viscous hydrodynamics and covariant transport

32
Viscous hydrodynamics and covariant transport Denes Molnar RIKEN/BNL Research Center & Purdue University (remote) Presentation at TECHQM II Workshop Dec 15-17, 2008, LBNL, Berkeley, CA Viscosity, causal viscous hydrodynamics (Israel-Stewart) Region of validity for viscous hydrodynamics, shear viscosity at RHIC Implications of bulk viscosity in collaboration with Pasi Huovinen

Upload: others

Post on 19-May-2022

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Viscous hydrodynamics and covariant transport

Viscous hydrodynamics and covariant

transport

Denes Molnar

RIKEN/BNL Research Center & Purdue University

(remote) Presentation at TECHQM II Workshop

Dec 15-17, 2008, LBNL, Berkeley, CA

• Viscosity, causal viscous hydrodynamics (Israel-Stewart)

• Region of validity for viscous hydrodynamics, shear viscosity at RHIC

• Implications of bulk viscosity

in collaboration with Pasi Huovinen

Page 2: Viscous hydrodynamics and covariant transport

Thermalization at RHICefficient conversion of spatial eccentricity to momentum anisotropy

→ “elliptic flow”

ε ≡ 〈x2−y2〉〈x2+y2〉

v2 ≡〈p2

x−p2y〉

〈p2x+p2

y〉≡ 〈cos 2φp〉

very opaque - large energy loss, even forheavy quarks

RAA =measured yield

expected yield for dilute system

Ideal (nondissipative) hydrodynamics describes particle spectra and ellipticflow surprisingly well Kolb & Heinz, QGP Vol. 3 [nucl-th/0305084], Kolb, Heinz, Huovinen et al (’01), ...

D. Molnar @ TQM2, Dec 15-17, 2008 1

Page 3: Viscous hydrodynamics and covariant transport

Hydrodynamics

• describes a system near local equilibrium

• long-wavelength, long-timescale dynamics, driven by conservation laws

∂µTµν(x) = 0, ∂µNµB = 0

• mainly used for the plasma stage of the collision

initial nuclei parton plasma hadronization hadron gas

<—— ∼ 10−23 sec = 10 yochto(!)-secs ——>

↑∼ 10−14 m

= 10 fermis

amazing that hydrodynamics can be applicable at such microscopic scales

D. Molnar @ TQM2, Dec 15-17, 2008 2

Page 4: Viscous hydrodynamics and covariant transport

Shear viscosity in QCDshear viscosity: Txy = −η∂vx

∂y acts to reduce velocity gradients

largely unknown at T ∼ 200− 400 MeV relevant for RHIC

perturbatively: η/s ∼ O(1), lattice QCD: very preliminary

Nakamura & Sakai, NPA774, 775 (’06): Meyer, PRD76, 101701 (’07)

-0.5

0.0

0.5

1.0

1.5

2.0

1 1.5 2 2.5 3

243

8

163

8

s

KSS bound

PerturbativeTheory

T Tc

η

upper bounds:η/s(T=1.65Tc) < 0.96

η/s(T=1.24Tc) < 1.08

- no quarks (gluons only)- crude lattices

N = 4 super Yang-Mills ( 6= QCD): η/s ≥ h/4πPolicastro, Son, Starinets, PRL87 (’02)Kovtun, Son, Starinets, PRL94 (’05)

D. Molnar @ TQM2, Dec 15-17, 2008 3

Page 5: Viscous hydrodynamics and covariant transport

In heavy-ion collisions, timescales are short, gradients are large -corrections to ideal (Euler) hydrodynamics are relevant.

