vam - modi mathematical modelling method for minimizing ...ieomsociety.org/dc2018/papers/46.pdfvam -...

16
Proceedings of the International Conference on Industrial Engineering and Operations Management Washington DC, USA, Septe© IEOM Society Internationalmber 27-29, 2018 VAM - MODI Mathematical Modelling Method for Minimizing Cost of Transporting Perishables from Markets to Cafeterias in Covenant University 1,2 Agarana M.C, 3 Omogbadegun Z.O and 3 Makinde S.O 1 Department of Mathematics, Covenant University, Nigeria 2 Department of Mechanical Engineering Science, University of Johannesburg, South Africa 3 Department of Computer and Information Sciences, Covenant University, Nigeria. Abstract Basic transportation problem is one of the application areas of linear programming problem. As a potential world class university, Covenant University has experienced a considerable increase in human activities has increased considerably in recent times, including vehicular movements. Optimizing cost of transportation of good and services within and outside the university campus is imperative. In this paper, transportation problem model is used to determine the minimal cost of moving perishables from multi-origin to multi-destination in Covenant University. An intense interviews with the destinations (Cafeterias) and origins (Markets) were carried out to obtain the exact data needed for this study. Vogel’s approximation method (VAM) was used to determine the initial basic feasible solution, while Modified Distribution (MODI) method was used to find the optimal solution for each of the major perishable foodstuff considered. The optimal results obtained show the direction the planning or purchasing unit of the university should take in order to minimize the costs associated with university cafeteria services. Keywords: Transportation problem, Perishables, Optimization, Vogel’s approximation method, Modified Distribution method. 1. Introduction Transportation problem is an important class of linear programming problem and it is viewed as fundamentally as a critical perspective that has been studied in an extensive variety of operations including various research areas for example minimizing the carbon emissions from transportation which is a channel of greenhouse pollution (Agarana, Bishop & Agboola, 2017). All things considered, it has been utilized as a part of re-enactment of a few genuine problems. Therefore, streamlining transportation problem of variables has really been noteworthy to different disciplines (Joshi, 2013). Transportation problems are issues in urban regions because of increment in human activities and most world class universities resemble little urban communities due to their size and structures. Additionally, today's campuses have moved toward becoming as intricate as urban ranges, due to their one of a kind attributes and between related impacts, most fundamental universities' campuses are arranged as little urban areas (Coulson, © IEOM Society International 2088

Upload: others

Post on 12-Mar-2020

24 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: VAM - MODI Mathematical Modelling Method for Minimizing ...ieomsociety.org/dc2018/papers/46.pdfVAM - MODI Mathematical Modelling Method for Minimizing Cost of Transporting Perishables

Proceedings of the International Conference on Industrial Engineering and Operations Management Washington DC, USA, Septe© IEOM Society Internationalmber 27-29, 2018

VAM - MODI Mathematical Modelling Method for Minimizing Cost of Transporting Perishables from Markets to Cafeterias in Covenant University

1,2Agarana M.C, 3Omogbadegun Z.O and 3Makinde S.O 1Department of Mathematics, Covenant University, Nigeria

2Department of Mechanical Engineering Science, University of Johannesburg, South Africa 3Department of Computer and Information Sciences, Covenant University, Nigeria.

Abstract

Basic transportation problem is one of the application areas of linear programming problem. As a potential world class university, Covenant University has experienced a considerable increase in human activities has increased considerably in recent times, including vehicular movements. Optimizing cost of transportation of good and services within and outside the university campus is imperative. In this paper, transportation problem model is used to determine the minimal cost of moving perishables from multi-origin to multi-destination in Covenant University. An intense interviews with the destinations (Cafeterias) and origins (Markets) were carried out to obtain the exact data needed for this study. Vogel’s approximation method (VAM) was used to determine the initial basic feasible solution, while Modified Distribution (MODI) method was used to find the optimal solution for each of the major perishable foodstuff considered. The optimal results obtained show the direction the planning or purchasing unit of the university should take in order to minimize the costs associated with university cafeteria services.

Keywords: Transportation problem, Perishables, Optimization, Vogel’s approximation method, Modified Distribution method.

