viii. appendices - springer978-3-540-27280-9/1.pdf1018 viii. appendices the conversion tables are...

104
VIII. Appendices Table of Contents Appendix I. Unit Systems, Constants, and Numbers ................................... 1013 Table A.I.1. Primary SI Units .......................................................................... 1014 Table A.I.2. Derived SI Units ......................................................................... 1014 Table A.I.3. Associated SI Units ..................................................................... 1014 Table A.I.4. Common Physical Quantities in Two Systems of Dimensions ................................................................ 1015 Table A.I.5. Physical Constants ....................................................................... 1016 Table A.I.6. Dimensionless Numbers .............................................................. 1017 Table A.I.7. Multiples of SI Units .................................................................... 1017 Table A.I.8. Unit Conversion Tables ............................................................... 1018 Appendix II. Thermodynamic Data.............................................................. 1023 Table A.II.1(SI). Saturated Water and Dry Saturated Steam Properties, f(P) ................................................ 1024 Table A.II.2(SI). Saturated Water and Dry Saturated Steam Properties, f(T) ................................................. 1028 Table A.II.3(SI). Superheated Steam Properties .............................................. 1032 Table A.II.4(SI). Subcooled Water Properties ................................................. 1036 Table A.II.5(SI). Properties of Various Ideal Gases......................................... 1037 Table A.II.1(BU). Saturated Water and Dry Saturated Steam Properties, f(T) ................................................. 1038 Table A.II.2(BU). Saturated Water and Dry Saturated Steam Properties, f(P) ................................................ 1040 Table A.II.3(BU). Superheated Steam Properties ............................................ 1042 Table A.II.4(BU). Subcooled Water Properties ............................................... 1046 Table A.II.5(BU). Properties of Various Ideal Gases....................................... 1047 Table A.II.6. Examples of Least-Square Fit to Saturated Water and Dry Saturated Steam.......................................................................... 1047 Appendix III. Pipe and Tube Data................................................................. 1049 Table A.III.1(SI). Commercial Steel Pipe (Schedule Wall Thickness) ............ 1050 Table A.III.2(SI). Commercial Steel Pipe (Nominal Pipe Size, NPS) ............. 1051 Table A.III.3(SI). Tube Data, Birmingham Gauges to millimeter and inches ........................................................................... 1053 Table A.III.1(BU). Pipe Data, Carbon & Alloy Steel ...................................... 1054 Table A.III.2(BU). Tube Data .......................................................................... 1055

Upload: others

Post on 11-Mar-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

VIII. Appendices

Table of Contents

Appendix I. Unit Systems, Constants, and Numbers ................................... 1013 Table A.I.1. Primary SI Units .......................................................................... 1014 Table A.I.2. Derived SI Units ......................................................................... 1014 Table A.I.3. Associated SI Units ..................................................................... 1014 Table A.I.4. Common Physical Quantities

in Two Systems of Dimensions................................................................ 1015 Table A.I.5. Physical Constants ....................................................................... 1016 Table A.I.6. Dimensionless Numbers .............................................................. 1017 Table A.I.7. Multiples of SI Units.................................................................... 1017 Table A.I.8. Unit Conversion Tables ............................................................... 1018

Appendix II. Thermodynamic Data.............................................................. 1023Table A.II.1(SI). Saturated Water

and Dry Saturated Steam Properties, f(P) ................................................ 1024 Table A.II.2(SI). Saturated Water

and Dry Saturated Steam Properties, f(T)................................................. 1028 Table A.II.3(SI). Superheated Steam Properties .............................................. 1032 Table A.II.4(SI). Subcooled Water Properties ................................................. 1036 Table A.II.5(SI). Properties of Various Ideal Gases......................................... 1037 Table A.II.1(BU). Saturated Water

and Dry Saturated Steam Properties, f(T)................................................. 1038 Table A.II.2(BU). Saturated Water

and Dry Saturated Steam Properties, f(P) ................................................ 1040 Table A.II.3(BU). Superheated Steam Properties ............................................ 1042 Table A.II.4(BU). Subcooled Water Properties ............................................... 1046 Table A.II.5(BU). Properties of Various Ideal Gases....................................... 1047 Table A.II.6. Examples of Least-Square Fit to Saturated Water

and Dry Saturated Steam.......................................................................... 1047

Appendix III. Pipe and Tube Data................................................................. 1049Table A.III.1(SI). Commercial Steel Pipe (Schedule Wall Thickness) ............ 1050 Table A.III.2(SI). Commercial Steel Pipe (Nominal Pipe Size, NPS) ............. 1051 Table A.III.3(SI). Tube Data, Birmingham Gauges

to millimeter and inches ........................................................................... 1053 Table A.III.1(BU). Pipe Data, Carbon & Alloy Steel ...................................... 1054 Table A.III.2(BU). Tube Data.......................................................................... 1055

Page 2: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

1012 VIII. Appendices

Table A.III.4. Navier-Stokes Equations in the Cylindrical Coordinate System ...................................................... 1056

Table A.III.5. Navier-Stokes Equations in the Spherical Coordinate System ......................................................... 1056

Table A.III.6. Substantial Derivative and Flow Acceleration Components (Cylindrical Coordinates)......................................................................... 1057

Table A.III.7. Substantial Derivative and Flow Acceleration Components (Spherical Coordinates)............................................................................ 1057

Appendix IV. Thermophysical Data............................................................. 1059 Table A.IV.1(SI). Thermophysical Properties

of Selected Metallic Solids....................................................................... 1060 Table A.IV.2(SI). Thermophysical Properties

of Selected Nonmetallic Solids ................................................................ 1064 Table A.IV.3(SI). Thermophysical Properties

of Common Materials at 300 K................................................................ 1066 Table A.IV.4(SI). Thermophysical Properties

of Gases at Atmospheric Pressure............................................................ 1072 Table A.IV.5(SI). Thermophysical Properties

of Saturated Water and Saturated Steam.................................................. 1077 Table A.IV.6(SI). Thermophysical Properties of Liquid Metals...................... 1079 Table A.IV.4(BU). Thermophysical Properties of Gases

at Atmospheric Pressure........................................................................... 1080 Table A.IV.5(BU). Thermophysical Properties of Saturated Water ................ 1082 Table A.IV.6(BU). Thermophysical Properties of Saturated Steam ................ 1082 Table A.IV.7(BU). Thermophysical Properties of Superheated Steam............ 1083 Table A.IV.8(BU). Thermal Properties of Solid Dielectrics

at Normal Temperature ............................................................................ 1084 Table A.IV.9(BU). Normal, Total Emissivity of Metallic Surfaces................. 1086 Table A.IV.10(BU). Normal, Total Emissivity of Non-Metallic Surfaces ....... 1088

Appendix V. Nuclear Properties of Elements ............................................... 1091Table A.V.1(SI). Absorption Coefficient of Gamma Rays .............................. 1092 Table A.V.2(SI). Cross Sections for Neutron Interaction ................................ 1093

Page 3: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

Appendix I Unit Systems, Constants, and Numbers

Table A.I.1. Primary SI Units .......................................................................... 1014 Table A.I.2. Derived SI Units ......................................................................... 1014 Table A.I.3. Associated SI Units ..................................................................... 1014 Table A.I.4. Common Physical Quantities

in Two Systems of Dimensions................................................................ 1015 Table A.I.5. Physical constants ........................................................................ 1016 Table A.I.6. Dimensionless Numbers .............................................................. 1017 Table A.I.7. Multiples of SI Units.................................................................... 1017 Table A.I.8. Unit Conversion Tables ............................................................... 1018

Page 4: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

1014 VIII. Appendices

Table A.I.1. Primary SI Units

Table A.I.2. Derived SI Units

Table A.I.3. Associated SI Units

Page 5: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

Appendix I 1015

Table A.I.4. Common Physical Quantities in Two Systems of Dimensions

Page 6: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

1016 VIII. Appendices

Table A.I.5. Physical Constants

Page 7: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

Appendix I 1017

Table A.I.6. Dimensionless Numbers

Table A.I.7. Multiples of SI Units

Page 8: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

1018 VIII. Appendices

The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To convert units in each row of the first column to units in each column of the first row, multiply by the corresponding value in the matrix. Values below the diagonal are the inverse of the values above the diagonal. Unit conversion can be performed by using the software on the accompanying CD-ROM.

Table A.I.8.1. Conversion Factors (Length)

Table A.I.8.2. Conversion Factors (Area)

Table A.I.8.3. Conversion Factors (Volume)

Table A.I.8.4. Conversion Factors (Mass)

Page 9: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

Appendix I 1019

Table A.I.8.5. Conversion Factors (Density)

Table A.I.8.6. Conversion Factors (Time)

Table A.I.8.7. Conversion Factors (Flow)

Table A.I.8.8. Conversion Factors (Force)

Table A.I.8.9. Conversion Factors (Pressure and Momentum Flux)

Page 10: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

1020 VIII. Appendices

Table A.I.8.10. Conversion Factors (Energy, Work, Enthalpy, and Torque)

Table A.I.8.11. Conversion Factors (Power)

Table A.I.8.12. Conversion Factors (Power Density)

Table A.I.8.13. Conversion Factors (Heat Flux)

Table A.I.8.14. Conversion Factors (Thermal Conductivity)

Page 11: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

Appendix I 1021

Table A.I.8.15. Conversion Factors (Heat Transfer Coefficient)

Table A.I.8.16. Conversion Factors (Viscosity)

Page 12: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

Appendix II Thermodynamic Data

Table A.II.1(SI). Saturated Water and Dry Saturated Steam Properties, f(P) ................................................ 1024

Table A.II.2(SI). Saturated Water and Dry Saturated Steam Properties, f(T)................................................. 1028

Table A.II.3(SI). Superheated Steam Properties .............................................. 1032 Table A.II.4(SI). Subcooled Water Properties ................................................. 1036 Table A.II.5(SI). Properties of Various Ideal Gases......................................... 1037 Table A.II.1(BU). Saturated Water

and Dry Saturated Steam Properties, f(T)................................................. 1038 Table A.II.2(BU). Saturated Water

and Dry Saturated Steam Properties, f(P) ................................................ 1040 Table A.II.3(BU). Superheated Steam Properties ............................................ 1042 Table A.II.4(BU). Subcooled Water Properties ............................................... 1046 Table A.II.5(BU). Properties of Various Ideal Gases....................................... 1047 Table A.II.6. Examples of Least-Square Fit to Saturated Water

and Dry Saturated Steam.......................................................................... 1047

Page 13: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

1024 VIII. Appendices

Table A.II.1(SI). Saturated Water and Dry Saturated Steam Properties, f(P)

Page 14: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

Appendix II 1025

Table A.II.1(SI). Saturated Water and Dry Saturated Steam Properties, f(P) (continued)

Page 15: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

1026 VIII. Appendices

Table A.II.1(SI). Saturated Water and Dry Saturated Steam Properties, f(P) (continued)

Page 16: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

Appendix II 1027

Table A.II.1(SI). Saturated Water and Dry Saturated Steam Properties, f(P) (continued)

See the reference for the table. This material is used by permission of John Wiley & Sons, Inc.

