vapnik-chervonenkis dimension part ii: lower and upper bounds

16
Vapnik-Chervonenkis Dimension Part II: Lower and Upper bounds

Post on 15-Jan-2016

213 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Vapnik-Chervonenkis Dimension Part II: Lower and Upper bounds

Vapnik-Chervonenkis Dimension

Part II: Lower and Upper bounds

Page 2: Vapnik-Chervonenkis Dimension Part II: Lower and Upper bounds

PAC Learning model

• There exists a distribution D over domain X• Examples: <x, c(x)>• Goal:

– With high probability (1-)– find h in H such that – error(h,c ) <

Page 3: Vapnik-Chervonenkis Dimension Part II: Lower and Upper bounds

Definitions: Projection

• Given a concept c over X– associate it with a set (all positive examples)

• Projection (sets)– For a concept class C and subset S– C(S) = { c S | c C}

• Projection (vectors)– For a concept class C and S = {x1, … , xm}– C(S) = {<c(x1), … , c(xm)> | c C}

Page 4: Vapnik-Chervonenkis Dimension Part II: Lower and Upper bounds

Definition: VC-dim

• Clearly |C(S) | 2m

• C shatters S if |C(S) | =2m

• VC dimension of a class C:– The size d of the largest set S that shatters C.– Can be infinite.

• For a finite class C– VC-dim(C) log |C|

Page 5: Vapnik-Chervonenkis Dimension Part II: Lower and Upper bounds

Lower bounds: Setting

• Static learning algorithm:– asks for a sample S of size m()– Based on S selects a hypothesis

Page 6: Vapnik-Chervonenkis Dimension Part II: Lower and Upper bounds

Lower bounds: Setting

• Theorem:– If VC-dim(C) = then C is not learnable.

• Proof:– Let m = m(0.1,0.1)– Find 2m points which are shattered (set T)– Let D be the uniform distribution on T– Set ct(xi)=1 with probability ½.

• Expected error ¼.• Finish proof!

Page 7: Vapnik-Chervonenkis Dimension Part II: Lower and Upper bounds

Lower Bound: Feasible

• Theorem– VC-dim(C)=d+1, then m()=(d/)

• Proof:– Let T be a set of d+1 points which is shattered.– Let the distribution D be:

• z0 with prob. 1-8

• zi with prob. 8/d

Page 8: Vapnik-Chervonenkis Dimension Part II: Lower and Upper bounds

Continue

– Set ct(z0)=1 and ct(zi)=1 with probability ½

• Expected error 2• Bound confidence

– for accuracy

Page 9: Vapnik-Chervonenkis Dimension Part II: Lower and Upper bounds

Lower Bound: Non-Feasible

• Theorem– For two hypotheses m()=((log 1))

• Proof:– Let H={h0, h1}, where hb(x)=b

– Two distributions:

– D0: Pr[<x,1>]= ½ - and Pr[<y,0>]= ½ +

– D1: Pr[<x,1>]= ½ + and Pr[<y,0>]= ½ -

Page 10: Vapnik-Chervonenkis Dimension Part II: Lower and Upper bounds

Epsilon net

• Epsilon bad concepts– B ( c ) = { h | error(h,c) > }

• A set of points S is an -net w.r.t. D if – for every hin B ( c )

– there exists a point x in S– such that h(x) c(x)

Page 11: Vapnik-Chervonenkis Dimension Part II: Lower and Upper bounds

Sample size

• Event A:– The sample S1 is not an epsilon net, |S1|=m.

• Assume A holds– Let h be a epsilon-bad consistent hypothesis.

• Sample an additional sample S2

– with probability at least 1/2

– the errors of h on S2 is m/2

– for m=|S2|= O(1/

Page 12: Vapnik-Chervonenkis Dimension Part II: Lower and Upper bounds

continues

• Event B– There exists h in B ( c )

– and h consistent with S1

– h has m/2 errors on S2

• Pr[ B | A ] 1/2– 2 Pr[B] P[A]

• Let F be the projection of C to S1 S2

– F=C(S1 S2 )

Page 13: Vapnik-Chervonenkis Dimension Part II: Lower and Upper bounds

Error set

• ER(h)={ x : x S1 S2 and c(x)=h(x)}

• |ER(h)| m/2

• Event A: – ER(h) S1 =

• Event B: – ER(h) S1 =

– ER(h) S2= ER(h)

Page 14: Vapnik-Chervonenkis Dimension Part II: Lower and Upper bounds

Combinatorial problem

• 2m black and white balls– exactly l black balls

• Consider a random partition to S1 and S2

• The probability that all the black balls in S2

l

l

i im

im

l

m

l

m

2

1

22

1

0

Page 15: Vapnik-Chervonenkis Dimension Part II: Lower and Upper bounds

Completing the proof

• Probability of B– Pr[B] |F| 2-l |F| 2-m/2

• Probability of A– Pr[A] Pr[B] |F| 2-m/2

• Confidence Pr[A] • Sample

– m=O( (1/) log 1/ (1/) log |F| )

• Need to bound |F| !!!

Page 16: Vapnik-Chervonenkis Dimension Part II: Lower and Upper bounds

Bounding |F|

• Define:– J(m,d)=J(m-1,d) + J(m-1,d-1)– J(m,0)=1 and J(0,d)=1

• Solving the recursion

• Claim:– Let VC-dim(C)=d and |S|=m,

– then |C(S)| J(m,d)