unraveling the complexities of the cubic formula · pdf filea little history •quadratic...

51
Unraveling the Complexities of the Cubic Formula Bruce Bordwell & Mark Omodt Anoka-Ramsey Community College Coon Rapids, Minnesota

Upload: buiphuc

Post on 14-Feb-2018

231 views

Category:

Documents


2 download

TRANSCRIPT

Unraveling the Complexities of the Cubic Formula

Bruce Bordwell &Mark Omodt

Anoka-Ramsey Community CollegeCoon Rapids, Minnesota

A little history…

• Quadratic Equations

• Cubic Equations

• del Ferro (1465 – 1526)

• Tartaglia (1500 – 1557)

• Cardano (1501 – 1576)

• Bombelli (1526 – 1572)

• Ferrari (1522 – 1565)

• Abel (1802 – 1829)/Galois (1811 – 1832)

The Cubic Formula

3 2 0ax bx cx d 3ba

x t

3 23 3 3

( ) ( ) ( ) 0b b ba a a

a t b t c t d

3 0t pt q 2

23

3ac b

ap 3 2

32 9 27

27b abc a d

aq

3pw

t w 33 3

( ) ( ) 0p pw w

w p w q

36 327

0pw qw

36 327

0pw qw

342273

2

pq qw

323

23 2 3 2 3

3 3

422 9 27 2 9 27

2727 273

2

ac bab abc a d b abc a d

a aw

Why ? 3pw

t w

If 3 0t pt q , what happens if we substitute t w v ?

3

0w v p w v q

23 32 03 3w v w pvw vv qpw

Note that if we’re trying to eliminate terms,

2 2 2 23 3 3 3 3 3 3w v wv pw pv w v pw wv pv w wv p v wv p w v wv p

So if we choose 3

pv

w

, then those 4 terms are eliminated from the equation and we get

3 33 3 3 3

30

3 27

p pw v q w q w q

w w

.

Multiplying through by 3w gives us 3

6 3 027

pw qw .

A simple example

3 23 3 14 0x x x 3

3 3(1)1b

ax t t t

3 0t pt q

2

2

3

36ac b

ap

3 2

3

2 9 27

279b abc a d

aq

3 6 9 0t t 23

p

w wt w w

32 2( ) 6( ) 9 0w w

w w 6 39 8 0w w

𝑡 − 1 3 + 3 𝑡 − 1 2 − 3(𝑡 − 1) − 14 = 0

6 3 3 39 8 ( 1)( 8) 0w w w w

3 1 0w

312 2

cos(120 ) sin(120 ) 1,w k i k i

3 8 0w

2 cos(120 ) sin(120 ) 2, 1 3w k i k i

21 1 3 1 2

ww t w x t

22 2 3 1 2

ww t w x t

3 3 33 51 23 2 2 2 2 2 2

1w

w i t w i x t i

3 33 524 2 2 2 2

1 3 1w

w i t w i x t i

3 3 33 51 25 2 2 2 2 2 2

1w

w i t w i x t i

3 33 526 2 2 2 2

1 3 1w

w i t w i x t i

Another simple example

3 23 27 31 0x x x 31b

ax t t

3 0t pt q

2

2

3

324ac b

ap

3 2

3

2 9 27

2756b abc a d

aq

3 24 56 0t t 83

p

w wt w w

6 3 3 356 512 ( 64)( 8) 0w w w w

3 64 0w 4 cos(60 120 ) sin(60 120 ) 4, 2 2 3w k i k i

3 8 0w 2 cos(120 ) sin(120 ) 2, 1 3w k i k i

81 4 2 1 1

ww t w x t

82 2 2 1 1

ww t w x t

83 2 2 3 1 3 3 1 2 3 3

ww i t w i x t i

84 1 3 1 3 3 1 2 3 3

ww i t w i x t i

85 1 3 1 3 3 1 2 3 3

ww i t w i x t i

86 2 2 3 1 3 3 1 2 3 3

ww i t w i x t i

What can go “wrong”?

3 23 4 12 0x x x 31b

ax t t

3 7 6 0t t 73 3

p

w wt w w

6 3 34327

6 0w w

2 343 400

27 276 6 4( ) 63 10 3

2 2 93w i

3 10 3

93w i

3 1 110 3 10 37 21

9 27 27cos tan 360 sin tan 360w k i k

1 110 3 10 37 21 1 131 9 3 27 3 27

cos tan sin tanw i

1 1.5 0.288675134595w i

331 2 6

w i

33 71 2 6 3

3 1 2w

w i t w x t

2 32 3

1w i 73

2 1 3w

t w x t

5 313 2 6

w i 73

1 1 2w

t w x t

1 110 3 10 37 21 1 132 9 3 27 3 27

cos tan 120 sin tan 120w i

1 110 3 10 37 21 1 133 9 3 27 3 27

cos tan 240 sin tan 240w i

What can go really “wrong”?