1. Introduction

Transportation problem is an important class of linear programming problem and it is viewed as fundamentally as a critical perspective that has been studied in an extensive variety of operations including various research areas for example minimizing the carbon emissions from transportation which is a channel of greenhouse pollution (Agarana, Bishop & Agboola, 2017). All things considered, it has been utilized as a part of re-enactment of a few genuine problems. Therefore, streamlining transportation problem of variables has really been noteworthy to different disciplines (Joshi, 2013). Transportation problems are issues in urban regions because of increment in human activities and most world class universities resemble little urban communities due to their size and structures. Additionally, today's campuses have moved toward becoming as intricate as urban ranges, due to their one of a kind attributes and between related impacts, most fundamental universities' campuses are arranged as little urban areas (Coulson,

© IEOM Society International 2088

Page 2: VAM - MODI Mathematical Modelling Method for Minimizing ...ieomsociety.org/dc2018/papers/46.pdfVAM - MODI Mathematical Modelling Method for Minimizing Cost of Transporting Perishables

Roberts & Taylor, 2011). The fast urbanization of sub-Saharan Africa metropolitan regions joined with insufficient or poorly implemented arrangements, has given rise to various transportation problems, including dilapidated infrastructures and comfort of road transportation. (Agarana, Owoloko & Adeleke, 2017; Agarana & Olokunde, 2015) Covenant University is a possible world class university, as the university was selected as one of the best universities in West Africa, according to webometrics ranking of the World Universities (2017). The university is situated in Ota, Ogun state, Nigeria. As a potential world class university, with its very modern foundations, all around prepared labs, all around prepared and qualified instructors, capable students and an excellence driven organization, the university flourishes for more greatness. Besides the afore-mentioned qualities of the university, the transportation of foodstuff from the four (4) basic cafeterias on campus has to be optimized, to ensure that cost is optimized while delivering best services to students. Movement of products from multi-origin to multi-destination with the aim of optimizing cost, i.e., getting the minimum cost, subject to satisfying certain supply and demand constraints, is thesole aim of the supply chain management (Juman & Hoque, 2015). Here we are considering aclassical transportation problem where the objective is to minimize the total cost of shipping andlost revenue, normally known as the transportation problem with market choice (TPMC) (Fig. 1)(Damcı-kurt, Dey, & Simge, 2014).

Fig. 1 bipartite graph for the transportation problem (Juman & Hoque, 2015)

Given a set of supply and demand nodes that form a bipartite graph G = (V1 ∪ V2, E). The nodes in set V1 represent the supply nodes, where for i ∈ V1, Si ∈ N represents the capacity of supplier i. The nodes in set V2 represent the potential markets, where for j ∈ V2, dj ∈ N represents thedemand of market j. The edges between supply and demand nodes have weights that representshipping costs we, where e ∈ E. For each j ∈ V2, rj is the revenue lost if the market j is rejected.Let x{i,j} be the amount of demand of market j satisfied by supplier i for {i, j} ∈ E, and let zj bean indicator variable taking a value 1 if market j is rejected and 0 otherwise (Walter, Damcı-kurt,Dey, & Küçükyavuz, 2016). Due to changes in market supply and demand, weather conditions,road conditions and other uncertainty factors, uncertainty transportation problem is particularlyimportant (Sheng and Yao, 2012). This is kicked off with obtaining the initial feasible solution

Proceedings of the International Conference on Industrial Engineering and Operations Management Washington DC, USA, September 27-29, 2018

© IEOM Society International 2089

Page 3: VAM - MODI Mathematical Modelling Method for Minimizing ...ieomsociety.org/dc2018/papers/46.pdfVAM - MODI Mathematical Modelling Method for Minimizing Cost of Transporting Perishables

with the purpose of obtain the minimal total cost solution. This solution satisfies the initial conditions and generates (m+n) – 1 cells. The initial feasible solution is gotten using some popular methods known as the North-west corner method, Total opportunity-cost method (TOM), Least cost method and the Vogel’s Approximation method (VAM). (Kulkarni, 2010) developed a heuristic based algorithm to attain an initial feasible solution in obtaining the minimal total cost solution to the modified unbalanced transportation problem. In this paper, the Vogel’s approximation method (VAM) is used to arrive at the initial basic feasible solution, this method involves calculating the penalty – i.e., the difference between the lowest cost and the second-lowest cost for each row and column in the matrix, before assigning the maximum number of units possible to the least-cost cell in the row or column with the largest penalty. Modified Distribution (MODI) method is used to test for optimality by enabling us to compute improvement for each unused square without drawing all the closed paths, because of this, it can often provide considerable time savings over other methods for solving transportation problems. The aim of the study is to look at Covenant University cafeterias with the aim of optimizing the cost of purchasing perishables from the various markets patronized.

2 Model Formulation

The transportation problem in this paper is to transport perishables (Tomatoes, Big-red pepper (Tatashey), Fresh pepper (Ata Rodo) and Onions) from multi-origin to multi-destination to determine an optimal solution to minimize the transportation cost.

2.1 Assumptions.

The following assumptions are made in this paper: i. The movement of the perishables are always from the mentioned origin to the

mentioned destination.ii. The cost of moving items from one origin to a destination is always the same.iii. The supply from the multi-origin are fixed and only apply to the multi

destination.iv. The supply of tomatoes from origin to destination is measured in basket.v. The supply of big red pepper (tatashey) is measured in bags.vi. The supply of fresh pepper (Ata Rodo) is measured in bags.vii. The supply of onions is measured in bags.