Page 17: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

1028 VIII. Appendices

Table A.II.2(SI). Saturated Water and Dry Saturated Steam Properties, f(T)

Page 18: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

Appendix II 1029

Table A.II.2(SI). Saturated Water and Dry Saturated Steam Properties, f(T) (continued)

Page 19: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

1030 VIII. Appendices

Table A.II.2(SI). Saturated Water and Dry Saturated Steam Properties, f(T) (continued)

Page 20: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

Appendix II 1031

Table A.II.2(SI). Saturated Water and Dry Saturated Steam Properties, f(T) (continued)

See the reference for this table. This material is used by permission of John Wiley & Sons, Inc.

Page 21: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

1032 VIII. Appendices

Table A.II.3(SI). Superheated Steam Properties

Page 22: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

Appendix II 1033

Table A.II.3(SI). Superheated Steam Properties (continued)

Page 23: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

1034 VIII. Appendices

Table A.II.3(SI). Superheated Steam Properties (continued)

Page 24: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

Appendix II 1035

Table A.II.3(SI). Superheated Steam Properties (continued)

Page 25: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

1036 VIII. Appendices

Table A.II.4(SI). Subcooled Water Properties

See the reference for this table. This material is used by permission of John Wiley & Sons, Inc.

Page 26: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

Appendix II 1037

Table A.II.5(SI). Properties of Various Ideal Gases

See the reference for this table.

Page 27: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

1038 VIII. Appendices

Table A.II.1(BU). Saturated Water and Dry Saturated Steam Properties, f(P)

Page 28: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

Appendix II 1039

Table A.II.1(BU). Saturated Water and Dry Saturated Steam Properties, f(P) (continued)

See the reference for this table. This material is used by permission of John Wiley & Sons, Inc.

Page 29: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

1040 VIII. Appendices

Table A.II.2(BU). Saturated Water and Dry Saturated Steam Properties, f(T)

Page 30: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

Appendix II 1041

Table A.II.2(BU). Saturated Water and Dry Saturated Steam Properties, f(T) (continued)

See the reference for this table. This material used by permission of John Wiley & Sons, Inc.

Page 31: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

1042 VIII. Appendices

Table A.II.3(BU). Superheated Steam Properties

Page 32: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

Appendix II 1043

Table A.II.3(BU). Superheated Steam Properties (continued)

Page 33: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

1044 VIII. Appendices

Table A.II.3(BU). Superheated Steam Properties (continued)

Page 34: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

Appendix II 1045

Table A.II.3(BU). Superheated Steam Properties (continued)

See the reference for this table. This material used by permission of John Wiley & Sons, Inc.

Page 35: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

1046 VIII. Appendices

Table A.II.4(BU). Subcooled Water Properties

See the reference for this table. This material used by permission of John Wiley & Sons, Inc.

Page 36: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

Appendix II 1047

Table A.II.5(BU). Properties of Various Ideal Gases

See the reference for this table.

Page 37: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

1048 VIII. Appendices

Table A.II.6. Examples of least-square fit to saturated water and dry saturated steam prop-erties

Page 38: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

Appendix III Pipe and Tube Data

This appendix contains pipe and tube data in SI units followed by the same data in BU. This appendix also includes the Navier-Stokes equations in the cylindrical and spherical coordinates.

Table A.III.1(SI). Commercial Steel Pipe (Schedule Wall Thickness) ............ 1050 Table A.III.2(SI). Commercial Steel Pipe (Nominal Pipe Size, NPS) ............. 1051 Table A.III.3(SI). Tube Data, Birmingham Gauges

to millimeter and inches ........................................................................... 1053 Table A.III.1(BU). Pipe Data, Carbon & Alloy Steel ...................................... 1054 Table A.III.2(BU). Tube Data.......................................................................... 1055 Table A.III.4. Navier-Stokes Equations

in the Cylindrical Coordinate System ...................................................... 1056 Table A.III.5. Navier-Stokes Equations

in the Spherical Coordinate System ......................................................... 1056 Table A.III.6. Substantial Derivative and Flow Acceleration Components

(Cylindrical Coordinates)......................................................................... 1057 Table A.III.7. Substantial Derivative and Flow Acceleration Components

(Spherical Coordinates)............................................................................ 1057

Page 39: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

1050 VIII. Appendices

Table A.III.1(SI). Commercial Steel Pipe (Schedule Wall Thickness)

Page 40: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

Appendix III 1051

Table A.III.2(SI). Commercial Steel Pipe (Nominal Pipe Size, NPS)

Page 41: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

1052 VIII. Appendices

Table A.III.2(SI). Commercial Steel Pipe (Nominal Pipe Size, NPS), (continued)

Page 42: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

Appendix III 1053

Table A.III.3(SI). Tube data, Birmingham Gauges to millimeter and inches

Page 43: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

1054 VIII. Appendices

Table A.III.1(BU). Pipe Data, Carbon & Alloy Steel

Page 44: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

Appendix III 1055

Table A.III.2(BU). Tube Data

Page 45: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

1056 VIII. Appendices

Table A.III.4. Navier-Stokes Equations in the Cylindrical Coordinate System

Table A.III.5. Navier-Stokes Equations in the Spherical Coordinate System

Page 46: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

Appendix III 1057

Table A.III.6. Substantial derivative and flow acceleration components (Cylindrical coor-dinates)

Table A.III.7. Substantial derivative and flow acceleration components (Spherical coordi-nates)

Page 47: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

Appendix IV Thermophysical Data

Table A.IV.1(SI). Thermophysical Properties of Selected Metallic Solids....................................................................... 1060

Table A.IV.2(SI). Thermophysical Properties of Selected Nonmetallic Solids ................................................................ 1064

Table A.IV.3(SI). Thermophysical Properties of Common Materials at 300 K................................................................ 1066

Table A.IV.4(SI). Thermophysical Properties of Gases at Atmospheric Pressure ............................................................ 1072

Table A.IV.5(SI). Thermophysical Properties of Saturated Water and Saturated Steam.................................................. 1077

Table A.IV.6(SI). Thermophysical Properties of Liquid Metals...................... 1079 Table A.IV.4(BU). Thermophysical Properties of Gases

at Atmospheric Pressure........................................................................... 1080 Table A.IV.5(BU). Thermophysical Properties of Saturated Water ................ 1082 Table A.IV.6(BU). Thermophysical Properties of Saturated Steam ................ 1082 Table A.IV.7(BU). Thermophysical Properties of Superheated Steam............ 1083 Table A.IV.8(BU). Thermal Properties of Solid Dielectrics

at Normal Temperature ............................................................................ 1084 Table A.IV.9(BU). Normal, Total Emissivity of Metallic Surfaces................. 1086 Table A.IV.10(BU). Normal, Total Emissivity of Non-Metallic Surfaces........ 1088

Page 48: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

1060 VIII. Appendices

Tab

le A

.IV

.1(S

I).

The

rmop

hysi

cal P

rope

rtie

s of

Sel

ecte

d M

etal

lic

Sol

ids

Page 49: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

Appendix IV 1061

Tab

le A

.IV

.1(S

I).

The

rmop

hysi

cal P

rope

rtie

s of

Sel

ecte

d M

etal

lic

Sol

ids

(con

tinu

ed)

Page 50: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

1062 VIII. Appendices

Tab

le A

.IV

.1(S

I).

The

rmop

hysi

cal P

rope

rtie

s of

Sel

ecte

d M

etal

lic

Sol

ids

(con

tinu

ed)

Page 51: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

Appendix IV 1063

Tab

le A

.IV

.1(S

I).

The

rmop

hysi

cal P

rope

rtie

s of

Sel

ecte

d M

etal

lic

Sol

ids

(con

tinu

ed)

Page 52: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

1064 VIII. Appendices

Tab

le A

.IV

.2(S

I).

The

rmop

hysi

cal P

rope

rtie

s of

Sel

ecte

d N

onm

etal

lic

Sol

ids

Page 53: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

Appendix IV 1065

Tab

le A

.IV

.2(S

I).

The

rmop

hysi

cal P

rope

rtie

s of

Sel

ecte

d N

onm

etal

lic

Sol

ids

(con

tinu

ed)

Page 54: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

1066 VIII. Appendices

Table A.IV.3(SI). Thermophysical Properties of Common Materials at 300 K

Page 55: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

Appendix IV 1067

Table A.IV.3(SI). Thermophysical Properties of Common Materials at 300 K (continued)

Page 56: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

1068 VIII. Appendices

Tab

le A

.IV

.3(S

I).

The

rmop

hysi

cal P

rope

rtie

s of

Com

mon

Mat

eria

ls (

cont

inue

d)

Page 57: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

Appendix IV 1069

Tab

le A

.IV

.3(S

I).

The

rmop

hysi

cal P

rope

rtie

s of

Com

mon

Mat

eria

ls (

cont

inue

d)

Page 58: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

1070 VIII. Appendices

Table A.IV.3(SI). Thermophysical Properties of Common Materials (continued)

Page 59: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

Appendix IV 1071

Table A.IV.3(SI). Thermophysical Properties of Common Materials (continued)

See the reference for this table.

Page 60: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

1072 VIII. Appendices

Table A.IV.4(SI). Thermophysical Properties of Gases at Atmospheric Pressure

Page 61: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

Appendix IV 1073

Table A.IV.4(SI). Thermophysical Properties of Gases at Atmospheric Pressure (contin-ued)

Page 62: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

1074 VIII. Appendices

Table A.IV.4(SI). Thermophysical Properties of Gases at Atmospheric Pressure (contin-ued)

Page 63: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

Appendix IV 1075

Table A.IV.4(SI). Thermophysical Properties of Gases at Atmospheric Pressure (contin-ued)

Page 64: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

1076 VIII. Appendices

Table A.IV.4(SI). Thermophysical Properties of Gases at Atmospheric Pressure (contin-ued)

See reference for this table.

Page 65: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

Appendix IV 1077

Table A.IV.5(SI). Physical Properties of Saturated Water and Saturated Steam

Page 66: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

1078 VIII. Appendices

Table A.IV.5(SI). Physical Properties of Saturated Water and Saturated Steam (continued)

See reference for this table.

Page 67: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

Appendix IV 1079

Table A.IV.6(SI). Thermophysical Properties of Liquid Metals

See reference for this table.

Page 68: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

1080 VIII. Appendices

Table A.IV.4(BU). Thermophysical Properties of Gases at Atmospheric Pressure

Page 69: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

Appendix IV 1081

Table A.IV.4(BU). Thermophysical Properties of Gases at Atmospheric Pressure (contin-ued)

See the reference for this table.

Page 70: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

1082 VIII. Appendices

Table A.IV.5(BU). Thermophysical Properties of Saturated Water

See the reference for this table.

Table A.IV.6(BU). Thermophysical Properties of Saturated Steam

See the reference for this table.

