v v e r r b m k - jaif.or.jp · pdf file• pressurised light water used as moderator ......

69
R. S. CTU Prague WNU SI 2010 1 Current reactor technology, part III: V V E R R B M K Radek Škoda Czech Technical University Prague WNU SI 2010 Christ Church, Oxford

Upload: nguyenminh

Post on 22-Mar-2018

215 views

Category:

Documents


1 download

TRANSCRIPT

R. S. CTU Prague WNU SI 2010 1

Current reactor technology, part III:

V V E RR B M K

Radek Škoda

Czech Technical University Prague

WNU SI 2010

Christ Church, Oxford

R. S. CTU Prague WNU SI 2010 2

Overview1.Gen 1-2-3-4

2. Reactor technology: RBMK

3.Reactor technology: VVER

4.Which reactor is good then???

R. S. CTU Prague WNU SI 2010 3

For those who have not seen this graph yet :-)

R. S. CTU Prague WNU SI 2010 4

2. Reactor technology• RBMK – Former USSR: Lithuania, Ukraine, Russia = LWGR (graphite moderated, light water cooled)

• VVER – Former USSR + Czech R., Slovakia, Hungary, Bulgaria, Finland, East Germany, India, China, Iran, Turkey

= PWR (pressurised water reactor)

R. S. CTU Prague WNU SI 2010 5

RBMK = containment? + void?Graphite moderator

Light water coolant

Boiling in channels

Low enrichment

Variable Pu vector

R. S. CTU Prague WNU SI 2010 6

R. S. CTU Prague WNU SI 2010 7

RBMK nuclear island from above...

R. S. CTU Prague WNU SI 2010 8

RBMKcore:

11m x 7m high

R. S. CTU Prague WNU SI 2010 9

Reactor hall

R. S. CTU Prague WNU SI 2010 10

Mk 1

R. S. CTU Prague WNU SI 2010 11

Mk 2

R. S. CTU Prague WNU SI 2010 12

RBMK Mk 2

R. S. CTU Prague WNU SI 2010 13

Key technical characteristics

Core parameters RBMK-1000

RBMK-1500

Power, MW:-          Electric  -          Thermal  

10003200

15004800

Number of fuel channels, pcs. 

1693 1661

Coolant 

Steam-water mixture

Steam-water mixture

Steam characteristics before the turbine: -          pressure, MPa -          Temperature ,°С 

6,38 280

6,38 280

Coolant temperature: 

 

- at the core inlet 

270 270

- at the core outlet 

284 284

Water flow through the reactor, t/h 

37500 29020

FA characteristics   

RBMK-1000 RBMK-1500

Max. power of the fuel channel with fuel assembly, MW 

3 4,25

Service time, years 

7 6

FA dimensions:-          length, mm -          diameter, mm 

10014 79

10014 79

FA weight, kg 

185 185

U-235 enrichment depending on design modification,% 

2,6; 2,8 2,4; 2,6

Average fuel burn-up depending on enrichment, MW d/kg U 

25,8 (2,6%)30 (2,8%)

20,5 (2,4%)26 (2,6%)

Max. fuel burn-up depending on enrichment, MW d/kg U  

29,6 (2,6%)34,5 (2,8%)

23,5 (2,4%)30 (2,6%)

RBMK

R. S. CTU Prague WNU SI 2010 14

RBMK 1500 IGNALINA

R. S. CTU Prague WNU SI 2010 15

RBMK 1500 IGNALINA

More of this nice accent on: http://www.youtube.com/watch?v=5dZ4mD6gKjg

Now only 1 RBMK being built

R. S. CTU Prague WNU SI 2010

R. S. CTU Prague WNU SI 2010 17

Many changes: may RBMK return?CURRENTLY:

Higher enrichment

Erbium burnable poison

Void coefficient negative now

New control rods

PROPOSAL:containment

CONTAINMENTs

D.I.Y.

R. S. CTU Prague WNU SI 2010

• Thermal nuclear reactors

• Pressurised Light Water used as moderator

• Pressurised Light Water used as coolant

• Steam generator used to produce steam

R. S. CTU Prague WNU SI 2010 19

3. VVER (WWER) reactors

R. S. CTU Prague WNU SI 2010 20

NPP Shippingport-1

68 MWe

USA Submarine

SSN-571Nautilus

PWR = submarine technology

Russian Submarine

NPP Novovoroněž-1

210 MWe

Remember: PWR in the world

R. S. CTU Prague WNU SI 2010 21

Remember where the PWR comes from

• First demoplants: PWR at Shippingport in USA: 1957 VVER-210 at USSR: 1964

• In USSR focused on RBMK reactors (LWGR) at that time, “eastern” PWR development initially in Eastern Germany !!