Two ways to study dissipative effects:

- causal dissipative hydrodynamics

Israel, Stewart; ... Muronga, Rischke; Teaney et al; Romatschke et al; Heinz et al, DM & Huovinen

flexible in macroscopic properties

numerically cheaper

- covariant transport

Israel, de Groot,... Zhang, Gyulassy, DM, Pratt, Xu, Greiner...

completely causal and stable

fully nonequilibrium → interpolation to break-up stage

D. Molnar @ TQM2, Dec 15-17, 2008 4

Page 6: Viscous hydrodynamics and covariant transport

DM & Gyulassy, NPA 697 (’02): v2(pT , χ) DM & Huovinen, PRL94 (’05): hydro vs transport

�� � � �� ��� � � � �� �� �� �� �� � �� ��� � � �� � �� �� ���� � �� � ��� � � ! � � " � # �$ % � &

'( )* ' +,- ./ 0 � � � � 1- 243 5 6 7

1- 2 3 8 � 7

1- 2 3 9 71- 2 0 �: ; 7

<= > % � & ?

@BADCFEHGJIKCF

EHLMEHADNJIMNOLP

ERQSNOLMEHTSNOUW

VYX[Z]\^_\a`c

bSd

;65#8��� 8

� � 6� �

� � 6�

� � � 6

e f gh i f g

j e f gk lnm o p

q rts iuv w f xzy{| }�~ � � �

������

����F

h� �hv � �vi � �ii � �

i � hi �v

i

——————————perturbative value

need 15× perturbative 2→ 2 opacities to reproduce elliptic flow at RHIC

but even at such opacities, 20− 30% dissipative corrections

D. Molnar @ TQM2, Dec 15-17, 2008 5

Page 7: Viscous hydrodynamics and covariant transport

Snellings & Kolb et al, NPA 698, (’02): Teaney (’04): v2 vs Γs ≡4η3sT

[GeV/c]tp0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

) t(p 2v

0

0.05

0.1

0.15

0.2

0.25

0.3 Charged particlesHydro pionsHydro charged particlesHydro anti-protons

STAR Preliminary (Jan ’01)

(GeV)Tp0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

)T

(p2v

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

6.8 fm (16-24% Central)≈b

= 0.1oτ/sΓ

= 0.2oτ/sΓ

= 0oτ/sΓ

STAR Data

ideal hydro overshoots elliptic flow at high pT

but viscous corrections to phase space distributions at freezeout help δf ∝pµpν∇µuν

D. Molnar @ TQM2, Dec 15-17, 2008 6

Page 8: Viscous hydrodynamics and covariant transport

Dissipative hydrodynamics

relativistic Navier-Stokes hydro: small corrections linear in gradients [Landau]

TµνNS = Tµν

ideal + η(∇µuν +∇νuµ −2

3∆µν∂αuα) + ζ∆µν∂αuα

NνNS = Nν

ideal + κ

(

n

ε + p

)2

∇ν(µ

T

)

where ∆µν ≡ uµuν − gµν, ∇µ = ∆µν∂ν [∂µ ≡ uµD + ∇µ]

η, ζ shear and bulk viscosities, κ heat conductivity

Equation of motion: ∂µTµν = 0, ∂µNµ = 0

two problems:

parabolic equations (e.g., heat flow) → acausal Muller (’76), Israel & Stewart (’79) ...

instabilities Hiscock & Lindblom, PRD31, 725 (1985) ...

D. Molnar @ TQM2, Dec 15-17, 2008 7

Page 9: Viscous hydrodynamics and covariant transport

Causal dissipative hydro

Bulk pressure Π, shear stress πµν, heat flow qµ are dynamical quantities

Tµν ≡ Tµνideal + πµν −Π∆µν , Nµ ≡ Nµ

ideal −n

e + pqµ

Israel-Stewart theory [Ann.Phys 100 & 118]: relaxation equations

X = −1

τX(X −XNS) + X YX + ZX

⇒ alleviates the causality problem (τΠ = ζβ0, τq = κqTβ1, τπ = 2ηsβ2)

There may be more terms - e.g., imposing ONLY conformal invariance Baier,

Romatschke, Son, JHEP04, 100 (’08)

πµν = · · ·+λ1

η2πα〈µπ ν〉

α −λ2

ηπα〈µων〉

α + λ3ωα〈µω ν〉

α (1)

No problem, we can solve with these too, provided λ1,2,3 are known.

