valence quark model of hadrons quark recombination hadronization dynamics hadron statistics quark...

80
• Valence quark model of hadrons • Quark recombination • Hadronization dynamics • Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest, Univ. Giessen) School of Collective Dynamics in High-Energy Collisions, Berkeley, 19-26 May, 2005

Upload: tabitha-francis

Post on 12-Jan-2016

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

• Valence quark model of hadrons

• Quark recombination

• Hadronization dynamics

• Hadron statistics

Quark Coalescence and Hadron Statistics

T.S.Biró (RMKI Budapest, Univ. Giessen)

School of Collective Dynamics in High-Energy Collisions, Berkeley, 19-26 May, 2005

Page 2: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

Collaborators• József Zimányi, KFKI RMKI Budapest• Péter Lévai, KFKI• Tamás Csörgő, KFKI• Berndt Müller, Duke Univ. NC USA• Christoph Traxler• Gábor Purcsel, KFKI• Antal Jakovác, BMGE (TU) Budapest• Géza Györgyi, ELTE Budapest• Zsolt Schram, DE Debrecen

Page 3: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

Valence Quark Model of Hadrons

1. Mass formulas (flavor dependence)

2. Spin dependence

3. Alternatives: partons, strings, ...

Basic cross sections e p : e = 3 : 2

Page 4: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

Valence Quark Model of Hadrons

Quark masses: M = (u,d) m, (s) ms

Quark hypercharges: Y = (u,d) 1/3, (s) -2/3

Naive quark mass formula:

M = M - M Y0 1

with M = (2m + m ) / 3 and M = m - mss0 1

M ≠ 0 breaks SU(3) flavor symmetry1

Page 5: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

Valence Quark Model of Hadrons

More terms: M = a + bY + c T(T+1) + d Y2

Test on baryon decuplet masses with last 2 terms linear (like x + y Y)

(3/2, 1): 15c/4 + d = x + y

(1/2,-1): 3c/4 + d = x - y

( 0,-2): 4d = x - 2y

Solution: x = 2c, y = 3c/2 d = -c/4.

*

Page 6: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

Valence Quark Model of Hadrons

M = a + bY + c (T(T+1) - Y / 4)2

Gell-Mann Okubo mass formula:

N (qqq: ½, +1) a + b + c / 2 (qqs: 1, 0) a + 2 c (qqs: 0, 0) a (qss: ½, -1) a – b + c / 2

Check 3M( ) + M( ) = 2M(N) + 2M( ) : difference 8 MeV/ptl.

Page 7: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

Valence Quark Model of Hadrons

M = a + bY + c (T(T+1) - Y / 4) + d S(S+1)2

Gürsey - Radicati mass formula:

SU(6) quark model: (flavor SU(3), spin SU(2))

1. quark: [6] = [3,2]

2. meson: (3,2)×(3,2) = (1,1)+(8,1)+(1,3)+(8,3)

3. baryon: 6×6×6 = 20+56+70+70 (only 56 is color singlet)

Page 8: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

Valence Quark Model of Hadrons

Fit to 56-plet masses: a = 1066.6 MeV, b = -196.1 MeV c = 38.8 MeV, d = 65.3 MeV

More success: magnetic moments

No hint for formation probability

Linear dominance!

additive mass hadronization

Page 9: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

Quark Recombination

1. (Non)Linear coalescence (Bialas, ZLB)

2. ALCOR (Zimanyi, Levai, Biro)

3. Distributed mass quarks (ZLB)

hep-ph/9904501

PLB347:6,1995PLB472:243,2000

nucl-th/0502060

Page 10: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

Quark Recombination

Linear vs nonlinear coalescence

meson[ij] = a q[i] q[j]

baryon[ijk] = b q[i] q[j] q[k]

