vlt-tre-esp-13520-9202 fpcs test report v1obspepe/repository/vlt-tre-esp-13520-9202_fpcs… · test...

23
Name Date Signature Name Date Signature Name Date Signature ESPRESSO Fabry-Pérot Calibrator Test Report VLT-TRE-ESP-13520-9202, Issue 1 May 4 th , 2016 Prepared F. Pepe 4/05/2016 Approved F. Zerbi Released F. Pepe Centro de Astrofísica da Universidade do Porto Universidade de Lisboa, SIM/IDL & LOLS INAF, Osservatorio Astronomico di Trieste INAF, Osservatorio Astronomico di Brera Observatory of the University of Geneva

Upload: others

Post on 29-Jan-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

  • Name Date Signature

    Name Date Signature

    Name Date Signature

    ESPRESSO

    Fabry-PérotCalibrator

    TestReport

    VLT-TRE-ESP-13520-9202,Issue1

    May4th,2016

    Prepared F.Pepe 4/05/2016

    Approved F.Zerbi

    Released F.Pepe

    CentrodeAstrofísicadaUniversidadedoPorto

    UniversidadedeLisboa,SIM/IDL&LOLS

    INAF,OsservatorioAstronomicodiTrieste

    INAF,OsservatorioAstronomicodiBrera

    ObservatoryoftheUniversityofGeneva

  • VLT-TRE-ESP-13520-9202,Issue 3/23

    ChangeRecord

    Issue/Rev. Date Section/Pageaffected Reason/Remarks

    1 04/05/2016 All PreparedinviewofSub-systemacceptance

  • VLT-TRE-ESP-13520-9202,Issue 5/23

    TableofContentsChapter1. Introduction..............................................................................................................................................7

    1.1ScopeoftheDocument......................................................................................................................................7

    1.2Documents..............................................................................................................................................................7

    1.2.1 ApplicableDocuments................................................................................................................................................................7

    1.2.2 ReferenceDocuments..................................................................................................................................................................7

    1.3AcronymsandAbbreviations..........................................................................................................................7

    1.3.1 Acronyms..........................................................................................................................................................................................7

    Chapter2. VerificationMatrix.................................................................................................................................9

    Chapter3. PerformanceVerification..................................................................................................................10

    3.1Wavelengthcoverageandenergydistribution.....................................................................................10

    3.2SystemTransmittance.....................................................................................................................................12

    3.3TransmittanceUniformity..............................................................................................................................13

    3.4TransmittanceVariations...............................................................................................................................13

    3.5FinesseandSpectralResolution..................................................................................................................13

    3.6Etalonspacing......................................................................................................................................................14

    3.7PhotonNoise........................................................................................................................................................14

    3.8FluxHomogeneity..............................................................................................................................................16

    3.9LineWidth.............................................................................................................................................................16

    3.10LineSeparation.................................................................................................................................................17

    3.11Short-TermRepeatability............................................................................................................................17

    3.12Long-TermRepeatabilityandLine-ShapeStability..........................................................................19

    3.13LocalWavelengthAccuracy........................................................................................................................20

    Chapter4. Conclusions.............................................................................................................................................23

    ListofFiguresFigure1:Top:RawHARPSframeoftheFPCspectrumilluminatingbothfibers.Bottom:For

    comparison,aframeisshowninwhichoneofthefiberwasilluminatedwiththethoriumlamp.NotetherichnessoftheFPCspectrumcomparedtothatofthethorium.......................11

  • 6/23 ESPRESSOProject

    Figure2:Left:TransmissionspectrumoftheFabry-Pérotetalonaveragedofabroadband(>>thanatypicalFSRoftheetalon).Right:fluxatthepeakofatransmissionlineoftheFPwhenilluminatedbytheXe-lampcomparedtothetungstenlamp.MeasurementshavebeencarriedoutwithHARPS..........................................................................................................................12

    Figure3:DirectmeasurementoftheFPtransmittancewhenvaryingtheopticallengthofthegapbyvaryingthepressureinsidetheFPC..............................................................................................14

    Figure4:FluxoftheLDLSlampthough-outthespectralrangeofESPRESSO....................................15

    Figure5:Fundamental(photon-noiselimited)precisionobtainedonasingleFPspectrum.Theresultsfromthethoriumlampareshownforcomparison................................................................16

    Figure6:Relativedriftmeasurementsover7hourstotesttheshort-termperformancesoftheFPC...............................................................................................................................................................................18

    Figure7:Absolutedriftmeasurementsover7hourstotesttheshort-termperformancesoftheFPC...............................................................................................................................................................................19

    Figure8:Driftmeasurementsover180daystotestthelong-termperformancesoftheFPC.....20

    Figure9:DispersionlawoftheFPC(expressedineffectiveetalongap)recordedovertwoseasonsseparatedbymorethanoneyear.Left:fullwavelengthrangeofHARPS.Right:Zoomoverasingleorder...................................................................................................................................22