2.2 Initial Tableau

Three (3) origins which represents the markets and Four (4) destinations representing the cafeterias in Covenant University will be considered. Table 1 shows the different origins and destinations. Other subsections show the tableau of each of the perishable foodstuff considered by the destinations, these tableaus show the movement of foodstuff from origin to destination in a month.

Proceedings of the International Conference on Industrial Engineering and Operations Management Washington DC, USA, September 27-29, 2018

© IEOM Society International 2090

Page 4: VAM - MODI Mathematical Modelling Method for Minimizing ...ieomsociety.org/dc2018/papers/46.pdfVAM - MODI Mathematical Modelling Method for Minimizing Cost of Transporting Perishables

Origin Destination

Ota Market O1 Cafeteria One D1

Mile 12 Market O2 Cafeteria Two D2

Ile-Epo Market O3 Guest House Restaurant D3

Post-Graduate Cafeteria D4

Table 1: Origins and destinations considered.

The supply quantity of the basic perishables (Tomatoes, Big-red pepper (Tatashey), Fresh pepper (Ata Rodo) and Onions) moved from the above-mentioned origins to the to the destinations are shown in Table 2 below:

Tomatoes Big-red pepper (Tatashey) Fresh pepper (Ata Rodo) Onions

Origi

n

Destination Origi

n

Destination Origi

n

Destination Origin Destination

D

1

D

2

D

3

D

4

D

1

D

2

D

3

D

4

D

1

D

2

D

3

D

4

D1 D

2

D

3

D

4

O1 25 10 2 3 O1 6 5 3 2 O1 16 8 3 3 O1 5 3 1 1

O2 50 20 8 12 O2 17 7 11 5 O2 41 20 6 8 O2 22 17 5 6

O3 35 20 6 9 O3 15 4 9 2 O3 32 16 6 6 O3 15 13 3 4

Table 2: Supply distribution between the origins and the destinations

Proceedings of the International Conference on Industrial Engineering and Operations Management Washington DC, USA, September 27-29, 2018

© IEOM Society International 2091

Page 5: VAM - MODI Mathematical Modelling Method for Minimizing ...ieomsociety.org/dc2018/papers/46.pdfVAM - MODI Mathematical Modelling Method for Minimizing Cost of Transporting Perishables

2.2.1 Tomatoes Tableau

Table 2 shows the initial tableau of the movement of Tomatoes from different origins to

different destinations. Supply and demand are measured in baskets.

Origin/Destination D1 D2 D3 D4 Supply

O1 50 45 55 47 40

O2 80 85 73 82 90

O3 70 60 62 71 70

Demand 80 10 12 5 107/200

Table 3: Initial tomatoes tableau

2.2.2 Big-red pepper (Tatashey) Tableau

Table 3 shows the initial tableau of the movement of big-red pepper (tatashey) from the

multi-origin to multi-destination. Supply and demand are measured in bags.

Origin/Destination D1 D2 D3 D4 Supply

O1 40 39 43 45 15

O2 85 88 78 82 40

O3 75 73 68 63 30

Demand 8 4 8 4 24/85

Table 4: Initial Big-red pepper (tatashey) tableau

Proceedings of the International Conference on Industrial Engineering and Operations Management Washington DC, USA, September 27-29, 2018

© IEOM Society International 2092

Page 6: VAM - MODI Mathematical Modelling Method for Minimizing ...ieomsociety.org/dc2018/papers/46.pdfVAM - MODI Mathematical Modelling Method for Minimizing Cost of Transporting Perishables

2.2.3 Fresh pepper (Ata Rodo) Tableau

Table 4 shows the initial tableau of the movement of fresh pepper (ata rodo) from the multi-

origin to multi-destination.

Origin/Destination D1 D2 D3 D4 Supply

O1 25 31 27 35 30

O2 64 68 72 79 75

O3 53 59 63 60 60

Demand 64 40 8 8 120/165

Table 5: Initial Fresh pepper (Ata Rodo) tableau

2.2.4 Onions Tableau

Table 5 shows the initial tableau of the movement of onions from the multi-origin to multi-destination. Origin/Destination D1 D2 D3 D4 Supply

O1 23 26 25 28 10

O2 65 66 61 68 50

O3 51 47 50 53 35

Demand 12 4 2 2 20/95

Table 6: Initial Onions tableau

2.3 Adding dummies to the tableaus.

Because the above tableaus are unbalanced, there is need to balance these tableaus by adding

dummies to them, this will enable us to further get the optimal solution. They are reflected in

the tableaus below.