With lowest multiplets: quarks are redistributed in a few mesons and baryons # counting all flavors

q = + K + 3N + 2Y + Xq = + K + 3N + 2Y + Xs = + K + Y + 2X + 3s = + K + Y + 2X + 3

coalesced numbers

N = C b q 3 3

qN

et cetera

Page 11: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

Quark Recombination

Q = b qqA simple example: q, q , N, N

_

_ _

q = C Q Q + 3C Q = + 3 NN

3

q = C Q Q + 3C Q = + 3 NN

3

_ __ _

N / C * N / C = ( / C )3NN

_

(r ) = (q - ) ( q - ) with r = (3C ) / CN3 2/3_

Page 12: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

Quark Recombination

(q + q ) / 2

(q q )_

qq_

small r limit:

N = r q / 3(q – q)3 3__ _

N = (q – q)/3 + N

= q - 3 N

_ _

__

Features: N ≠ …q , ≠ … q q3

q > q_RHSLHS

_

Page 13: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

Quark Recombination

Note: ≠ possible due to S ≠ S while s = s

Key: b is sensitive to the q – q inbalance!s

ratios of ratios and their powers are testable!d(K) = K/K = 1.80 ± 0.2d(Y) = (Y/Y) / (N/N) = 1.9 ± 0.3d(X) = (X/X) / (N/N) = 1.89 ± 0.15d() = (/) / (N/N) = 1.76 ±0.15

CERN SPS data

1/2 1/2

1/31/3

Page 14: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

Quark Recombination

ALCOR: 2Nflavor parameters = Nf che-mical potentials + Nffugacities

this is just not grandcanonical, but explicitin the particle numbers.

Page 15: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

Quark Recombination

Distributed mass quarks form hadrons.

1.) assume hadronic wave packet is narrow in relative momentum p(a) = p(b) = p/22.) mass is nearly additive m = m(a)+m(b)3.) coalescence convolves phase space densities

F(m,p) = dm dm (m-m -m ) f(m ,p/2) f(m ,p/2)∫ a a a bbb∫0 0

The product f(x) f(m-x) is maximal at x = m /2 .

nucl-th/0502060

Page 16: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

Quark Recombination

ln (m) = - (a/T) (a/m + m/a )½

f(m,p) = (m) exp ( - E(m,p) / T )

Page 17: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

Quark Recombinationpion

Page 18: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

Quark Recombinationproton

Page 19: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

Quark Recombinationratio

Page 20: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

Hadronization dynamics

1. Parton kinetics + recombination (MFBN)

2. Colored molecular dynamics (TBM)

3. Color confinement as 1/density (ZBL)

4. Multpilicative noise in quark matter (JB)

5. Non-extensive Boltzmann equation (BP)

PRC59:1620, 1999

JPG27:439, 2001

PRL94:132302, 2005

hep-ph/0503204

Page 21: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

Colored Molecular Dynamics

g

Page 22: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

Colored Molecular Dynamics

Page 23: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

Colored Molecular Dynamics

Page 24: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

Color confinement as 1/density

reaction A + B C

conserved: N + N = N (0), N + N = N (0)A A B BCC

rate eq.: N = -R ( N - N )(N - N )C C -+

resulted number:

C

N () = N N (1-K) / (N -KN )C ++ --

with K = exp(r (N - N )), r = R(t)dt+ - ∫

Page 25: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

Color confinement as 1/density

If A and B colored, C not: N () = N (0) = N (0) = N

limit: r(N - N ) 0, K exp linearized

N () = r N / ( 1 + rN ) (r is required!)

1-dim exp : r = v/V t ln ( t / t ) 3-dim exp : r = v/3V t ( 1 - (t /t ) )

conclusion: ~ t ~ 1 / density for all quarks to be hadronized

C A B 0

0

+ -

000

000 1

1 3

3

02

Page 26: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

Color confinement as 1/density

Page 27: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

Additive and multiplicative noise

1. Langevin

p = - p = G = F

2C 2B 2D

2. Fokker Planck

∂f∂t

∂∂p

∂∂p

= ( K f ) - ( K f )1

2

2 2

K = F – Gp

K = D – 2Bp + Cp22

1

c c c

Equivalent descriptions: AJ+TSB, PRL 94, 2005

Page 28: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

Exact stationary distribution:

f = f (D/K ) exp(- atan( ) ) 0

v2 D – Bp

p

with v = 1 + G/2C

= GB/C – F

= DC – B22

For F = 0 characteristic scale: p = D/C.c2

power

exponent

(small or large) parameter

Page 29: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

Exact stationary distribution for F = 0, B = 0:

f = f ( 1 + ) 0

-(1+G/2C)2

D

C p

With E = p / 2m this is a Tsallis distribution!