    Figure10:Dispersionvariation(expressedindifferenceofeffectiveetalongap)betweentwoseasonsseparatedbyoneyearasafunctionofwavelength.Left:fullwavelengthrangeofHARPS.Right:Zoomoverasingleorder...................................................................................................22

    Figure11:Effectiveetalongap2D(λ)asafunctionofwavelengthandisdifferencefromthenominalvalueof14.6mm.................................................................................................................................21

    ListofTablesTable1:FPCRequirementsandVerificationMatrix.........................................................................................9

  • VLT-TRE-ESP-13520-9202,Issue 7/23

    Chapter1. Introduction

    1.1ScopeoftheDocumentThis document describes the tests on the Fabry-Pérot Calibrator (FPC) performed in order todemonstratecompliancewithsub-systemrequirements.ForthedetaileddesigndescriptionwerefertoRD-2.

    1.2DocumentsTheapplicableandreferencedocumentsarelistedbelow:

    1.2.1 ApplicableDocumentsAD-1 ESPRESSOStatementofWork VLT-SOW-ESO-13520-5059 1 01.02.2011AD-2 ESPRESSOTechnicalSpecifications VLT-SPE-ESO-13520-4633 3 01.02.2011

    1.2.2 ReferenceDocumentsRD-1 Fabry-PérotCalibratorFinalDesign

    DescriptionandPerformancesAnalysis

    VLT-TRE-ESP-13520-0154 2 04.05.2016

    RD-2 Fabry-PérotCalibratorProductTree VLT-LIS-ESP-13520-9201 1 04.05.2016

    1.3AcronymsandAbbreviations

    1.3.1 AcronymsAD ApplicableDocumentAIV Assembly,IntegrationandVerificationCCL CombinedCoudéLaboratory(oftheVLT)CIDL ConfigurationItemsDataListCTE CoefficientofThermalExpansionE-ELT EuropeanExtremelyLargeTelescopeESO EuropeanSouthernObservatoryESPRESSO EchelleSpectrographforRockyExoplanetsandStableSpectroscopicObservationsFDR FinalDesignReviewFP Fabry-Pérot(etalon)FPC Fabry-PérotCalibratorFWHM Full-WidthatHalfMaximumHW HardwareICD InterfaceControlDocumentICS InstrumentControlSoftwareISO InternationalOrganisationforStandardisationIP InstrumentalProfile

  • 8/23 ESPRESSOProject

    LDLS Laser-DrivenLightSourceLFC Laser-FrequencyCombLRU Line-ReplaceableUnitMTBF MeanTimeBetweenFailuresN/A NotApplicablePAC ProvisionalAcceptanceChilePAE ProvisionalAcceptanceEuropePDR PreliminaryDesignReviewPI PrincipalInvestigatorPLC ProgrammableLogicControllerPM ProjectManagerQA QualityAssuranceRAMS ReliabilityAvailabilityMaintainabilitySafetyRD ReferenceDocumentRfW RequestforWaiverRV RadialVelocitySOW StatementOfWorkSW SoftwareTBC ToBeConfirmedTBD ToBeDefined/ToBeDevelopedThAr Thorium-Argon(lamp)ULE Ultra-LowExpansion(material)UPS UninterruptedPowerSupplyUT UnitTelescope(8.2metertelescopeatParanal)VLT VeryLargeTelescopeVM VerificationMatrixWBS WorkBreakdownStructureWP WorkPackage

  • VLT-TRE-ESP-13520-9202,Issue 9/23

    Chapter2. VerificationMatrixInthefollowingTable1werecallthesubsystemrequirementsfortheFPCdefinedinRD-2andproposeaverificationmethod.

    Table1:FPCRequirementsandVerificationMatrix

    Item Requirement VerificationDATSI+Comment

    Wavelengthcoverage 380–780nm S:HARPS-N,T:AtsystemlevelwithESPRESSO

    Systemtransmittance >10%Inthewavelengthrange

    T:Atvariouswavelength,inlab.

    Transmittanceuniformity Tmax/Tmin<2Inthewavelengthrange

    T:Atvariouswavelength,inlab..

    Transmittancevariations dT/dλ <2%pernm S:HARPS-N,T:AtsystemlevelwithESPRESSO

    EtalontotalFinesse 10<FE<12Inthewavelengthrange

    T:HeNelaser,Pressurescaninlab.