D. Molnar @ TQM2, Dec 15-17, 2008 8

Page 10: Viscous hydrodynamics and covariant transport

Israel-Stewart theorystarting point - truncate entropy current at quadratic order [Ann.Phys 100 & 118]

Sµ = uµ

[

s−1

2T

(

β0Π2 − β1qνq

ν + β2πνλπνλ)

]

+qµ

T

(

µn

ε + p+ α0Π

)

−α1

Tπµνqν

in Landau frame (α0 = α1 = β0 = β1 = β2 = 0 gives Navier-Stokes).

Impose ∂µSµ ≥ 0 via a quadratic ansatz

T∂µSµ =Π2

ζ−

qµqµ

κqT+

πµνπµν

2ηs≥ 0

e.g., T∂µSµ = ΠX − qµXµ + πµνXµν will lead to equations of motion

Π = ζX , qµ = κT∆µνXν , πµν = 2ηsX〈µν〉

Also follows from covariant transport using Grad’s 14-moment approximation

f(x, p) ≈ [1 + Cαpα + Cαβpαpβ]feq(x, p)

and taking the lowest three momentum moments of the Boltzmann equation.

D. Molnar @ TQM2, Dec 15-17, 2008 9

Page 11: Viscous hydrodynamics and covariant transport

Complete set of Israel-Stewart equations of motion

DΠ = −1

τΠ(Π + ζ∇µuµ) (2)

−1

(

∇µuµ + D lnβ0

T

)

+α0

β0∂µqµ −

a′0

β0qµDuµ

Dqµ = −1

τq

[

qµ + κqT 2n

ε + p∇µ

T

)

]

− uµqνDuν (3)

−1

2qµ

(

∇λuλ + D lnβ1

T

)

− ωµλqλ

−α0

β1∇µΠ +

α1

β1(∂λπλµ + uµπλν∂λuν) +

a0

β1ΠDuµ −

a1

β1πλµDuλ

Dπµν = −1

τπ

(

πµν − 2η∇〈µuν〉)

− (πλµuν + πλνuµ)Duλ (4)

−1

2πµν

(

∇λuλ + D lnβ2

T

)

− 2π〈µ

λ ων〉λ

−α1

β2∇〈µqν〉 +

a′1

β2q〈µDuν〉 .

where A〈µν〉 ≡ 12∆

µα∆νβ(Aαβ+Aβα)−13∆

µν∆αβAαβ, ωµν ≡ 12∆

µα∆νβ(∂βuα−∂αuβ)

D. Molnar @ TQM2, Dec 15-17, 2008 10

Page 12: Viscous hydrodynamics and covariant transport

Romatschke & Romatschke, PRL99 (’07)

0 1 2 3 4p

T [GeV]

0

5

10

15

20

25v 2

(per

cent

)

idealη/s=0.03η/s=0.08η/s=0.16STAR

Dusling & Teaney, PRC77

0

0.05

0.1

0.15

0.2

0 0.5 1 1.5 2

v 2

pT (GeV)

χ=4.5Ideal

η/s=0.05η/s=0.13

η/s=0.2

Huovinen & DM, JPG35 (’08): η/s ≈ 1/4π Song & Heinz, PRC78 (’08)

All groups find ∼ 20− 30% effects for η/s = 1/(4π) in Au+Au at RHIC.

D. Molnar @ TQM2, Dec 15-17, 2008 11

Page 13: Viscous hydrodynamics and covariant transport

Applicability of IS hydro

Israel-Stewart hydrodynamics comes from a quadratic truncation (Grad’sapproach) that has no small control parameter.