f = f ( 1 + (q-1) ) 0

E

2

T

q

1 – q

Tsallis index: q = 1 + 2C / GTemperature: T = D / mG

Page 30: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

Limits of the Tsallis distribution:

p p : Gauss

p p : Power-law

c

f ~ exp( - Gp /2D )

f ~ ( p / p )

2

c

-2vc

Page 31: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

E E :

E E :

c f ~ exp( - E / T )

f ~ (E / E )-v

c c

Relation between slope, inflection and power !!

v = 1 + E / Tc

Energy distribution limits:

Page 32: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

Stationary distributions

For F=0, B=0 the Tsallis distribution is the exact stationary solution

Gamma:p = 0.1 GeV F ≠ 0

Gauss: p = ∞

Zero:p = 10 GeV

B = D/C

Power: p = 1 GeV

F ≠ 0

c

c

c

c

2

Page 33: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

Generalization

p = z - G(E) ∂E∂p

. < z(t) > = 0

< z(t)z(t') > = 2 D(E) (t-t')

In the Fokker – Planck equation:K (p) = D(E)

K (p) -G(E) ∂E∂p1

2

Stationary distribution:

f(p) = exp - G(E)∫ D(E)dE

D(E)A ( )

=

TSB+GGy+AJ+GP, JPG31, 2005

Page 34: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

GeneralizationStationary distribution:

f(p) = A exp - ∫T(E)dE

1) Gibbs: T(E) = T exp(-E/T)

2) Tsallis: T(E) = T/q + (1-1/q) E

( 1 + (q-1) E / T) -q /(q-1)

( )

Page 35: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

Inverse logarithmic slope temperature

T(E)1

= ln f (E)ddE

T (E) = D(E)

G(E) + D'(E)

T = D(0) / G(0) Gibbs

T = D(E) / G(E) Einstein

Page 36: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

slope

c

T

T

E E

TEinstein

Gibbs

Walton – Rafelski ?

TGibbsT

EinsteincE

111= +

Special case: both D(E) and G(E) are linear

Page 37: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

Fluctuation Dissipation theorem

D (E) = 1

f(E)

with f(E) stationary distribution

∫E

G (x) f(x) dxij ij

D (E) = T(E)ij

G (E) + ij

D' (E) ij ( )

(Hamiltonian eom does not change energy E!)

p = -G E + z i ijij.

Page 38: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

Fluctuation Dissipation theorem

particular cases ( for constant G ):

D = Tij

G ij

D (E) = T + (q-1) Eij

G ij

( )

Gibbs:

Tsallis:

Page 39: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

T. S. Bíró and G. Purcsel (University of Giessen, KFKI RMKI Budapest)

Non-Extensive Boltzmann Equation

• Non-extensive thermodynamics

• 2-body Boltzmann Equation + non-ext. rules

• Unconventional distributions

• H-theorem and non-extensive entropy

• Numerical simulation

hep-ph/0503204

Page 40: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

Non-extensive thermodynamics

f = f f12 1 2 statistical independence

E = h ( E , E )12 1 2

non-extensive additionrule

non-extensive addition rules for energy, entropy, etc.

h ( x, y ) ≠ x + y

Page 41: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

Sober addition rules

associativity:

h ( h ( x, y ) , z ) = h ( x, h ( y, z ) )

1,22,33

1

general math. solution: maps it to additivity

X ( h ) = X ( x ) + X ( y )

X( t ) is a strict monotonic, continous real function, X(0) = 0

Page 42: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

Boltzmann equation

∫ 4 1 2

f = w ( f f - f f )1 1234

234

1

2

3 4 w = M ( p + p - p - p )

1234 1234

1 2 3 4 ( h( E , E ) - h( E , E ) )

3

2

Page 43: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

Test particle simulation

x

y

h(x,y) = const.

