university of san diego - show that any finite subset of r is u...

22
---- n)r0c6vVJ r)<., - POblefhJ . " -.-- .. -- - .. --.. ..--.. -. --- .- -.. -- - -- - - -.. - t- .... -- .. ----- -._..-. JO<:cLl__flJi 1 'L! /l'ik-J!cflid '1-'1'1-.. . .. L er{Je!? _+_ .... __ Le+ 'ex / cY C.JL j be.. 0 Ii : Y1 Jexed ull-&- p.()YJ i 0 t 0 J££LYJn . . ..__._-_._.. - EA .. # "/ /' 'r;:'" A, Vo:6 .. 1i : ._._.- -- - -- ------ X / x- /1 Iex , -'-------- .. UfA ex IJT X'-Act I Cft3".1J('N ! ---- , , . __._---_.. ._--_._._---_._-_._--'------ . __._------- ._. __._----_ .._- _ ...._-------+- _ .. _.- .. _._-_._-- ..... _----------- -.--.-----f .. _....._. . .... . ... _' .. --- ... _ ....- - .. - ..•.. _"'-'.. -_... _ .. _.... ..... _ .. _.' .. _------_ .. - -_._. __.-.-. -. ----.. -"'-'--" _.- ..._- _. - ... _. __ ._.---. ..- _ ... - ._... -. --_.' _._--------_._-----

Upload: others

Post on 31-Jan-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • ----

    n)r0c6vVJ r)

  • ~ f ~ I 1'1' /IvI C!':' v! D U

    -- ~. ~'~---'-- t-~--- --'--~"~-'--' -.. --. ..-. .-- - - .

    ..'-- .-.... - -. --_. __._-._---- ----

    -- -- ------_..- .- -_. -- _. -.--._-- ------_.-

  • ---

    --------------------------------------------------------

    -------- - --- - -- - -------

    ------------ --------------------------- ----------------------

    ---------

    , ,

    ____~. ~_~~.___ _ _.... .. .. ._.__. ~_. . ,._. . . . . .~_..... ., ----l-~- ~ _

    f ---------- -------- --------- ----------------------------------- ------- ----- -- - --------- ------r------------------

    ---------------f-------------------------------------------------------------------;-----.----

    -------_._- j

    ---------------f---------------------------------------------------------------------------~-----

    ---- .__________ __ ------i-- _

    -------------------l--------------------------------~----

    ----------- -----------------------------------------j-----

    -------------------------------1--- -------------.------------------------------_.--------------------------------------~;------

    ------------ -------------------------------+------

    ------------------------------ -------------------+------

    -----------------------------'---------------------- ---'------

    !

  • :t ~

  • JUtlVtj ~ M..-tk 385 Slq!z.()I2.

    So.Dsne.s

    (0.')

  • (0..') or XX • ¢ ~, ( b") u i Vo< . 0( t ")'--1'L--"'--L-L---_--------

    Mwltip1f VJlIiOYlS ,,~ de.W\I!I\\:s, 0\ 1 wee Ylgi-ef!1'L-l.L\I,,---lL-' _ lIS v tt) \11..31 : ~.I,~,:;'5 ~ i

    .......""d~-"-O"""'~t~.,.Jl.5-'-. _

    -a,\ 1..Q...-1 Y. ~e \n-bnik il'itb CI. € Y.. The.>\ 1 0 1u. ~ X~ C\..~ U. of' x- U. i~ \',,,,h1 ;, ... hfob~i ' lo..) l.r-\ u.~Y-., Si,,~ o..t'J" o..€.ll. b,...t X-Ll: x~y.,~ 95) wb,c.I,-I..,

  • Jonathan Kim MATH 385 5/9/12

    Review problems for Chapter 2.3

    2.3.1 Let X={a, b, c} and let T ={X, 0, {b}, {a, b}, {b, cn. a) List the closed subsets of (X, T) b) Find Cl({b}) c) Find Cl({a}) d) Find Cl({a, b}) e) Find a proper dense subset ofX.

    2.3.3 Show that any finite subset of R is U-closed

    2.3.8 Let X=R and let T ={U ex: 1 in U or U =0}. Describe the closed subsets ofX. Find Cl({1,2}). Is {1, 2} a dense subset of (X, T)? (The collection T is an example of the particular point topology.)

    2.3.15 Let A and B be subsets of a topological space (X, T). Show that:

    X- Cl(A U B) = (X - Cl(A)) n (X - Cl(B)).