Proceedings of the International Conference on Industrial Engineering and Operations Management Washington DC, USA, September 27-29, 2018

© IEOM Society International 2093

Page 7: VAM - MODI Mathematical Modelling Method for Minimizing ...ieomsociety.org/dc2018/papers/46.pdfVAM - MODI Mathematical Modelling Method for Minimizing Cost of Transporting Perishables

2.3.1 Tomatoes Tableau

Origin/Destination D1 D2 D3 D4 Dummy Supply

O1 50 45 55 47 0 40

O2 80 85 73 82 0 90

O3 70 60 62 71 0 70

Demand 80 10 12 5 93 200

Table 7: Balanced Tomatoes tableau.

2.3.2 Big-red pepper (Tatashey) Tableau

Origin/Destination D1 D2 D3 D4 Dummy Supply

O1 40 39 43 45 0 15

O2 85 88 78 82 0 40

O3 75 73 68 63 0 30

Demand 8 4 8 4 61 85

Table 8: Balanced Big-red pepper (Tatashey) Tableau

2.3.3 Fresh pepper (Ata Rodo) Tableau

Origin/Destination D1 D2 D3 D4 Dummy Supply

O1 25 31 27 35 0 30

O2 64 68 72 79 0 75

O3 53 59 63 60 0 60

Demand 64 40 8 8 45 165

Table 9: Balanced Fresh Pepper (Ata Rodo) tableau

Proceedings of the International Conference on Industrial Engineering and Operations Management Washington DC, USA, September 27-29, 2018

© IEOM Society International 2094

Page 8: VAM - MODI Mathematical Modelling Method for Minimizing ...ieomsociety.org/dc2018/papers/46.pdfVAM - MODI Mathematical Modelling Method for Minimizing Cost of Transporting Perishables

2.3.4 Onions Tableau

Origin/Destination D1 D2 D3 D4 Dummy Supply

O1 23 26 25 28 0 10

O2 65 66 61 68 0 50

O3 51 47 50 53 0 35

Demand 12 4 2 2 75 95

Table 10: Balanced Onions tableau.

3. The Transportation Model

From the above tableaus, the transportation model can be formulated as follows:

𝑀𝑀𝑀𝑀𝑀𝑀 ��𝑐𝑐𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1

𝑚𝑚

𝑖𝑖=1

(1)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐𝑆𝑆 𝑆𝑆𝑡𝑡 �𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 𝑆𝑆𝑖𝑖 ,𝑛𝑛

𝑖𝑖=1

𝑀𝑀 = 1,2, … ,𝑚𝑚 (2)

�𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 𝐷𝐷𝑖𝑖,𝑚𝑚

𝑖𝑖=1

𝑆𝑆 = 1,2, … ,𝑀𝑀 (3)

𝑥𝑥𝑖𝑖𝑖𝑖 ≥ 0 ∀𝑀𝑀, 𝑆𝑆.

Where,

m =Total number of suppliers n =Total number buyers Si =Supply quantity (in units) Dj=Demand in units of the jth buyer Cij =Unit of transportation cost from supply to demand xij =Number of units to be transported from i to j in order to attain minimal cost.

Proceedings of the International Conference on Industrial Engineering and Operations Management Washington DC, USA, September 27-29, 2018

© IEOM Society International 2095

Page 9: VAM - MODI Mathematical Modelling Method for Minimizing ...ieomsociety.org/dc2018/papers/46.pdfVAM - MODI Mathematical Modelling Method for Minimizing Cost of Transporting Perishables

4. Problem Solution

4.1 Initial basic feasible solution using the Vogel’s Approximation Model (VAM)

The Vogel’s Approximation Model (VAM) will be used to determine the initial basic feasible solution for the tableaus of perishable goods moved from multi-origin to multi-destination.

A. Tomatoes tableau

Origin/Destination D1 D2 D3 D4 Dummy Supply

O1 50 35 45 55 47 5 0 40

O2 80 85 73 82 0 90 90

O3 70 45 60 10 62 12 71 0 3 70

Demand 80 10 12 5 93 200

Table 12: Initial basic feasible solution for the movement of tomatoes from multi-origin to multi-

destination

The total cost of moving tomatoes from the various origin to the various destination is calculated

as:

35 × 50 + 5 × 47 + 90 × 0 + 3 × 0 + 12 × 62 + 10 × 60 + 45 × 70 = 6479

Before one can proceed to test for optimality, we have to check for degeneracy, that is, if (𝑚𝑚 + 𝑀𝑀) − 1 is equal to the total number of occupied cells. From Table 12 above, (𝑚𝑚 + 𝑀𝑀) −1 = 7 and the total number of occupied cells is 7 which implies that there is no degeneracy. Therefore, we proceed to testing for optimality using the MODI method.

B. Big-red pepper (Tatashey) tableau

Origin/Destination D1 D2 D3 D4 Dummy Supply

O1 40 8 39 4 43 3 45 0 15

O2 85 88 78 82 0 40 40

O3 75 73 68 5 63 4 0 21 30

Demand 8 4 8 4 61 85

Table 13: Initial basic feasible solution for the movement of tomatoes from multi-origin to multi-

destination.