    Etalonspacing D=7.6mm±0.0005mm D,T:ManufacturerofEtalon

    Photonnoise <5cm/sGlobalprecisionachievedinasingleexposure

    S:HARPS-N,T:AtsystemlevelwithESPRESSO

    Fluxhomogeneity Fmax/Fmin<5Inthewavelengthrange

    S:HARPS-N,T:AtsystemlevelwithESPRESSO

    Linewidth δλ <2/3ofspectralelementAspectralelementisthewavelengthdividedbythespectralresolution

    T:HeNelaser,Pressurescaninlab

    Lineseparation Δλ = 2-7xspectralelement T:HeNelaser,Pressurescaninlab

    Short-termrepeatability dλ/dt<210-10λ (0.07m/s) Over12hours

    S:HARPS,T:AtsystemlevelwithESPRESSO

    Long-termrepeatabilityandline-shapestability

    dλ/dt<210-10λ (0.07m/s) Over20years(goal)

    S:HARPS,T:AtsystemlevelwithESPRESSO

    Localwavelengthaccuracy λ-λ0< 3x10-8 λ(10m/s)ForanyFPClinewithrespecttotheoretical

    S:HARPS,T:AtsystemlevelwithESPRESSO

  • 10/23 ESPRESSOProject

    Chapter3. PerformanceVerificationInthefollowingweshallpresenttheresultsobtainedwithESPRESSO’sFPC.Someparameterscouldnotbeverifiedinlaboratoryduetotheabsenceofahighlystablehigh-resolutionspectrograph.InthosecasestheperformancesisdemonstratedbysimilaritywiththeperformancesoftheHARPSandHARPS-NFabry-Pérots.ItmustbepointedoutthatESPRESSOFPCdesignisanexactcopyofHARPS-N’sFabry-Pérotsystem.

    3.1WavelengthcoverageandenergydistributionThehigh-resolutionspectrumoftheFPCsystemoftheHARPSspectrographisshowninFigure1.Onlyapartoftherawframeisshown,asthewholeimagewouldbetoolargeandthevariouslineswouldnotberesolvedindividually.OnecanseethespectraofthetwofibersbothilluminatedbytheFPCsystemspectrum.Thewavelengthincreasesfromlefttorightandfrombottomtotop,directionoverwhichthespectrumissplitoverseveralechelleorders.ThelargegapinthecenteroftheimageisduetoaphysicalgapintheCCDmosaiccomposedoftwoCCDs.Forcomparisonaframeisshowninwhichoneofthefiberwasilluminatedwiththethoriumlamp.NotetherichnessoftheFPspectrumcomparedtothatofthethorium!

  • VLT-TRE-ESP-13520-9202,Issue 11/23

    Figure1:Top:RawHARPSframeoftheFPCspectrumilluminatingbothfibers.Bottom:Forcomparison,aframeisshowninwhichoneof thefiberwas illuminatedwiththethoriumlamp.Notetherichnessof theFPCspectrumcomparedtothatofthethorium.

    TheaveragetransmissionoftheFPCsystemhasbeenmeasuredusingalow-resolutionspectrograph.Thereferencespectrumwasrecordedbyinjectingthelightofatungstenlampintoa200µmfiber,inturnconnectedtoa600µmfiberinjectingthelightintothespectrometer.TheFPCspectrumwasthenrecordedbyseparatingthetwofibersectionandconnectingthe200µmfibertothe200µminputfiberportoftheFPCandthe600µmfibertothe600µmfiberoutputportoftheFPC.ThetransmittancespectrumwasdeterminedbydevidingtheFPCspectrumbythereferencespectrumafterhavingsubtractedthedarkspectra.

    500 1000 1500 2000 2500 3000

  • 12/23 ESPRESSOProject

    Figure2:Left:TransmissionspectrumoftheFabry-Pérotetalonaveragedofabroadband(>>thanatypicalFSRoftheetalon).Right:fluxatthepeakofatransmissionlineoftheFPwhenilluminatedbytheXe-lampcomparedtothetungstenlamp.MeasurementshavebeencarriedoutwithHARPS.

    TheresultingtransmissionspectrumisshownbythebluelineinFigure2.Thespectrumshowshoweveronlyan‘average’transmittanceoftheFPCgiventhelowresolutionofthespectrograph,whichcannotresolveindividualFPClines.InordertodeterminethetransmissionatpeakthisvaluehastobemultipliedbytheFinesseoftheetalon.Aswewillseelater,thefinessemeasuredis12.27.Theresultingpeak-transmittanceisshownbytheredcurve.

    Althoughthebluepartofthespectrumisaffectedbysomemeasurementnoise,mainlyshotnoise,itcanbeclearlyseenthattheFPCcoversthewholespectralrangeofESPRESSO.ThisisalsobythespectrarecordedwithHARPS-N,ofwhichtheFPChasbeeninoperationformorethan3years.

    3.2SystemTransmittanceAsseeninFigure2thesystemtransmittancelieseverywherebetween22%and40%,andisthussignificantlylargerthantherequiredminimumT>10%.AnindependentverificationoftheabsolutetransmittancehasbeenmadebyfeedingtheFPCwithanHeNelaserandrepeatingthereferenceandFPCmeasurementdescribedabovewhileusingaradiometer.InordertoobtainpeaktransmittancetobecomparedwiththereadcurveinFigure2,wehavescannedthepressureinsidetheFPCtoobtainmaximumtransmittance.Theresult,indicatedbythereddiamondat632.8nm,isperfectlyinlinewiththetransmissionspectrum.