3 24 5 6 0x x x

43 3ba

x t t

3 31 1463 27

0t t

313 9pw w

t w w

6 3146 2979127 729

0w w

2146 146 2979127 27 729

4( )3 30273

2 27 3w i

3 1 1302 31 31 9 302 9 3027327 3 27 73 73

cos tan 360 sin tan 360w i k i k

1 131 31 9 302 9 3021 1327 3 73 3 73

cos tan 120 sin tan 120w k i k

1 131 9 302 9 3021 13 3 73 3 73

cos tan 120 sin tan 120w k i k

1 131 9 302 9 3021 11 3 3 73 3 73

cos tan sin tan 1.7248775 0.6850125w i i

1 1

31 41 1 1 1 13 9 3

3.4497549 4.7830883pw w

t w w x t

1 131 9 302 9 3021 12 3 3 73 3 73

cos tan 120 sin tan 120 1.4556770 1.1512814w i i

2 2

31 42 2 2 2 23 9 3

2.9113540 1.5780206pw w

t w w x t

1 131 9 302 9 3021 13 3 3 73 3 73

cos tan 240 sin tan 240 0.2692005 1.8362940w i i

3 3

31 43 3 3 3 33 9 3

0.5384010 0.7949324pw w

t w w x t

Tartaglia’s Formula,but Cardano’s Method

𝑇ℎ𝑒 solutions to 𝑥3 + 𝑝𝑥 + 𝑞 = 0 are

𝐴 + 𝐵, −𝐴 + 𝐵

2+(𝐴 − 𝐵)

2𝑖 3, −

𝐴 + 𝐵

2−(𝐴 − 𝐵)

2𝑖 3

where 𝐴 =

3

−𝑞

2+

𝑞2

4+𝑝3

27and 𝐵 =

3

−𝑞

2−

𝑞2

4+𝑝3

27

3

3 2 2 3

3 3

3 3

Let then substituting,

( ) ( ) 0

3 3 0 Factor by Grouping

3 ( ) ( ) 0

(3 )( ) 0

For this to equal 0, then If Note: 0,

A B x

A B p A B q

A A B AB B pA pB q

A B AB A B p A B q

A B AB a A B q

A B

3 3 3

33 3 3 3 3 3

2 3 3

then 0 and

3 0 and or 0 has trivial solutions.

and ( )( ) 027

(

*

Note:

)

q

AB p A B q x px

pA B A B q z A z B

z z A B

product sum3 3

3 3

32

0

and are solutions to the quadratic equation

z 027

A B

A B

pqz

3 32 2

3 3

2 3 2 33 3

2 3 2 3

3 3

4 4

27 27 and and are interchangable

2 2

and 2 4 27 2 4 27

and Cardano assumed that the solution is real.2

Note:

4 27 2 4 27

The solu

p pq q q q

A B A B

q q p q q pA B

q q p q q pA B

2 3 2 3

3 3

tion is

2 4 27 2 4 27

q q p q q px A B

To find the other two solutions, we simply solve the resulting quadratic equation when the original equation is divided by the linear factor. Using synthetic division,

The solutions of

are…..

2 3

2

3 2 2

( ) 1 0

( ) ( ) ( ) ( )

1 ( ) ( ) 0

( ) ( ) ( )

A B p q

A B A B p A B A B

A B p A B

x px q x A B x A B x p A B

2 2( ) ( ) 0x A B x p A B

2 2

2

22

2

2

( ) ( ) 4 ( )

2

( ) 3( ) 4

2

( ) 3 ( ) 4 ( )

2 2

( ) 3 where

2

4( )

2 3

( ) ( )3

Note: 3

( ) *

2 2

A B A B A B px

A B A B px

A B ix A B AB A B

A B i px AB

pA B

A B

A B A Bx i

2 2

3

2 3 2 3

3 3

4 or ( ) ( )

3

Therefore, all solutions to 0 are

( ) ( ) ( ) ( ) , 3, 3

2 2 2 2

where and 2 4 27 2 4 27

pA B A B

x px q

A B A B A B A BA B i i

q q p q q pA B

The first simple example

3 23 3 14 0x x x 1x t

3Solving 6 9 0 by substituting 6 and 9t t p q

3 3

3

2

1

3

3 3

1

9 81 216 9 81 216 and

2 4 27 2 4 27

9 818

2 4

9 49

2 4

9 7 9 7 and

2 2 2 2

2 and 1

The solutions are 23

2

A B

A

A

A B

A B

t

B B

xA B

A At

2

3 3

3 33

2 2 2

3 33

2 2 2 2

5 32 2

5 32 2

i i

A B A B

x i

x it i i

What can go “wrong”?

