university of groningen stellar population models in the ... · mq08 stars-3-2.5-2-1.5-1-0.5 0 0.5...

33
University of Groningen Stellar population models in the Near-Infrared Meneses-Goytia, Sofia IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2015 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Meneses-Goytia, S. (2015). Stellar population models in the Near-Infrared. University of Groningen. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 16-03-2021

Upload: others

Post on 15-Oct-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: University of Groningen Stellar population models in the ... · MQ08 stars-3-2.5-2-1.5-1-0.5 0 0.5 [Z/Z ] Figure 2.3 – HR diagram of the stars that compose the template library

University of Groningen

Stellar population models in the Near-InfraredMeneses-Goytia, Sofia

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite fromit. Please check the document version below.

Document VersionPublisher's PDF, also known as Version of record

Publication date:2015

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):Meneses-Goytia, S. (2015). Stellar population models in the Near-Infrared. University of Groningen.

CopyrightOther than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of theauthor(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policyIf you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediatelyand investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons thenumber of authors shown on this cover page is limited to 10 maximum.

Download date: 16-03-2021

Page 2: University of Groningen Stellar population models in the ... · MQ08 stars-3-2.5-2-1.5-1-0.5 0 0.5 [Z/Z ] Figure 2.3 – HR diagram of the stars that compose the template library

CHAPTER TWO

PREPARATION OF THE

IRTF SPECTRAL STELLAR LIBRARY

S. Meneses-Goytia et al.

Based on: S. Meneses-Goytia et al. – A&A, 2015, 582, A96

Abstract

We present a detailed study of the stars of the IRTF spectral library to understandits full extent and reliability for use with Stellar Population (SP) modelling. The li-brary consist of 210 stars, with a total of 292 spectra, covering the wavelength rangeof 0.94 to 2.41 µm at a resolution R ≈ 2000. For every star we infer the effective tem-perature (Teff), gravity (log g ) and metallicity ([Z /Z¯]) using a full-spectrum fittingapproach in a section of the K band (2.19 to 2.34 µm) and temperature-NIR colourrelations. We test the flux calibration of these stars by calculating their integratedcolours and comparing them with the Pickles library colour-temperature relations.We also investigate the NIR colours as a function of the calculated effective temper-ature and compared them in colour-colour diagrams with the Pickles library. Thislatter test shows a good broad-band flux calibration, important for the SP models.Finally, we measure the resolution R as a function of wavelength. We find that theresolution increases as a function of lambda from about 6 Å in J to 10 Å in the redpart of the K -band. With these tests we establish that the IRTF library, the largestcurrently available general library of stars at intermediate resolution in the NIR, isan excellent candidate to be used in stellar population models. We present thesemodels in the next chapter of this series.

13

Page 3: University of Groningen Stellar population models in the ... · MQ08 stars-3-2.5-2-1.5-1-0.5 0 0.5 [Z/Z ] Figure 2.3 – HR diagram of the stars that compose the template library

14 Preparation of the IRTF spectral stellar library

In this thesis, we aim to understand more about the cool stellar populations in un-resolved galaxies by building Single Stellar Population (SSP) models in the NIR andcomparing them to galaxy observations. In this chapter, we characterise the spectra ofthe IRTF spectral library and determined the stellar parameters, Teff, log g and metal-licity ([Z /Z¯]) of the stars, tied to the parameters in Cenarro et al. (2007), in Section 2.2.We test the flux calibration of the library and the behaviour of the integrated colours ofits stars and their stellar parameters in Section 2.3. And finally, in Section 2.4, we mea-sure the Full Width at Half Maximum (FWHM) and resolution of the library spectra. InFigure 2.1, we show the wavelength ranges used for our analysis.

10000 12500 15000 17500 20000 22500 25000

Wavelength (Å)

Kselec

J H Katomic Kmolecular

FWHM

Parameters

Figure 2.1 – Wavelength ranges used in this work. For the determination of the stellar parametersthrough full-spectrum fitting, we use a section of the K band (2.19 to 2.34 µm, see Section 2.2.1).For the determination of the nominal spectral resolution (Section 2.4), we divide the wavelengthrange into four sections representing respectively the J (1.04−1.44 µm) and H (1.46−1.80 µm)bands, as well as the atomic (1.90−2.14 µm) and molecular−dominated (2.14−2.41 µm) rangesof the K band.

In our third chapter, we calculate SSP models following an approach similar to thatof Vazdekis et al. (2010) but using the IRTF spectral library. We calculate full SpectralEnergy Distributions (SEDs), by finding a stellar spectrum with the appropriate stellarparameters (Teff, log g and metallicity) from the stellar library using interpolation forevery point on a theoretical isochrone, weighting them by a initial mass function. In thefourth chapter, we use our models to analyse a number of composite stellar systems.