Proceedings of the International Conference on Industrial Engineering and Operations Management Washington DC, USA, September 27-29, 2018

© IEOM Society International 2096

Page 10: VAM - MODI Mathematical Modelling Method for Minimizing ...ieomsociety.org/dc2018/papers/46.pdfVAM - MODI Mathematical Modelling Method for Minimizing Cost of Transporting Perishables

The total cost of moving big-red pepper (tatashey) from the various origin to the various destination is calculated as:

8 × 40 + 4 × 39 + 3 × 43 + 40 × 0 + 21 × 0 + 4 × 63 + 5 × 68 = 1197

Before one can proceed to test for optimality, we have to check for degeneracy, that is, if (𝑚𝑚 + 𝑀𝑀) − 1 is equal to the total number of occupied cells. From Table 13 above, (𝑚𝑚 + 𝑀𝑀) −1 = 7 and the total number of occupied cells is 7 which implies that there is no degeneracy. Therefore, we proceed to testing for optimality using the MODI method.

C. Fresh pepper (Ata Rodo) tableau

Origin/Destination D1 D2 D3 D4 Dummy Supply

O1 25 22 31 27 8 35 0 30

O2 64 68 30 72 79 0 45 75

O3 53 42 59 10 63 60 8 0 60

Demand 64 40 8 8 45 165

Table 14: Initial basic feasible solution for the movement of fresh pepper (ata rodo) from multi-origin to multi-destination. The total cost of moving Fresh pepper (ata rodo) from the various origin to the various destination is calculated as:

22 × 25 + 8 × 27 + 30 × 68 + 45 × 0 + 8 × 60 + 10 × 59 + 42 × 53 = 6102

Before one can proceed to test for optimality, we have to check for degeneracy, that is, if (𝑚𝑚 + 𝑀𝑀) − 1 is equal to the total number of occupied cells. From Table 14 above, (𝑚𝑚 + 𝑀𝑀) −1 = 7 and the total number of occupied cells is 7 which implies that there is no degeneracy. Therefore, we proceed to testing for optimality using the MODI method.

Proceedings of the International Conference on Industrial Engineering and Operations Management Washington DC, USA, September 27-29, 2018

© IEOM Society International 2097

Page 11: VAM - MODI Mathematical Modelling Method for Minimizing ...ieomsociety.org/dc2018/papers/46.pdfVAM - MODI Mathematical Modelling Method for Minimizing Cost of Transporting Perishables

D. Onions tableau

Origin/Destination D1 D2 D3 D4 Dummy Supply

O1 23 10 26 25 28 0 10

O2 65 66 61 68 0 50 50

O3 51 2 47 4 50 2 53 2 0 25 35

Demand 12 4 2 2 75 95

Table 15: Initial basic feasible solution for the movement of fresh pepper (ata rodo) from multi-origin to multi-destination. The total cost of moving onions from the various origin to the various destination is calculated as:

10 × 23 + 50 × 0 + 25 × 0 + 2 × 53 + 2 × 50 + 4 × 47 + 2 × 51 = 726

Before one can proceed to test for optimality, we must check for degeneracy, that is, if (𝑚𝑚 +𝑀𝑀)− 1 is equal to the total number of occupied cells. From Table 15 above, (𝑚𝑚 + 𝑀𝑀) − 1 = 7 and the total number of occupied cells is 7 which implies that there is no degeneracy. Therefore, we proceed to testing for optimality using the MODI method.

3.1 Modified Distribution Method (MODI Method)

In this study, two formulas are used in arriving at an optimal solution. 𝑆𝑆𝑖𝑖 + 𝑣𝑣𝑖𝑖 = 𝑐𝑐𝑖𝑖𝑖𝑖, is used to determine the values of 𝑆𝑆𝑖𝑖 and 𝑣𝑣𝑖𝑖 using the values in the occupied cells. Also, 𝑑𝑑𝑖𝑖𝑖𝑖 = 𝑐𝑐𝑖𝑖𝑖𝑖 − (𝑆𝑆𝑖𝑖 + 𝑣𝑣𝑖𝑖) is used to determine the best origin to destination route with the least transportation cost. Therefore, the cost with the most negative 𝑑𝑑𝑖𝑖𝑖𝑖 will be considered. 𝑆𝑆𝑖𝑖 and 𝑣𝑣𝑖𝑖 are the row and column values to be determined while 𝑐𝑐𝑖𝑖𝑖𝑖 is the cost per unit and 𝑑𝑑𝑖𝑖𝑖𝑖 the opportunity cost of all the unoccupied cell.