Page 71: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

Appendix IV 1083

Table A.IV.7(BU). Thermophysical Properties of Superheated Steam at Atmospheric Pres-sure

See the reference for this table.

Page 72: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

1084 VIII. Appendices

Table A.IV.8. Thermal Properties of Solid Dielectrics at Normal Temperature

Page 73: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

Appendix IV 1085

Table A.IV.8. Thermal Properties of Solid Dielectrics at Normal Temperature (continued)

1: See Table A.IV.2(SI).

See the reference for this table.

Page 74: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

1086 VIII. Appendices

Table A.IV.9. Normal, Total Emissivity of Metallic Surfaces

Page 75: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

Appendix IV 1087

Table A.IV.9. Normal, Total Emissivity of Metallic Surfaces (continued)

See the reference for this table.

Page 76: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

1088 VIII. Appendices

Table A.IV.10. Normal, Total Emissivity of Non-Metallic Surfaces

Page 77: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

Appendix IV 1089

Table A.IV.10. Normal, Total Emissivity of Non-Metallic Surfaces (continued)

See the reference for this table.

Page 78: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

Appendix V Nuclear Properties of Elements

Table A.V.1(SI). Absorption Coefficient of Gamma Rays .............................. 1092 Table A.V.2(SI). Cross Sections for Neutron Interaction ................................ 1093

Page 79: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

1092 VIII. Appendices

Table A.V.1(SI). Absorption Coefficients of Gamma Rays for Shielding Materials

Page 80: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

Appendix V 1093

Table A.V.1(SI). Absorption Coefficients of Gamma Rays for Shielding Materials (con-tinued)

Page 81: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

1094 VIII. Appendices

Table A.V.2(SI). Cross Sections for Neutron Interaction

Page 82: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

Appendix V 1095

Table A.V.2(SI). Cross Sections for Neutron Interaction (continued)

Page 83: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

References

Chapter I

Del Frari, Bernard, “The Global Nuclear Fuel Market, World Nuclear Association Sympo-sium, 2001.

Dubrovsky, V., “Construction of Nuclear Power Plants,” Mir Publishers, Moscow, 1981. Gavrilas, Mirela, et. al., “Safety Features of Operating Light Water Reactors of Western

Design,” CANES, Massachusetts Institute of Technology, 2000. Graham, James J., “The Uranium Market with fewer, Better & Faster Sources?,” 27th An-

nual Meeting and International Conference on Nuclear Energy, Goteborg, Sweden, 2000.

Marion Jerry B. and Marvin L. Roush, “Energy in Perspective,” 2nd Edition, Academic Press, 1982.

Marquand C. and D. Croft, “Thermofluids,” John Wiley, 1994. Mayo, Robert M., “Introduction to Nuclear Concepts for Engineers,” ANS Publications,

1998.Ramsey, Charles B. and Mohammad Modarres, “Commercial Nuclear Power,” John Wiley,

1998.Suryanarayana, N. V. V., “Design and Simulation of Thermal Systems,” — “US Bureau of the Census,” www.census.gov/cgi-bin/ipc/popclockw — “Alternative sources of energy,” www.altenergy.org — “Aviation Turbine Engines,” chevron.com/prodserv/fuels/bulletin/

aviationfuel — “British Petroleum Statistical Review of World Energy 2002,” February 2003 — CNN.com, October 12, 1999 — “Code of Federal Regulations, 10 CFR 50-46,” nrc.gov/NRC/CFR/Part050 — “Energy Efficiency and Renewable Energy,” www.eere.energy.gov — “Energy Information Administration,” www.eia.doe.gov — “Geothermal Power Plant,” Toshiba Power Systems and Services — “Hydro-electric Power,” http://acre.murdoch.edu.au/refiles — “Iter Introduction to Fusion”, itercanada.com. — “World Energy Beyond 2050,” Journal of Petroleum Technology, JPT Online Feb.

2002— “Why Nuclear Power, Comparison of Various Energy Sources.” Nucleartourist.com. — “World Nuclear Association, WNA” http://www.world-nuclear.org/info/ inf75.htm

Chapter II

Abbott, M. M., and H. C. Van Ness, “Thermodynamics,” McGraw-Hill, 1972.

Page 84: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

1098 References

Anderson, Edward E., “Thermodynamics,” PWS Publishing Company, 1994. Bond, John W. Jr., Kenneth Watson, and Jasper A. Welsh, Jr., “Atomic Theory of Gas Dy-

namics,” Addison-Wesley, 1965. Eastop, T. D. and A. McConkey, “Applied Thermodynamics for Engineering Technolo-

gies,” 5th Edition, Longman Scientific & Technical, John Wiley 1993. El-Wakil, M. M., “Powerplant Technology,” McGraw-Hill, 1984. Felder, Richard M. and Ronald W. Rousseau, “Elementary Principles of Chemical Engi-

neering Processes,” 3rd Edition, John Wiley and Sons, 1999. Hatsopoulos, G. N. and J. H. Keenan, “Prinicples of General Thermodynamics” John Wiley

& Sons, Inc., 1965. Holman, J. P., “Thermodynamics,” 3rd Edition, McGraw-Hill, 1980. Howell, John R. and Richard O. Buckius, “Fundamentals of Engineering Thermodynam-

ics,” 2nd Edition, McGraw-Hill, 1992. Huang, Francis F., “Engineering Thermodynamics, Fundamentals and Applications,”

Macmillan, 1976. Masi, J. F., “Trans. ASME,” 76: 1067, October 1954. McQuiston, F. C. and J. D. Parker, “Heating, Ventilating, and Air Conditioning Analysis

and Design,” John Wiley, 1977. Meyer, C. A., et. al., “ASME Steam Tables,” Thermodynamics and Transport Properties of

Steam, Sixth Edition, 1993. Moran, Michael J. and Howard N. Shapiro, “Fundamentals of Engineering Thermodynam-

ics,” Second Edition, John Wiley & Sons, Inc. 1992. Nashchokin, V., “Engineering Thermodynamics and Heat Transfer,” Mir Publishers, Mos-

cow, 1979. Roth, Alexander, “Vacuum Technology,” 3rd Edition, Elsevier, 1990. Reynolds, William C and Henry C. Perkins, “Engineering Thermodynamics,” McGraw-Hill

1977.Smith, J. S. and H.C. Van Ness, “Introduction To Chemical Engineering Thermodynam-

ics,” Third Edition, McGraw-Hill, 1975. Sonttag, Richard E., Claus Boorgnakke, and Gordon J. an Wylen,” Fundamentals of Ther-

modynamics,” fifth edition, John Wiley & Sons, Inc.1998. Todreas, Neil E., and Mujid S. Kazimi, “Nuclear Systems I. Thermal Hydraulic Funda-

mentals,” Hemisphere Publishing Company, 1990 Van Wylen, Gordon J. and Richard E. Sonntag, “Fundamentals of Classical Thermodynam-

ics,” 3rd Edition, English/SI Version, John Wiley & Sons, Inc. 1986. Wark, Jr., Kenneth, “Thermodynamics,” 5th Edition, McGraw-Hill, Inc., 1988. Zemansky, Mark W. and Richard H. Ditton, “Heat and Thermodynamics, an Intermediate

Textbook,” Sixth edition, McGraw Hill, Inc. 1981. Zemansky, Mark W., “Temperatures Very Low and Very High,” Dover Publications Inc.,

1964.

Chapter III

Aris, Rutherford, “Vectors, Tensors, and Basic Equations of Fluid Mechanics,” Dover Pub-lications Inc., 1990.

Baumeister T. and E. A. Avallone, “Mark’s Standard Handbook for Mechanical Engineers, 8th ed. New York, McGrawHill, 1979.

Bean, H. S., “Fluid Meters: Their Theory and Application,” 6th ed., American Society of Mechanical Engineers, New York, 1971.

Page 85: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

References 1099

Binder, Raymond C., “Fluid Mechanics,” Fifth Edition, Prentice Hall, 1973 Boussinesq, see Brodkey, R. S. Brodkey, R. S., “The Phenomena of Fluid Motion,” 3rd printing, Addison-Wesley, 1967. Burgreen, D., “Flow Coastdown in a Loop After Pumping Power Cutoff,” Nuclear Science

and Engineering: 6, 306–312, 1959. Carnahan B., H. A. Luther and J. O. Wilkes, “Applied Numerical Methods,” Wiley, 1969 Chaudhry, M. H., “Applied Hydraulic Transients,” 2nd Edition, Van Nostrand Reinhold,

1987.Churchill, S. W., Empirical Expressions for the Shear Stress in Tirbulent Flow in Commer-

cial Pipe,” A. IChE. J., Vol. 19, No. 2, pp. 375–376, 1973. Colebrook, see Fox, R. W. and A. T. McDonald. Also White, F. M. Cross, H., “Analysis of Flow in Networks of Conduits or Conductors,” University of Illi-

nois Bulletin 286, November 1936. Daily, J. W. and D. R. F. Harleman’s, “Fluid Dynamics,” Addison Wesley, 1966. Denn, Morton M., “Process Fluid Mechanics,” Prentice Hall, 1980. Di Marco, P. et. al., “Experimental Study on Rising Velocity of Nitrogen Bubbles in FC-

72,” Int. Journal of Thermal Sciences, 42 (2003). Fox, R. W. and A. T. McDonald, “Introduction to Fluid Mechanics,” 3rd Edition, Wiley,

1985Goldstein, S., “Modern Development in Fluid Dynamics,” Vol. 1. Oxford Press 1952. Granger, Robert A., “Fluid Mechanics,” Dover, 1995. Haaland, S. E., “Simple and Explicit Formulas for the Friction Factor in Turbulent Pipe

Flow,” Journal of Fluid Engineering, 1983. Henry, R. E. and H. K. Fauske, “The Two-Phase Critical Flow Of One Component Mix-

tures in Nozzles, Orifices, and Short Tubes,” Journal of Heat Transfer, May 1971. Hildebrand, F. B., “Advanced Calculus for Applications, 2nd Edition, 1976. Hines, J. O., “Turbulence,” McGraw-Hill 1959. Howell, John R. and Richard O. Buckius, “Fundamentals of Engineering Thermodynam-

ics,” Second Edition, McGraw-Hill, 1992. Hughes W. F. and J. A. Brighton, “Fluid Dynamics,” McGraw-Hill, 1967. Idelchik, I. E., “Handbook of Hydraulic Resistance,” 2nd Edition, Hemisphere Pub. Co.,

1986.Kao, S. P., “A PWR mathematical model,” Ph. D. Thesis, Dept. of Nuclear Eng., MIT

1984.Lansford, W. M., “The Use of an Elbow in a Pipe Line for Determining the Flow in the

Pipe,” Eng. Exp. Sta. University of Illinoise, Bull. 289, 1936. Liepmann, H. W. and A. Roshko, “Elements of Gas Dynamics,” 2001. Lyons, J. L., “Lyons’ Valve Designers Handbook,” Van Nostrand Reinhold, 1982. Meyer, Richard E., “Introduction to Mathematical Fluid Mechanics,” Dover, 1971. Miller, R.W., “Flow Measurement Engineering Handbook,” New York, McGraw-Hill,

1983.Moody, L. F., “Friction Factor for Pipe Flow,” Transactions, ASME, Vol. 66, 1944, p. 671. Moody, F. J., “Maximum Discharge Rate of Liquid Vapor Mixtures From Vessels,” In

ASME Symposium: Nonequilibrium Two-Phase Flows. 1975, pp. 27–36. Moody, F. J., “Introduction to Unsteady Thermofluid Mechanics,” Wiley, 1990. Nahavandi, Amir N. and Michael P. Rashevsky, “A Digital Computer Program for Critical

Flow Discharge of Two-Phase Flow, Steam-Water Mixture (Critco Code). CVNA-128, February, 1962.