3

3 3

Solving 7 6 0 by substituting 7 and 6

10 10 3 3 and 3 3

9 9

Then, =

How can we use the formula with such a cumbersome expression?

Can we algeb ai

r

3 3 ?10 103 3 3 39 9

t t p q

A i B i

A B i i

2 2

cally rewrite and as simplified complex numbers?

3 That's what the calculator said! Really!

Solve: 3 4 Since, ( ) ( )

3 3

Solving the system, produces and

A B

A B

i pA B A B A B

A

in complex form.

3 3 3 3 and

2 6 2 6

B

A i B i

3 23 4 12 0x x x 1x t

1

2

3

3 3

1

2

3

Solving 7 6 0 by substituting 7 and 6

10 10 3 3 and 3 3

9 9

3 3 3 3 or and

2 6 2 6

The solutions are:

3

3 13 2

2

2

2 2 2

2 2

3

t t p q

A i B i

A i B i

t A B

A B A Bt i

A B A Bt

x

x

2

31 2

13

2 2i x

3 23 4 12 0x x x 1x t

A geometric representation of the solutions to a general

cubic equation

3 2( ) 0f x ax bx cx d

3( ) 0g t t pt q

3

bx t

a ( )f x

Cardano’s approach involves solving the depressed cubic (no squared term):

Since, every cubic can be depressed by substituting

in

Why this substitution? Cardano mentions that it becomes much easier to solve the depressed cubic than to deal with the original.

Creating a depressed cubic

3 2 0ax bx cx d

If x t e , what does e need to be in order to eliminate the 2x term?

3 2

0a t e b t e c t e d

3 2 2 3 2 23 3 2 0at aet ae t ae bt bet be ct ce d

If we want 2 2 23 3 0aet bt t ae b , then 3

be

a

.

Geometrically: The 𝑥 = 𝑡 −𝑏

3𝑎substitution defines a horizontal

translation of the inflection point of to the y-axis. The inflection point of any cubic is also the point of symmetry of its graph.

( )f x

( )f x( )g t

3

bx

a

Solving ''( ) 6 2 0 yields 3

bf x ax b x

a

( )g t

hq

3

The Geometry of the depressed cubic:

(t) tg pt q

2

2

2Note: is only used in

defining the parameters so no restriction on is necessa

Here and are defined by the local extrema of ( ).

Solving '( ) 3 0 yields .3

Therefore: r 3

o 3

p

h g t

pg t p t

p p

t

3 2

63 2

ry.

Defining :

(0) ( )

( ), substituting

2 or

Note: is the vertical trans

3

lati

4

on.

h

p

h

h g g

q p q

h

q

Interpreting Cardano’s Discriminant

3 3

2 3 2 3

2 3

2 3

and 2 2

If 0 then the solutions will be4 27

3 real where at least 2 are the same.

If 0 then the solutions will be4 27

3 distinct real.

4 27 4 27

q qA B

q

q p

p

p

p

q

q

2 3

If 0 then the solutions will be4 27

1 real and 2 complex.

q p

3

22 3 3

6

2 2

2

We can now define in terms of the geometric

variables , and :

44( )

4 27 4 4

Substituting we get the :

3

4

h q

qq

p

h

p q

Cardano's discriminant

geometric discriminant

2 2

The geometric interpretation of the discriminant helps us

understand the nature of the roots by comparing the relative

size of

4

and .q

q h

h

q h

2 2

Scenario 1:

If 0 or , then 1 real and 2 complex roots.q h q h

2 3

Cardano Discriminant: 04 27

q p

2 2

Scenario 2:

If 0 or , then 3 real roots where one is a double root.q h q h

q h

2 3

Cardano Discriminant: 04 27

q p

2 2

Scenario 3:

If 0 or , then 3 real distinct roots.q h q h

q h

2 3

Cardano Discriminant: 04 27

q p

3

3 2

In Conclusion:

Instead of solving 0 and having no geometric understanding

of the solutions,

solve: where the parameters , and in the

formula have a direct correlation to th

03

t pt q

h qt t q

2

3 3

2 6

2

2 2

2 2

e geometry of the cubic.

