unraveling cellular phosphorylation networks using computational biology

137
Unraveling cellular phosphorylation networks using computational biology Lars Juhl Jensen EMBL Heidelberg

Upload: lars-juhl-jensen

Post on 27-Jun-2015

648 views

Category:

Technology


1 download

DESCRIPTION

BRIC/LEO Minisymposium on Protein Kinases in Health and Disease, Copenhagen Biocenter, Copenhagen, September 26, 2008

TRANSCRIPT

Page 1: Unraveling cellular phosphorylation networks using computational biology

Unraveling cellular phosphorylation networks using computational biology

Lars Juhl Jensen

EMBL Heidelberg

Page 2: Unraveling cellular phosphorylation networks using computational biology

the problem

Page 3: Unraveling cellular phosphorylation networks using computational biology

Oda & Kitano, Molecular Systems Biology, 2006

Page 4: Unraveling cellular phosphorylation networks using computational biology

a good start

Page 5: Unraveling cellular phosphorylation networks using computational biology

long way to go

Page 6: Unraveling cellular phosphorylation networks using computational biology

the toolbox

Page 7: Unraveling cellular phosphorylation networks using computational biology

mass spectrometry

Page 8: Unraveling cellular phosphorylation networks using computational biology

Linding, Jensen, Ostheimer et al., Cell, 2007

Page 9: Unraveling cellular phosphorylation networks using computational biology

phosphorylation sites

Page 10: Unraveling cellular phosphorylation networks using computational biology

in vivo

Page 11: Unraveling cellular phosphorylation networks using computational biology

kinases are unknown

Page 12: Unraveling cellular phosphorylation networks using computational biology

peptide assays

Page 13: Unraveling cellular phosphorylation networks using computational biology

Miller, Jensen et al., Science Signaling, 2008

Page 14: Unraveling cellular phosphorylation networks using computational biology

sequence specificity

Page 15: Unraveling cellular phosphorylation networks using computational biology

kinase-specific

Page 16: Unraveling cellular phosphorylation networks using computational biology

in vitro

Page 17: Unraveling cellular phosphorylation networks using computational biology

no context

Page 18: Unraveling cellular phosphorylation networks using computational biology

what a kinase could do

Page 19: Unraveling cellular phosphorylation networks using computational biology

not what it actually does

Page 20: Unraveling cellular phosphorylation networks using computational biology

computational methods

Page 21: Unraveling cellular phosphorylation networks using computational biology

sequence specificity

Page 22: Unraveling cellular phosphorylation networks using computational biology

Miller, Jensen et al., Science Signaling, 2008

Page 23: Unraveling cellular phosphorylation networks using computational biology

kinase-specific

Page 24: Unraveling cellular phosphorylation networks using computational biology

no context

Page 25: Unraveling cellular phosphorylation networks using computational biology

what a kinase could do

Page 26: Unraveling cellular phosphorylation networks using computational biology

not what it actually does

Page 27: Unraveling cellular phosphorylation networks using computational biology

in vitro

Page 28: Unraveling cellular phosphorylation networks using computational biology

in vivo

Page 29: Unraveling cellular phosphorylation networks using computational biology

context

Page 30: Unraveling cellular phosphorylation networks using computational biology

localization

Page 31: Unraveling cellular phosphorylation networks using computational biology

expression

Page 32: Unraveling cellular phosphorylation networks using computational biology

co-activators

Page 33: Unraveling cellular phosphorylation networks using computational biology

scaffolders

Page 34: Unraveling cellular phosphorylation networks using computational biology

association networks

Page 35: Unraveling cellular phosphorylation networks using computational biology

Linding, Jensen, Ostheimer et al., Cell, 2007

Page 36: Unraveling cellular phosphorylation networks using computational biology

the idea

Page 37: Unraveling cellular phosphorylation networks using computational biology

mass spectrometry

Page 38: Unraveling cellular phosphorylation networks using computational biology

phosphorylation sites

Page 39: Unraveling cellular phosphorylation networks using computational biology

sequence motifs

Page 40: Unraveling cellular phosphorylation networks using computational biology

sequence specificity

Page 41: Unraveling cellular phosphorylation networks using computational biology

association network

Page 42: Unraveling cellular phosphorylation networks using computational biology

context

Page 43: Unraveling cellular phosphorylation networks using computational biology

in vitro

Page 44: Unraveling cellular phosphorylation networks using computational biology

in vivo

Page 45: Unraveling cellular phosphorylation networks using computational biology

Linding, Jensen, Ostheimer et al., Cell, 2007

Page 46: Unraveling cellular phosphorylation networks using computational biology

the sequence motifs

Page 47: Unraveling cellular phosphorylation networks using computational biology

NetPhorest

Page 48: Unraveling cellular phosphorylation networks using computational biology