Page 4: University of Groningen Stellar population models in the ... · MQ08 stars-3-2.5-2-1.5-1-0.5 0 0.5 [Z/Z ] Figure 2.3 – HR diagram of the stars that compose the template library

2.1 The IRTF spectral library 15

2.1 The IRTF spectral library

The IRTF spectral library 1 is a compilation of stellar spectra observed with themedium-resolution spectrograph SpeX located at the NASA Infrared Telescope Facil-ity on Mauna Kea (Rayner et al., 2009; Cushing et al., 2005). This library covers theNIR range from 0.8 to 2.5 µm (and extends in some cases out to 5.2 µm). We focuson the spectral region for the J , H and K bands (0.94 to 2.41 µm). These spectra wereobserved at a resolving power of R = 2000 (R = λ/∆λ, see below), and their continuawere not normalized, keeping the strong molecular absorption features from cool stars.Keeping the spectral shape also allowed relative flux calibration between the stars, byscaling the spectra to published Two Micron All Sky Survey (2MASS) photometry (J , Hand Ks magnitudes), implying that the integrated colours obtained from the spectraare consistent with those obtained by 2MASS.

The spectral types of the 210 library stars include F, G, K, M, L, S and C types, withluminosity classes from supergiants (I) to dwarfs (V). The majority of the stars are coolstars, which dominate the light in the NIR. Around 60% of the stars are variable, includ-ing Cepheids, RR Lyrae and semi-regular variables. Additionally, some stars have twospectra, corrected and non-corrected for extinction. We kept these spectra as individ-ual stars leaving us with a sample of 292 spectra.

2.2 Determination of stellar parameters

A crucial step towards using a spectral stellar library for SSP modelling (see ChapterIII) is to accurately know the atmospheric parameters of its stars to be able to tie themto the evolutionary tracks during the modelling. Moreover, the parametric coverageof the library is vital to understand the applicable ranges in the models constructedfrom its stars. For this purpose, we apply two methods, one in which the Teff, log gand metallicity of many of the stars of the IRTF spectral library are determined in aself-consistent way from a sample of stars with well-determined parameters (see Sec-tion 2.2.1) and another in which we use the colour−temperature relations for differentregimes (see Section 2.2.2). We use parameters from the literature to establish the va-lidity of these methods.

Here we use the ULySS 2 package (Koleva et al., 2009) to compare the IRTF spec-tra to a template library with known parameters, and to find the set of best-matchingspectra. Briefly, ULySS fits a spectrum with a linear combination of non-linear compo-nents (in this case stellar spectra) convolved with a line-of-sight velocity distributionand multiplied by a polynomial continuum.

The parameters of the best-matching spectra along with their respective weightsgive the atmospheric parameters of the IRTF stars. Figure 2.2 shows examples of thefits for three stars (IRL003, IRL120 and IRL270) with their corresponding resulting pa-rameters. It is important to mention that the full−spectrum fitting (FSF) approach used

1. irtfweb.ifa.hawaii.edu/~spex/IRTF_Spectral_Library/2. ulyss.univ-lyon1.fr

Page 5: University of Groningen Stellar population models in the ... · MQ08 stars-3-2.5-2-1.5-1-0.5 0 0.5 [Z/Z ] Figure 2.3 – HR diagram of the stars that compose the template library

16 Preparation of the IRTF spectral stellar library

Figure 2.2 – Example of the results obtained with full-spectrum fitting. The name of the starsand the obtained parameters are cited in figure titles. In the upper panels, we show the observedspectrum (black lines) and the best fit model (red lines). In the lower panels, we show the resid-uals (green data points) which for these stars are less than 0.2%. For details of the fits, see text.

for measuring the atmospheric parameters was only used on a small region of the Kband (2.19 to 2.34 µm).

2.2.1 Full−spectrum fitting method

We choose as our primary template library 73 stars of the IRTF spectral library thatare also found in the empirical stellar libraries MILES (Sánchez-Blázquez et al., 2006a)and CaT (Cenarro et al., 2001). The parameters of those stars are determined using acompilation from the literature by Cenarro et al. (2007, hereafter C07). Additionally,we use as templates 52 stars observed in a section of the K band (2.19 to 2.34 µm) byMármol-Queraltó et al. (2008) which are also contained in the MILES and CaT librariesand for which there are also stellar atmospheric parameters available in C07.

For our analyses, we also create 108 interpolated stars whose parameters are se-lected from grids of different Teff, log g and 4 metallicities that were within the lim-its provided by the empirical stars of our template library. Their temperature rangesfrom 2500 to 6500K, with steps of 500K and their gravities range from −0.25 to 4.0dex,with steps of 1.0dex. The metallicities considered here are −0.70, −0.4, 0.0 and 0.2dex.

Page 6: University of Groningen Stellar population models in the ... · MQ08 stars-3-2.5-2-1.5-1-0.5 0 0.5 [Z/Z ] Figure 2.3 – HR diagram of the stars that compose the template library

2.2 Determination of stellar parameters 17

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

250035004500550065007500

log

g

Teff (K)

IRTF templates

MQ08 stars

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

[Z/Z

⊙]

Figure 2.3 – HR diagram of the stars that compose the template library for the determinationof stellar parameters of the IRTF spectral library. This template set is formed by 73 IRTF starsin common with the MILES and CaT empirical stellar libraries, 52 additional stars observed byMármol-Queraltó et al. (2008, MQ08).

