using machine learning to create turbine performance models · using machine learning to create...

17
Using Machine Learning To Create Turbine Performance Models Andy Clifton Senior Engineer, NREL National Wind Technology Center [email protected], +1 3033847141 Presented to Power Curve Working Group Meeting II, Brande, Denmark, March 12 2013 NREL/PR500058314 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Upload: others

Post on 14-Mar-2020

13 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Using Machine Learning To Create Turbine Performance Models · Using Machine Learning To Create Turbine Performance Models. AndyClifton. Senior Engineer, NREL National Wind Technology

                                               

         

   

 

              

                    

Using Machine Learning To Create

Turbine Performance Models

Andy Clifton

Senior Engineer, NREL National Wind Technology Center [email protected], +1 303‐384‐7141

Presented to Power Curve Working Group Meeting II, Brande, Denmark, March 12 2013

NREL/PR‐5000‐58314

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Page 2: Using Machine Learning To Create Turbine Performance Models · Using Machine Learning To Create Turbine Performance Models. AndyClifton. Senior Engineer, NREL National Wind Technology

     

 

 

   

 

                    

Yesterday’s approximation – stream tube

Air Density

Wind Speed

The Betz Limit

Efficiency

Rotor Diameter

In low shear and low turbulence, hub‐height wind speed is a useful metric

2

Page 3: Using Machine Learning To Create Turbine Performance Models · Using Machine Learning To Create Turbine Performance Models. AndyClifton. Senior Engineer, NREL National Wind Technology

         

       

                    

Today’s need – include the real atmosphere How can we include the atmospheric boundary

layer in turbine performance predictions?

Illustration courtesy Levi Kilcher, NREL

3

Page 4: Using Machine Learning To Create Turbine Performance Models · Using Machine Learning To Create Turbine Performance Models. AndyClifton. Senior Engineer, NREL National Wind Technology

             

   

                           

  

  

     

                        

     

                

               

        

 

Stability is just one part of the puzzle There’s no clear link between stability and power production.

Wind Speed (ms‐1)

S. Wharton and J. K. Lundquist, Atmospheric stability affects wind turbine power collection, Environmental Research Letters 7 (2012)

Normalize

d Power

(%)

Strongly convective Strongly

stable

Convective

Data stratified by Ti(w’)

Is it better to look at shear and turbulence?

Data stratified by shear and Richardson No.

Convective

Convective

Stable

Stable

B. Vanderwende and J. K. Lundquist, The modification of wind turbine performance by statistically distinct atmospheric regimes, ERL 7 (2012)

4

Page 5: Using Machine Learning To Create Turbine Performance Models · Using Machine Learning To Create Turbine Performance Models. AndyClifton. Senior Engineer, NREL National Wind Technology

 

                            

              

                                 

Research question

• How do we include the effect of shear and turbulence on the performance of a turbine? Do we o Remove it – find a zero turbulence power curve? o Acknowledge it – provide power curves for different turbulence intensities and shear?

o Embrace it – figure out ways to include more variables?

5

Page 6: Using Machine Learning To Create Turbine Performance Models · Using Machine Learning To Create Turbine Performance Models. AndyClifton. Senior Engineer, NREL National Wind Technology

            

Tools for exploring turbine behaviour TurbSim – flow simulator FAST – turbine simulator

Wind

Rotor Axis

Yaw Axis

TipRad

Precone (negative as shown)

Apex of Cone of Rotation

ShftTilt (negative as shown)

OverHang

Nacelle C.M.

Hub C.M.

HubCM (negative as shown)

Pitch Axis

HubRad

TowerHt

(negative as shown) Twr2Shft

Yaw Bearing C.M.

NacCMzn

NacCMxn

NcIMUzn

NcIMUxn

Nacelle IMU

http://wind.nrel.gov/designcodes/simulators http://wind.nrel.gov/designcodes/preprocessors/

6

Page 7: Using Machine Learning To Create Turbine Performance Models · Using Machine Learning To Create Turbine Performance Models. AndyClifton. Senior Engineer, NREL National Wind Technology

     

 

   

 

   

   

   

 

                                    

                 

 

  

                        

The WindPACT 1.5MW baseline turbine

7

Parameter Value2

Hub height 84 m

Rotor diameter 70 m

Cut‐in 3 m/s

Rated speed 11.5 m/s

Power power 1500 kW

Rated RPM 20.5 RPM

Cut‐out 27.6 m/s

[1] R. Wiser and M. Bollinger, 2011 Wind technologies market report, DOE, 2011 [2] R. Poore and T. Lettenmaier. Alternative design study report: WindPACT advanced wind turbine drive train designs study. SR‐500‐33196, NREL, 2003.

Diameter: 70 m

Hub height: 84 m

More than 50% of turbines installed in the USA from 2002‐2011 were 1‐2 MW1

Page 8: Using Machine Learning To Create Turbine Performance Models · Using Machine Learning To Create Turbine Performance Models. AndyClifton. Senior Engineer, NREL National Wind Technology

       

For               

       

            

        

     

      

•        

Simulating a power performance test

cing = log‐law wind fields o Hub‐height horizontal wind speed

U = [3 … 25] ms‐1

o Hub‐height turbulence intensity Ti = [5 … 40] %

o Power‐law speed profile shear exponentα = [‐0.5 … 0.5]

o Constant densityρ = 1.225 kg m‐3

Output = 10‐minute mean power

8

Page 9: Using Machine Learning To Create Turbine Performance Models · Using Machine Learning To Create Turbine Performance Models. AndyClifton. Senior Engineer, NREL National Wind Technology

            

            

        

        

   

   

                 

Subsets of the data 7‐8 m s‐1

12‐13 m s‐1 (rated = 11.5 m s‐1)

Power output depends on region – Below rated (Region II, U < 11.5)

• Ti increases power • Shear increases power

– Above rated (Region III) • Ti decreases power • Shear less important than Ti

– Is this actionable?