Nahavandi, Amir N. and G. V. Catanzaro, “Matrix Method for Analysis of Hydraulic Net-works,” Journal of the Hydraulic Division, Proceedings of the American Society of Civil Engineers, January, 1973.

Page 86: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

1100 References

Nayyar, M. L., "Piping Handbook," 6th Ed. McGraw-Hill. 1992. Nikuradze, see Fox, R. W. and A. T. McDonald. Also White, F. M. Pai, S. I., “Viscous Flow Theory,” Vol. II – Turbulent Flow, D. Van Nostrand, Princeton,

1957.Parmakian, J., “Waterhammer Analysis,” Prentice-Hall, 1955. Perry, R. H. and C. H. Chilton, “Chemical Engineer’s Handbook,” 5th Ed, McGraw-Hill,

1975.Peterson, C. E., et. al., “RETRAN-02, Volume 1: Theory & Numerics,” Revision 4, EPRI

1NP-1850-CCM-A. 1988. Potter, Merle C. and David C. Wiggert, “Mechanics of Fluids,” Prentice-Hall, 1991. Rust, James H., “Nuclear Power Plant Engineering,” Haralson, 1979. Schlichting, H., “Boundary Layer Theory,” 7th Edition, McGraw-Hill, 1979. Swamee, P. K. and A. K. Jain, “Explicit Expressions for Pipe Flow Problems,” Journal of

Hydraulic Division Proceedings, ASCE, pp. 657-664, May 1976. Todreas, N. E. and M. S. Kazimi, “Nuclear Systems, I,” Taylor & Francis, 3rd. Printing,

2000.Thompson, L and O. E. Buxton, “Maximum Isentropic Flow of Dry Saturated Steam

Through Pressure Relief Valves,” 3rd. International Conference on Pressure Vessels and Piping, San Francisco, June 1979.

Tomiyama, Akio et. al., “Shapes of Rising Velocities of Single Bubbles Rising through an Inner Subchannel,” Nuc. Science & Tech. Vol. 40, No. 3, March 2003

Tullis, J. Paul, “Hydraulics of Pipelines, Pumps, Valves, Cavitation, Transients,” John Wiley & Sons, 1989.

Watters, Gary Z., “Analysis and Control of Unsteady Flow in Pipelines,” Second Edition, Butterworth, Ann Arbor Science Book, 1984.

Vennard, John K. and Robert L. Street, “Elementary Fluid Mechanics,” 5th Edition, John Wiley & Sons, 1975.

von Karman, T., “Uber Laminaire und Turbulente Reibung,” Angew. Math. Mech., vol. 1, pp. 233–252, 1921; also NACA Tech. Mem. 1092, 1946.

Welty, J. R., C. E. Wicks, and R. E. Wilson, “Fundamentals of Momentum, Heat, and Mass Transfer,” 2nd Edition, Wiley, 1976.

White, F. M., “Fluid Mechanics,” 2nd. Ed. McGraw Hill. 1986. White, F. M., “Viscous Fluid Flow,” McGraw-Hill, 1974. Wiely, Benjamin E. and Victor L. Streeter, “Fluid Transients in Systems,” Prentice Hall,

1997.Zucrow, Maurice J. and Joe D. Hoffman, “Gas Dynamics,” Volume 1, John Wiley & Sons,

1976.—, ASME Boiler and Pressure Vessel Code, Section III, Division 1- Subsection NB,

Class 1 Components. ANSI/ASME BPV-III-1-NB, 1980 edition. —, CRANE Tech. Paper 410, “Flow Of Fluids in Valves, Fittings, & Pipes,” 1980. —, EPRI Report, “Critical Flow Predictions through Safety & Relief Valves,” EPRI-NP-

2878 LD, February 1983.

—, EPRI Report, “Safety and Relief Valves in Light Water Recators,” edited by Avtar Singh NP-4306-SR, December 1985.

—, FSAR, Yankee Atomic Electric Company. —, Measurement of Fluid Flow by Means of Orifice Plates, Nozzles, and Venturi Tubes

Inserted in Circular Cross Section Conduits Running Full,” ISO Rep. DISTRIBUTION-5167, Geneva, 1976.

Page 87: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

References 1101

Chapter IV

Arpaci, V. S., "Conduction Heat Transfer," Addison Wesley, 1966. Blasius, H. Z., Math. Phys., 56, 1, 1908. Carslaw, H. S. and J. C. Jeager, “Conduction of Heat in Solids,” 2nd ed., Oxford University

Press, 1959. Chapman, Alan J., "Heat Transfer," 4th Ed., Macmillan, 1984. Churchill, S.W., “Free Convection Around Immersed Bodies,” in Heat Exchanger Design

Handbook, Hemisphere Publishing Co., 1983. Churchill, S. W., and H. H. S. Chu, “Correlating Equations for Laminar and Turbulent Free

Convection from a Vertical Plate,” Int. Journal of Heat Mass Transfer, vol. 18, p. 1323, 1975.

Churchill, S. W., and H. H. S. Chu, “Correlating Equations for Laminar and Turbulent Free Convectionfrom a Horizontal Cylinder,” Int. Journal of Heat Mass Transfer, vol. 18, p 1049, 1975.

Churchill, S. W., and H. Ozoe, “Correlations for Laminar Forced Convection in Flow Over an Isothermal Flat Plate and in Developing and Fully Developed Flow in an Isother-mal Tube,” Journal of Heat Transfer, vol. 95, p. 46, 1973.

Dittus, F. W. and L. M. K. Boelter, University of California, Berkley, Pub. Eng., vol. 2, 1930, p. 443.

Dwyer, O. E., “Liquid Metals Handbook, Sodium and Nak Supplement,” Washington D. C., U.S. Atomic Energy Commission, 1970, Chapter 5.

Eckert, E. R. G. and Robert M. Drake, Jr., “Analysis of Heat and Mass Transfer,” McGraw-Hill, 1972.

El-Wakil, M. M., "Nuclear Heat Transport," ANS. 1978. Fishenden, M. and Saunders, O., “An Introduction to Heat Transfer,” Oxford University

Press, 1950. —, “General Electric BWR Thermal Analysis Basis Data; Correlation and Design Appli-

cations. NADO-10958, 1973. Holman, J. P., "Heat Transfer," 7th Ed. McGraw Hill. 1990 Howarth, L., “On the Solution of the Laminar Boundary Layer Equations,” Proc. Royal So-

ciety. London, Series A, 164, 1938, p. 547. Lyon, R. N., “Liquid Metal Handbook,” Department of the Navy, June 1952. Incropera, Frank P. and D. P. De Witt, “Fundamentals of Heat and Mass Transfer,” 3rd Ed.,

Wiley, 1990. Jakob, M., Heat Transfer,” vol. 1, John Wiley & Sons, Inc., 1949. Kakac, S. and R. K. Shah, W. Aung, "Handbook of Single-Phase Convective Heat Trans-

fer," John Wiley. 1987. Kreith, F., "Principles Of Heat Transfer," 3rd. Ed. Harper & Row. 1973 & 1986. Kutateladze, S. S., “Fundamentals of Heat Transfer,” Academic Press, New York, 1963. Lahey, R. T., and F. J. Moody, “The Thermal-Hydraulics of a Boiling Water Nuclear Reac-

tor,” American Nuclear Society,1977. Lienhard, John H., “A Heat transfer Textbook,” Prentice-Hall, Inc., 1981. Lamarsh, John R and Anthony J. Baratta, “Introduction to Nuclear Engineering,” 3nd ed.,

Prentice Hall, 2001. McAdams, W.H., “Heat Transmission,” 3rd. ed. McGraw Hill 1954. Ostrach, S., “An Analysis of Laminar Free Convection Flow and Heat Transfer About a

Flat Plate Parallel to the Direction of the Generating Body Force,” NACA Tech. Note 2635, 1952.

Ozisik, M. N., "Basic Heat Transfer," McGraw Hill. 1977.

Page 88: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

1102 References

Rohnesnow, W. M. and H. Choi, "Heat, Mass & Mom. Transfer," Prentice Hall. 1961. Rohsenow, W. M., “Handbook of Heat Transfer,” McGrawHill, 1973. Schneider, P. J., “Conduction Heat Transfer,” Addison Wesley, 1955. Seban, R. A., and T. Shimazaki, “Heat Transfer to Fluid Flowing Turbulently in a Smooth

Pipe and with Walls at Constant Temperature,” ASME Paper 50-A-128, 1950. Seider, E. N., and E. G. Tate, “Heat Transfer and Pressure Drop of Liquids in Tubes,” Ind.

Eng. Chem., Vol. 28, 1936, p. 1429. Suryanarayana, N. V., “Engineering Heat Transfer,” West Publishing Company, 1995. Todreas, Neil E. and Mujid S. Kazimi, “Nuclear Systems I,” 3rd Printing, Taylor & Francis,

2000.Whitaker, S., “Forced Convection Heat Transfer Correlations for Flow in Pipes, Past Flat

Plates, Single Cylinders, Single Spheres, and Flow in Packed Beds and Tube Bun-dles,” AICHE Journal, vol. 18, 1972.

White, F. M., "Heat Transfer," Addison Wesley. 1984. Zhukauskas, A., “Heat Transfer from Tubes in Cross Flow,” Adv. in Heat Transfer, vol. 8

Academic Press, 1972.

Chapter V

Berenson, P. J., “Experiments of Pool Boiling Heat Transfer,” Int. Journal of Heat Mass Transfer, 5, 1962.

Bernath, L., Transactions of A.I.Ch.E., 1955. Biasi, L., et. al., “Studies on burnout, Part 3. Enrgy Nucl. 14:530, 1967. Bjornard, T. A. and P. Griffith, “PWR Blowdown Heat Transfer,” Symposium on Thermal

and Hydraulic Aspects of Nuclear Reactor Safety (Vol. 1). New York, ASME 1977.Bowring, R. W., “Simple but Accurate Round Tube, Uniform Heat Flux Dryout Correlation

over the Pressure Range 0.7 to 17 MPa,” AEEW-R-789, U.K. Atomic Energy Author-ity, 1972.