Then, Cardano's solutions would be rewritten as:

and B2 2

where 4 and the discriminant determines the

nature of the r

4

o

4

o ts.

q h q hq qA

h q h

3 23 3 14 0x x x 1x t

3 2 2Solving 6 9 0 by defining 2 and 32t t h

3 3

3

2 23

3 3

the geometric discriminant No q 0te:

9 81 32 9 81 32 and

2 4 2 4

9 818

2 4

9 49

2 4

9 7 9 7 and

2 2 2 2

2 and 1

The solu

A B

A

A h

A B

A B

1

2

1

2

33

tions are 3

3 33

2 2 2 2

3 33

2 2 2 2

2

5 3

2 2

5 3

2 2

t A B

A B A Bt i i

A B A Bt i

x

ii

x i

x

An example with 15°reference angles

3 12 8 2 0x x

3ba

x t t

3 0t pt q

2

23

312ac b

ap

3 2

32 9 27

278 2b abc a d

aq

3 12 8 2 0t t

43p

wwt w w

6 38 2 64 0w w

28 2 8 2 4(1)(64)

3 8 2 12822(1)

4 2 4 2w i

3 4 2 4 2 8 cos( 45 360 ) sin( 45 360 )w i k i k

2 cos( 15 120 ) sin( 15 120 )w k i k

41

2 cos(135 ) sin(135 ) 2 2 2 2ww i i t x w

6 2 6 2 42 2 2

2 cos(255 ) sin(255 ) 6 2ww i i t x w

6 2 6 2 43 2 2

2 cos(15 ) sin(15 ) 6 2ww i i t x w

6 2 6 2 44 2 2

2 cos(105 ) sin(105 ) 6 2ww i i t x w

45

2 cos(225 ) sin(225 ) 2 2 2 2ww i i t x w

6 2 6 2 46 2 2

2 cos(345 ) sin(345 ) 6 2ww i i t x w

A surprisingly nice example

3 26 11 6 0x x x

32b

ax t t

3 2( 2) 6( 2) 11( 2) 6 0t t t

3 0t pt q

2

23

31ac b

ap

3 2

32 9 27

270b abc a d

aq

3 0t t

13 3pw w

t w w

31 13 3

( ) ( ) 0w w

w w

6 127

0w

6 1 127 27

cos(180 360 ) sin(180 360 )w k i k

31627 3

cos(30 60 ) sin(30 60 ) cos(30 60 ) sin(30 60 )w k i k k i k

3 31 11 3 2 6 3

cos(30 ) sin(30 ) 1 2 3w

w i i t w x t

3 3 12 3 3 3

cos(90 ) sin(90 ) 0 2 2w

w i i t w x t

3 31 13 3 2 6 3

cos(150 ) sin(150 ) 1 2 1w

w i i t w x t

3 31 14 3 2 6 3

cos(210 ) sin(210 ) 1 2 1w

w i i t w x t

3 3 15 3 3 3

cos(270 ) sin(270 ) 0 2 2w

w i i t w x t

3 31 16 3 2 6 3

cos(330 ) sin(330 ) 1 2 3w

w i i t w x t

𝑀 =𝑥3 + 3𝑥2

2

An Interesting Expression:

If for any value of x, Let

and

Then 𝑥 =3𝑀 + 𝑁 +

3𝑀− 𝑁

Examples:

1 =3

2 + 5 +3

2 − 5

2 =3

10 + 108 +3

10 − 108

3 =3

27 + 756 +3

27 − 756

4 =3

56 + 3200 +3

56 − 3200

𝑁 = 𝑀2 + 𝑥3

If a solution to is to be of this form then,𝒙𝟑 + 𝒑𝒙 + 𝒒 = 𝟎

M = 𝑥3+3𝑥2

2= −

𝑞

2𝑁 =

𝑥3 + 3𝑥2

2

2

+ 𝑥3 =𝑞2

4+𝑝3

27and

By substitution we see that 𝒙 =𝒑

𝟑is a solution and −𝒒 =

𝒑𝟑

𝟐𝟕+𝒑𝟐

𝟑3

3 2 3 2

2 2

1

Solve 6 4 0, where 6 and 4

( 6) ( 6) + 4 +

27 3 27 36

2 is a solution.3 3

4Set and since, ( ) ( ) .

3 The solutions

Note:

2

are

2

i

x x p q

p pq

p

pA B A B A B A B

x

x

Example:

1

22

3 3

2

2 21 3

2 2

3 32 2 2 2

3 32

12

32 2

x

i x

i x

A B

A B A Bx i i

A B A Bx i i

Additional “nice” examples

3 29 21 18 0x x x 3 6 9 0t t 6 39 8 0w w 3 3

6,2 2

ix

3 212 24 40 0x x x 3 24 72 0t t 6 372 512 0w w 10, 1 3x i

3 26 32 0x x 3 12 16 0t t

6 316 64 0w w 2, 4, 4x

3 23 9 27 0x x x 3 12 16 0t t

6 316 64 0w w 3, 3, 3x

3 26 15 14 0x x x 3 3 0t t

6 1 0w 2, 2 3x i

3 29 15 9 0x x x 3 3 0t t

6 64 0w 3, 3 2 3x