Miller, Jensen et al., Science Signaling, 2008

Page 49: Unraveling cellular phosphorylation networks using computational biology

pipeline

Page 50: Unraveling cellular phosphorylation networks using computational biology

data organization

Page 51: Unraveling cellular phosphorylation networks using computational biology

Miller, Jensen et al., Science Signaling, 2008

Page 52: Unraveling cellular phosphorylation networks using computational biology

compilation of datasets

Page 53: Unraveling cellular phosphorylation networks using computational biology

Miller, Jensen et al., Science Signaling, 2008

Page 54: Unraveling cellular phosphorylation networks using computational biology

redundancy reduction

Page 55: Unraveling cellular phosphorylation networks using computational biology

Miller, Jensen et al., Science Signaling, 2008

Page 56: Unraveling cellular phosphorylation networks using computational biology

cross-validation partitioning

Page 57: Unraveling cellular phosphorylation networks using computational biology

Miller, Jensen et al., Science Signaling, 2008

Page 58: Unraveling cellular phosphorylation networks using computational biology

training and evaluation

Page 59: Unraveling cellular phosphorylation networks using computational biology

classifier selection

Page 60: Unraveling cellular phosphorylation networks using computational biology

Miller, Jensen et al., Science Signaling, 2008

Page 61: Unraveling cellular phosphorylation networks using computational biology

motif atlas

Page 62: Unraveling cellular phosphorylation networks using computational biology
Page 63: Unraveling cellular phosphorylation networks using computational biology

179 kinases

Page 64: Unraveling cellular phosphorylation networks using computational biology

93 SH2 domains

Page 65: Unraveling cellular phosphorylation networks using computational biology

8 PTB domains

Page 66: Unraveling cellular phosphorylation networks using computational biology

BRCT domains

Page 67: Unraveling cellular phosphorylation networks using computational biology

WW domains

Page 68: Unraveling cellular phosphorylation networks using computational biology

14-3-3 proteins

Page 69: Unraveling cellular phosphorylation networks using computational biology

benchmarking

Page 70: Unraveling cellular phosphorylation networks using computational biology

Miller, Jensen et al., Science Signaling, 2008

Page 71: Unraveling cellular phosphorylation networks using computational biology

low-specificity kinases

Page 72: Unraveling cellular phosphorylation networks using computational biology

disease-related kinases

Page 73: Unraveling cellular phosphorylation networks using computational biology

Miller, Jensen et al., Science Signaling, 2008

Page 74: Unraveling cellular phosphorylation networks using computational biology

docking domains

Page 75: Unraveling cellular phosphorylation networks using computational biology

Miller, Jensen et al., Science Signaling, 2008

Page 76: Unraveling cellular phosphorylation networks using computational biology

the context network

Page 77: Unraveling cellular phosphorylation networks using computational biology

STRING

Page 78: Unraveling cellular phosphorylation networks using computational biology

functional associations

Page 79: Unraveling cellular phosphorylation networks using computational biology

373 genomes

Page 80: Unraveling cellular phosphorylation networks using computational biology

Jensen et al., Nucleic Acids Research, 2008

Page 81: Unraveling cellular phosphorylation networks using computational biology

genomic context methods

Page 82: Unraveling cellular phosphorylation networks using computational biology

gene fusion

Page 83: Unraveling cellular phosphorylation networks using computational biology

Korbel et al., Nature Biotechnology, 2004

Page 84: Unraveling cellular phosphorylation networks using computational biology

conserved neighborhood

Page 85: Unraveling cellular phosphorylation networks using computational biology

Korbel et al., Nature Biotechnology, 2004

Page 86: Unraveling cellular phosphorylation networks using computational biology

phylogenetic profiles

Page 87: Unraveling cellular phosphorylation networks using computational biology

Korbel et al., Nature Biotechnology, 2004

Page 88: Unraveling cellular phosphorylation networks using computational biology

primary experimental data

Page 89: Unraveling cellular phosphorylation networks using computational biology

protein interactions

Page 90: Unraveling cellular phosphorylation networks using computational biology

Jensen & Bork, Science, 2008

Page 91: Unraveling cellular phosphorylation networks using computational biology

gene coexpression

Page 92: Unraveling cellular phosphorylation networks using computational biology
Page 93: Unraveling cellular phosphorylation networks using computational biology

literature mining

Page 94: Unraveling cellular phosphorylation networks using computational biology
Page 95: Unraveling cellular phosphorylation networks using computational biology

curated knowledge

Page 96: Unraveling cellular phosphorylation networks using computational biology