• 7 year technology gap

R. S. CTU Prague WNU SI 2010 22

VVER reactor history

R. S. CTU Prague WNU SI 2010 23

MOTTO: Build and ship around…

R. S. CTU Prague WNU SI 2010 24

VVER reactor history

• Railroads were the limiting factor => “slender&high” R.P.V. => small core => higher enrichment

• Horizontal steam generators => large volume => initially no containment/confinement

• Faster development in fewer steps => robust and conservative approach

R. S. CTU Prague WNU SI 2010 25

VVER typical featuresCore: triangular lattice => hexagonal fuel assemblies

fuel assembly with grid 12.6mm

small core size => higher enrichment

Small RPV diameter => neutron damage on RPV

(156 mm water for VVER440 (V-230),

263 mm for VVER1000 (V-320) between fuel and RPV)

=> “high” RPV (esp. for VVER440)

Primary circuit: more loops (6 for VVER440)=>more water

horizontal steam generators=>less sediments

Safety: VVER440 (V-230): LOCA: 32mm diameter, weak ECCS

From VVER440(V-213): LOCA: full rupture, standard ECCS

R. S. CTU Prague WNU SI 2010 26

VVER typical featuresVVER 440: very efficient control rods

-different design than in other PWR

- effort of being robust and simple

- large worth, quick scram

-resulting in a ”long” RPV which also means a lot of water…

-unusual burnout of fuel attached to the control rod

-safety studies: control rod ejection is more dramatic than PWR

VVER 1000: standard approach to control rods, like PWR

Before I show you the reactors...

R. S. CTU Prague WNU SI 2010

Q U I Z time! a/ VVERb/ BWRc/ RBMK

d/ CANDUe/ PWR

R. S. CTU Prague WNU SI 2010 28

VVER 440

Courtesy of Skoda-JS

R. S. CTU Prague WNU SI 2010 29

NPP VVER 440 (V 230)

R. S. CTU Prague WNU SI 2010 30

VVER 440 V-213

R. S. CTU Prague WNU SI 2010 31

NPP VVER 440 (V 213)

R. S. CTU Prague WNU SI 2010 32

VVER 440, reactor hall cross section

R. S. CTU Prague WNU SI 2010 33

VVER 440 – primary circuit

Courtesy of Skoda-JS

R. S. CTU Prague WNU SI 2010 34

VVER 440 – steam generator

Courtesy of Skoda-JS

R. S. CTU Prague WNU SI 2010 35

VVER 440 – RPV cross section in 2 levels

Courtesy of Skoda-JS

R. S. CTU Prague WNU SI 2010 36

VVER 440 – fuel pin and fuel assembly

R. S. CTU Prague WNU SI 2010 37

VVER 440 Dukovany, Loviisa

Reactor type VVER 440 (V 213) VVER 1000 (V320)

Thermal power 1375 MW 3000 MW

RPV diameter 3.56 m 4.5 m

RPV height 11.8 m 10.9 m# of fuel assemblies 312 163Fuel load 42 t 92 t

Moderator/coolant H2O H2O

RPV pressure 12.25 MPa 15.7 MPaCoolant temperature 267 °C - 297 °C 290 °C - 320 °C

R. S. CTU Prague WNU SI 2010 38

2 x 10004 x 440

VVER 440 x VVER 1000 comparison

R. S. CTU Prague WNU SI 2010 39

VVER 1000 V320

Courtesy of Skoda-JS

R. S. CTU Prague WNU SI 2010 40

Main parts:VVER 1000 reactor:

R. S. CTU Prague WNU SI 2010 41

Mix: VVER1000 + Western technology

NPP Temelín

NPP Busehr

Courtesy of Skoda-JS

R. S. CTU Prague WNU SI 2010 42

Currently building: AES-92 = VVER1000 V392 (Belene)

Primary circuit:  Number of loops 4Coolant pressure 15.7 MPa

Core inlet temperature 291°C

Core outlet temperature 321°CFA number 163

# of control rods 121

Maximum FA burn-up >60 MWd/kgU

R. S. CTU Prague WNU SI 2010 43

Currently building AES-2006 ~ VVER1200 ~ V491 (now also known as MIR-1200)

Primary circuit:  

Number of loops 4Coolant pressure 16.2 MPa

Core inlet temperature 299°C

Core outlet temperature 330°CFA number 163

# of control rods 121

Maximum FA burn-up <70 MWd/kgU

All can be seen at the “cradle” of VVER reactors

R. S. CTU Prague WNU SI 2010NOVOVORONEZH

R. S. CTU Prague WNU SI 2010 45

Planned: VVER640 (V407)

Primary circuit:  Number of loops 4Coolant pressure 15.7 MpaCore inlet temperature 294°C

Core outlet temperature 322°CThermal power 1800 MW

Enrichment 3.6%Average FA burn-up 45MWd/kgU

R. S. CTU Prague WNU SI 2010 46

Planned: VVER1500

Primary circuit:  Number of loops 4Coolant pressure 15.7 MpaCore inlet temperature 299°C

Core outlet temperature 330°CThermal power 4250 MW

Enrichment 4.4%Average FA burn-up 45-55MWd/kgU

R. S. CTU Prague WNU SI 2010 47

VVER-1200 a.k.a. MIR-1200 a.k.a. V-491 a.k.a. AES-2006.