The spectrum of each interpolated star is obtained by interpolating between empiricalspectra of stars with known parameters in our template library. We apply an interpo-lation scheme similar to that of Vazdekis et al. (2003), which creates a box of stellarparameters around a given point with certain stellar parameters, i.e. the parameters ofthe star for which we want to obtain a spectrum. This box is flexible enough to expanduntil a sufficient number of adequate stars are found, if necessary, and is divided intoeight cubes of different sizes that have the given point as a corner. This minimises theerrors due to the lack of stars in certain regions of the distribution of stars. The sizeof the box is inversely proportional to the density of stars found around the point andthe box can be as small as the typical uncertainties of the parameters of the templatelibrary. When the boxes are determined, the spectra of the stars that form each one ofthe eight boxes are combined into 8 different spectra. As a final step, these spectra areinterpolated to obtain a final spectrum with the desired stellar parameters. This stepis taken since the available interpolators with ULySS are only for optical wavelengths.We subsequently use the ULySS package, along with the 233 template stars describedabove to determine stellar atmospheric parameters in the full-spectrum approach.

We have run the FSF for the 73 IRTF-MILES stars (hereby C07-stars) to not onlytest this method but also to homogenise our "anchor" literature values. We have also

Page 7: University of Groningen Stellar population models in the ... · MQ08 stars-3-2.5-2-1.5-1-0.5 0 0.5 [Z/Z ] Figure 2.3 – HR diagram of the stars that compose the template library

18 Preparation of the IRTF spectral stellar library

-500

-250

0

250

500

750

1000

4000 5000 6000 7000 8000

∆T

eff (

K)

FSF Teff (K)

-2

-1

0

1

2

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

∆lo

g g

FSF log g

-1

-0.5

0

0.5

1

-0.75 -0.5 -0.25 0 0.25 0.5

∆[Z

/Z⊙

]

FSF [Z/Z⊙]

C97 + S10

C07

Figure 2.4 – Residuals from the comparison of the stellar parameters obtained from the full-spectrum fitting (FSF) approach and the literature values from C07, S10 and C97 and the resid-uals (FSF - Lit). The red line is the one-to-one correlation. The green line marks the median ofthe difference 81K for Teff, -0.23 for log g and -0.07 of metallicity) which represents the offsetbetween non-C07 and C97 + S10 literature values.

applied the methodology to the IRTF stars with literature values from Soubiran et al.(2010, hereafter S10) and Cayrel de Strobel et al. (1997, hereafter C97), giving a com-bined sample of 40 stars hereby designated non-C07 stars.

The FSF method is not applied to stars with Teff below 4000K due to the lack oftemplates covering an adequate grid of atmospheric parameters for cool stars. There-fore, below 4000K we adopt atmospheric parameters from the literature or the colour-temperature relation method (see Section 2.2.2).

Figure 2.4 shows that the parameters obtained for the non-C07 stars differ from

Page 8: University of Groningen Stellar population models in the ... · MQ08 stars-3-2.5-2-1.5-1-0.5 0 0.5 [Z/Z ] Figure 2.3 – HR diagram of the stars that compose the template library

2.2 Determination of stellar parameters 19

1000

2000

3000

4000

5000

6000

7000

8000

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Teff (

K)

(J-K)

A96 dwarfs

R13 M dwarfs

P13 L dwarfs

P13 T dwarfs

A99 giants

H00 M giants

K05 late-type giants

Figure 2.5 – Colour-temperature relations for different regimes of effective temperature and lu-minosity class from Alonso et al. (1996, A96), Rajpurohit et al. (2013, R13), Pecaut and Mamajek(2013, P13), Alonso et al. (1999, A99), Houdashelt et al. (2000, H00) and Kucinskas et al. (2005,K05).

the catalogs; therefore we calculate the offset between these values from the medianof the difference 81K for Teff, -0.23 for log g and -0.07 for metallicity). We apply thecorresponding offset for each parameter to the literature values for the non-C07 stars inorder to homogenise the "anchor" stellar atmospheric parameters in the C07 system.

-1000

-500

0

500

1000

1500

2000

2500

2000 3000 4000 5000 6000 7000 8000

∆T

eff (

K)

C07 system Teff (K)

C97 + S10

C07

Figure 2.6 – Residuals from the comparison of the stellar parameters obtained from the colour-temperature relation (CTR) approach and the literature values from C07, S10 and C97 and theresidual (Lit C 10 s y stem - CTR). The red line is the one-to-one correlation. The green line marksthe median of the difference (181K) which represents the offset in temperatures between theCTR method and literature in the C07 system.

From our analyses we see that most of the stars are in the metallicity range between≈−0.7 and 0.2, indicating that the IRTF spectral library is useful for NIR SP modellingmostly when working with populations near solar abundance.

Page 9: University of Groningen Stellar population models in the ... · MQ08 stars-3-2.5-2-1.5-1-0.5 0 0.5 [Z/Z ] Figure 2.3 – HR diagram of the stars that compose the template library

20 Preparation of the IRTF spectral stellar library

Figure 2.7 –Compilationof effectivetemperaturesas a functionof spectral typefrom Gray andCorbally (2009)and Cox (1999).