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    380 430 480 530 580 630 680 730 780

    Tran

    smi(an

    ce[%

    ]

    Wavelength[nm]

    AverageFPCtransmi9ance

    PeakFPCtransmi9ance

    HeNemeasurementatpeak

  • VLT-TRE-ESP-13520-9202,Issue 13/23

    3.3TransmittanceUniformityThemaximumtransmittanceTmaxisreachedattheveryblueendofthespectrumandisabout40%,whileTminisabout22%.ThereforthetransmittanceuniformityTmax/Tmin=1.82<2justinlinewiththespecifiedrequirement.

    3.4TransmittanceVariationsThemaximumtransmittancevariationdT/dλisobservedbetween380and400nmdroppingfrom40%to25%within20nm.Wecomputethenarelativefluxvariationoftheorder37%,whichproducesaslopeofdT/dλ =1.85%/nm.

    3.5FinesseandSpectralResolutionThefinesseF=Δλ/δλ(distanceoftwoneighboringlinesdividedbythelinewidthofaline)oftheFPetalonhasbeenmeasuredinlaboratorybyscanningtheetalon’seffectivegap.Thescanningwasachievedbyvaryingthepressureinsidethevacuumvesselandconsequentlybetweenthetwomirrorsoftheetalon.Thus,aneffectiveopticalpathdifference(OPD)isintroducedandthetransmittedwavelengthchanged.AcommercialHeNelaserofλ=632.8nmwasusedforthelinescanningmeasurement.

    Figure3showsthetransmittedlaserfluxasafunctionofeffectiveopticalgapvariationascomputedassumingalinearrelationshipbetweenpressureandrefractiveindexofair.TheredcurvecorrespondstotheAiryfunctionwhichtheoreticallydescribesthetransmittancefunctionoftheFPetalonwithasingleeffectivefinesseFE.ThemeasuredFEisinourcasesimplytheratiobetweentheFWHMofasinglepeakdividedbythedistancebetweentwoneighboringpeaks,orcanbedeterminedbyfittinganAiryfunctionwithFEasoneofthefreeparameters.InbothcasesweontainafinesseFE=12.27.Thisvaluecorrespondsexactlytothedesignedandthusexpectedvalue,andisthereforperfectlycompliantwiththeminimumrequirementofFE=12.27.Althoughisliesslightlyoutsidethehigherendonthespecifiedrange,wehavetomentionthata)themeasurementofthefinessecanbeaffectedbysmallmeasurementerrorsandb)thehigherfinesseonlyimpactsthefluxdeliveredbytheFPC,wemaybereducedbyacoupleofpercents.WeconsiderthereforetheFPCtobefullycompliantwiththefinesserequirement.

  • 14/23 ESPRESSOProject

    Figure3:DirectmeasurementoftheFPtransmittancewhenvaryingtheopticallengthofthegapbyvaryingthepressureinsidetheFPC

    3.6EtalonspacingTheetalonhasbeenmanufacturedbyICOStothedesignedgapof7.6mmwithinbetterthanafringeofthemeasuringinterferometer,whichisexpectedtobeD=7.6mm± 0.0003mm.AfinalmeasurementwillbedoneduringsystemverificationsoftheESPRESSOspectrographbyrecordingandfittingtheentireFPCspectrum.ByanalogywiththeHARPSFPC(seeSection3.13)wecanhoweverstatethatthegapDlieswithin0.3µmP-Vofthespecifiedvalue.

    3.7PhotonNoiseTheabilityofdeterminingthepositionofaspectrumontheCCD(linepositionexpressedinpixel)andassociateitwithagivenwavelengthdependsonthewidthandtheintensityoftheline.Ingeneralonecansaythatthefundamentallyattainableprecisionisproportionaltothesquarerootofthenumberoflinesinthespectraldomainandtheirintensity,andinverselyproportionaltotheirwidth.InHARPS,theformulaedescribedbyBouchy&Pepe(2001)areemployedtomeasurethefundamental(photon-noiselimited)precisioncontentofaspectrum.