3.1.1 Tomatoes Tableau Using initial feasible solution gotten in Table 12 above, we calculate the values of 𝑆𝑆𝑖𝑖 and 𝑣𝑣𝑖𝑖 of the occupied cells, and the result is shown in the table below:

Proceedings of the International Conference on Industrial Engineering and Operations Management Washington DC, USA, September 27-29, 2018

© IEOM Society International 2098

Page 12: VAM - MODI Mathematical Modelling Method for Minimizing ...ieomsociety.org/dc2018/papers/46.pdfVAM - MODI Mathematical Modelling Method for Minimizing Cost of Transporting Perishables

Origin/Destination D1 D2 D3 D4 Dummy Supply 𝒖𝒖𝒊𝒊

O1 50 35 45 55 47 5 0 40 0

O2 80 85 73 82 0 90 90 20

O3 70 45 60 10 62 12 71 0 3 70 20

Demand 80 10 12 5 93 200

𝒗𝒗𝒋𝒋 50 40 42 47 -20

Table 16: 𝑆𝑆𝑖𝑖 and 𝑣𝑣𝑖𝑖 from all occupied cells.

Calculating opportunity cost 𝑑𝑑𝑖𝑖𝑖𝑖 for all unoccupied cells where𝑑𝑑𝑖𝑖𝑖𝑖 = 𝑐𝑐𝑖𝑖𝑖𝑖 − (𝑆𝑆𝑖𝑖 + 𝑣𝑣𝑖𝑖), we have the

table below.

Origin/Destination D1 D2 D3 D4 Dummy Supply 𝒖𝒖𝒊𝒊

O1 50 35 45 [5] 55

[13] 47 5 0

[20] 40 0

O2 80 [10]

85 [25]

73 [11]

82 [15]

0 90 90 20

O3 70 45 60 10 62 12 71 [4]

0 3 70 20

Demand 80 10 12 5 93 200

𝒗𝒗𝒋𝒋 50 40 42 47 -20

Table 17: 𝑑𝑑𝑖𝑖𝑖𝑖 of all unoccupied cells

Since all the 𝑑𝑑𝑖𝑖𝑖𝑖 ≥ 0, the final optimal solution is achieved. The minimum transportation cost is 1750 + 235 + 0 + 0 + 744 + 600 + 3150 = 6479

3.1.2 Big Red Pepper (Tatashey) Tableau

Using initial feasible solution gotten in Table 13 above, we calculate the values of 𝑆𝑆𝑖𝑖 and 𝑣𝑣𝑖𝑖 of the occupied cells, and the result is shown in the table below: Origin/Destination D1 D2 D3 D4 Dummy Supply 𝒖𝒖𝒊𝒊

O1 40 8 39 4 43 3 45 0 15 0

Proceedings of the International Conference on Industrial Engineering and Operations Management Washington DC, USA, September 27-29, 2018

© IEOM Society International 2099

Page 13: VAM - MODI Mathematical Modelling Method for Minimizing ...ieomsociety.org/dc2018/papers/46.pdfVAM - MODI Mathematical Modelling Method for Minimizing Cost of Transporting Perishables

O2 85 88 78 82 0 40 40 25

O3 75 73 68 5 63 4 0 21 30 25

Demand 8 4 8 4 61 85

𝒗𝒗𝒋𝒋 40 39 43 38 -25

Table 18: 𝑆𝑆𝑖𝑖 and 𝑣𝑣𝑖𝑖 from all occupied cells.

Calculating opportunity cost 𝑑𝑑𝑖𝑖𝑖𝑖 for all unoccupied cells where 𝑑𝑑𝑖𝑖𝑖𝑖 = 𝑐𝑐𝑖𝑖𝑖𝑖 − (𝑆𝑆𝑖𝑖 + 𝑣𝑣𝑖𝑖), we have the table below. Origin/Destination D1 D2 D3 D4 Dummy Supply 𝒖𝒖𝒊𝒊

O1 40 8 39 4 43 3 45 [7]

0 [25] 15 0

O2 85 [20]

88 [24]

78 [10]

82 [19]

0 40 40 25

O3 75 [10]

73 [9] 68 5 63 4 0 21 30 25

Demand 8 4 8 4 61 85

𝒗𝒗𝒋𝒋 40 39 43 38 -25

Table 19: 𝑑𝑑𝑖𝑖𝑖𝑖 of all unoccupied cells

Since all the 𝑑𝑑𝑖𝑖𝑖𝑖 ≥ 0, the final optimal solution is achieved. The minimum transportation cost is

8 × 40 + 4 × 39 + 3 × 43 + 40 × 0 + 21 × 0 + 4 × 63 + 5 × 68 = 1197

3.1.3 Fresh Pepper (Ata rodo) Tableau

Using initial feasible solution gotten in Table 14 above, we calculate the values of 𝑆𝑆𝑖𝑖 and 𝑣𝑣𝑖𝑖 of the occupied cells, and the result is shown in the table below:

Origin/Destination D1 D2 D3 D4 Dummy Supply 𝒖𝒖𝒊𝒊

O1 25 22 31 27 8 35 0 30 0

O2 64 68 30 72 79 0 45 75 37

O3 53 42 59 10 63 60 8 0 60 27

Demand 64 40 8 8 45 165

𝒗𝒗𝒋𝒋 25 31 28 32 -37

Table 20: 𝑆𝑆𝑖𝑖 and 𝑣𝑣𝑖𝑖 from all occupied cells.