Bromley, L. A., “Heat Transfer in Stable Film Boiling,” Chem. Eng. Prog., 46, 221, 1950. Chen, John C., “A Correlation for Boiling Heat Transfer to Saturated Fluids in Convection

Fow,” ASME paper 63-HT-34, 1963. Cheng, S. C, W. Ng, and K. T. Heng, “Measurements of Boiling Curves of Subcooled Wa-

ter Under Forced Convection Conditions,“ Int. Journal of Heat Mass Transfer 21:1385, 1978.

Cichitti, A., et. al., “Two-Phase Cooling Experiments – Pressure Drop, Heat Transfer, and Burnout Measurements,” Energia Nucl. 7:407, 1960.

Collier, John G. and Thome, John R., “Convective Boiling and Condensation,” Third Edi-tion, Oxford University Press, 1996.

Delhaye, J. M., M. Giot, and M. L. Riethmuller, “Thermohydraulics of Two-Phase Systems for Industrial Design and Nuclear Engineering,” McGraw Hill/Hemisphere, 1981.

Dergarabedian, P., “The Rate of Growth of Bubbles in Superheated Liquid,” Journal of Appl. Mech. Trans. ASME, vol. 75, 1953.

Dhir, V. K. and J. H. Lienhard, “Laminar Film Condensation on Planes and Axisymmetric Bodies in Non-uniform Gravity,” Journal of Heat Transfer, 93, 97–100, 1971

Duckler, A. E., et. al., “Pressure Drop and Hold-up in Two-Phase Flow: Part A – A Com-parison of Existing Correlations. Part B – An Approach Through Similarity Analy-sis,” AIChE Journal, 10:38, 1964.

Fauske, H. F., “The Discharge of Saturated Water Through Tubes,” Chem. Eng. Sym. Se-ries 61:210, 1965.

Page 89: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

References 1103

Friedel, L., “Improved Friction Pressure Drop Correlations for Horizontal and Vertical Two-Phase Pipe Flow, European Two-Phase Flow Group Meeting, Ispra, Italy, 1979.

Forster, H. K. and N. Zuber, “Dynamics of Vapor Bubbles and Boiling Heat Transfer,” AIChE Journal, 1 (4), 531–535, 1955.

Gaspari, G. P., et. al., “A Rod-Centered Subchannel Analysis with Turbulent Mixing for Critical Heat Flux Prediction in Rod Clusters Cooled by Boiling Water,” Proceedings of 5th Int. Heat Transfer Conference, Tokyo, Japan, 3–7, September 1974, CONF-740925, 1975.

George, Thomas L., et. al., “GOTHIC Containment Analysis Package, Technical Manual,” Numerical Applications, Inc., Richland, Washington, NAI 8907-06, Rev. 12, July 2001.

Ginoux, J. N., “Two-Phase Flow and Heat Transfer,” McGraw Hill/Hemisphere, 1978. Groeneveld, D. C., “Post Dryout Heat Transfer at Reactor Operating Conditions, AECL-

4513, 1973. Henry, R. E., “The Two-Phase Critical Discharge of Initially Saturated or Subcooled Liq-

uid,” Nuclear Science and Engineering, 41, 1970, pp 336. Henry, R.E., and H. F. Fauske, “The Two-Phase Critical Flow of One-Component Mixtures

in Nozzles, Orifices, and Short Tubes,” Transactions of ASME, Journal of Heat Transfer 93, 179–187, May 1971.

Hewitt, G. F. and D. N. Roberts, “Studies of Two-Phase Flow Patterns by Simultaneous X-Ray and Flash Photography,” AERE-M2159, 1969.

Hsu, Yih-Yun, “On the Size Range of Active Nucleation Cavities in Nucleate Boiling,” Journal of Heat Transfer, 84C(3), 207–216, 1962.

Hsu, Yih-Yun and Robert W. Graham, “Transport Processes in Boiling and Two-Phase Systems, McGraw Hill Publishing Company, 1976.

Janssen, E. and Levy, S., “General Electric Company Report APED-3892, 1962. Jens, W. H. and P. A. Lottes, “Analysis of Heat Transfer, Burnout, Pressure Drop, and

Density Data for High Pressure Water,” ANL-4627, 1951. Kandlikar, S. G., “A General Correlation for Saturated Two-Phase Flow Boiling Heat

Transfer Inside Horizontal and Vertical Tubes,” J. Heat Transfer, 112(1):219–228, 1990.

Katto, Y. and Haramura, Y., “Critical Heat Flux on a uniformly heated horizontal cylinder in an upward cross flow of saturated liquid,” Int. Journal Heat Mass Transfer, 26, pp 1199–1205, 1983.

Mandhane, J. M. et. al., “A Flow Pattern Map for Gas-Liquid Flow in Horizontal Pipes,” International Journal of Multiphase flow, 1:537, 1974.

—, RELAP-5, MOD1 Code Technical Manual Labuntsov, D. A., “Heat Transfer in Film Condensation of Pure Steam on Vertical Surfaces

and Horizontal Tubes,” Teploenergetika, 4, 72, 1957. McAdams, W. H., et. al., “Vaporization Inside Horizontal Tubes. II. Benzene-Oil Mixture,

Trans. ASME 64:193, 1942. MacBeth, R. V., “Burn-out Analysis, Part 4. Application of a local condition hypothesis to

world data for uniformly heated round tubes and rectangular channels,” AEEW-R 267, 1963.

McDonough, J.B., W. Milich, W., and E.C. King, “An Experimental Study of Partial Film Boiling Region with Water at Elevated Pressures in a Round Vertical Tube. Chem. Eng. Prog. Sym. Series 57:197,1961.

Martinelli, R. C. and D. B. Nelson, “Prediction of Pressure Drop During Forced Circulation Boiling of Water,” Trans. ASME 70:695, 1948.

Moody, F. J., “Maximum Flow Rate of a Single-Component, Two-Phase Mixture,” Journal of Heat Transfer, Vol. 87, 134–142, February 1965.

Page 90: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

1104 References

Moore, K. V. and W. H. Rettig, “RELAP4 – A Computer Program for Transient Thermal-Hydraulic Analysis,” ANCR-1127, Idaho National Laboratory, Idaho Falls, Idaho, 1975.

Myer, John E., “Conservation Laws in One-Dimensional Hydrodynamics,” WAPD-BT-20, Sept. 1960.

Nahavandi, Amir N and Michael P. Rashevsky, “A Digital Computer Program for Critical Flow Discharge of Two-Phase Steam-Water Mixtures,” CVNA-128, February 1962.

Nukiyama, S., “The Maximum and Minimum Values of Heat Transmitted from Metal to Boiling Water Under Atmospheric Pressure,” Int. J. Heat Mass Transfer, 9, 1966.

Pei, B. S. et. al., “Evaluations and Modifications of the EPRI-1 Correlation of PWR Critical Heat Flux

Predictions Under Normal & Abnormal Fuel Conditions,” Nuclear Tech., Vol. 75, N0. 2, November 1986.

Reddy, D. G., R. S. Sreepada, and Amir. N. Nahavandi, “Two-Phase Friction Multiplier Correlation for High – Pressure Steam Water Flow,” EPRI, NP-2522, July 1982.

Scriven, L. E., “On the Dynamics of Bubbles in Superheated Water,” Chem. Eng. Sci., vol. 10, 1959.

Stephen, Karl, “Heat Transfer in Condensation and Boiling,” Springer-Verlag, 1992. Tong, L. S., “Boiling Crisis and Critical Heat Flux, TID-25887 NTIS, 1972. Thom, J. R. S., et. al., “Boiling in Subcooled Water During Flow in Tubes and Annuli,”

Proc. Int. Mech. Eng. 180:226, 1966. Thom, J. R. S., “Prediction of Pressure Drop During Forced Circulation Boiling of Water,”

Int. Journal of Heat Mass Transfer 7:709, 1964. Wallis, G. B., “One Dimensional Two-Phase Flow,” McGraw Hill, New York. 1969. Whalley, P. B., “Boiling, Condensation, and Gas-Liquid Flow,” Oxford University Press,

1990.Winterton, R. H. S., “Thermal Design of Nuclear Reactors,” Pergamon Press, 1981.Zivi, S. M., “Estimation of Steady-State Steam Void Fraction By Means of The Principle of

Minimum Entropy Production,” Trans. ASME (J. Heat Transfer), 86, 247–52. Zuber, N, and J. A. Findlay, “Average Volumetric Concentration in Two-Phase Flow Sys-

tems,” J. Heat Transfer, 87:453, 1965. Zuber, N., “On the Stability of Boiling Heat Transfer,” Trans. ASME, 80, 1958. Zuber, N. and M. Tribus, “Further Remarks on the Stability of Boiling Heat Transfer,”

UCLA, Report No. 58-5, January 1958.

Chapter VIa

—, “Standards of the Tubular Exchanger Manufacturers Association,” 7th Edition, Tubu-lar Exchanger Manufacturers association, New York, 1988.

Fraas, A. P and M. N. Ozisik, “Heat Exchanger Design,” Wiley, 1965 Harpster, Joseph W., “An Impact on Plant Performance from Advanced Instrumentation,”

44th Annual ISA Industry Symposium, July 2001, Fl. USA Harpster, Joseph W., “On Understanding the Behavior of Non-Condensables in the Shell

Side of Steam Surface Condensers,” ASME Conference, June 2001, Louisiana. USA Incropera, Frank P. and David P. De Witt,” Fundamentals of Heat And Mass Transfer,” 3rd

Edition, John Wiley & Sons, 1990 Kakac, Sadik and Hongtan Liu, “Heat Exchangers Selection, Rating, and Thermal Design,”

CRC Press LLC, 1998.

Page 91: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

References 1105

Kreith, F. and R. F. Boehm, “Direct – Contact Heat Exchangers,” Hemisphere Pub. Corp., 1988

Li, Chung Hsiung, “Exact Transient Solutions of Parallel-Current Transfer Processes,” Journal of Heat Transfer, Vol. 108, 365–369, May 1986.

Lorenzini, E., et. al., “Numerical Transient Analysis of Parallel and Counter Flow Heat Ex-changers,” Journal of Heat and Technology, Vol. 7, No. 2, 1989.

Nahavandi A. N., M. A. Vorkas, and V. J. D’emidio, “Cost Optimization of Vertical Natu-ral Circulation Steam Generators,” Nuclear Engineering and Design 36, 1976.

Romie, F. E., “Transient Response of the Counterflow Heat Exchanger,” Transactions of ASME, Vol. 106, 620–626. August 1984

Singh, K. P. and A. I. Soler, “Mechanical Design of Heat Exchangers,” Arcturus Publish-ers, 1984

Taborek, et. al., “Heat Exchangers, Theory and Practice” Hemisphere Publishing Corp. 1983

Chapter VIb

—, ASME Fluid Meters Research Committee, “The ISO-ASME Orifice Coefficient Equation”, Mech. Eng. July 1981.