    Figure4showsthefluxproducedbytheLDLSlampwithinitsthenominal230µmfiberilluminatingtheFPC.Theemissionisextremelyflatandvariesfrom40µW/nmto50µW/nm

  • VLT-TRE-ESP-13520-9202,Issue 15/23

    fromtheredtotheblueendodthespectralrangeofESPRESSO.Let’sassumetheworstcase,i.e.intheblue,wherethephotons‘weigh’moreandtheinstrumenttransmittanceislower.At380nmweobtainaphotonfluxofabout10!"photons/s/nmoutofthelampfiber.Let’sconsidernowapessimistisPFCtransmittanceof10%,atransmittanceofthecalibrationunitof50%,anétenduematchingefficiencyof10%,andaspectrographefficiencyof10%,weobtainafluxonthedetectoroftheorderof5 ∙ 10!" ph s!! nm!!.ThelinewidthofaFabry-Pérotlineisgivenbyitsresolution𝑅!" = 𝐹! ∙𝑚 = 12.3 ∙ 40′000 ≈ 500′000,wheremistheordernumberoftheFPClineat380nm.Innm,thelinewidthisthus𝑤!" = 𝜆 𝑅!" =0.00076nm.Weexpectthereforeaphotonfluxofabout3.8 ∙ 10! ph s!!perspectrallineoftheFPC.FromHARPSwecanestimatethattheRVprecisiondeliveredbyasinglelineofabout10!photo-electronsisoftheorderof1ms-1.Byanalogywecanthereforeextrapolatethatinanexposureof10secondstheRV-precisionperlineisoftheorderof5cms-1withtheFPCofESPRESSO.IfweconsiderthattheESPRESSOspectrumcontainsoftheorderof20’000FPClines,thenweendupwithapotentialglobalprecisionof0.04cms-1ina10-secondsexposure,whichmeansthatwehaveafluxmarginoftheorderofafactor10’000withrespecttothespecifiedrequirement.

    Figure4:FluxoftheLDLSlampthough-outthespectralrangeofESPRESSO

    Itisimportanttonotethat,inHARPS-N,weobtain5cms-1globalRVprecisionina20-secondsexposure,afterhavingattenuatedtheLDLSfluxbyafactorof300.Figure5showstheattainableprecisionusingtheFPCsystemasafunctionofthesquarerootoftherelativefluxmeasuredonthedetector.ThefluxwasvariedeitherbychangingthevariableND-filterinfrontofthecalibrationlamporbyvaryingtheexposuretime.Forcomparison,alsotheresultsobtainedwiththehollowcathodethoriumlampareshown.Inbothcasesitcouldbedemonstratedthattherelationshipisperfectlylinearasexpectedfrompurephotonnoise,andthataprecisionofabout2cms-1canbeattainedonasinglespectrum.

  • 16/23 ESPRESSOProject

    Figure5:Fundamental(photon-noiselimited)precisionobtainedonasingleFPspectrum.Theresultsfromthethoriumlampareshownforcomparison.

    Asmentionedabove,thefluxlevelcanbevariedeitherbyincreasingthelightintensityortheexposuretime.InthepresentHARPS-Nsystemthethoriumlampistunedinawaysuchtobalancelifetimeandflux.Inanexposureof20s,whichisthe(minimum)nominalexposuretimeforawavelength-calibrationexposure,theattainedprecisionlevelisoftheorderof2cms-1.Notonlythisdirectlydemonstratedthattherequiredphoton-noiseprecisionisachievedalreadywithHARPS-Nandasimilarsystem,butalsovalidatedtheperformandetheoreticalcomputations,whichareperfectlycompliantwiththeHARPS-Nmeasurement,ifweconsiderthatthecouplingefficiencyoftheHARPS-NFPChasnotbeenoptimizedinthesamewayasforESPRESSO,andthatthecalibrationandscientificfibersofHARPS-NareconsiderablylongerthatthoseofESPRESSO.

    Inpractice,andinordertonotsaturatetheESPRESSOdetector,wewillhavetointroducefixedNDfilterattheoutputofthelamp.ThelocationisalreadyforeseewiththefilterboxbetweentheLDLSlampandtheVacuumTank.ThefilterdensitywillbeadaptedduringsystemtestsofESPRESSO.

    3.8FluxHomogeneityGiventheflatspectralpoweroftheLDLSandtheflatspectraltransmissionoftheFPC,themaindriverforfluxinhomogeneitiesistheenergyofthephotonsacrossthespectrum.Sincethephotonenergyincreasesbyafactorof2fromtheredtotheblueendofthespectralrange,andthatboththespectralpoweroftheLDLSandthetransmittanceoftheFPCbothincreasetowardstheblue,wedonotexpectfluxinhomogeneitieslargethanafactorof2,thusperfectlywiththespecifiedmaximumfluxvariationFmax/Fmin=2<5.