Proceedings of the International Conference on Industrial Engineering and Operations Management Washington DC, USA, September 27-29, 2018

© IEOM Society International 2100

Page 14: VAM - MODI Mathematical Modelling Method for Minimizing ...ieomsociety.org/dc2018/papers/46.pdfVAM - MODI Mathematical Modelling Method for Minimizing Cost of Transporting Perishables

Calculating opportunity cost 𝑑𝑑𝑖𝑖𝑖𝑖 for all unoccupied cells where 𝑑𝑑𝑖𝑖𝑖𝑖 = 𝑐𝑐𝑖𝑖𝑖𝑖 − (𝑆𝑆𝑖𝑖 + 𝑣𝑣𝑖𝑖), we have

the table below.

Origin/Destination D1 D2 D3 D4 Dummy Supply 𝒖𝒖𝒊𝒊

O1 25 22 31 [0]

27 8 35 [3]

0 [72] 30 0

O2 64 [64]

68 30 72 [8]

79 [10] 0 45 75 37

O3 53 42 59 10 63 [8]

60 8 0 [9] 60 27

Demand 64 40 8 8 45 165

𝒗𝒗𝒋𝒋 25 31 28 32 -37

Table 21: 𝑑𝑑𝑖𝑖𝑖𝑖 of all unoccupied cells

Since all the opportunity cost 𝑑𝑑𝑖𝑖𝑖𝑖 ≥ 0, the final optimal solution is achieved. The minimum transportation cost is

22 × 25 + 8 × 27 + 30 × 68 + 45 × 0 + 8 × 60 + 10 × 59 + 42 × 53 = 6102

3.1.4 Onions Tableau

Using initial feasible solution gotten in Table 15 above, we calculate the values of 𝑆𝑆𝑖𝑖 and 𝑣𝑣𝑖𝑖 of the occupied cells, and the result is shown in the table below: Origin/Destination D1 D2 D3 D4 Dummy Supply 𝒖𝒖𝒊𝒊

O1 23 10 26 25 28 0 10 0

O2 65 66 61 68 0 50 50 -2

O3 51 2 47 4 50 2 53 2 0 25 35 -2

Demand 12 4 2 2 75 95

𝒗𝒗𝒋𝒋 23 49 52 55 2

Table 22: 𝑆𝑆𝑖𝑖 and 𝑣𝑣𝑖𝑖 from all occupied cells.

Proceedings of the International Conference on Industrial Engineering and Operations Management Washington DC, USA, September 27-29, 2018

© IEOM Society International 2101

Page 15: VAM - MODI Mathematical Modelling Method for Minimizing ...ieomsociety.org/dc2018/papers/46.pdfVAM - MODI Mathematical Modelling Method for Minimizing Cost of Transporting Perishables

Calculating opportunity cost 𝑑𝑑𝑖𝑖𝑖𝑖 for all unoccupied cells where 𝑑𝑑𝑖𝑖𝑖𝑖 = 𝑐𝑐𝑖𝑖𝑖𝑖 − (𝑆𝑆𝑖𝑖 + 𝑣𝑣𝑖𝑖), we have the table below. Origin/Destination D1 D2 D3 D4 Dummy Supply 𝒖𝒖𝒊𝒊

O1 23 10 26 [7]

25 [3]

28 [3]

0 [28]

10 0

O2 65 [14]

66 [19]

61 [11]

68 [15]

0 50 50 -2

O3 51 2 47 4 50 2 53 2 0 25 35 -2

Demand 12 4 2 2 75 95

𝒗𝒗𝒋𝒋 23 49 52 55 2

Table 23: 𝑑𝑑𝑖𝑖𝑖𝑖 of all unoccupied cells

Since all the 𝑑𝑑𝑖𝑖𝑖𝑖 ≥ 0, the final optimal solution is achieved. The minimum transportation cost is