1000

2000

3000

4000

5000

6000

7000

8000

F0 G0 K0 M0 L0 T0

Teff (

K)

spectral type

supergiants

AB supergiants

giants

dwarfs

2.2.2 Teff and NIR−colour relations

For this method, we determine the temperature as a function of NIR colours.For this purpose, we use colour-temperature relations (CTR) in the NIR, specifically(J −K ), for different regimes of effective temperatures and luminosity classes. For gi-ants, we use the relations of Alonso et al. (1999, A99), Houdashelt et al. (2000, H00) andKucinskas et al. (2005, K05) which are applied to F0-K5, M0-M7 and M8-cooler stars, re-spectively. For dwarfs, the relations of Alonso et al. (1996, A96), Rajpurohit et al. (2013,R13) and Pecaut and Mamajek (2013, P13) are used for F0-K5, M0-M10 and L-T stars,respectively. We show these relations and their behaviour in Figure 2.5.

Before applying these relations to those stars without literature parameters, we usethem to re-calculate the values of the C07 and non-C07 stars in order to determinethe difference between the literature values in the C07 system and colour-temperaturerelation results and anchor the latter values to the former. This comparison and therespective median offset are shown in Figure 2.6. This offset (181K) is applied to theeffective temperatures from the CTR approach. Note that large difference of literatureand CTR temperatures of very bright giants is due to the variable colours as a result ofstellar pulsations.

2.2.3 Selection of the atmospheric parameters

To assess the accuracy of the parameters we obtained with both methods, we com-pare the parameters of the remaining 219 IRTF stars with literature values from thecatalogues of S10 and C97. When literature data are not available, we infer the stel-lar temperature of the stars from their stellar classification by compiling informationfrom Gray and Corbally (2009) and Cox (1999), as shown in Figure 2.7. To determinesurface gravity, we use evolutionary tracks based on empirical stars as a function of

Page 10: University of Groningen Stellar population models in the ... · MQ08 stars-3-2.5-2-1.5-1-0.5 0 0.5 [Z/Z ] Figure 2.3 – HR diagram of the stars that compose the template library

2.2 Determination of stellar parameters 21

temperature, gravity and spectral type from Straizys and Kuriliene (1981). In Table 2.1,we show our calculated parameters, including those from the literature, and those ofthe template stars.

3000

4000

5000

6000

7000

8000

FS

F T

eff (

K)

C97 + S10

C07

-1000

0

1000

4000 5000 6000 7000 8000

∆T

eff (

K)

C07 system Teff (K)

Figure 2.8 – Comparison of the ef-fective temperature obtained fromthe full-spectrum fitting (FSF) withliterature values in the C07 system.The squares and circles are thosestars with literature values from ei-ther C07, S10 or C97 already inthe C07 system, for which parame-ters are computed using their stel-lar type. The black data pointsare stars that do not have litera-ture values in C07, S10 or C97. Thered line is the one-to-one relation.The blue and green lines mark the1 σ and 2 σ confidence intervals,respectively. The residuals (FSF -Lit C 07 s y stem ) are presented in thelower panel.

The agreement between the measured parameters by the FSF method and the liter-ature is reasonable (as shown in Figures 2.8, 2.9 and 2.10), with σTe f f = 366K, σlog g =0.36dex and σ[Z /Z¯] = 0.28dex. This technique was limited by the parameter coverageof the template library which was dominated by solar metallicity giants and dwarfs be-tween∼ 3500 and 7500 K . The stars for which we could not determine good parametersare late-type giants (M6 and cooler) and M, L and T dwarfs (Te f f < 2500K).

Figure 2.11 shows the resulting effective temperatures from colour-temperature re-lations and the comparison with the literature values. This method also shows a goodagreement with σTe f f = 451K, except for a few very bright giants whose colours oscil-late due to stellar pulsations.

It is important to point out that these methods are independent from each other.The FSF determines the parameters of a given star by comparing its spectrum to anempirical spectral library whose stellar parameters were compiled from the literature(for details of this compilation see Cenarro et al., 2007). On the other hand, the CTR isbased on the relation of observed photometry of stars and their effective temperature(see e.g. Alonso et al., 1999).

To compute the Stellar Population models (Chapter III), we mainly use the param-eters mainly from the full-spectrum fitting and for those stars whose values are not inthe 2 σTe f f confidence interval, we take the results from the colour-temperature rela-tion that are also within the corresponding reliable limits. For log g , we take the FSF

Page 11: University of Groningen Stellar population models in the ... · MQ08 stars-3-2.5-2-1.5-1-0.5 0 0.5 [Z/Z ] Figure 2.3 – HR diagram of the stars that compose the template library

22 Preparation of the IRTF spectral stellar library

Figure 2.9 – As in Figure 2.8 but forlog g .

-1

0

1

2

3

4

5

6

FS

F lo

g g

C97 + S10

C07

-1

0

1

-1 0 1 2 3 4 5 6

∆lo

g g

(d

ex)

C07 system log g (dex)

Figure 2.10 – As in Figure 2.8 butfor the stars with literature values([Z /Z¯]). Note that the diagramcontains fewer stars than e.g. Fig-ure 2.9. This is because there aremany stars without literature val-ues, for which there is no way to de-termine their metallicity. For thesestars we have assumed solar chem-ical abundances and not plottedthem here.