    3.9LineWidthThelinewidthofaFabry-Pérotlineisgivenbyitsresolution𝑅!" = 𝐹! ∙𝑚 = 12.3 ∙ 40′000 ≈500′000,wheremistheordernumberoftheFPClineat380nm.ThelinewidthoftheFPCisthus𝑤!" = 𝜆 𝑅!" =0.00076nm.ThesizeofthespectralelementofESPRESSOisgivenbythe

  • VLT-TRE-ESP-13520-9202,Issue 17/23

    spectralresolutionRofthespectrograph,whichisabout𝑅 = 140′000initsstandardHRmode.Therefore,thewidth𝑤!" ofthespectralelementis𝑤!" = 𝜆 𝑅,whichisabout0.0027nmintheextremeblueand0.0056nmintheextremeredpartofthespectrum.Therefore,intheworstcase(blue),theFPClinewidthis𝒘𝑭𝑷 < 𝟎.𝟑 ∙𝒘𝑺𝑬.TheFPCisthusnotonlycompliantwiththeline-widthrequirementfortheHRmode,butalsowiththeUHRmodeofESPRESSO.InnocasetheFPClinesareresolvedbythespectrograph.

    3.10LineSeparationThelineseparation∆𝜆ofFabry-Pérotlinesisgivenbytheformula∆𝜆 = 𝜆! (2𝐷).Thisvalueisminimumittheextremeblue,whereitvalueis∆𝜆! = 0.00475 nmandmaximuminthered,whereitsvalueis∆𝜆! = 0.02 nm.TheratiobetweenthelineseparationandthewidthofthespectralelementofESPRESSOliesthereforebetween∆𝝀𝑩 𝒘𝑺𝑬 = 𝟏.𝟕𝟔and∆𝝀𝑹 𝒘𝑺𝑬 = 𝟕.𝟒.Althoughthesevaluesareslightlynon-compliantwithrespecttothespecifiedvaluesonbothsends,itmustbenoted,thatitwasalreadytheoreticallynotpossibletocomplywiththemeverywhereinthewidespectralrangeofESPRESSO(morethanafactorof4duetothespectralwidth!).

    3.11Short-TermRepeatabilityThefollowingsectionsarebasedonmeasurementsandtestsperformedontheHARPSFPC,sincethecorrespondingparameterscanonlybedeterminedusingahighlystablyhigh-resolutionspectrograph.ThetestswillberepeatedfortheESPRESSOFPConeESPRESSOisfullyfunctionalandstable.

    InordertousetheFPCinastandardwayonHARPS,theDRS(pipeline)hadtobeadaptedandsomefunctionalityadded.Inparticular,onehadtoaddthepossibilityoftreatingframesusingtheFPConfiberBforbothcalibrationandscientific(target)exposures.Therecognitionandthecorrecthandlingofthevariouscaseshadtobeimplemented.Also,forthemeasurementofthedrift,severalnewalgorithmshavebeentestedandimplemented.

    ItisimportanttonotethatthesedevelopmentshavebeenalsousedforthesimultaneousdevelopmentoftheLFCbyESOandMPQ,sincetheLFCaswellhadtobetestedonHARPS.ThespectraoftheLFCandtheFPCareactuallyqualitativelyidentical,andthesamedatareductioncanbeusedinbothcases.TheseconceptshavebeenfullyintegratedintheESPRESSOpipelineandapplyinanidenticalwayfortheLaser-FrequencyCombandtheFabry-Pérot.

    Wehavetestedtheshort-termstabilitybyperforminglongseriesofThAr-FPexposures(ThAronfiberA,FPConfiberB)andbycomputingtherespectivedriftsindependently.Figure6showsthedriftfromoneexposuretotheotherascomputedbytheThArlampandtheFPC,aswellasthedifferenceofbothtoremovepossibleinstrumentaldrifts.

    FortheThAraloneweobtainadispersionofabout0.19ms-1rmswhichshouldbecomparedtoabout0.09ms-1purephoton-noiseerror.FortheFPCweobtain0.176ms-1rmsdispersion,tobecomparedto0.06ms-1photonnoise.Forthedifferenceofboth,weendupwithaphotonnoiseof0.11ms-1andameasureddispersionof0.14ms-1.Thedispersionofthedirrenceiswellbelowthesquarerootofthequadraticsumoftheindividualdriftmeasurementsof0.26ms-1,demonstratingthatbothsourcestracka‘real’instrumental’drift.Ontheotherhand,thedifferencebetweenthephotonnoiseandthemeasureddispersionleavesroomfora0.08ms-1additionaldispersion,whichisnot‘seen’byatleastoneofthefibers(orbettersources).

  • 18/23 ESPRESSOProject

    Figure6:Relativedriftmeasurementsover7hourstotesttheshort-termperformancesoftheFPC

    TheplotinFigure7showsthesamedata,butthistimeinabsoluteterms,i.e.itindicatestheabsolutedriftforFPandTHwithrespecttotheveryfirstexposureoftheseries.ItshouldberemarkedthatingeneraltheFPandtheTHfollowthesame‘high-frequency’behavior,trackingrealinstrumentaldrifts.Thisisdemonstratedbythefactthatthedispersionofthedifferenceiswellbelowthedispersionoftheindividualmeasurements.Ontheotherhand,theplotshowsalsothatonecanhavedifferentialdriftsoftheorderof0.9ms-1P-Vor0.23ms-1rmsifnorecalibrationisperformedduringeverynight.Again,thisisaworstcaselimitifweassumethatthedifferentialdriftbetweenTHandFPisfullyduetotheFP.Asitwillbedemonstratedinthefollowing,theshort-termstabilityoftheFPCiswellwithinspecs.