10 × 23 + 50 × 0 + 25 × 0 + 2 × 53 + 2 × 50 + 4 × 47 + 2 × 51 = 726

4 Results and Discussion

Considering the outcomes of the analysis, Vogel’s Approximation Method (VAM) gave the initial basic feasible solution. Each tableau had to be checked for degeneracy. All tableaus showed that the total number of occupied cells equals to (𝑚𝑚 + 𝑀𝑀)− 1. This ensured that an optimality test should be carried out on the 4 tableaus using MODI method. From table 17, to achieve total minimum cost of moving tomatoes, the following supply routes should be considered, 𝑂𝑂1𝐷𝐷4 and 𝑂𝑂3𝐷𝐷2. The supply from origin 2 should be ignored as much as possible. From table 19 to achieve total minimum cost of moving tomatoes, the following supply routes should be considered, 𝑂𝑂1𝐷𝐷3 and 𝑂𝑂3𝐷𝐷4. The supply from origin 2 should be ignored as much as possible. While in table 21, to achieve total minimum cost of moving tomatoes, the following supply routes should be considered, 𝑂𝑂1𝐷𝐷3, 𝑂𝑂2𝐷𝐷2, 𝑂𝑂3𝐷𝐷4. And finally, table 23 shows supply route 𝑂𝑂1𝐷𝐷1 can be used to get the minimum cost of moving onions from origin to destination. Routes 𝑂𝑂3𝐷𝐷1, 𝑂𝑂3𝐷𝐷3 and 𝑂𝑂3𝐷𝐷4 can be used arbitrarily to move onions from destination 3 to origins 1, 3 and 4. This analysis can help the school plan and optimize perishable foodstuff delivery from multi-origin to multi-destination.

5 Conclusion

In this paper, cost minimization model was used to determine how the movement of perishable foodstuff (tomatoes, big red pepper (tatashey), fresh pepper (ata rodo) and onions) can be optimized from the various markets (origin) to the cafeterias around campus (destination). Vogel’s Approximation method was used to get the initial basic feasible solution, whose result

Proceedings of the International Conference on Industrial Engineering and Operations Management Washington DC, USA, September 27-29, 2018

© IEOM Society International 2102

Page 16: VAM - MODI Mathematical Modelling Method for Minimizing ...ieomsociety.org/dc2018/papers/46.pdfVAM - MODI Mathematical Modelling Method for Minimizing Cost of Transporting Perishables

was phenomenally optimal. MODI method was used to obtain an optimal solution for each of the perishable foodstuff. From the result derived, it shows that the total cost of moving foodstuff from origin to destination can be minimized, therefore, improving the quality of food served in cafeterias at a lower rate. Covenant university can use this to manage and plan the purchase of foodstuff as it endeavours to become one of the best universities in the world by the year 2022.

References

Agarana, M. C., Bishop, S. A., & Agboola, O. O. (2017). Minimizing Carbon Emissions from Transportation Projects in Sub-Saharan African Cities Using Mathematical Model: A Focus on Lagos, Nigeria. In International Conference on Sustainable Materials Processing and Manufacturing, (Vol. 7, pp. 596–601). Kruger National Park: Elsevier B.V. https://doi.org/10.1016/j.promfg.2016.12.089

Agarana, M. C., Owoloko, E. A., & Adeleke, O. J. (2017). Optimizing Public Transport Systems in Sub-saharan Africa Using Operational Research Technique: A Focus on Nigeria. Procedia Manufacturing, 7, 590–595. https://doi.org/10.1016/j.promfg.2016.12.088

M.C. Agarana and T.O. Olokunde, (2015), Optimization of Healthcare pathways in Covenant University Health Centre using Linear Programing Model, Far East Journal of Applied Mathematics, 91(3), pp. 215-228. Coulson, J., Roberts, P. & Taylor I. (2011). University Planning and Architecture: The Search

for perfection. Routledge: New York. Damcı-kurt, P., Dey, S. S., & Simge, K. (2014). On the Transportation Problem With Market

Choice, 1–33. Juman, Z. A. M. S., & Hoque, M. A. (2015). An efficient heuristic to obtain a better initial

feasible solution to the transportation problem. Applied Soft Computing Journal, 34, 813–826. https://doi.org/10.1016/j.asoc.2015.05.009

Kulkarni, S. S. (2010). On Solution to Modified Unbalanced Transportation Problem, 11(2), 20–26

Rekha Vivek Joshi. (2013). Optimization Techniques for Transportation Problems of Three Variables. IOSR Journal of Mathematics (IOSR-JM), 9(1), 46–50. Retrieved from http://www.iosrjournals.org/iosr-jm/papers/Vol9-issue1/G0914650.pdf?id=7287

Walter, M., Damcı-kurt, P., Dey, S. S., & Küçükyavuz, S. (2016). On a cardinality-constrained transportation problem with market choice. Operations Research Letters, 44(2), 170–173. https://doi.org/10.1016/j.orl.2015.12.0011

Proceedings of the International Conference on Industrial Engineering and Operations Management Washington DC, USA, September 27-29, 2018

© IEOM Society International 2103