-1

-0.5

0

0.5

1

FS

F [

Z/Z

⊙]

C97 + S10

C07

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

∆[Z

/Z⊙

]

C07 system [Z/Z⊙]

results, or, if they are not within the 2 σlog g limits, we take the literature values. Weprefer not to use the mass-luminosity relations to calculate the log g because it requires

Page 12: University of Groningen Stellar population models in the ... · MQ08 stars-3-2.5-2-1.5-1-0.5 0 0.5 [Z/Z ] Figure 2.3 – HR diagram of the stars that compose the template library

2.2 Determination of stellar parameters 23

assigning a particular age and metallicity making the method subject to a bias. For out-liers in metallicity, literature values were used if available, otherwise solar metallicitywas chosen.

The calculated values within the 2 σ confidence intervals (for the respective pa-rameter) are shown in Table 2.1. Figure 2.12 shows the HR diagram of these stars andFigure 2.13 their metallicity distribution function.

1000

2000

3000

4000

5000

6000

7000

8000

CT

R T

eff (

K)

C97 + S10

C07

-1000

0

1000

1000 2000 3000 4000 5000 6000 7000 8000

∆T

eff (

K)

C07 system Teff (K)

Figure 2.11 – As in Figure 2.8 buthere showing the effective tempera-ture obtained from the (J −K )−Teffrelations shown in Figure 2.5.

2.2.4 Comparison with recent work

We compare the atmospheric parameters of the IRTF spectral library stars withthe survey of available stellar parameters compiled from the literature by Cesetti et al.(2013). In Figure 2.14 we present the residuals of the comparisons for Teff (184 stars),log g (101 stars) and [Z /Z¯] (95 stars). This comparison shows a reasonable agreementbetween our anchoring literature values from C07, our obtained ones and those fromCesetti et al. (2013), with σTe f f = 195K , σlog g = 0.32dex and σ[Z /Z¯] = 0.19dex.

Page 13: University of Groningen Stellar population models in the ... · MQ08 stars-3-2.5-2-1.5-1-0.5 0 0.5 [Z/Z ] Figure 2.3 – HR diagram of the stars that compose the template library

24 Preparation of the IRTF spectral stellar library

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

10002000300040005000600070008000

log

g

Teff (K)

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

[Z/Z

⊙]

Figure 2.12 – The stellar atmospheric parameters for the stars of the IRTF spectral library. Thisshows the parameter coverage of this library for stellar population models. L and T-type dwarfswere not included.

Figure 2.13 – The metal-licity distribution func-tion for the stars of theIRTF spectral library.

0

20

40

60

80

100

120

140

160

-2.7 -2.3 -1.9 -1.5 -1.1 -0.7 -0.3 0.1 0.5

N

[Z/Z⊙]

Page 14: University of Groningen Stellar population models in the ... · MQ08 stars-3-2.5-2-1.5-1-0.5 0 0.5 [Z/Z ] Figure 2.3 – HR diagram of the stars that compose the template library

2.2 Determination of stellar parameters 25

-600

-300

0

300

600

1500 2500 3500 4500 5500 6500 7500

∆T

eff (

K)

This work Teff (K)

-1.0

-0.5

0.0

0.5

1.0

-0.5 0.5 1.5 2.5 3.5 4.5

∆lo

g g

This work log g

-1

-0.5

0

0.5

1

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

∆[Z

/Z⊙

]

This work [Z/Z⊙]

IRTF-C07

IRTF

Figure 2.14 – Residuals from the comparison between the stellar atmospheric parameters forthe stars of the IRTF spectral library and those compiled by Cesetti et al. (2013) (Present work -Cesetti). The circles represent the values for the IRTF stars with C07 stellar parameters and thesquares the IRTF stars for which we determined their parameters. The red line is the one-to-onecorrelation. The blue and green lines mark the 1 σ and 2 σ confidence intervals, respectively.

Page 15: University of Groningen Stellar population models in the ... · MQ08 stars-3-2.5-2-1.5-1-0.5 0 0.5 [Z/Z ] Figure 2.3 – HR diagram of the stars that compose the template library

26 Preparation of the IRTF spectral stellar library

2.3 Flux calibration of the IRTF spectral library

In this section, we test the flux calibration of the library and the behaviour of thestellar integrated colours as a function of the atmospheric parameters. The reliabilityof this calibration is important for the SP modeling when comparing to photometricobservations of globular clusters and galaxies.

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.0 3.4 3.8 4.2 4.6

(J-K

)

log Teff

-2.3

-1.8

-1.3

-0.8

-0.3

0.2

[Z/Z

⊙]

0.0

0.5

1.0

1.5

(J-H

)

-2.3

-1.8

-1.3

-0.8

-0.3

0.2

[Z/Z

⊙]

-0.5

0.0

0.5

1.0

1.5

(H-K

)

IRTFPickles

-2.3

-1.8

-1.3

-0.8

-0.3

0.2

[Z/Z

⊙]

Figure 2.15 – Behaviour of the integrated colours of the IRTF spectral library stars as a function ofeffective temperature, compared with the Pickles stellar library (which is assumed to have solarmetallicity).