—, ASME, “Flowmeter Computation Handbook,” New York, 1961. Baker, Roger C., “Flow Measurement Handbook, Industrial Designs, Operating Principles,

Performance, and Applications,” Cambridge University Press, 2000. —, Flow Control Magazine, April/May, 2000. Bean, H. S., “Flow Meters: Their Theory and Application,” 6th ed., ASME, New York,

1971 Control magazine, October 2002 Cussler, E. L., “Diffusion. Mass Transfer in Fluid Systems,” 2nd. Edition. Cambridge Uni-

versity Press, 1997. Holman, J. P., “Experimental Methods for Engineers,” 7th edition, McGraw Hill 2001. King, L. V., “On the Convection of Heat from Small Cylinders in a Stream of Fluid, with

Applications to Hot-Wire Anemometry,” Phil. Trans. Roy. Soc. London, vol. 214, no. 14, p. 373, 1924.

Kline, S. J. and F. A. McClitock, “Describing Uncertainties in Single-Sample Experi-ments,” Mechanical Engineering, 75, 1, pp. 3–9. January 1953

Chapter VIc

Karassik, I. J., "Pump Handbook," 2nd Ed. McGraw-Hill. 1986. Kreith, Frank and D. Yogi Goswami, “The CRC Handbook of Mechanical Engineering,”

2nd edition, CRC Press, 2005. Krivchenko, G. I., “Hydraulic Machines, Turbines and Pumps,” Mir Publishers, Moscow,

1986.Mott, Robert L., “Applied Fluid Mechanics,” 4th ed., Macmillan Publishing Company,

1994.White, F. M., “Fluid Mechanics,” 2nd. Ed. McGraw Hill. 1986. Wiely, Benjamin E. and Victor L. Streeter, “Fluid Transients in Systems,” Prentice Hall,

1997.Wislicenus, G. F., “Fluid Mechanics of Turbomachinery,” 2nd edition, McGraw Hill, 1965.

Page 92: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

1106 References

Chapter VId

Burgreen, David, “Flow Coastdown in a Loop after Pumping Power Cutoff,” Nuclear Sci-ence and Engineering, 6, 306–312, 1959.

Edwards D. K., et al, “Transfer Processes. An Introduction To Diffusion, Convection and Radiation,” 2nd Edition, McGraw Hill.

George, Thomas L., et. al., “GOTHIC Containment Analysis Package, Technical Manual,” Version 6.1, July 1999. NAI 8907-06, Rev. 9

Hargroves, D.W. and L. J. Metcalfe et. al., “CONTEMPT-LT/028A Computer Program for Predicting Containment Pressure – Temperature Response to a Loss-Of-Coolant-Accident,” NUREG/CR-0255, 1979.

Kao, Shih Ping, “A Multiple-Loop Primary System Model for Pressurized Water Reactor Plant Sensor Validation,” Ph.D. Thesis, Department of Nuclear Engineering, MIT, 1984.

Lin, C. C. et. al., “CONTEMPT4/MOD4, A Multi-compartment Containment System Analysis Program,” NUREG/CR-3716, BNL-NUREG-51754, March 1984.

McFadden, J. H. et. al., “RETRAN-02 – A Program for Transient Thermal-Hydraulic Analysis of Complex Fluid Flow Systems,” EPRI NP-1850-CCM-A, Volume 1, Revi-sion 4, 1988.

Myer, John E., “Some Physical and Numerical Considerations for he SSC-S Code,” Brook-haven National Lab., BNL-NUREG 50913, 1978.

Reeder, Douglas L., “LOFT System and Test Description,” NUREG/CR-0247, July 1978. Rust, J. H., “Nuclear Power Plant Engineering,” Haralson Publishing Co., Buchanon, GA,

1979.—, “LOFT Integral Test System Design Basis Report,” DBR-1, Aerojet Nuclear Inc., Jan.

1974.Weisman, J., “Heat Transfer to Water Flowing Parallel to Tube Bundles,” Nuc. Sci. & Eng.

6:78, 1979.

Chapter VIe

—, “American Nuclear Standard for Decay Heat Power in Light Water Reactors,” Ameri-can Nuclear Society (ANS), ANSI/ANS-5.1-1979. August 1979.

Almenas, Kazys and Richard Lee, “Nuclear Engineering, An Introduction,” Springer-Verlag, 1992.

Bernath, L., Transactions A.I.Ch.E., 1955. Brown, Theodore L. and H. Eugene LeMay, Jr., “Chemistry, The Central Science,” 2nd Edi-

tion, Prentice-Hall, Inc. 1981 Collier, John G. and Geoffrey F. Hewitt, “Introduction to Nuclear Power,” Hemisphere

Publishing Company, 1987. Connolly, Thomas J., “Foundations of Nuclear Engineering,” John Wiley & Sons, 1978. Duderstadt, James J. and Louis J. Hamilton, “Nuclear Reactor Analysis,” John Wiley &

Sons, 1976. Evans, Robley D., “The Atomic Nucleus,” McGraw-Hill, Fourteenth Printing, 1972. Ferziger, Joel H. and P. F. Zweifel, “The Theory of Neutron Slowing Down in Nuclear Re-

actors, The MIT Press, 1966. Foster, Arthur R. and Robert L. Wright, Jr., “Basic Nuclear Engineering,” 4th Ed. Allyn &

Bacon, 1983.

Page 93: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

References 1107

Glasstone, Samuel and Alexander Sesonske, “Nuclear Reactor Engineering,” Van Nostrand Reinhold Company, 1967.

Henry, Alan F., “Nuclear Reactor Analysis,” The MIT Press, 1975.Klimov, A., “Nuclear Physics And Nuclear Reactors,” MIR Publishers, Moscow, 1975.Knief, Ronald Allen, “Nuclear Criticality Safety, Theory and Practice”, Sixth Printing,

American Nuclear Society, 1998. Knoll, Glenn F., Radiation Detection And Measurement,” John Wiley & Sons, 1979. Mayo, Robert M., “Introduction to Nuclear Concepts for Engineers,” American Nuclear

Society, 1998. Ott, Karl O. and Winfred A. Bezella, “Introductory Nuclear Reactor Statics,” Revised edi-

tion, ANS 1989. Price, William J., “Nuclear Radiation Detection,” second Edition, McGraw-Hill, 1964 Rahman, Inam-Ur and Paulinus S. Shieh, “Introduction to Nuclear Engineering,” Robert E.

Krieger Publishing Company, 1981. Schaeffer, N. M., “Reactor Shielding for Nuclear Engineers,” National Technical Informa-

tion Center, TID-25951, 1973. Shultis, J. Kenneth and Richard E. Faw, “Radiation Shielding,” American Nuclear Society,

2000.Shultis, J. Kenneth and Richard E. Faw, “Fundamentals of Nuclear Science and Engineer-

ing,” Marcel Dekker, Inc. 2002. Walker, F. William, et. al., “Nuclides and Isotopes, Chart of Nuclides,” Fourteenth Edition,

GE Nuclear Energy, General Electric Company, 1989. Weisman, Joel, “Elements of Nuclear Reactor Design,” Second Edition, Robert E. Krieger

Publishing Company, 1983. —, “Residual Decay Energy for Light Water Reactors for Long Term Cooling,” NRC

Standard Review Plan (NUREG-0800), Rev. 2, Section 9.2.5-8, Branch TechnicalPosition ASB 9-2, July 1981.

Chapter VII

Abramowitz, M. and I. A. Stegun, “Handbook of Mathematical Functions,” Dover, 9th

Printing, 1972. Acton, F. S., “Numerical Methods that Work,” Harper & Row, 1970 Agresti, A. and B. Finlay, “Statistical Methods for the Social Sciences,” 2nd. Ed., Dellen

Pub. Co., 1986. Bendat, Julis S. and Allan G. Piersol, “Random Data: Analysis and Measurement Proce-

dures,” Wiley-Interscience, 1971. Bird, R. B., W. E. Stewart, and E. N. Lightfoot, “Transport Phenomena,” 2nd ed. Wiley,

2002.Byrkit, Donald R., “Elements of Statistics,” D. Van Nostrand, 1972. Boyce, W. E. and R. C. DiPrima, “Elementary Differential Equations and Boundary Value

Problems,” 3rd Edition, Wiley, 1977. Carnahan B., H. A. Luther and J. O. Wilkes, “Applied Numerical Methods,” Wiley, 1969. Curtis, F. G., “Applied Numerical Methods,” 2nd Edition, Addison Wesley, 1980. Dankoo, P. E., et. al., “Higher Mathematics in Problems and Exercises,” Mir Publishers,

Moscow, 1983. Demidovich, B. P. and I. A. Maron, “Computational Mathematics,” Mir Publishers, Mos-

cow, 1987. Elsayed, E. A., “Reliability Engineering,” Addison Wesley Longman, Inc., 1996.

Page 94: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

1108 References

Evans, Robley D., “The Atomic Nucleus,” McGraw Hill, 1972. Griffith D. V. and I. M. Smith, “Numerical Methods for Engineers,” CRC Press, 1991. Hildebrand, F. B., “Introduction to Numerical Analysis,” 2nd Edition, Dover 1974. Hildebrand, F. B., “Advanced Calculus for Applications,” 2nd Edition, Prentice Hall, 1976. Hunt, R. A., “Calculus with Analytic Geometry,” Harper & Row, 1988. Kellison, Stephen G., “Fundamentals of Numerical Analysis,” Richard D. Irwin, Inc. 1975. Korn & Korn, “Mathematical Handbook,” 2nd Edition, McGraw-Hill, 1968. Krasnov, M., et. al., “Mathematical Analysis for Engineers,” Volume 2, Mir Publishers,

Moscow, 1990. Kreyszig, E., “Advanced Engineering Mathematics,” 7th Ed. Wiley. 1993. Kroemer, Herbert, “Quantum Mechanics for Engineering, Materials Science, and Applied

Physics,” Prentice Hall, 1994. Modarres, Mohammad, “Reliability and Risk Analysis,” Marcel Dekker, Inc., 1993. Meyer, Richard E., “Introduction to Mathematical Fluid Mechanics,” Dover Publication,

Inc., 1971. Larson, Ronald E. and R. P. Hostetler, “Calculus with Analytic Geometry,” D. C. Heat &

Co., 1979. Liboff, Richard L., “Introductory Quantum Mechanics,” Holden–Day Inc. 1980 Nakamura, Shoichiro, “Computational Methods in Engineering & Science,” Wiley, 1977. Ozisik, Necati, “Finite Difference Methods in Heat Transfer,” CRC Press, 1994 Park, David, “Introduction to Quantum Theory,” McGraw Hill, 1964. Pauli, Wolfgang, “Wave Mechanics,” Dover Publications, Inc., 1973. Rossing, Thomas D and N. H. Fletcher, “Principles of Vibration and Sound,” Springer Ver-

log, 1995. Schiesser, W. E., “Computational Methods in Engineering & Applied Science,” CRC,

1994.Spiegel, Murray R., “Applied Differential Equations,” 3rd. Ed., Prentice Hall, 1981. Thomas, Jr. George B., “Calculus and Analytic Geometry,” Part 2, 4th Edition, Addison-

Wesley, 1972 Wylie, C. R. and L. C. Barnett, “Advanced Engineering Mathematics,” 5th Edition,

McGraw-Hill, 1982.