⇒ crucial to test its validity against a nonequilibrium theory

HERE: test IS hydro against 2→ 2 covariant transport

massless e = 3p equation of state (ζ = 0)

ηs ≈4T

5σtr, τπ ≈ 1.2λtr ≡

1.2

nσtrσtr : transport cross section

Two scenarios: i) σ = const and ii) η/s ≈ const (set via σ ∝ time2/3).

in both cases, longitudinally expanding system vz = z/t (Bjorken flow)

D. Molnar @ TQM2, Dec 15-17, 2008 12

Page 14: Viscous hydrodynamics and covariant transport

[Huovinen & DM, arXiv:0808.0953]

TµνLR =

ε 0 0 00 p− πL/2 0 00 0 p− πL/2 00 0 0 p + πL

p +4p

3τ= −

πL

3τ(5)

πL +πL

τ

(

2K(τ)

3C+

4

3+

πL

3p

)

= −8p

9τ(C ≈ 4/5) (6)

The most relevant parameter is the inverse Knudsen number

K(τ) ≡τ

λtr(τ)=

τexp

τscatt≈

6τexp

5τπ(7)

for σ = const: λtr = 1/nσtr ∝ τ ⇒ K = K0 = const, η/s ∼ Tλtr∼ τ2/3

for η/s ≈ const: K = K0(τ/τ0)∼2/3 ∝ τ∼2/3

D. Molnar @ TQM2, Dec 15-17, 2008 13

Page 15: Viscous hydrodynamics and covariant transport

Huovinen & DM, arXiv:0808.0953 - evolution of pressure anisotropy Tzz/Txx

free streamingNavier-StokestransportIS hydro

σ = const

ideal hydro

K0 = 1

K0 = 2

K0 = 3

K0 = 6.67

K0 = 20

τ/τ0

p L/p

T

1 2 3 4 5 6 7 8 9 10

1.2

1

0.8

0.6

0.4

0.2

0

Navier-StokestransportIS hydro

η/s ≈ const

ideal hydro

K0 = 1

K0 = 2K0 = 3

K0 = 6.67

τ/τ0

p L/p

T

1 2 3 4 5 6 7 8 9 10

1.2

1

0.8

0.6

0.4

0.2

0

IS hydro applicable when K0 >∼ 2− 3, i.e., λtr <

∼ 0.3− 0.5 τ0

D. Molnar @ TQM2, Dec 15-17, 2008 14

Page 16: Viscous hydrodynamics and covariant transport

pressure evolution relative to ideal hydro

Navier-StokestransportIS hydro

21

σ = const

ideal hydro

1 2

3

6.67

K0 = 20

τ/τ0

p/

pid

eal

1 2 3 4 5 6 7 8 910 20

1.6

1.4

1.2

1

Navier-StokestransportIS hydro

2

1

η/s ≈ const

ideal hydro

1

2

3

K0 = 6.67

τ/τ0p

/p

idea

l

1 2 3 4 5 6 7 8 910 20

1.6

1.4

1.2

1

IS hydro applicable when K0 >∼ 2− 3, i.e., λtr <

∼ 0.3− 0.5 τ0

while Navier-Stokes needs K0 >∼ 6

D. Molnar @ TQM2, Dec 15-17, 2008 15

Page 17: Viscous hydrodynamics and covariant transport

entropy produced relative to initial entropy

Navier-StokestransportIS hydro

21

σ = const

ideal hydro

1

2

3 6.67

K0 = 20

τ/τ0

(dS/dη)/

(dS

0/dη)

1 5 10 15 20

1.4

1.3

1.2

1.1

1

Navier-StokestransportIS hydro

2

1

η/s ≈ const

ideal hydro

1

2

3K0 = 6.67

τ/τ0(d

S/dη)/

(dS

0/dη)

1 5 10 15 20

1.4

1.3

1.2

1.1

1

same conclusions as before

D. Molnar @ TQM2, Dec 15-17, 2008 16

Page 18: Viscous hydrodynamics and covariant transport

Connection to viscosity

K0 ≈T0τ0

5

s0

ηs,0≈ 12.8×

(

T0

1 GeV

)

( τ0

1 fm

)

(

1/(4π)

ηs0/s0

)

(8)

For typical RHIC hydro initconds T0τ0 ∼ 1, therefore

K0 >∼ 2− 3 ⇒

η

s<∼

1− 2

4π(9)

I.e., shear viscosity cannot be many times more than the conjectured bound,for IS hydro to be applicable.