Relative J , H and Ks fluxes were determined by integrating the spectral flux in theseNear-IR bands using the Vega spectrum from Colina et al. (1996) as a zero-point. We

Page 16: University of Groningen Stellar population models in the ... · MQ08 stars-3-2.5-2-1.5-1-0.5 0 0.5 [Z/Z ] Figure 2.3 – HR diagram of the stars that compose the template library

2.3 Flux calibration of the IRTF spectral library 27

use the response curves of the J , H and K filters of the Johnson-Cousins-Glass photo-metric system given by Bessell et al. (1998). We present in Figure 2.15 a comparison ofthe colours with the library of Pickles (1998) for solar metallicity stars. We can see thatour inferred parameters follow the same trend as those of Pickles. We draw the sameconclusion from the colour-colour diagrams in Figure 2.16.

0.0

0.5

1.0

-0.5 0.0 0.5 1.0 1.5 2.0

(J-H

)

(J-K)

3.3

3.6

3.9

4.2

4.5

log T

eff

-0.2

0.0

0.2

0.5

0.8

(H-K

)

3.3

3.6

3.9

4.2

4.5

log T

eff

-0.2

0.0

0.2

0.5

0.8

0.0 0.5 1.0

(H-K

)

(J-H)

IRTFPickles

3.2

3.4

3.6

3.8

4.0

4.2

4.4

4.6

log T

eff

Figure 2.16 – Colour-Colour diagrams of the stars of the IRTF spectral library, compared with thePickles library (which is assumed to have solar metallicity).

Page 17: University of Groningen Stellar population models in the ... · MQ08 stars-3-2.5-2-1.5-1-0.5 0 0.5 [Z/Z ] Figure 2.3 – HR diagram of the stars that compose the template library

28 Preparation of the IRTF spectral stellar library

2.4 Determining the spectral resolution

In order to asses the accuracy of our SSP models (Chapter III), it is also importantto characterise the spectral resolution of the stellar library to be used and to make surethat the radial velocities of all the stars have been set to zero. Therefore, to determinethe nominal spectral resolution (FWHM) of the IRTF spectral library, we fit the starswith another template library of very high resolution.

We use the recent PHOENIX BT-Settl 3 stellar models (Allard et al., 2012) as a tem-plate library. The stellar parameters of this theoretical library cover a wide range oftemperature (2600 −7000K), luminosity class (from dwarfs to supergiants) and metal-licity (−0.5 to 0.5dex). In the wavelength range that we use (J , H and K bands), thefull-width at half maximum (FWHM) of the library is 0.05 Å.

1.05•104 1.10•104 1.15•104 1.20•104 1.25•104 1.30•104 1.35•104

Wavelength, Å

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

Rel

ativ

e flu

x

1.50•104 1.55•104 1.60•104 1.65•104 1.70•104 1.75•104

Wavelength, Å

1.0

1.2

1.4

1.6

1.8

Rel

ativ

e flu

x

1.95•104 2.00•104 2.05•104 2.10•104

Wavelength, Å

0.6

0.7

0.8

0.9

1.0

1.1

Rel

ativ

e flu

x

2.15•104 2.20•104 2.25•104 2.30•104 2.35•104

Wavelength, Å

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Rel

ativ

e flu

x

Figure 2.17 – Example of the full-spectrum fitting for a solar-like star IRL075. We show the ob-served spectrum (black lines), the best fit model (red lines) and the residuals (green data points).In some regions of the fit is poor is due to telluric absorption contamination.

The FWHM of the IRTF spectral library has been determined by comparison withthe BT−Settl library. Both libraries are rebinned to a velocity scale of 25 kms−1, af-ter which the broadening of data and templates are measured using the penalizedpixel-fitting method (pPXF, Cappellari and Emsellem, 2004). The templates have beenconvolved with a Gaussian and fit to each individual test spectrum to determine the

3. phoenix.ens-lyon.fr/Grids/BT-Settl/AGSS2009/SPECTRA/

Page 18: University of Groningen Stellar population models in the ... · MQ08 stars-3-2.5-2-1.5-1-0.5 0 0.5 [Z/Z ] Figure 2.3 – HR diagram of the stars that compose the template library

2.4 Determining the spectral resolution 29

FWHM. To assess the dependence of resolution on wavelength, we divide the orig-inal datasets into four wavelength bins, representing the J (1.04 − 1.44 µm) and H(1.46−1.80 µm) bands, the atomic part of the K band (1.90−2.14 µm) and the molec-ular part of the K band (2.14−2.41 µm), with effective wavelengths of 1.22, 1.62, 2.02and 2.27µm, respectively. The basic procedure is described in detail by Falcón-Barrosoet al. (2011). Figure 2.17 shows an example of a solar-like star of the IRTF library andits fit using this procedure.