  • VLT-TRE-ESP-13520-9202,Issue 19/23

    Figure7:Absolutedriftmeasurementsover7hourstotesttheshort-termperformancesoftheFPC

    3.12Long-TermRepeatabilityandLine-ShapeStabilityTheline-shapestabilitycannotbemeasuredseparatelyfromthephotocentermeasurementanditisthereforemeasuredasapartofthelong-termrepeatability.Thelong-termstabilitywastestedinasimilarwayastheshort-termstabilityusingHARPS@ESOdata.Framesweretakeninroutineoperationalmosteveryday.Theideawastomonitorpossiblelong-termdriftsoftheFPCwithrespecttotheThArcalibrationlamp.

    Figure8showstheresults.Overthe6monthsofoperationsin2012,theFPCslowlydriftedbyatotalof11.6ms-1,assumingthattheThArlamphasnointernaldrift.ThemeasureddriftismostlyduetothefactthatthepressureintheFPCincreasesslightlywithtime,sinceitisnotcontinuouslypumped.Thissequenceshowsneverthelessinaclearandimpressivewaythatthelong-termdriftoftheFPCisofabout0.063ms-1perdayinaverage.Duringanobservingnight,betweenthecalibrationandthescientificexposures,weshouldnotexpectadriftlargerthan0.05ms-1,ifthedailycalibrationsaredoneatthebeginningofthenight.

  • 20/23 ESPRESSOProject

    Figure8:Driftmeasurementsover180daystotestthelong-termperformancesoftheFPC

    3.13LocalWavelengthAccuracyForthetheoreticalFabry-Pérotthewavelength(orfrequency)ofagiventransmittedpeak(order)misfullydeterminedbyasingleparameter:thegapD.Thecorrespondingformulaisλm=2D/m.Providedthatweknowtheetalon’sgap,wecan,fromthisformula,directlydeterminethewavelengthofagivenlinebyknowingitordernumber.Inpractice,however,onedoesnotknowtheabsoluteordernumberoftheline,butonlyarelativenumberingbyassumingthatthepeaksmusthavecontinuouslyincreasinganddiscreteordervalues.Wehavethereforereversedtheproblembyusingthespectrographscalibrationdeliveredbythethoriumsourceandusedittoassignawavelengthtoeachtransmissionpeak.Usingthiswavelengthandassumingagapof2D=14.6mmfortheFPCofHARPS,wehavebeenabletodeterminedirectlytheordernumberofeachtransmittancepeakappearingintheFPspectrum.

    WedidnotexpectthegapDtobeexactlythetheoreticalvalues,nortobeconstantasafunctionofwavelengthduetothevaryingeffectiveopticaldepthofthedielectricmirrorcoatings.Indeed,thecomputedordernumberswerenotallperfectlydiscrete.Nevertheless,thedifferencetothediscretecontinuousnumberisalwaysbelow0.25.Fromthiswecanconcludethatbyroundingtheobtainedordernumbertotheclosestintegervalueweunambiguouslyidentifytherealordernumber.Usingthisfact,wehavethenusedthesocomputeddiscreteordernumberandthewavelengthassignedfromthethoriumcalibrationtodeterminetheeffectivegapD=D(λ)oftheetalon.TheresultisshowninFigure9.Notethemechanicalgapoftheetalonisof7.3mmandthatinthefiguretheopticalpathdifference2Disactuallyshown.

  • VLT-TRE-ESP-13520-9202,Issue 21/23

    Figure9:Effectiveetalongap2D(λ)asafunctionofwavelengthandisdifferencefromthenominalvalueof14.6mm

    Itappearsthatthe‘manufactured’mechanicalgapofD=7.3mmisfullycompliantwiththemeasuredopticalpathdifferenceof2D=14.6mmwithinaquarterofwavelength,whichconfirmsthattheordernumberingcanbeassignedunambiguouslybyassumingthetheoreticalgapvalue.IfawrongvalueDhadbeenassumed,theD(λ)wouldshowaslopeofatleastonewavelengthovertheplottedspectralrange.

    Nevertheless,D(λ)seemstovarysignificantly.Themeasuredchangescorrespondtoabout10-5or,expressedinradialvelocities,oftheorderof3kms-1.WeassumeherethatD(λ)isconstantintimeandthatthusthepresentedfactdoesnothaveanyimpactonabilityoftheFPsystemtotrackinstrumentdrifts.However,wealsoconcludeinordertousetheFPCsystemforabsolutewavelengthcalibrationstobetterthat10-5,D(λ)oftheFabry-Pérotmustbecalibratedbyanothermean(e.g.laserfrequencycomborthoriumlamp).