When IS hydro is accurate, dissipative corrections to pressure and entropydo not exceed 20% significantly.

D. Molnar @ TQM2, Dec 15-17, 2008 17

Page 19: Viscous hydrodynamics and covariant transport

IS hydro validity test in 2DWe solve the full Israel-Stewart equations, including vorticity terms fromkinetic theory, in a 2+1D boost-invariant scenario. Shear stress only.

πµν+ 1τπ

πµν = 1β2∇〈µuν〉−1

2πµνDαuα−1

2πµν ˙

[ln β2T ]+2π

〈µλ ων〉λ−(uµπνα + uνπαµ)uα

Mimic a known reliable transport model:

• massless Boltzmann particles ⇒ ε = 3P• only 2↔ 2 processes, i.e. conserved particle number• η = 4T/(5σtr), β2 = 3/(4p)• either σ = const. = 47 mb (σtr = 14 mb) ← the simplest in transport

or σ ∝ τ2/3 ⇒ η/s ≈ 1/(4π)

“RHIC-like” initialization:

• τ0 = 0.6 fm/c• b = 8 fm• T0 = 385 MeV and dN/dη|b=0 = 1000

• freeze-out at constant n = 0.365 fm−3

D. Molnar @ TQM2, Dec 15-17, 2008 18

Page 20: Viscous hydrodynamics and covariant transport

Pressure evolution in the coreT xx and T zz averaged over the core of the system, r⊥ < 1 fm:

η/s ≈ 1/(4π) (σ ∝ τ 2/3)

Huovinen & DM, arXiv:0806.1367

remarkable similarity!

D. Molnar @ TQM2, Dec 15-17, 2008 19

Page 21: Viscous hydrodynamics and covariant transport

Viscous hydro elliptic flowTWO effects: - dissipative corrections to hydro fields uµ, T, n

- dissipative corrections in Cooper-Frye freezeout f → f0+δf

η/s ≈ 1/(4π) (σ ∝ τ 2/3)

Must use Grad’s quadratic correctionsin Cooper-Frye formula

EdN

d3p=

pµdσµ(f0 + δf)

for massless ε = 3p, shear only

δf = f0

[

1 +pµpνπµν

8nT 3

]

calculation for σtr = const ∼ 15mb shows similar behavior

D. Molnar @ TQM2, Dec 15-17, 2008 20

Page 22: Viscous hydrodynamics and covariant transport

Viscous hydro vs transport v2

Huovinen & DM, arXiv:0806.1367

• excellent agreement when σ = const ∼ 47mb• good agreement for η/s ≈ 1/(4π), i.e., σ ∝ τ 2/3

D. Molnar @ TQM2, Dec 15-17, 2008 21

Page 23: Viscous hydrodynamics and covariant transport

Bulk viscosityacts against compression/dilution: Π = −ζ ~∇~v

largely unknown at T ∼ 200− 400 MeV relevant for RHIC

perturbatively tiny: ζ/s ∼ 0.02α2s, on lattice: very preliminary

Arnold, Dogan, Moore, PRD74 (’06) Meyer, arXiv:0710.3717

0.001

0.01

0.1

1

0.1 1

ζ/s

(ε-3P)/(ε+P)