Newest VVER type currently offered:

Courtesy of Skoda-JS

• VVER are PWR reactors, the physics is the same

• VVER440 – robust approach

• VVER1000 – very close to western PWR, with specific pros&cons

• Several dozens of units operational, many in construction phase, good operating record

R. S. CTU Prague WNU SI 2010 48

VVER reactor specification

R. S. CTU Prague WNU SI 2010 49

4. Which reactor is good / bad?Several PERFORMANCE indicators:

• Availibility factor• Load factor• Capacity factor• Operating factor...

Also: SAFETY + SECURITY indicators (WANO/INPO lectures to come)

R. S. CTU Prague WNU SI 2010 50

IAEA website helps too! VVER440

R. S. CTU Prague WNU SI 2010 51

IAEA website helps... VVER1000

Comparison of 4 LWRs: Gen III

R. S. CTU Prague WNU SI 2010 Courtesy of J. Misak: NRI Rez

Comparison of 4 PWRs: Gen III

R. S. CTU Prague WNU SI 2010 Courtesy of J. Misak: NRI Rez

R. S. CTU Prague WNU SI 2010 54

THANK YOU

(15 BACK UP SLIDES READY AND ENCLOSED WITH DATA FOR EAGER READERS...)

Comparison of 4 PWRs: Gen III

R. S. CTU Prague WNU SI 2010 Courtesy of J. Misak: NRI Rez

R. S. CTU Prague WNU SI 2010 56

VVER performance

Courtesy of D. Gilchrist, ENEL

R. S. CTU Prague WNU SI 2010 57

VVER reactor history: “Voronezh” types PROTOTYPES

Power/ MWe

Place Start Decommissioned

VVER 210

210 Novovoronezh 1964 1988

VVER 70 70 Rheinsberg 1966 1990

VVER 365

365 Novovoronezh 1970 1990

R. S. CTU Prague WNU SI 2010 58

VVER reactor history: “Voronezh” types VVER 440 (i.e. rated 440MWe) “1st

generation”Feature Place Start

V 170 Novovoronezh 1972

V 230 Kola 1973

V 270 seismic Armenia 1980

VVER for export, RBMK for home:

17 VVER440 units built, 13 out of Russia

R. S. CTU Prague WNU SI 2010 59

VVER reactor history: “Voronezh” types VVER 440 “2nd generation” (i.e. project after`70)

Feature Place Commissioned

V 213 Kola 1982

V 213 Ice + containment Loviisa 1977

V 213 condenser Dukovany 1985Again for export: 18 units built, 16 out of Russia

R. S. CTU Prague WNU SI 2010 60

VVER reactor history: “Voronezh” types VVER 1000 (i.e. power 1000MWe) “2nd generation”

Place Commissioned

V 178 Novovoronezh 1981

V 302 Nikolajev 1983

V 338 Kalinin 1985

V 320 Balakovo 1986

More than 20 units built, other still in construction..

R. S. CTU Prague WNU SI 2010 61

VVER reactor history: “Voronezh” types

“3rd + 4th generation” (i.e. outlook)From the `80-ies many variants of VVER planned:

V318 (440MWe)

V428(1000MWe),

V407(640MWe),

V392(1000MWe)…

in different stages of planning and construction

R. S. CTU Prague WNU SI 2010 62

VVER 1000 comparison – design parameters

V-320 V-320Temelín

V-428 V-466

Thermal Power, MW 3000 3000 3000 3000

Fuel cycle, years 3 4 3-4 3-4

Average burn out, MWd/kgU 40.2 43.3 43 47.2

Enrichment, % 4.4 3-3.8 3.9 4.28

Profiled fuel no yes ? ?

Annual load factor, hours 7000 7000 7000 8400

Planned lifetime, years 30 30-40 40 60

LBB (Leak Before Break) no yes yes yes

Probability of core melting 10Е-5 10Е-5 10Е-5 10Е-6

ATWS no yes yes yes

ECCS concept 3х100% 3х100% 4х100% 4х100%

Double containment no no yes yes

Core catcher no no yes yes

R. S. CTU Prague WNU SI 2010 63

V-320 V-320Temelín

V-428 V-466

       

Pressure, MPa 15,7 15,7 15,7 15,7

Outlet temperature, [°C] 320 320 320 (321)*

320 (321)*

Inlet temperature, [°C] 289,7 289,7 289,7 (291)*

289,7 (291)*

Flow, [m3/h] 84800 84800 86000 86000

RPV – inner diameter, [mm]

4150 4150 4150 4195

RPV – thickness at the core level, [mm] 192,5 192,5 192,5 195

RPV - height, [mm] 10 885 10 885 11 185 11 185

VVER 1000 comparison – design parameters

Primary circuit

R. S. CTU Prague WNU SI 2010 64

NPP Loviisa

VVER 440

Loviisa

R. S. CTU Prague WNU SI 2010

R. S. CTU Prague WNU SI 2010 66

VVER 440 V 213

AES-92: BELENE

R. S. CTU Prague WNU SI 2010

R. S. CTU Prague WNU SI 2010 68

LWR positive/negative void…

R. S. CTU Prague WNU SI 2010 69

Void coefficient... in “my” reactor