0.0

0.2

0.4

0.6

N/N

tota

l

RV = −4.1 ± 6.6 km s−1

0.0

0.2

0.4

0.6

N/N

tota

l

RV = −8.5 ± 8.0 km s−1

0.0

0.2

0.4

0.6

N/N

tota

l

RV = −13.3 ± 8.7 km s−1

0.0

0.2

0.4

0.6

−50.0 −30.0 −10.0 10.0 30.0 50.0

N/N

tota

l

Radial Velocity (km s−1)

RV = −13.9 ± 8.1 km s−1

0.0

0.2

0.4

0.6

N/N

tota

l

FWHM = 5.9 ± 0.3 Å

0.0

0.2

0.4

0.6

N/N

tota

l

FWHM = 7.6 ± 0.3 Å

0.0

0.2

0.4

0.6

N/N

tota

l

FWHM = 9.3 ± 0.6 Å

0.0

0.2

0.4

0.6

0 4 8 12 16

N/N

tota

l

FWHM (Å)

FWHM = 9.7 ± 0.9 Å

Figure 2.18 – Left panels: Radial velocities of the IRTF spectral library as a function of wave-length. Right panel: FWHM as a function of wavelength. For the J band, at 1.22 µm, the starshave an average FWHM of 5.9 ±0.3 Å. In the H band, at 1.62 µm, the peak value is 7.6 ±0.3 Å. Forthe atomic-dominated part of the K band, at 2.02 µm, the average resolution is 9.3 ±0.6 Å. Andfor the molecular-dominated part of the K band, at 2.27 µm, the average FWHM is 9.7 ±0.9 Å.

Page 19: University of Groningen Stellar population models in the ... · MQ08 stars-3-2.5-2-1.5-1-0.5 0 0.5 [Z/Z ] Figure 2.3 – HR diagram of the stars that compose the template library

30 Preparation of the IRTF spectral stellar library

From this technique, we also obtain the radial velocity (RV) of the IRTF stars foreach bin as shown in the left panel of Figure 2.18. For the J band, at 1.22 µm, most ofstars have an RV of −4.1±6.6 kms−1 (standard deviation). In the H band, at 1.62 Å, thepeak value is −8.5 ±8.0 kms−1. For the atomic-dominated part of the K band, at 2.02 Å,the radial velocity is −13.3 ±8.7 kms−1, and for the molecular-dominated part of the Kband, at 2.27 Å, the RV is −13.9 ±8.1 kms−1.

In Figure 2.19 we show how the FWHM, the resolution R and their respective scat-ters behave as a function of wavelength for the G stars of the library, in bin sizes of1000 Å. As we see, the FWHM increases when going to the red.

0

2

4

6

8

10

12

14

10000 12500 15000 17500 20000 22500 25000

FW

HM

)

Wavelength (Å)

1000

1500

2000

2500

3000

3500

4000

4500

10000 12500 15000 17500 20000 22500 25000

R =

λ/∆

λ

Wavelength (Å)

Figure 2.19 – Behaviour of the FWHM (left panel) and the resolving power R (right panel) of theG stars of the IRTF spectral library (grey lines) as a function of wavelength. In both panels, theblack points represent the mean values for those effective wavelengths and the blue lines markthe mean dispersion. In the left panel, the red line corresponds to a liner relation of the meanFWHM for each wavelength. In the right panel, the red line is a linear relation of the mean R witheffective wavelength.

The behaviour of the FWHM as a function of each wavelength bin is presentedin the right panel histograms of Figure 2.18. One can see that the resolution is notconstant in wavelength, as is the case for the MILES library, but is approximately pro-portional with wavelength (R constant), but with some additional variation as a func-tion of wavelength. For the J band, at 1.22 µm, most stars have an average FWHM of5.9 ± 0.3 Å. In the H band, at 1.62 Å, the peak value is 7.6 ± 0.3 Å. For the atomic-dominated part of the K band, at 2.02 Å, the average resolution is 9.3 ±0.6 Å. And forthe molecular-dominated part of the K band, at 2.27 Å, the average FWHM is 9.7 ±0.9 Å.In terms of the spectral resolution, R = 2060±15, 2163±16, 2153±23, and 2350±25 at1.22, 1.62, 2.02, and 2.27µm respectively.

These tests demonstrate that the resolution of this library is higher than most pre-vious empirical libraries, such as Lançon and Wood (2000).

2.5 Final remarks

We have studied in detail the accuracy and characteristics of the IRTF spectral li-brary in the J , H and K bands. We have determined the the parameter coverage of the

Page 20: University of Groningen Stellar population models in the ... · MQ08 stars-3-2.5-2-1.5-1-0.5 0 0.5 [Z/Z ] Figure 2.3 – HR diagram of the stars that compose the template library

2.5 Final remarks 31

IRTF spectral library, allowing us to understand the extent of its usefulness. We havealso determined the accuracy of the flux calibration of the library. Additionally, we havemeasured the precise spectral resolution and radial velocity of the stars.

With these tests, we understand the possibilities and limitations of stellar popula-tion models using the IRTF spectral library as input (Chapter III), over the J , H and Kbands.

Cool late-type stars have a strong influence on the integrated flux in these wave-length regions. These stars are particularly relevant for studies of early-type galaxies.Since our library has cool stars, we can obtain a much better handle on the relativecontribution of these stars in unresolved galaxies (Chapter IV).