16‐17 m s‐1

9

Page 10: Using Machine Learning To Create Turbine Performance Models · Using Machine Learning To Create Turbine Performance Models. AndyClifton. Senior Engineer, NREL National Wind Technology

   

      

       

         

  

  

     

         

Modeling power output ‘Classification and Regression Tree’

• Need continuous predictions of power

• Must be ‘trainable’ usingobservations o Simulations o Field testing

• Limited inputs o Wind speed & operating

region o Rotor‐disk shear o Turbulence intensity

• One output o 10‐minute power

One branch of a regression tree

10

Page 11: Using Machine Learning To Create Turbine Performance Models · Using Machine Learning To Create Turbine Performance Models. AndyClifton. Senior Engineer, NREL National Wind Technology

        

                 

                                          

             

Regression tree model results 7.5 m s‐1

Power output is a function of region, Ti and shear • What were the conditions where

the turbine was tested? • What are the conditions at the

new site?

12.5 m s‐1 (rated = 11.5 m s‐1) 16.5 m s‐1

Contour lines show power normalized by zero‐turbulence

11 case

Page 12: Using Machine Learning To Create Turbine Performance Models · Using Machine Learning To Create Turbine Performance Models. AndyClifton. Senior Engineer, NREL National Wind Technology

                

                                      

                             

                             

            

                    

  

                     

A note on high turbulence intensities • Assume u is normally

distributed* o 15.8 % of observations will be

less than U‐ߪ(u) o 2.2 % of observations will be

less than U‐2ߪ(u) o All nicely defined by the

normal distribution • Even at high mean wind

speeds, wind speeds can bebelow rated if Ti is highenough o Chance of wind speeds below

rated if Ti > 10% at 16.5 m s‐1

o Compare with plots ofpower versus shear and Ti onprevious page

Wind speeds during a 10‐minute interval Mean wind speed = 16.5 m s‐1

Rated wind speed

*this is an approximation, used to show the possible effects of Ti

12

Page 13: Using Machine Learning To Create Turbine Performance Models · Using Machine Learning To Create Turbine Performance Models. AndyClifton. Senior Engineer, NREL National Wind Technology

       

                               

 

   

   

Higher‐fidelity model is more accurate R

MS

E (k

W)

MA

E (k

W)

150

100

50

0

60

40

20

0

Power Curve Regression Tree

940 950 960 970 980 990 1000

Mean Power (kW)

Randomly split simulations into training and test data sets • 898 random data points each

(50% of simulations) • Predict 10‐minute mean power

• Power curve • Regression tree

• Quantify error • Root‐mean‐squared‐error • Mean absolute error

• Repeat 50 times

13

Page 14: Using Machine Learning To Create Turbine Performance Models · Using Machine Learning To Create Turbine Performance Models. AndyClifton. Senior Engineer, NREL National Wind Technology

       

                     

               

                   

                                            

           

Creating a site‐specific power estimate • Use time series of wind speed, shear and Ti o Plug numbers in to the regression tree

o Get power estimate o Easy to do with a time series…

o …needs some thought on how to do it with a wind rose.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

No turbulence Site specific

01/03 01/10 01/17 01/24 01/31 02/07 02/14 02/21

Date (mm/dd)

Nor

mal

ized

Ene

rgy

Cap

ture

Plots are preliminary and for illustration only. From: Clifton, A., Daniels, M. H., and Lehning, M. Causes of mountain pass winds and their effects on wind turbines. Wind Energy. In revision, 2/2013

14

Page 15: Using Machine Learning To Create Turbine Performance Models · Using Machine Learning To Create Turbine Performance Models. AndyClifton. Senior Engineer, NREL National Wind Technology

       

                                                              

             

                      

What I learned about Machine‐Learning

Pros

• Doesn’t require you to knowall of the physics

• Lets you use a lot more of thedata you have o Wind speed, shear, Ti, region o Could add veer o Could divide shear into top

and bottom of rotor o Could use rotor‐equivalent

wind speed • Can be very fast • Can give you site‐specific

power estimate

Cons

• Needs a good data set to trainthe model

• Training conditions shouldbracket site conditions

15

Page 16: Using Machine Learning To Create Turbine Performance Models · Using Machine Learning To Create Turbine Performance Models. AndyClifton. Senior Engineer, NREL National Wind Technology

         

             

        

a

   

   

Conclusion: multivariate power curves are possible

• Simulations show strong sensitivity to Ti

• Regression trees offer lower error

• Needs testing with more

7.5 m s‐1

16

dat

16.5 m s‐1

Page 17: Using Machine Learning To Create Turbine Performance Models · Using Machine Learning To Create Turbine Performance Models. AndyClifton. Senior Engineer, NREL National Wind Technology

                                  

       

                                     

References

Clifton, A., Kilcher, L., Lundquist, J., and Fleming, P. Using machine learning to predict wind turbine power output. Environmental Research Letters. Accepted 3/2013

Clifton, A., Daniels, M. H., and Lehning, M. Causes of mountain pass winds and their effects on wind turbines. Wind Energy. In revision.

17