virtual instrumentation applications

Upload: sanj155

Post on 04-Jun-2018

252 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/13/2019 Virtual Instrumentation applications

    1/31

    Fourier transforms:

    Definition : refer to notes

    Property and its proof refer to this linkhttp://fourier.eng.hmc.edu/e101/lectures/hand

    out3/node1.html

    orProperties of Fourier Transform

    Ruye Wang 2009-07-05

    http://fourier.eng.hmc.edu/e101/lectures/handout3/node1.htmlhttp://fourier.eng.hmc.edu/e101/lectures/handout3/node1.htmlhttp://fourier.eng.hmc.edu/e101/lectures/handout3/node2.htmlhttp://fourier.eng.hmc.edu/e101/lectures/handout3/node2.htmlhttp://fourier.eng.hmc.edu/e101/lectures/handout3/node1.htmlhttp://fourier.eng.hmc.edu/e101/lectures/handout3/node1.htmlhttp://fourier.eng.hmc.edu/e101/lectures/handout3/node1.html
  • 8/13/2019 Virtual Instrumentation applications

    2/31

    SAMPLING RATE

    The sampling rate, sample rate, or sampling frequency(fs) defines the number of samplesper

    unit of time(usually seconds) taken from a continuous signalto make a discrete signal.

    For time-domainsignals, the unit for sampling rate is hertz(inverse seconds, 1/s, s1),

    sometimes noted as Sa/s or S/s (samples per second). The reciprocal of the sampling frequencyis the sampling periodorsampling interval, which is the time between samples

    Sampling theorem

    The NyquistShannon sampling theoremstates that perfect reconstruction of a signal is

    possible when the sampling frequency is greater than twice the maximum frequency of the

    signal being sampled, or equivalently, when the Nyquist frequency(half the sample rate)exceeds the highest frequency of the signal being sampled. If lower sampling rates are used,

    the original signal's information may not be completely recoverable from the sampled signal.

    For example, if a signal has an upper band limitof 100 Hz, a sampling frequency greater than

    200 Hz will avoid aliasingand would theoretically allow perfect reconstruction.

    Dirichlet conditions FT:

    the Dirichlet conditionsare sufficient conditionsfor a real-valued, periodic functionf(x) to be

    equal to the sum of its Fourier seriesat each point wherefiscontinuous. Moreover, the

    behavior of the Fourier series at points of discontinuity is determined as well (it is the midpoint

    of the values of the discontinuity). These conditions are named after Peter Gustav Lejeune

    Dirichlet.

    http://en.wikipedia.org/wiki/Continuous_signalhttp://en.wikipedia.org/wiki/Sample_(signal)http://en.wikipedia.org/wiki/Timehttp://en.wikipedia.org/wiki/Secondhttp://en.wikipedia.org/wiki/Continuous_signalhttp://en.wikipedia.org/wiki/Discrete_signalhttp://en.wikipedia.org/wiki/Time-domainhttp://en.wikipedia.org/wiki/Hertzhttp://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theoremhttp://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theoremhttp://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theoremhttp://en.wikipedia.org/wiki/Nyquist_frequencyhttp://en.wikipedia.org/wiki/Bandwidth_(signal_processing)http://en.wikipedia.org/wiki/Aliasinghttp://en.wikipedia.org/wiki/Sufficient_conditionhttp://en.wikipedia.org/wiki/Real_numbershttp://en.wikipedia.org/wiki/Periodic_functionhttp://en.wikipedia.org/wiki/Fourier_serieshttp://en.wikipedia.org/wiki/Continuous_functionhttp://en.wikipedia.org/wiki/Peter_Gustav_Lejeune_Dirichlethttp://en.wikipedia.org/wiki/Peter_Gustav_Lejeune_Dirichlethttp://en.wikipedia.org/wiki/Peter_Gustav_Lejeune_Dirichlethttp://en.wikipedia.org/wiki/Peter_Gustav_Lejeune_Dirichlethttp://en.wikipedia.org/wiki/Peter_Gustav_Lejeune_Dirichlethttp://en.wikipedia.org/wiki/Peter_Gustav_Lejeune_Dirichlethttp://en.wikipedia.org/wiki/Continuous_functionhttp://en.wikipedia.org/wiki/Fourier_serieshttp://en.wikipedia.org/wiki/Periodic_functionhttp://en.wikipedia.org/wiki/Real_numbershttp://en.wikipedia.org/wiki/Sufficient_conditionhttp://en.wikipedia.org/wiki/Aliasinghttp://en.wikipedia.org/wiki/Bandwidth_(signal_processing)http://en.wikipedia.org/wiki/Nyquist_frequencyhttp://en.wikipedia.org/wiki/Nyquist_frequencyhttp://en.wikipedia.org/wiki/Nyquist_frequencyhttp://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theoremhttp://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theoremhttp://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theoremhttp://en.wikipedia.org/wiki/Hertzhttp://en.wikipedia.org/wiki/Time-domainhttp://en.wikipedia.org/wiki/Time-domainhttp://en.wikipedia.org/wiki/Time-domainhttp://en.wikipedia.org/wiki/Discrete_signalhttp://en.wikipedia.org/wiki/Continuous_signalhttp://en.wikipedia.org/wiki/Secondhttp://en.wikipedia.org/wiki/Timehttp://en.wikipedia.org/wiki/Sample_(signal)
  • 8/13/2019 Virtual Instrumentation applications

    3/31

    The conditions are:

    f(x) must be absolutely integrableover a period.

    f(x) must have a finite number of extremain any given interval, i.e. there must be a finite

    number of maxima and minima in the interval.