Appendix

Table A.II.1(SI), Table A.II.2(SI), Table A.II.3(SI), Table A.II.4(SI): Sonntag, Richard E., Claus Borgnakke, and Gordon J. Van Wylen, “Fundamentals of

Thermodynamics,” Fifth Edition, John Wiley & Sons, Inc., 1998.

Table A.II.1(BU), Table A.II.2(BU): El-Wakil, M. M., “Nuclear Heat Transport,” International Textbook Company, 1971.

Table A.II.5(SI), Table A.II.5(BU): Masi, J. F., Trans. ASME, 76:1067, October 1954. –, National Bureau of Standards Circ. 500, February 1952. –, API Research Project 44, national Bureau of Standards, Washington, December 1952.

Page 95: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

References 1109

Table A.III.1(SI), Table A.III.2(SI), Table A.III.1(BU): CRANE, “Flow of Fluids through Valves, Fittings, and Pipe,” Publication 410M (Metric

Edition), 1988.

Table A.III.2(SI): CRANE, “Flow of Fluids Through Valves, Fittings, and Pipe,” Technical Paper No. 410,

1988.

Table A.IV.1(SI), Table A.IV.2(SI), Table A.IV.3(SI), Table A.IV.4(SI), Table A.IV.5(SI), Table A.IV.10: Incropera, Frank P. and David P. De Witt, “Fundamentals of Heat and Mass Transfer,”

Third Edition, John Wiley and Sons, 1990.

Table A.IV.6(SI): – Lyon, R. N., “Liquid Metal Handbook,” Atomic Energy Commission and Department of

the Navy, Washington D. C., 1952 – Weatherford, Jr., et al., “Energy Conversion and Heat-Transfer Fluids for Space Applica-

tions,” WADD Technical Report 61-96, November 1961 – –, “Metallic Elements and Their Alloys,” T. P. R. C. Data Book, Vol. 1, Purdue Research

Foundation, 1966.

Table A.IV.9, Table A.IV.10: Suryanarayana, N. V., “Engineering Heat Transfer,” West Publishing Company, 1995.

Table A.IV.4(BU): Kreith, Frank, “Principles of Heat Transfer,” 3rd ed., Harper & Row, 1973.

Table A.IV.5(BU), Table A.IV.6(BU), Table A.IV.7(BU), Table A.IV.8: Edwards, D. K., V. E. Denny, and A. F. Mills, “Transfer Processes, An Introduction to Dif-

fusion, Convection, and Radiation,” Second Edition, McGraw-Hill, 1979.

Table A.V.1: Tipton, C. R., Jr., “Reactor Handbook,” Vol. 1, Materials 2nd Edition, Interscience, 1960.

Table A.V.2: Almenas, Kazys, and Richard Lee, “Nuclear Engineering, an Introduction,” Springer-

Verlag, 1992.

Page 96: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

Index

Absolute pressure, 36Absorption cross section, 845, 847Absorptivity, 573-727Acceleration convective, 237-379 local, 235 pressure drop, 319, 621, 880Accuracy, 730Acoustic velocity, 372Adiabatic, 57Affinity laws, 808Air conditioning, 196Amagat model, 188Anemometer, 748-766Angle contact, 659 solid, 563 valve, 309Angular velocity, 39Annular fuel rod, 466Annulus, 13Anisotropic, 432Aspect ratio, 366Atomic mass unit, 41Atomic number, 842Augmented matrix, 971Availability, 105Avogadro, 42Axial flow, 19, 749, 760, 770Azimuthal angle, 563

Balance of plant, 162Ball valve, 306-309Barnett correlation, 663Barometric pressure, 36Bernath correlation, 663Bernoulli equation, 244

Bernoulli-obstruction meters, 321Bessel functions, 915 differential equation, 914Best efficiency point (BEP), 752Biasi correlation, 663Biomass, 24Biot number, 443Blackbody, 568Blasius, 524Body force, 226Boiling departure from nucleate, 662 film, 638 flow, 638 inception, 646 pool, 638 saturated, 638 subcooled, 638 transition, 650, 653 water reactor, 13Bond number, 642Borda-Carnot equation, 304Boundary layer, 231 value problem, 905Bowring correlation, 664Break flow split, 625Brayton, 154Breeder reactor, 5, 12Buckingham pi, 748Buckling, 859Bulk: modulus, 230 temperature, 519Buoyancy, 366, 549Butterfly valve, 309

Page 97: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

1112 Index

Calibration, 729Carnot efficiency 101 principle, 100Cavitation, 752CD-ROM, 53, 85, 89, 92, 320, 329,

426, 499, 581, 591, 652, 697, 707, 718, 824, 970, 974, 981, 983, 984, 1009

Chain rule for derivatives, 906Chen correlation, 658Choked flow, 414Churchill and Ozoe correlation, 528Cladding, 17Clapeyron equation, 54Clausius statement, 97Clausius-Clapeyron equation, 54Cleanliness factor, 690Coal, 4, 6, 22Coefficient of: contraction, 322 performance, 103 volume expansivity, 47Colburn analogy, 521Compressible flow, 399Compressibility: isentropic, 47 isothermal, 47Compressed liquid, 46, 50Compressor, 10, 11, 71, 74Concentric heat exchanger, 688, 694Condensation, 435, 677, 678Condenser, 6, 710Conduction equation, 437-438Conservation equation, 26, 64, 67,

69Contact resistance, 436Containment, 12, 187, 207-221, 819Continuum, 225Continuity equation, 64Control valve, 306-309Convection, 256, 259, 260, 435Conversion factors, 1018Cooling tower, 6, 97, 209Control surface, 35Control volume, 57

Coordinate systems, 225, 943, 944, 947

Coriolis acceleration, 743Cramer’s rule, 974Creeping flow, 252Critical flow, 414 Critco correlation, 424 Henry-Fauske correlation, 622-

631 Moody model, 628 Rateau correlation, 425Critical heat flux (CHF), 650, 876 Barnett correlation, 663 Biasi correlation, 663 Bowring correlation, 664 CISE-4 correlation, 665 Katto correlation, 666Critical: pressure, 41 temperature, 41Cryogenic, 464Curl operator, 950Curvilinear coordinate, 943Cycle: Air standard, 147 Brayton, 147 Carnot, 104 Diesel, 152 Ericsson, 158 Joule, 154 Otto, 150 power, 144 refrigeration, 99, 103 regenerative, 157, 169, 171 reheat, 167 Stirling, 158 thermodynamic, 6Cylindrical coordinates, 943

D’Alembert paradox, 233Dalton model, 189Darcy formula, 299Darcy-Weisbach, 301Darrieus wind machine, 21Dead state, 116Decay heat, 882

Page 98: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

Index 1113

Deformation of a fluid element, 264Degree Centigrade, 37 Fahrenheit, 37 of subcooling, 53 of superheat, 167Del operator, 947Density, 33Departure from nucleate boiling

(DNB), 662Design parameters, 26Determinant, 966Deuterium, 5, 847Dew point, 196Diameter equivalent, 309 heated, 663 hydraulic, 309Differential analysis, 239Differential equations Bernoulli, 911 Bessel, Chebyshev Euler-Cauchy, 912 Gauss Hermite Jacobi, 912 Laguerre, 912 Legendre, 913 linear, 904, 911 nonlinear, 904 ordinary, 911 partial, 916 Poisson, 916 Riccati, 911Diffuser, 71Diffusion, 432Diffusivity, 435Dilatant fluid, 228Discharge coefficient, 321Dittus-Boelter correlation, 538Divergence operator, 949Division at the break, 820Domain, 901Downcomer, 12-16, 134, 791, 827Drag, 232, 233, 365-366, 521, 733

Drift flux, 609Dry-bulb temperature, 202Dryout, 658, 662, 663Dynamic viscosity, 227Dynamics of gas filled vessels, 90 mixing tanks, 83

Eckert number, 520Eddy diffusivity, 289, 535Effectiveness, 120Efficiency Carnot, 101 thermodynamic, 11, 100, 101Eigenvalue, 905, 907Einstein, 4, 842, 932Elastic analysis, 344 scattering, 843Electromagnetic flowmeter, 738Elbow meter, 735Electron, 841Electron volt, 842Elevation head, 263Emissivity, 436, 568-579, 1086Empirical relations, 534Energy balance, 57 binding, 843 grade line, 263 internal, 39 kinetic, 38 mechanical, 1-3, 9, 261 potential, 39Engine internal combustion, 2-8 jet, 2, 9-10, 71, 97, 103, 160 reciprocal, 9-11, 750 rotary, 6, 8-9English engineering system of units (BU), 33Enthalpy, 39Entrance length, 231Entropy, 39EPRI-1 correlation, 666Equation

Page 99: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

1114 Index

Euler, 252, 265 of state, 26, 41-46Equilibrium bubble, 642-644 thermal, 35Error, 728 fixed, 728 function, 488, 489, 491 random, 728Eta factor, 852Eulerian approach, 230Evaporation, 37, 49-50Exergy, 105Expansion coefficient, 413 thermal, 47 volumetric, 549Explicit method, 994Extended surfaces, 477

Feedwater, 12-16Fertile, 5, 846, 847Fick’s law, 26, 841Field, 225Film boiling, 638 condensation, 678 temperature, 520Fin annular, 480-484 cylindrical spine, 483 longitudinal, 483First law of thermodynamics, 67Fissile, 846Fission, 845Fissionable, 846Fittings, 175, 224, 286, 295, 302Flash, 79, 89, 173, 622, 637, 812Flooding, 604Flow critical, 399, 622 coefficient, 307, 322 compressible, 399 dimensions, 232 external, 99, 223, 230-233 incompressible, 231 internal, 232

laminar, 230 loop, 20, 325, 549, 799 measurement, 321, 412, 728 over flat plate, 230, 521-535 pattern, 555, 605, 606 reversal, 605, 614, 765 turbulent, 230 two-phase, 602Flowmeter, 302, 321, 728 Bernoulli, 321 Coriolis, 733 elbow, 735 electromagnetic, 738 installation, 744 laser Doppler, 728, 740 mass, 741 nozzle, 321 positive displacement, 741 pulsed neutron, 740 rotameter, 733 straightener, 744 turbine, 737 ultrasonic, 739 venturi, 321 vortex, 738Fluid ideal, 223-224 Newtonian, 228 non-Newtonian, 228Forced convection, 518Form loss, 175, 306, 419Forster-Zuber, 660Fouling factor, 669, 690, 707 resistance, 690, 718Fourier equation, 439Fourier number, 437Fourier transform, 908Friction factor, 292-299, 305, 1005 pressure drop, 242, 312, 617 velocity, 293Fuel fossil, 4 nuclear, 4, 23 pellet, 17, 466, 468

