v1 computational theory - center for neural sciencev1 computational theory lateral view...

17
V1 Computational Theory Lateral view Retinogeniculate visual pathway Ventral view optic nerve optic chiasm optic tract LGN optic radiation primary visual cortex Retinogeniculate visual pathway

Upload: others

Post on 04-Feb-2021

7 views

Category:

Documents


0 download

TRANSCRIPT

  • V1 Computational Theory

    Lateral view

    Retinogeniculate visual pathway

    Ventral view

    optic nerve

    optic chiasm

    optic tract

    LGN

    optic radiation

    primary visual cortex

    Retinogeniculate visual pathway

  • Stimulus drive & response selectivity

    V1 orientation tuning

    Neu

    ral r

    espo

    nse

    (spi

    kes/

    sec)

    Stimulus orientation (deg)

    Simple cell

  • Complex cell

    Hubel & Wiesel movie

    V1 physiology

    Simple cells:• orientation selective• some are direction selective• some are disparity selective• monocular or binocular• separate ON and OFF subregions• length summation(best response to long bar)

    Complex cells:• orientation selective• some are direction selective• some are disparity selective• nearly all are binocular• no separate ON and OFF subregions• length summation

    Hypercomplex cells:end-stopping (best response to short bar)

  • No stimulus in receptive field: no response

    Non-preferred stimulus: no response

    Preferred stimulus: large response

    Orientation selectivity model

    Stimulus: vertical bar

    Responses of each of severalorientation tuned neurons.

    Peak (distribution mean) codesfor stimulus orientation.

    Distributed representation of orientation

    Broad tuning can code for small changes

  • Neural code depends on multiple factors

    linearweighting function

    rectification

    firing ratestimulus

    Complementaryreceptive fields

    Rectification and squaring

    Rectification and squaring

    Rectification approximates relationship between membrane potential and spiking

  • Greg DeAngelis

    Complex cells: theory

    Complex cells & position invarianceOriented stimulus as seen by both subunits at two different locations:

  • Theory of spatial pattern analysis by the visual system

    Input image(cornea)

    “Neural image”(retinal ganglion cells)

    Neural image: retinal ganglion cell responses

    Array of center-surround receptive fields

    Neural image: simple cell responses

    Input image(cornea)

    “Neural image”(V1 simple cells)

    Array of orientation-selective receptive fields

  • Lots of neural images: V1 simple cells

    A

    B

    C

    Lots of neural images

    V1 simple cells

    V1 complex cells

    Psychophysical/perceptual evidence for spatial-frequency and orientation selective channels

  • ++

    Orientation selective adaptation

    Orientation selective adaptation

    +

    +

    Orientation selective adaptation

    +

  • Normalization in monkey V1

    Response saturation and phase advance

    25%

    50%

    0 1540

    Time (ms)

    Res

    pons

    e (s

    p/s)

    100%

    12.5%

    2

    5

    10

    20

    50

    100

    Ampl

    itude

    (sp/

    s)

    5 10 20 50 100-90

    -45

    0

    Contrast (%)

    Rel

    ativ

    e ph

    ase

    (deg

    )

    Time (ms)

    Resp

    onse

    (sp/

    s)

    Contrast (%)

    Rela

    tive

    pha

    se (d

    eg)

    Am

    plit

    ude

    (sp/

    s)

    Can no longer discriminate orientations near vertical

    Failure of invariance with saturation?

  • 10 20 50 100

    0.5

    1

    2

    5

    10

    20

    50

    Contrast of grating 1 (%)

    Res

    pons

    e A

    mpl

    itude

    (sp

    /s)

    10 20 50 100

    Contrast of grating 2 (%)

    6.25%

    25%

    50%

    6.25% 25%

    0%

    50%

    6130

    76

    Time (ms)

    Res

    pons

    e (s

    p/s)

    0%

    0

    Masking

    Normalization model

    Σ( )normalizedresponse

    (unnormalized response)2

    unnormalized 2responses + σ

    2

    =

    Response saturation and cross-orientation suppression

    25%

    50%

    0 1540

    Time (ms)

    Res

    pons

    e (s

    p/s)

    100%

    12.5%

    2

    5

    10

    20

    50

    100

    Ampl

    itude

    (sp/

    s)

    5 10 20 50 100-90

    -45

    0

    Contrast (%)

    Rel

    ativ

    e ph

    ase

    (deg

    ) Contrast (%)

    Am

    plit

    ude

    (sp/

    s)

    r = α c2

    c2 +σ 2

    10 20 50 100

    0.5

    1

    2

    5

    10

    20

    50

    Contrast of grating 1 (%)

    Res

    pons

    e A

    mpl

    itude

    (sp

    /s)

    10 20 50 100

    Contrast of grating 2 (%)

    6.25%

    25%

    50%

    6.25% 25%

    0%

    50%

    6130

    76

    Time (ms)

    Res

    pons

    e (s

    p/s)

    0%

    0

    r = α ct2

    ct2 + cm

    2 +σ 2

    Resp

    onse

    am

    plit

    ude

    (sp/

    s)

    Contrast of grating 1 (%)

  • Ratio of responses to pref and non-pref directions constant overfull range of contrasts.