    AlthoughD(λ)seemswelldeterminedwehavetoremarkthatshort-scalepatternswithamplitudeoftheorderof50ms-1havebeenrecordedinD(λ).AtfirstglancethepattersseemstobelinkedtotheFPsystemitself(thepatternisthesamewhencomparingwavelengthspresentintwodifferentorders),andshouldbecalibrated..

    WeconcludeherethattheFPetalonbehavesasexpectedintermsofspectralperformances.Theetalongaphasbeenmanufactured(andmeasured)withanamazingaccuracy.WeconfirmthattheeffectivegapD(λ)varieswithwavelength.However,wewillseelaterthatthisgapD(λ)remainsconstantwithtimeandcanbethuscalibrateddowntophotonnoiseprecision.

    Theeffectiveetalongapvariesasafunctionofwavelengthduetothefactthatthepenetrationdepthinthecoatingdependsonthewavelength.ByusingtheThArcalibrationoftheFPframes.Wehaverepeatedthismeasurementinordertoverifywhethertheetaloncharacteristic,inparticularthecoatings,remainconstantwithtime.Figure10showstheeffectivegap(twicethephysicalgap)asafunctionofwavelength.ThetwocurvesandtherespectivezoomshowameasurementtakenwiththecontinuumlasersourceofHARPSin2011andanotherin2012morethanoneyearlater.Bothplotsshowthatthetwocurvefolloweachothertoalargedegree.Theabsolutevariationof0.3µmcorrespondstoa‘velocity’of6kms-1.Thedifferencebetweenthetwocurveismuchsmallerandbasicallyanoffset.Itismainlyduetoapressurechangeinthe

  • 22/23 ESPRESSOProject

    FPCsystemwhichinfluencestheeffectivegapoftheetalon.Small‘coherent’variationscanbeseenonshortscale.Theycorrespondtoabout0.003nmor60ms-1.

    Figure10:DispersionlawoftheFPC(expressedineffectiveetalongap)recordedovertwoseasonsseparatedbymorethanoneyear.Left:fullwavelengthrangeofHARPS.Right:Zoomoverasingleorder.

    Figure11showsthedifferenceindispersionbetweenthetwoseasonsseparatedbymorethanoneyear.Thevariationisexpressedintermsofeffectiveetalongapvariation.Asitcanbeseen,thevariationisconstantwithwavelength.Thegeneraloffsetof0.65nm(=13.4ms-1)canbeexplainedbythedifferencesinpressureinsidetheetalondewarbetweenthetwomeasurements.Itinterestingtonotethatthetwocurvesshowthesamelow-frequencybehavior,confirmingthatthecoatingscharacteristicsremainunchangedtothelevelgivenbythemeasurementnoiseofeachsingleline.Itshouldbenotedthatthedifferenceofthedispersionsremovesthe‘coherent’wigglesseenintheabsolutedispersioncurveshowninthepreviousfigure.Theremainingdifferenceoftypical±1nmorabout±20ms-1isprobablysimplydueto‘photonnoise’whendeterminingthelinepositionononesingleframe.Indeed,abackoftheenvelopeestimationofthecentroiderrorobtainedonalineof5000electrons/extractedpixel,atypicalvaluefortheHARPSFPCframes,leadstoanerrorof20ms-1.OntheHARPS-NFPCthefluxisaboutafactorof6higher,suchthatwecanexpectthattheFPClinesaredeterminedwithaprecisionofabout2.5timesbetter,i.e.toatypicalprecisionof8ms-1.

    Figure11:Dispersionvariation(expressedindifferenceofeffectiveetalongap)betweentwoseasonsseparatedbyoneyearasafunctionofwavelength.Left:fullwavelengthrangeofHARPS.Right:Zoomoverasingleorder.

  • VLT-TRE-ESP-13520-9202,Issue 23/23

    Chapter4. ConclusionsWehavedescribedtheexceptionalperformancesoftheESPRESSOFPCand,togetherwiththeexperienceacquiredontheHARPSFPC,wehavedemonstratedthattheFPCisindeedavaluablefallbacksolutionfortheLFCundertwoaspects:

    1. Itisabletoprovideadriftmeasurement(simultaneousreference)wellwithintherequiredphotonicprecisionandshort-termstability.

    2. Ifcombinedwithexternalabsolutereference,itcanbeusedtocharacterizetheCCDandprovidewavelengthcalibration.Theglobalaccuracywillbegivenbytheexternalsource.Thelocalaccuracyisgivenbytheabilityofcalibrationthegroup-delaydispersionoftheFabry-Pérot.TestonHARPSshowthatthedispersionlawisreproduciblewithin1/30’000’000oftheFabry-Pérotthickness,whichcorrespondstoanequivalentlocalrepeatabilityof10ms-1.

    3.