Page 100: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

Index 1115

rod, 14, 16, 17 spent, 23, 459, 559, 833 utilization factor, 859Fusion, 3, 5, 25

Gage pressure, 36Gamma radiation, 436, 456-458Gap, 17Gas turbine, 6-11, 66, 97, 154Gate valve, 305Gauss divergence theorem, 956Gauss-Seidel iteration, 971 - 974General electric correlation, 667Geothermal energy, 22Gibbs function, 47, 639Globe valve, 305Gradient operator, 947Grashof number, 549Gray surface, 578Greenhouse effect, 11Greenpower, 17

Hagen-Poiseuille, 291Hardy Cross method, 338Hazen-Williams formula, 301Head, 18, 224Heat engine, 99 flux, 129, 256, 432 pump, 25, 31, 97, 103 sink, 6, 21, 96, 97 source, 6, 20, 22, 70, 96, 97Heat exchanger, 71, 76, 147-167,

687Heat transfer coefficient, 435Heisler, 493, 497Helmholtz function, 46HEM, 602, 616, 619, 621, 623, 785Hemispherical, 574, 576Homogeneous, 432Heterogeneous, 432Hewitt map, 606Humidity ratio, 195Hydraulic grade line, 263Hydraulic jump, 270, 408Hydrostatic head, 796-799

Hysteresis, 729

Ideal gas, 41Implicit method, 976, 994Integral analysis, 240, 248Invasive, 728Inviscid, 223, 228, 231, 252, 259Irreversibility, 98, 99, 105, 109Isotope, 5, 11, 740, 842, 844, 845Isotropic, 229, 432, 562-566, 848

Jakob number, 678Jacobian matrix, 1005Jet pump, 13, 749

Katto correlation, 666Kelvin, 33, 98Kinematic viscosity, 228Kinetic energy, 38Kirchhoff, 338, 369, 442, 578Kutateladze, 605, 652, 682

Lagrangian, 234, 237, 238-259Laminar boundary layer, 535 flow, 230Laplace transform, 909Laplacian operator, 949Latent heat, 51, 53Le System International d’Unites, 33Leading edge, 232, 519Least-square, 1006Leidenfrost point, 650, 654Leibnitz rule, 960Line integral, 951Linear heat generation rate, 432Liquid compressibility, 373Logarithmic mean temperature difference (LMTD), 691 correction factor, 696Lumped, 57, 207, 255, 431, 443Lyon-Martinelli correlation, 540

Mach number, 230Maclaurin series, 855, 902

Page 101: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

1116 Index

Manning formula, 301Manometer, 36, 37, 272, 322Martinelli-Nelson, 622Mass defect, 842Mass flow rate, 58Mass flux, 65Mass number, 842Matrix inversion, 968McAdams correlation, 299Metastable state, 816Maxwell relations, 47MDNBR, 877Minimum stable film boiling

(MSFB), 653Minimum stable film boiling temperature, 656Minor loss, 301, 302Moderator, 5, 11, 847Modulus of elasticity, 375Moist air, 187-189Moisture separator, 162Molecular diffusion, 431, 535Molecular weight, 41Momentum conservation equation, 241, 248 flux, 242, 262, 372, 399, 526, 778

Napier’s correlation, 425Natural convection, 549Natural circulation, 549, 796, 800Navier-Stokes equations, 249, 251Net expansion factor, 412Net positive suction head (NPSH), 753, 757, 760-762Neutron current, 849 fast, 5, 846, 847, 851 flux, 457, 466, 671, 841, 848 thermal, 11, 846, 847, 851, 852 transport equation, 841, 853Newton’s law of cooling, 435Newton-Raphson method, 1004Nozzle, 10, 70-72, 321, 323, 324Nuclear power plant, 4, 11, 144, 786 resonance, 844

Nucleate boiling, 638Nucleation homogeneous, 637 heterogeneous, 637 onset, 644, 646, 650Number of transfer unit (NTU) method, 698Nusselt number, 520Nuclei, 5, 844, 845

Opaque, 575, 576, 577Ordinary differential equations, 911 Adam’s method, 985 Euler method, 981 Runge-Kutta methods, 982Orifice meter, 321Orthogonality, 908

Partial differential equations, 903Partial pressure, 189Peaking factor, 866, 874-875Peclet number, 541Perfect gas, 42Pitot tube, 733, 736, 737Planck: constant, 562 distribution, 569 statement, 97Poisson equation, 439Power cycle, 144 density, 23, 865, 1020 hydro, 17 tidal, 22Prandtl number, 520Precision, 729Pressure drop in bends, 302 internal flow, 295 Bernoulli obstruction meters, 323Pressure gradient due to: acceleration, 616 friction, 616 gravity, 618Pressurized water reactor, 5Pressurizer, 12, 14, 811

Page 102: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

Index 1117

Primary dimensions, 33, 748Primary side 784-785Process adiabatic, 57 isentropic, 59 isobaric, 59 isothermal, 59 polytropic, 59 reversible, 57Property: critical, 41 extensive, 40 intensive, 40 reduced, 41Pump Booster, 173, 877 canned-motor, 800 centrifugal, 749 characteristic curve, 749, 757 head, 263, 313, 762 homologous, 748, 755-769 jet, 13, 749 positive displacement, 749Pumping power, 75, 76, 169, 314Pure substance, 34

Quality steam, 50 void and slip relation, 602Quantum number, 884, 935Quasi-steady, 348Quench tank, 204Quiescent fluid, 550, 650

Radial flow, 10, 20, 749Radiation heat transfer, 26, 436, 561Radiosity, 565Range, 729Rankine cycle, 161-162Rateau correlation, 125Rayleigh number, 550Reactor shutdown, 882Reciprocity, 581Recirculation, 13, 16, 134, 827Reduced pressure, 41Reflectivity, 573, 575

Refrigerant, 662Regression, 1007Relative humidity, 194Relative roughness, 312Repeatability, 729Resolution, 729Resonance, 845Reynolds-Colburn analogy, 521Reynolds number, 230Reynolds transport theorem, 240,

961Rigid column theory, 344, 371Rohsenow correlation, 651

Safety valve, 307Saturation pressure, 54, 637 temperature, 46Scaling laws, 747Scattering: elastic, 843 inelastic, 843Seban-Shimazaki correlation, 540Second law of thermodynamics, 96Secondary side, 12-16, 30, 97, 134Seider-Tate correlation, 538Semi-infinite solid, 485Sensitivity, 729Separated flow model, 616, 621Shaft work, 60, 69-77Shape factor, 581Shear work, 60, 262, 792, 816Shearing strain, 226Shell and tube, 688Shell side, 314-315, 465, 688Shock wave, 98, 151, 408Shroedinger wave equation, 932Similarity, 747Siphon, 284, 285Six factor formula, 851Skin friction, 302Slab, 443Slip ratio, 603Solar, 3, 6, 17-22, 129, 133, 727Solid angle, 563Specific

Page 103: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

1118 Index

enthalpy, 40 entropy, 40 gravity heat, 40 humidity, 195 power, 9, 145, 156, 865 speed, 758 volume, 38Spherical coordinate system, 251Spray, 211-214, 329, 818Stagnation enthalpy, 417Standard temperature and pressure

(STP), 37Standard temperature, 37Stanton number, 520State equilibrium, 35 steady, 32, 66 unsteady, 66 thermodynamic, 38, 55, 815Steam extraction, 12, 167-172Steam generator, 2, 3, 12-16, 77,

702Stefan-Boltzmann law, 26, 436, 568Steradian, 564Stokes hypothesis, 249Streamline, 230Stress normal, 224 shear, 224 tensor, 226Sturm-Liouville, 860, 913Subcooled, 46Sublimation, 48Subsonic, 230Substantial derivative, 235Sudden: contraction, 303 expansion, 303Superheated vapor, 46Supersonic, 230, 407Surface force, 226Surface roughness, 98, 224-299Surface tension, 229, 618, 639, 651Surge tank, 357Surroundings

System closed, 56 isolated, 56 open, 57

Taylor series, 902Terminal temperature difference

(TTD), 710Terminal velocity, 366Thermal capacitance, 434 center, 796 conductivity, 433 diffusion, 432 expansion, 40, 47 neutron, 846 pollution, 101 radiation, 436, 561 resistance, 435Thermodynamic availability, 105 cycle, 6 efficiency, 100 irreversibility, 99 process, 36 property, 40 state, 38 system, 35Thermofluids, 1Time constant, 446Total directional emissivity, 579Total hemispherical absorptivity,

576Total hemispherical emissivity, 575Trailing edge, 519Transient, 32, 66, 81-95Translation, 39, 265Transmissivity, 575Tube bundle, 15, 77, 537, 690Tubesheet, 15, 16, 688, 795Turbine efficiency, 175, 776 Francis, 20, 772 gas, 6-11, 66, 97, 154 impulse, 19, 770 Kaplan, 17, 19, 772

Page 104: VIII. Appendices - Springer978-3-540-27280-9/1.pdf1018 VIII. Appendices The conversion tables are arranged in the form of a square matrix. Values on the diagonal are all unity. To

Index 1119

Pelton, 18, 19, 738, 770-774 rotor, 9, 10, 17, 19, 769-770 steam, 4, 9, 15, 17, 25, 73 wind, 21, 770, 774-777Turbofan, 9, 777-779Turbomachine, 6, 747Turboprop, 9, 777-779Turbulence, 287, 535, 660Turbulent flow, 230Two-phase: flow fundamentals, 601 friction multiplier, 617

U-tube heat exchanger, 702 steam generator, 15, 16, 796Uncertainty analysis, 730Unit vector, 943Universal gas constant, 42Uranium enrichment, 842 natural, 842

Valves, 72, 306Van der Waals, 43Vane, 15, 19, 748Vapor pressure, 37Velocity angular, 39 distribution, 289 coefficient, 322, 772 head, 263 of sound, 917Vena contracta, 303, 321, 322Venturi meter, 71, 321View factor, 436, 579, 580

Viscoelastic, 228, 229Viscosity, 227-228Viscous: dissipation, 257 flow, 224, 230-232, 268 sublayer, 232, 294Void fraction, 602Volumetric flow rate, 58Volumetric flow ratio, 604Volumetric heat generation rate, 244Von Karman, 293, 526Vorticity, 226, 265

Wake, 233,775, 776Wallis number, 604Water properties, 1077, 1082Waterhammer, 371Wave equation, 917 mechanics, 932Wavelength, 561Weber number, 618Wet bulb temperature, 202Wetted perimeter, 309Wien’s displacement law, 570Whitaker’s correlation, 536Work definition, 57 optimum useful, 111

Zenith angle, 563-564Zeroth law of thermodynamic, 56Zhukauskas, 537Zuber and Findlay, 609-611Zuber correlation, 652