EN14214

standard (Table 5). Most of the fuel properties are found to be in reasonable agreement with

ASTM D6751 and EN14214 standard.

Table 5. Properties of biodiesel in comparison with the ASTM biodiesel standard and

EN14214 standard

Property

Chicken fats

Methyl ester

(CFME)

Test methods

Standard

Biodiesel (ASTM

D6751)

Standard

Biodiesel

(EN 14214)

Viscosity at 40 °C (mm 2 /s) 4.8 D445 1.9-6.0 3.5-5.0

Flash point (°C ) 73 D93 130 min 101.0 min

Relative Density (kg/ m 3 ) 867 ISO3675 - 860-900

Acid Value (mg KOH/g ) 0.842 D664 0.80 max < 0.5

Iodin Value (I2/100 g) 82.49 ISO3961 - < 120

Conclusions

Response surface methodology was successfully applied to optimize the reaction conditions for

microwave assisted transesterification of waste chicken fat. The quadratic polynomial regression

model obtained in this study was validated and proven to be statistically adequate and accurate

to predict the maximum yield of chicken fat methyl esters (CFME). It was shown that, microwave

irradiation effectively can speed up reaction rate 10 times higher than conventional heating

system during transesterification process. This work may provide useful information and

reference for the condition optimization of the microwave assisted transesterification for

biodiesel production using waste chicken fats as low cost feedstock. Also, there is a possibility of

waste chicken fats ester becoming a potential feed stock for methyl ester which not only will

solve the environmental problem of the waste fats but also will reduce the cost of biodiesel

production. Although, biodiesel production has been greatly improved by low cost technologies,

there are still challenges that need further investigations. These challenges include the design of

equipment in term of scalability of microwave applications from laboratory small scale into

industrial scale and controlling heating system of microwave since biodiesel process is sensitive

to temperature variations.

Acknowledgements

The authors would like to acknowledge Universiti Kuala Lumpur under short term research grant

(Research University Grant No.STR12058) for the financial support given.

Page 43: vol 3 issue 02 june 2014

MARA Innovation Journal Volume 3, Issue 02 (Dec 2014)

39

References

Alcantara, R., Amores, J., Canoira, L., Fidalgo, E., Franco, M.J., Navarro, A. (2000). Catalytic production

of biodiesel from soybean oil, used frying oil and tallow. Biomass Bioenergy, 18, 515–527.

Alptekin, E., Canakci M. (2011). Optimization Of Transeste ification Fo Methyl Este P oduction F om

Chicken Fat, Fuel 90:2630–2638, Elsevier.

Alptekin, E., Canakci, M. and Korceli, F. (2011). Comparison of the performance of different homogeneous

alkali catalysts During transesterification of waste and virgin oils and evaluation of biodiesel

quality. Fuel 87, 3572-3578.

Anh, N. Phan, Tan M. Phan. (2008). Biodiesel production from waste cooking oils. Fuel 87, 3490–3496.

Canakci, M., Gerpen, J.V. (2001). Biodiesel production from oils and fats with high free fatty acids. Trans.

ASAE, 44 (6), 1429–1436.

Cetinkaya M, Karaosmanoglu F. (2004). Optimization of base-catalyzed transesterification reaction of

used cooking oil. Energy Fuels, 18,1888–95.

Dorado, M.P., Ballesteros, E., Almeida, J.A., Schellert, C., Lo¨ hrlein, H.P., Krause, R. (2002). An alkali-

catalyzed transesterification process for high free fatty acid waste oils. Trans. ASAE, 45 (3), 525–

529.

Fan X., Wang X., Chen F. (2011). Biodiesel Production from Crude Cottonseed Oil: An Optimization

Process Using Response Surface Methodology, The Open Fuels & Energy Science Journal, 4, 1-

8.

Giovanilton, F. Silva , Fernando L. Camargo , Andrea L.O. Ferreira. (2011). Application of response

surface methodology for optimization of biodiesel production by transesterification of soybean oil

with ethanol. Fuel Processing Technology 92, 407–413.

Gwi-Taek Jeong , Hee-Seung Yang , Don-Hee Park. 2009. Optimization of transesterification of animal fat

ester using response surface methodology Bioresource Technology, 100, 25–30.

Haq Nawaz Bhatti , Muhammad Asif Hanif , Mohammad Qasim , Ata-ur-Rehman . (2008). Biodiesel

production from waste tallow Fuel 87:2961–2966.

Jeong, G.-T., Yang, H.-S., Park, D.-H. (2009). Optimization of transesterification of animal fat ester using

response surface methodology. Bioresource Technology, 100, 25–30.

Kok Tat Tan, Keat Teong Lee , Abdul Rahman Mohamed. (2010). A glycerol-free process to produce

biodiesel by supercritical methyl acetate technology: An optimization study via Response Surface

Methodology Bioresource Technology 101, Bioresource Technology 101, 965–969965–969.

Leung DYC, Guo Y. (2006). Transesterification of neat and used frying oil: optimization for biodiesel

production. Fuel Process Technol, 87, 883–90.

Page 44: vol 3 issue 02 june 2014

MARA Innovation Journal Volume 3, Issue 02 (Dec 2014)

40

Mittelbach, M., Pokits, B., Silberholz, A. (1992). Production and fuel properties of fatty acid methyl esters

from used frying oil. In: Liquid Fuels from Renewable Resources: Proceedings of an Alternative

Energy Conference, St. Joseph, Mich. ASAE, 74– 78.

Shashikant Vilas Ghadge, Hifjur Raheman.2006. Process optimization for biodiesel production from

mahua (Madhuca indica) oil using response surface methodology. Bioresource Technology 97,

379–384.

Van Gerpen, B. Shanks, and R. Pruszko ,D. Clements, G. Knothe. (2004), Biodiesel Production

Technology.

Zheng, S., Zu, Y.G., Luo, M. and Efferth, T. (2006). Rapid microwave assisted transesterification of yellow

horn oil to biodiesel using a heteropolyacid solid catalyst. Bioresource technology 101. 931-936.

Elsevier.

Page 45: vol 3 issue 02 june 2014

www.mara.gov.my

C

M

Y

CM

MY

CY

CMY

K