  • Section 2.4: Limit Points} Interior} Boundary} Exterior}

    More about Closure

    » Let (x, T) be a topological space with a subset A of X if» Limit Points: For all elements x of X, x is said to be a

    containing x contain an element of A different from x.

    » Interior: The noted Int(A), is the set of all points x in X for which an open set U such that x is in U and U is a subset of A.

    » Boundary: The , noted Bd(A), is the set of all points x in X for which containing x intersect both A and X-A.

    » Exterior: The noted Ext(A), is the set of all points x in X for which an open set U such that x is in U and U is a subset of X-A.

    » Theorem 2.4.4: The set A is closed iff A' is a subset of A » Theorem 2.4.6: The set AUA' is closed » Theorem 2.4.7: CI(A) = AUA' » Theorem 2.4.9: x is in CI(A) iff for any open set U containing x, UnA;t0 » Theorem 2.4.14: Int(A) = U{U subset of A: U is an open set} » Theorem 2.4.15: Int(A) is an open set » Theorem 2.4.16: A is open iff A = Int(A) » Theorem 2.4.18: Ext(A) =Int(X-A) » Theorem 2.4.21: The sets Int(A), Bd(A), and Ext(A) are pairwise disjoint and X =

    Int(A)U Bd(A) UExt(A)

    » Fact about Closure: CI(A) = Int(A)UBd(A) ./ What is Ext(Ext(A))?

    ./ How does CI(A) relate to Ext(A)?

    ./ Let'A = [2,5] U (-1,1) U {9,lD} . What is CI(A)? Bd(A)? Ext(A)? A'? Int(A)?

    ./ Let X ={a,b,c,d,e,f,g,h}, T ={X, 0, {a,b,c},{c,d}, {C}, {e}, {a,b,c,h}, {a,f,g}, {fH. Let A = {a,d,g,f,h}. What is Int(A)? Bd(A)? Ext(A)? A'? CI(A)?

  • (J) f4\~\1A. L0~y eo-c..k. "f th."- fc>llou.H~ IS V\o+ bo-~~ tof"A. a.

    +o.po\o~ y 0 V\. !R..

    a..) [( V\ 1 1\t \): 1\ f:. l~

    D) t(~-\ I ~-\"~: 'j.. t lR5 c-')[(x

    J )ltD: ~t fR3

    @ -rf' xt Y {)..A..tJ IA(>'Ml~.-

  • I t ~eVI \"\.!. fv\ CA\ eWS \l-\ I V!arh. 3~5 Dr'· PCiy\

  • I

    _~~h{)D_ ~~~~._~_~~~_~_~~. ~. __ ~~ ..__...~.~ ~~_~ __,_~_~_ .. __ .~._._. __._.__.~ .---~ -~-~._. ~ __.._~ __.._..__~ -~.----_. -- ~_~_ ~._. __._. -

    . Ji2)_crotl!\Okn~_L~\t'D_¥rco£)_0_\ l f~~~c.::±t~_DS kQi't. __Qr~ ~ .. _~~ ... ~ ___ _ - c~~ ~ __ ...~ ~~9.L~_~._~~ .. _~ __. .. .~.~.~ __ ~ ~~ __._ ~~ __ .~~ __ ~ __ .. _~_.~_. ~ .. __ ~ __.__~_~~. __.~~_. __.__.~ ~_~ __ ~ ..~~~_~____~

    -o{.~lr\iC~~-c>JJ}1£-±Z:llU&1.9--ClV~~~--L~)-q,{;-h£tQj\rlb5y_\o.Q:xi~--c£_L ~_~~ ~ ... ~~~_.~~~ _ r"-' -._L\I)Y1£\c(}h~~S_ Qf ~~ ~L.~.~ .. _.. ~ .. ~ .. ------~-~-- ..~- .. --- ----.~-~-f-_9-J__ [e>-\~ ] .~.~~-\Q)[0,1]..... ~ ..~..... ~r:~ )-[..oJ _L)_ .---'.' .. ~ .. -- -. --~--- ------- ~ ---

    ..._t:~)~.~t,2.) .. Ll.i Ld-=:~j'. JJ01.G.... .

    I . .\-_. ~ ~ ..