    Contrast invariance

    Contrast

    Resp

    onse

    (spi

    kes/

    sec)

    Tolhurst & Dean (1980) Model

    Surround suppression

    CRF

    SurroundSurround ck

    sk

    CRF

    Surround

    0 < β < 1 surround suppression

    80

    60

    40

    20

    0

    0 1 2 3 4 5 6452l021.p05

    Grating patch diameter (deg)

    Res

    pons

    e (im

    p/se

    c)

    Suppression

    Surrounddiameter

    Optimaldiameter

    Surround suppression

    CRF

    SurroundSurround ck

    sk

    CRF

    Surround

  • Psychophysical/perceptual evidence for normalization

    Masking

    Target Surround masking

    Overlay masking

  • Canonical computation hypothesis: normalization in other brain areas

    Light adaptation in the retina (revisited)

    R =α ItIt + Ib +σ

    1 10 1000

    50

    100

    150

    200

    1 10 100ORN response (spikes/sec)

    PN r

    espo

    nse

    (spi

    kes/

    sec)

    Normalization in fruit fly olfaction

    R = α Itn

    Itn + Im

    n +σ n

    Mask odor Test odorORN: olfactory receptor neuronPN: projection neuron

    Test only Mask + Test

  • Also...

    •Visual cortical areas V4 (pattern), MT (motion perception), and IT (object recognition).

    •Other sensory modalities: auditory cortex; multisensory integration (visual motion and vesibular system) in MST.

    •Encoding of value in posterior parietal cortex.•Superior colliculus: saccade averaging.•Attention: modulation of activity in visual cortex.

    Why normalize?

    • Limited dynamic range (Heeger, Vis Neurosci, 1992).•Simplify read-out, thinking of population code as a probability

    density (Simoncelli & Heeger, Vis Res, 1998; Simoncelli, in The Visual Neurosciences, 2003; Beck, Latham & Pouget, J Neurosci, 2011).

    • Invariance w.r.t. one or more stimulus dimensions, e.g., contrast, odorant concentration (Heeger, Vis Neurosci, 1992; Heeger, Simoncelli & Movshon, PNAS, 1996; Simoncelli & Heeger, Vis Res, 1998; Ringach, Vis Res, 2009; Olsen, Bhandawat & Wilson, Neuron, 2010).

    •Averaging vs. winner-take-all (Busse, Wade & Carandini, Neuron, 2009).•Decorrelation & statistical independence (Schwartz & Simoncelli, Nat

    Neurosci, 2001; Lyu & Simoncelli, Neural Comput, 2009; Olsen, Bhandawat & Wilson, Neuron, 2010; Lyu, Axel & Abbott, PNAS, 2010).

    Possible circuits & mechanisms

    •Might be feedforward, feedback, or a combination of the two (Heeger, J Neurophysiol, 1993)

    •Shunting inhibition (Carandini & Heeger, Science, 1994; Carandini, Heeger & Movshon, J Neurosci, 1997)

    •Synaptic depression (Carandini, Heeger & Senn, J Neurosci, 2002)• Presynaptic inhibition (Olsen & Wilson, Nature 2008)•Balanced amplification (Murphy & Miller, Neuron, 2009)•Background synaptic activity (Chance, Abbott & Reyes, Neuron, 2002)•Saturation of the inputs combined with spike threshold and

    spike-rate rectification (Priebe & Ferster, Neuron, 2008)

    •Etc.

  • From circuits & mechanisms to behavior

    Computation

    Circuits & cellular/molecular mechanisms Behavior

    Carandini, Nat Neurosci (2012)

    Mechanism?

    Canonical computation deficit hypothesis

    Possible dysfunction of normalization underlying schizophrenia, epilepsy, and other developmental and neurological disorders.

  • Schizophrenia: a dysfunction of normalization?

    Dakin, Carlin & Hemsley, Curr Biol, 2005

    Possible mechanism for normalization deficit

    MR spectroscopy

    Yoon et al, J Neurosci, 2010