1.02

1.24

1.652.22

3.22

L0/a=8 data

- no quarks (gluons only)- crude lattices

implies peak near Tc

0

0.05

0.1

0.15

0.2

0.25

0.1 0.2 0.3 0.4

zeta

/ s

T [GeV]

fitted zeta/s, Cheng et al EOSLorenzian fit

D. Molnar @ TQM2, Dec 15-17, 2008 22

Page 24: Viscous hydrodynamics and covariant transport

lattice QCD equation of state Cheng et al, (’07)

0

2

4

6

8

10

12

14

16

100 200 300 400 500 600 700

0.4 0.6 0.8 1 1.2 1.4 1.6

T [MeV]

Tr0 εSB/T4

ε/T4: Nτ=46

3p/T4: Nτ=46

D. Molnar @ TQM2, Dec 15-17, 2008 23

Page 25: Viscous hydrodynamics and covariant transport

Fries et al, PRC78 (’08): study in 0+1D Bjorken scenario

lattice EOS with η/s = 1/(4π), τ0 = 0.3 fm, vary width and height of ζ/s(T )

0.1

0.2

0.3

0.4

0.5

0.6

/s,

/s

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

T (GeV)

/s/s scaled/s

(a)

0123456789

(-3

P)/

T4

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

T (GeV)

(b)

0.0

0.2

0.4

0.6

0.8

1.0

Rel

.Pre

ssu

re

5 1 2 5 10 2 5

(fm/c)

(a) Pz/P

0.0

0.05

0.1

0.15

0.2

0.25

0.3

Rel

.En

tro

py

c = 0c = 1, a = 1c = 2, a = 1

(b) S /Sf

c = 1, a = 2c = 2, a = 2

finds 10− 15% entropy production from bulk viscosity possible

however, study is thermodynamically inconsistent because it ignored terms

in equation of motion DΠ = − 1τΠ

(Π + ζ∇µuµ)−12Π

(

∇µuµD ln β0T

)

D. Molnar @ TQM2, Dec 15-17, 2008 24

Page 26: Viscous hydrodynamics and covariant transport

Entropy density in Israel-Stewart theory

dS

dη= τAT

[

seq −1

2T

(

β0Π2 +

3

2β2π

2L

)]

and only complete IS equations ensure

d

(

dS

)

= τAT

(

Π2

ζT+

3π2L

4ηsT

)

≡d

(

dS

)bulk

+d

(

dS

)shear

≥ 0

The “naive” approximation violates the 2nd law in general, and also

d

(

dS

)

6=d

(

dS

)bulk

+d

(

dS

)shear

D. Molnar @ TQM2, Dec 15-17, 2008 25

Page 27: Viscous hydrodynamics and covariant transport

Bulk viscosity produces extra entropy. If too much is generated, hydro itselfbecomes questionable.

one benchmark: relative entropy production

∆Sπ+Π

S0=

S(Tf = 180MeV )− S0

S0

<∼ 0.2− 0.25

depends on initial conditions (shear stress and bulk pressure), and initialtime.

0+1D exploration for “RHIC”-like conditions:

• most recent lattice EOS, continued over to a resonance gas at low T

• η/s = 1/(4π) fixed, vary width wζ and height hζ of ζ/s(T ), τΠ = τπ = 6η/(sT )

• ε0(τ0 = 0.6fm) = 15 GeV/fm3 - for other τ0, scale via s0τ0 = const (ideal)

• stop at beginning of hadron phase Tf = 180 MeV (τf ≈ 8 fm)

D. Molnar @ TQM2, Dec 15-17, 2008 26

Page 28: Viscous hydrodynamics and covariant transport

entropy generation with shear viscosity only Huovinen & DM, (’08)