    3.. l'\Je.~(XY)l'O[L ~ __ L+~_fuY'CtLon_ i f ~ ~.~ (12.0;\\j£VJ ~ f~):;:s.., '-, _. \f- "- 7D i (\-'1- \ f- X~O r . c" )ctU-CR ct5 \ojCJ;t-011cis c)q(,-e cis ict)

  • G'('i\~ '1'::, c:..... ""O~U~~Y-\'~!l' OA

  • I) LRt C'1..,1) l (I{, J) he -top SpcH('s, Th~ (ollectk:>YI 'B ~ l tA x\): tAt II V (; J § {-cOq C\ ~:>~ tor C1 -WOI~I 0\'1 X~ Y

    L) 115 u'fY't e Fat ~SICJoes ope'" s--ets II --:If ~~I ove boo ~f'~~ ~( 1-; onJ I L .> +keYl fh{' (Olh-l,()1') f13 ~ 1B, )( 132- : B, c= Z;;

    Bz- Ec 13 2 ~ ;-S t:l., ~5e to, fYi>J'{(:rf fo (>:J 10 j 'I oV) 'I.'" y. )

    3) Let ('f.-, r-r) Clncl (Y, 5') be top SPCUe) wd-I" A5=- '1-, B ~ y, lhen cl (A-J..8) :=- cl rA))( () (B).

    ~) Lei ('/...'1) O\'lJ (Y,::J» k -fop 'pe

  • 4.2 Review Nicholas Otto

    1 Carefully define a product space. What is the base for a product space?

    2 Let Pi : Xl x Xz x ... X X n -+ Xi be the ith projection function. When is PI a homeomor

    phism? pz? When is Pj a homeomorphism for alII :S j :S n? Prove it. Give a simple reason why the projection function is not normally a homeomorphism.

    3 Suppose B is a base for Xl x Xz x ... X X n . Construct a base for Xi.

    4 Let X = Y = JR, all with the usual topology, Py : X x Y -+ Y be the projection function onto Y and f : X -+ X x Y such that f(x) = (x, sin(x)). Let

    Is A with the usual relative topology normal?

    1

  • 4---A",*~"'''',.Jc.J. sod' Is ~M......r

  • J:1 'j 4 _

    " -

    il 1 J

    i'I 5 2.

    ~ . I

    -tv Sho--J ~""\ ~ t~,-\v~l>~ ~. +.J1) \~ IA~\ ~CV'-~~~:J C~--\!~ •.

    ! I ~ -

    i i

    . 4

    I i

    I

    I lu

  • JY\0eldd ReS-cnal2 ~fO,o9'i fClr~t

    Sl9\lL

    P-e\J 'e\J'J PrDv)tYY\S S I ~

    \' DeteYff\\ne \f"-tru tbnb\N\Y\Cj sv\)S-clS. (\f (\Q2,LAJ ewe (onntttec\, \f &0 I ~YD\Jv \t- , \f n u1' d\u.v~ 1~!':~O opc" Sl\ 'o~-C1 & 1\ '\Q t 0\ \~ lln\nt C\" i'\\~"Y\

    u · ltajs) x l L.J ,S) ') v ((3 \l ) x L3 I LP ) )

    (f- I'D.. , '? ~\ {\xe, tn-e ~lll'\;\.1 \Y\g ~\lt)S'PC\ce~ 1\ \\O\1\{crnorpn\c. e xV'\CllY\

    't::: l 0 1') \) (b B ) U ~ crsI t '\ ~ ( ~. \ I l)) \) t 'b I U ) l\ l \ \q )

    -r= l2,3) \) L"T'l)\) 1.05 1\t\J -- (-1 I 0 ') \) l 3 I v ')

  • ), let 'X vea tupo \o~\ca \ space an c\ It t-,! ~-t() 1\ \2? hU\J-Q ine ~ \\)~Q \og'j . k&~li\\'nt -r', ~i\ -:-J ~ \ ~ {u\Y\ lr)UotJ & -rtn-)C1-10f\ . \F (\ \\ C\ l~nntl1td bUb'&t' u+ Y., J NhClt (lY~ ine ~Gr~\\J\e values otin~ lI'na~e Hf\)? txplC,'\ fl .

  • ~. \ ~cf~ Pf(}~ I. Ltl:, 'f-.. be, 0- ~ wJJx- & ~ ('p~~Mtt ¥~~. WJ..

    llLl c~lkd: ~sth> rJ; y... L. frO'Jt M ., A~W- i5 ~~ it\ fAleHj ~ of -A ~

    (}JI\ \~if\.lU'il ~~ il'\ A. ?:>. ltt Y:-\9)\J ~ 't -=\U.~'t -, l,l.r~) u; 'j..) (J(' U5{O)l)~ w~

    Ll is ~ i\\ ~~ t~~ ~ If?.. ~hmJ (J./t) is ~d: W ~ ~~tt.