E

E

EE

13

4

2

uniform random: Y(E ) = ( h/ y) dx-1

∫0

E3

3

E

E

h=const

Page 44: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

Consequences

• canonical equilibrium: f ~ exp ( - X( E ) / T )

• 2-body collisions: X(E ) + X(E ) = X(E ) + X(E )

• non-extensive entropy density: s = df X ( - ln f )

• H-theorem for X( S ) = - f ln f tot

-1

∫∫

1 2 3 4

Page 45: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

rule additive equilibrium entropy name

h ( x, y ) X ( E ) f ( E ) s [ f ] general

x + y E exp( - E / T) - f ln f Gibbs

x + y + a xy ln(1+aE) (1+aE) (f - f)/(q-1) Tsallis-1/aT q

( x + y ) E exp( - E / T) … Lévyqqqq 1/q

x y ln E E f Rényiq

1- q

1 - 1/ (1-q)

T h e r m o d y n a m i c s e sT h e r m o d y n a m i c s e s

a1

Page 46: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

S o m e m o r e . . .

k-deformed statistics (G.Kaniadakis),

X( E ) = (T / k) asinh ( kE / T ), h( x, y ) = x sqrt( 1 + ( ky / T ) ) + y sqrt( 1 + ( kx / T ) )

s[ f ] = ( f /(1-k) - f /(1+k) ) / 2k

also gives a power-law tail: ~ (2kE/T)

1-k 1+k

2 2

-1/k

Page 47: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

Cascade simulation

• Momenta and energies of N “test” particles

• Microevent: new random momenta, so that X(E1) + X(E2) = X(E1’) + X(E2’)

• Relative angle rejection or acceptance

• Initially momentum spheres, Lorentz-boosted

• Distribution of E is followed and plotted logarithmically

Page 48: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

Movie: Boltzmann a = 0 proton y=2

Page 49: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

Movie: Boltzmann a = 0 proton y=2

Page 50: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

Movie: Boltzmann a = 0 pion y=2

Page 51: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

Movie: Boltzmann a = 0 pion y=2

Page 52: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

Snapshot: Tsallis a = -0.2

Page 53: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

Snapshot: Tsallis a = -0.2

Page 54: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

Snapshot: Tsallis a = -0.2

Page 55: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

Snapshot: Tsallis a = -0.2

Page 56: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

Snapshot: Tsallis a = -0.2

Page 57: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

Snapshot: Tsallis a = -0.2

Page 58: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

Snapshot: Tsallis a = -0.2

Page 59: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

Non-extensive Boltzmann eq.

BG TS (a = 2)

Page 60: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

Tsallis distribution

Page 61: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

Hadron statistics

1. Gibbs thermodynamics: exponential

2. Non-extensive thermodynamics: power-law

3. Collective flow effects: scaling breakdown

4. low pt and high pt: connected?

hep-ph/0409157JPG31:1, 2005

Page 62: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

Particle spectra and Eq. Of State

(2h) d N 3

V dk3= d , k) f(/T)

3

Spectrum Spectral function thermodynamics

Gibbs

Tsallis

. . .

Peak: particle

bgd.: field

Shifted peak: quasiparticle

Page 63: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

Quasiparticle approximation: k

In this case: ~ f ( / T)k

d Ndk 3

3

T : parameter of environment

= b F ( k/b ) : result of interactionsk

Modified quark matter dispersion: change F( x )

Modified thermodynamics: change f( x )