τf = 8 fmTf = 180 MeV

η = s/(4π)ζ = 0

0.20.3

0.6

τ0 = 1 fm

π0/p0

∆S/S

0

10.50-0.5-1

0.5

0.4

0.3

0.2

0.1

0

D. Molnar @ TQM2, Dec 15-17, 2008 27

Page 29: Viscous hydrodynamics and covariant transport

naive vs complete BULK terms in equations Huovinen & DM, (’08)

naive bulk eqn.bulkshearcomplete IS, shear+bulk

τ0 = 0.6 fm

η = s/(4π)hζ = wζ = 1

τ [fm]

∆S/S

0

1086420

0.6

0.5

0.4

0.3

0.2

0.1

0

naive bulk eqn.bulkshearcomplete IS, shear+bulk

τ0 = 0.3 fm

η = s/(4π)hζ = wζ = 1

τ [fm]∆

S/S

0

1086420

0.6

0.5

0.4

0.3

0.2

0.1

0

correct IS equations produce somewhat less entropy

D. Molnar @ TQM2, Dec 15-17, 2008 28

Page 30: Viscous hydrodynamics and covariant transport

dependence on height on width of ζ/s(T ) Huovinen & DM, (’08)

4, 1/43, 1/32, 1/21/2, 2default (hζ, wζ = 1, 1)

τ0 = 0.6 fm

τ [fm]

∆S/S

0

121086420

0.5

0.4

0.3

0.2

0.1

0

bulk effects significant for hζ · wζ ∼ O(1)

D. Molnar @ TQM2, Dec 15-17, 2008 29

Page 31: Viscous hydrodynamics and covariant transport

Π0/p0

0.40.20-0.2-0.4

π0/p0

1

0.5

0

-0.5

-1

τ0 = 0.6

Π0/p0

0.40.20-0.2-0.4

π0/p0

1

0.5

0

-0.5

-1

τ0 = 0.6

Π0/p0

0.40.20-0.2-0.4

π0/p0

1

0.5

0

-0.5

-10.8

0.7

0.6

0.5

0.4

0.35

0.3

0.25τ0 = 0.6

Π0/p0

0.40.20-0.2-0.4

π0/p0

1

0.5

0

-0.5

-1

τ0 = 1

Π0/p0

0.40.20-0.2-0.4

π0/p0

1

0.5

0

-0.5

-1

τ0 = 1

Π0/p0

0.40.20-0.2-0.4

π0/p0

1

0.5

0

-0.5

-1

0.4

0.35

0.3

0.25

0.2

0.17τ0 = 1

Π0/p0

0.40.20-0.2-0.4

π0/p0

1

0.5

0

-0.5

-1

τ0 = 0.3

Π0/p0

0.40.20-0.2-0.4

π0/p0

1

0.5

0

-0.5

-1

τ0 = 0.3

Π0/p0

0.40.20-0.2-0.4

π0/p0

1

0.5

0

-0.5

-1

0.8

0.7

0.6

0.5

0.4

0.35

0.3τ0 = 0.3

requirement of modest ≤ 20 − 25%entropy production severely limits initialconditions if τ0 <

∼ 1 fm

even Navier-Stokes limit is hard toaccommodate

color glass π0 ∼ −p0 is marginal even atτ0 = 1 fm

D. Molnar @ TQM2, Dec 15-17, 2008 30

Page 32: Viscous hydrodynamics and covariant transport

SummaryProgress so far:

• we can solve causal viscous hydro in 2+1D

• IS hydro is a good approximation, if shear viscosity is not too largeη/s <∼ few/(4π)

must use complete set of Israel-Stewart equations

• η/s ∼ O(1)/(4π) is compatible with RHIC v2(pT ) data (charged hadrons),

• if bulk viscosity is significant (Meyer’s central values), viscous hydro isapplicable only for very limited initial conditions. E.g., need τ0 >

∼ 0.5 fm.

Missing ingredients:

• establish IS hydro region of validity for realistic equation of state

• include bulk viscosity in 2+1D (in progress)

• couple hydro to hadron transport (proper freezeout)

D. Molnar @ TQM2, Dec 15-17, 2008 31