Letunic & Bork, Trends in Biochemical Sciences, 2008

Page 97: Unraveling cellular phosphorylation networks using computational biology

different formats

Page 98: Unraveling cellular phosphorylation networks using computational biology

parsers

Page 99: Unraveling cellular phosphorylation networks using computational biology

different gene identifiers

Page 100: Unraveling cellular phosphorylation networks using computational biology

thesaurus

Page 101: Unraveling cellular phosphorylation networks using computational biology

redundancy

Page 102: Unraveling cellular phosphorylation networks using computational biology

bookkeeping

Page 103: Unraveling cellular phosphorylation networks using computational biology

variable reliability

Page 104: Unraveling cellular phosphorylation networks using computational biology

benchmarking

Page 105: Unraveling cellular phosphorylation networks using computational biology

von Mering et al., Nucleic Acids Research, 2005

Page 106: Unraveling cellular phosphorylation networks using computational biology

spread over many species

Page 107: Unraveling cellular phosphorylation networks using computational biology

transfer by orthology

Page 108: Unraveling cellular phosphorylation networks using computational biology

von Mering et al., Nucleic Acids Research, 2005

Page 109: Unraveling cellular phosphorylation networks using computational biology

combine all evidence

Page 110: Unraveling cellular phosphorylation networks using computational biology

Linding, Jensen, Ostheimer et al., Cell, 2007

Page 111: Unraveling cellular phosphorylation networks using computational biology

the results

Page 112: Unraveling cellular phosphorylation networks using computational biology

NetworKIN

Page 113: Unraveling cellular phosphorylation networks using computational biology

123 kinases

Page 114: Unraveling cellular phosphorylation networks using computational biology

5515 substrates

Page 115: Unraveling cellular phosphorylation networks using computational biology

21,702 sites

Page 116: Unraveling cellular phosphorylation networks using computational biology

benchmarking

Page 117: Unraveling cellular phosphorylation networks using computational biology

Phospho.ELM

Page 118: Unraveling cellular phosphorylation networks using computational biology

Linding, Jensen, Ostheimer et al., Cell, 2007

Page 119: Unraveling cellular phosphorylation networks using computational biology

2.5-fold better accuracy

Page 120: Unraveling cellular phosphorylation networks using computational biology

context is crucial

Page 121: Unraveling cellular phosphorylation networks using computational biology

localization

Page 122: Unraveling cellular phosphorylation networks using computational biology

Linding, Jensen, Ostheimer et al., Cell, 2007

Page 123: Unraveling cellular phosphorylation networks using computational biology

ATM signaling

Page 124: Unraveling cellular phosphorylation networks using computational biology

Linding, Jensen, Ostheimer et al., Cell, 2007

Page 125: Unraveling cellular phosphorylation networks using computational biology

Linding, Jensen, Ostheimer et al., Cell, 2007

Page 126: Unraveling cellular phosphorylation networks using computational biology

small-scale validation

Page 127: Unraveling cellular phosphorylation networks using computational biology

ATM phosphorylates Rad50

Page 128: Unraveling cellular phosphorylation networks using computational biology

Linding, Jensen, Ostheimer et al., Cell, 2007

Page 129: Unraveling cellular phosphorylation networks using computational biology

Cdk1 phosphorylates 53BP1

Page 130: Unraveling cellular phosphorylation networks using computational biology

Linding, Jensen, Ostheimer et al., Cell, 2007

Page 131: Unraveling cellular phosphorylation networks using computational biology

high-throughput validation

Page 132: Unraveling cellular phosphorylation networks using computational biology

multiple reaction monitoring

Page 133: Unraveling cellular phosphorylation networks using computational biology

Linding, Jensen, Ostheimer et al., Cell, 2007

Page 134: Unraveling cellular phosphorylation networks using computational biology

systematic validation

Page 135: Unraveling cellular phosphorylation networks using computational biology

design optimal experiments

Page 136: Unraveling cellular phosphorylation networks using computational biology

Acknowledgments

NetworKIN.info– Rune Linding– Gerard Ostheimer– Francesca Diella– Karen Colwill– Jing Jin– Pavel Metalnikov– Vivian Nguyen– Adrian Pasculescu– Jin Gyoon Park– Leona D. Samson– Rob Russell– Peer Bork– Michael Yaffe– Tony Pawson

NetPhorest.info– Martin Lee Miller– Francesca Diella– Claus Jørgensen– Michele Tinti– Lei Li– Marilyn Hsiung– Sirlester A. Parker– Jennifer Bordeaux– Thomas Sicheritz-Pontén– Marina Olhovsky– Adrian Pasculescu– Jes Alexander– Stefan Knapp– Nikolaj Blom– Peer Bork– Shawn Li– Gianni Cesareni– Tony Pawson– Benjamin E. Turk– Michael B. Yaffe– Søren Brunak

STRING.embl.de– Christian von Mering– Michael Kuhn– Manuel Stark– Samuel Chaffron– Philippe Julien– Tobias Doerks– Jan Korbel– Berend Snel– Martijn Huynen– Peer Bork

Page 137: Unraveling cellular phosphorylation networks using computational biology

Want to work on this project?