Page 64: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

Experimental spectra: pp

mesons, 30 GeV, p -tail v = 10.1 ± 0.3

pions, 30 GeV, m -tail v = 9.8 ± 0.1

pions, 540 GeV, m -tail v = 8.1 ± 0.1

quarkonia, 1.8 TeV, m -tail v = 7.7 ± 0.4

t

t

t

t

Gazdiczki + Gorenstein (hep-ph / 0103010)

tt

tt

tt

tt

Page 65: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

Experimental spectra: AuAu

pi, K, p, 200 GeV, m -scaling (i.e. E = m )

v = 16.3

(E = 2.71 GeV, T = 177 MeV)

t

t

t

t

Schaffner-Bielich, McLerran, Kharezeev (NPA 705, 494, 2002)

t t

c

Page 66: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

Experimental spectra: cosmic rays

before knee, m -scaling (i.e. E = m )

v = 5.65 (E = 0.50 GeV, T = 107 MeV)

in ankle,

v = 5.50 (E = 0.48 GeV, T = 107 MeV)

t

t

t

Ch. Beck cond-mat / 0301354

t t

c

c

Page 67: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

Experimental spectra: e-beam

integral over longitudinal momenta

TASSO 14 GeV v = 51 (E = 6.6 GeV)

TASSO 34 GeV v = 9.16 (E = 0.94 GeV)

DELPHI 91 GeV v = 5.50 (E = 0.56 GeV)

DELPHI 161 GeV v = 5.65 (E = 0.51 GeV)

t

t

t

t

Bediaga et.al. hep-ph / 9905255

c

c

c

c

Page 68: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

Gaussian fit to parton distribution: < p > = D / G = 1 ... 1.5 GeV Power-tail in e+e- experiment (ZEUS): v = 5.8 ± 0.5 -> G / C = 9.6 ± 1

Derived inclination point at

p = √ D / C = 3 ... 4 GeV.

t2

c

Test v = 1 + E / T

c

Page 69: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

pions

RHIC Au Au heavy ion collision 200 GeV

q = 1.11727 T = 118 ± 9 MeV

v = 9.527 ± 0.181E = 1.008 ± 0.0973 GeV

T = 364 ± 18 MeV

from AuAu at 200 GeV (PHENIX) 0

c

0 2 4 6 8 10 12 14 p (GeV) t

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

1E-0

d 2

2p dp dyt t

min. bias

Page 70: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

Central 5% transverse spectrum 0

Page 71: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

Central 5% transverse slope 0

D(E) T(E) =

G(E) + D (E) '

Page 72: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

All central transverse slopes

Flow

All central transverse slopes

Page 73: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

Transverse flow correction

E = u p = (m cosh(y-) - v p cos(-) )

Energy in flowing cell:

Most detected: forward flying (blue shiftedblue shifted) at = y, = .

E = (m - v p )

TT

TT

Spectrum ~ ∫d d f(E)

Page 74: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

Transverse flow corrected spectra

forward flow !

Page 75: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

E/N with Tsallis distributionMassless particles, d-dim. momenta, one ptl. average

E = Ec v – d – 1

d=

1 – d (q – 1)

d T

(Ito: =0)

QGP

E =∫ dE E (1 + E / E )

dc

∫ dE E (1 + E / E )d-1

c

-v

-v

Page 76: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

E/N with Tsallis distributionMassive particles, 2-dim. momenta, one ptl. average energy

E = a (2T + bm /(m+T) )

hadrons

2

with 1/a = 3 – 2q, b = 4q - 11q + 82

(BG: a=1, b=1)E > BG case for q > 1E > BG case for q > 1

_

_

Page 77: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

Average transverse momentumR.Witt

Page 78: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

Average transverse momentum

Page 79: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

Limiting temperature with Tsallis distribution

<E>N

=E – j T

TE T = E / d

Hagedorn

;c

cj=1

d

cH

Massless particles, d-dim. momenta, N-fold

For N 2: Tsallis partons Hagedorn hadrons

( with A. Peshier, Giessen )

Page 80: Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

Summary

• Basis of coalescence: valence quark model• ALCOR: microcanonical nonlinear, non-eq.• Mol.dyn.: nice spectra, but too slow• Power-tailed stationary distributions from• a) multiplicative noise• b) Non-extensive Boltzmann-Equation• Simple relation: v = 1 + E / T.• Limiting temperature, m-scaling of exp.values

c