    f(x) must have a finite number of discontinuitiesin any given interval, however the discontinuity

    cannot be infinite.f(x) must be bounded

    The last three conditions are satisfied iffis a function of bounded variationover a period.

    http://en.wikipedia.org/wiki/Absolutely_integrablehttp://en.wikipedia.org/wiki/Maxima_and_minimahttp://en.wikipedia.org/wiki/Classification_of_discontinuitieshttp://en.wikipedia.org/wiki/Bounded_functionhttp://en.wikipedia.org/wiki/Bounded_variationhttp://en.wikipedia.org/wiki/Bounded_variationhttp://en.wikipedia.org/wiki/Bounded_functionhttp://en.wikipedia.org/wiki/Classification_of_discontinuitieshttp://en.wikipedia.org/wiki/Maxima_and_minimahttp://en.wikipedia.org/wiki/Absolutely_integrablehttp://en.wikipedia.org/wiki/Absolutely_integrable
  • 8/13/2019 Virtual Instrumentation applications

    4/31

  • 8/13/2019 Virtual Instrumentation applications

    5/31

  • 8/13/2019 Virtual Instrumentation applications

    6/31

  • 8/13/2019 Virtual Instrumentation applications

    7/31

    The power spectrum is symmetric about the Nyquist frequency as the following illustration

    shows

  • 8/13/2019 Virtual Instrumentation applications

    8/31

  • 8/13/2019 Virtual Instrumentation applications

    9/31

  • 8/13/2019 Virtual Instrumentation applications

    10/31

    CORRELATION in VI

    1. 1D Cross Correlation (DBL)

  • 8/13/2019 Virtual Instrumentation applications

    11/31

  • 8/13/2019 Virtual Instrumentation applications

    12/31

    1D Cross Correlation (CDB)

  • 8/13/2019 Virtual Instrumentation applications

    13/31

  • 8/13/2019 Virtual Instrumentation applications

    14/31

    2D cross correlation (CDB) same as DBL but here input is complex value

    l l

  • 8/13/2019 Virtual Instrumentation applications

    15/31

    Cross Correlation Details

    1D Cross Correlation

    The cross correlation Rxy(t) of the sequencesx(t) and y(t) is defined by the following equation:

    where the symbol denotes correlation.

    The discrete implementation of the Cross Correlation VI is as follows.

    Let hrepresent a sequence whose indexing can be negative, let Nbe the number of elements in

    the input sequence X, let Mbe the number of elements in the sequence Y, and assume that the

    indexed elements of Xand Ythat lie outside their range are equal to zero, as shown by thefollowing equations:

    xj= 0,j< 0 orj N

    and

    yj= 0,j< 0 orj M.

    Then the CrossCorrelation VI obtains the elements of husing the following equation:

    forj=(N1),(N2), , 1, 0, 1, , (M2), (M1)

    h l f h l d h l i h h b

  • 8/13/2019 Virtual Instrumentation applications

    16/31

    The elements of the output sequence Rxyare related to the elements in the sequence hby

    Rxyi= hi(N1)

    for i= 0, 1, 2, ,N+M2.

    In order to make the cross correlation calculation more accurate, normalization is required insome situations.

    VI provides biased and unbiased normalization.

    1. Biased normalization

    If the normalizationis biased, LabVIEW applies biased normalization as follows:

    Rxy(biased)j=

    forj= 0, 1, 2, ,M+N2

    where Rxyis the cross correlation betweenxand ywith no normalization.

    2. Unbiased normalization

    If the normalizationis unbiased, LabVIEW applies unbiased normalization as follows:

    Rxy(unbiased)j=

    forj= 0, 1, 2, ,M+N2

    where Rxyis the cross correlation betweenxand ywith no normalization.

  • 8/13/2019 Virtual Instrumentation applications

    17/31

    AUTO CORRELATION VI

  • 8/13/2019 Virtual Instrumentation applications

    18/31

    AUTO CORRELATION VI

  • 8/13/2019 Virtual Instrumentation applications

    19/31

  • 8/13/2019 Virtual Instrumentation applications

    20/31

  • 8/13/2019 Virtual Instrumentation applications

    21/31

  • 8/13/2019 Virtual Instrumentation applications

    22/31

  • 8/13/2019 Virtual Instrumentation applications

    23/31

    WINDOWING AND FILTERING

  • 8/13/2019 Virtual Instrumentation applications

    24/31

    WINDOWING AND FILTERING

    1. FIR Windowed Filter

  • 8/13/2019 Virtual Instrumentation applications

    25/31

  • 8/13/2019 Virtual Instrumentation applications

    26/31

    In filtered window type,the values for low cutofffreq: fland highcutofffreq: fhmust observe the following relationship:0 < f1< f2< 0.5fswhere f1is low cutofffreq: fl, f2is high cutofffreq: fh, and fsis sampling

    freq: fs.

  • 8/13/2019 Virtual Instrumentation applications

    27/31

  • 8/13/2019 Virtual Instrumentation applications

    28/31

    0 Rectangle (default)

  • 8/13/2019 Virtual Instrumentation applications

    29/31

    g ( )

    1 Hanning

    2 Hamming

    3 Blackman-Harris

    4 Exact Blackman

    5 Blackman6 Flat Top

    7 4 Term B-Harris

    8 7 Term B-Harris

    9 Low Sidelobe

    11 Blackman Nuttall

    30 Triangle

    31 Bartlett-Hanning

    32 Bohman

    33 Parzen

    34 Welch

    60 Kaiser61 Dolph-Chebyshev

    62 Gaussian

  • 8/13/2019 Virtual Instrumentation applications

    30/31

  • 8/13/2019 Virtual Instrumentation applications

    31/31