    L\, L{l 'RW-. ~\ft .-tk ~ t~L~ ~ M~ 't~U vJ~ 1(::: t~('U:· It 0 £ll) ~ pO ~.t. (-oart}J0:;~)~lA,~ r~ lit}:) is cmuptket t ~~. ·

  • riMlocv-"-' ~(;-r+- )e-d:"'~ (,.2

    \f~ or ~" \\- ~\ ~iA U!>~ vx~~·

    G) (\ ~ I ~) ~ (LO) I j ruLo) ,1 ') 4- "'- ~~~I',tr"-I

    G> (It/U) x (Lo)l)

  • - i7:Jrtl1ltv:_~ro!'l",",7 __/!t.-l-. _51~i-v

    bl~~",IL J~ .C";hfo~~V'~t .\Df\'I,~';: --L;~ L4_~_1\ LIi~_~_~/ x'/A 'r":~J

    De~~""~f1~ -~;{-l,- _p(02~__w1~k._._Ui2)lJ_;s __L__fcJ~_j ':::_.?-_C?~IJ2.1 ._ Hi(1~: S~J -..-:?( Te. ~I'''(e. ~.=,> T,:=)T,,_ _._ ._. _

    iJ elrv~_ 0 f.~I,,: (~t-,' (~J~_ eCO'CJ.ff2r-_Lo~n~_~~_~t'-ce-)------------[.J ~ +_UftJ) _bt _._~bfol&iji(r.L Jf~~:"'~tb __ I;:;_{JJ:. ~ rg:_.I_§.C!_o~ _C!-_=f!r_____ jc0 (Q/~\ x(o/ I) __I) I? vvl·j.l,_tl€-_Tr(d~/'~ -~t)fd~8~--'------

    _!6)(Q;.zJ K (O,')__ LS I~--.-~I-(-'---'(.----'-~-----~'----. _ __IL). (uI Z) ... _'!_COLU ._15_. _... _To___ (_~. __ .__'~__ __ '~ .--~_) ... ---_. -- ..'_t . .

    ir

    -- - I

    L .. __

    --------------,-------------- ---------_.-------- .------- ------ ------------_.------- ------. -- --------._---- ---._---------- -------------

    - --- -------.-- ----,-_._--------------------_ .. -- -- ...---_._._------.._---._-----_._-----_.._-------._---_. - --- ---._- ----_.- ------------------- .... --------- -------------. ,. - ---.---_.--

    - ---- -; -- ----- ----. --- -------- --- - -- - _. - ----------------.---- ------------ -- - ---- -------.- --_._--------,.- .-- - - -- --- .. ----- ._---- ----------._--

    ·-_·_------·_--~·-~I-----...---------------------.- ----------

  • Erin Williams Page 1 of 1

    Sec'hon

    L Let T be a topology on JR such that VU E T, and for any x E U 3E > a where [x, x + E) C U, let us denote this as JRs. When you take JRsxJRs it is called the Sorgenfrey Half-open square topology. Is JRs normal? Is the Sorgenfrey Half-open square topology normal? If either or both is prove. If they are not give a counterexample.

    2. Prove: A space X is regular iff for each x EX, the closed neighborhoods of x form a basis of neighborhoods of x.

    3. Give examples of the following topologies on the set X = {a, b, c, d} (not the discrete or indiscrete topologies) .

    (a) a topology T such that (X, T) is To space but not T1 space.

    (b) a topology S such that (X, S) is T1 space but not T2 space.

    (c) a topology R such that (X, R) is T2 space but not T3 space.

    (d) a topology Q such that (X, Q) is regular but not normal

    (e) a topology P such that (X, P) is normal

    4. Prove that T4 property is a topological property.

    5. True or False. Prove the true problems and find a counterexample for false.

    (a) Any indiscrete topological space is not Hausdorff

    (b) Closed subsets of normal spaces are normal

    (c) Every T4 space is regular

    (d) Every Ti space is a T i - 1 space for each i E {I, 2, 3, 4, 5}

    (e) If a topological space does not have any nonempty disjoint open sets, then the space is not normal.