Our rebinned IRTF spectral library spectra (i.e. with a constant dispersion in wave-length) and the resulting data of the analysis and characterisation are available on-line 4

Acknowledgments

The authors acknowledge the usage of the SIMBAD data base (operated at CDS,Strasbourg, France) and the IRTF spectral library database. SMG thanks T. de Boer andthe Institute of Astronomy of the University of Cambridge for support during her stay.MK is a postdoctoral Marie Curie fellow (Grant PIEF-GA-2010-271780) and a fellow ofthe Fund for Scientific Research - Flanders, Belgium (FW O11/PDO/147). JFB and AVacknowledge the support by the Programa Nacional del Astronomía y Astrofísica of theSpanish Ministry of Science and Innovation undergrant AY A2013−48226−C 3−1−P ,as well as from the FP7 Marie Curie Actions of the European Commission, via the InitialTraining Network DAGAL under REA grant agreement number 289313.

4. smg.astro-research.net/

Page 21: University of Groningen Stellar population models in the ... · MQ08 stars-3-2.5-2-1.5-1-0.5 0 0.5 [Z/Z ] Figure 2.3 – HR diagram of the stars that compose the template library

32 Preparation of the IRTF spectral stellar library

Appendix 2.A The stars of the IRTF spectral library andtheir atmospheric parameters.

In this appendix, we compile the available information for the IRTF stars. The firstcolumn shows the ID of the IRTF stars, corresponding to the order of stars adopted inRayner et al. (2009); Cushing et al. (2005). Indented IDs indicate stars which are notcorrected for extinction. The second column lists the names given by the IRTF librarydatabase. The coordinates of each star are given in the third and fourth column. Thefifth column gives the stellar class of each star according also to the IRTF library. Thefifth, sixth and seventh columns present the atmospheric parameters of each star, de-termined from either the full-spectrum fitting method (F SF ), the colour−temperaturerelation (C T R ), literature compilations S10 and C97 (SEC ) or according to their stellartype (ST ). For stars from the Cenarro et al. (2007) catalog (labeled C 07) the atmosphericparameters are determined using the full-spectrum fitting method and recovered asthe same values as given in the literature. Finally, the eight, ninth and tenth columnslist the NIR colours of each star as calculated from the spectrum (see Section 2.3).

Page 22: University of Groningen Stellar population models in the ... · MQ08 stars-3-2.5-2-1.5-1-0.5 0 0.5 [Z/Z ] Figure 2.3 – HR diagram of the stars that compose the template library

2.A The stars of the IRTF spectral library and their atmospheric parameters. 33

Tab

le2.

1–

Ref

eren

cere

lati

on

for

the

IRT

Fsp

ectr

alli

brar

yst

ars.

IDSt

arR

AD

ecC

lass

Tef

f(K

)lo

gg

[Z/Z

¯](J

-H)

(J-K

)(H

-K)

IRL2

80B

RI

B00

21−0

214

0024

24.6

3−0

158

20.1

4M

9.5V

2466

CT

R5.

06S

T0.

00S

T0.

811.

360.

55IR

L147

HD

0029

0100

3247

.52

+54

0711

.81

K2I

II44

10F

SF

2.68

ST

-0.0

7FS

F0.

670.

750.

08IR

L194

2MA

SSJ0

0361

617+

1821

104

0036

16.1

7+1

821

10.4

7L3

.523

24C

TR

≥5.0

ST

0.00

ST

0.90

1.45

0.56

IRL1

81H

D00

3346

0036

46.4

4+4

429

18.9

1K

6III

a39

43F

SF

2.13

ST

-0.0

5FS

F0.

841.

050.

21IR

L072

HD

0034

2100

3721

.21

+35

2358

.20

G2I

b56

63F

SF

1.94

FS

F-0

.33F

SF

0.42

0.48

0.06

IRL1

53H

D00

3765

0040

49.2

6+4

011

13.8

3K

2V50

73F

SF

4.49

FS

F0.

10F

SF

0.46

0.53

0.07

IRL2

52H

D00

4408

0046

32.9

5+1

528

31.8

1M

4III

3566

CT

R1.

07S

T0.

00S

T0.

931.

210.

27IR

L260

Gl0

5101

0319

.72

+62

2155

.70

M5V

3649

CT

R4.

8S

T0.

00S

T0.

610.

920.

31IR

L014

HD

0061

3001

0337

.00

+61

0429

.36

F0I

I70

31F

SF

2.15

FS

F-0

.55F

SF

0.25

0.33

0.08

IRL0

13H

D00

6130

ext

0103

37.0

0+6

104

29.3

6F

0II

7008

FS

F2.

09F

SF

-0.5

7FS

F0.

160.

190.

03IR

L277

IRA

S01

037+

1219

0106

25.9

8+1

235

53.0

0M

8III

3777

CT

R0.

7S

T0.

00S

T2.

504.

211.

71IR

L082

HD

0064

74ex

t01

0659

.74

+63

4623

.38

G4I

a62

41C

071.

55C

070.

25C

070.

350.

460.

10IR

L083

HD

0064

7401

0659

.74

+63

4623

.38

G4I

a62

41C

071.

55C

070.

25C

070.

550.

770.

22IR

L055

HD

0069

0301

0949

.20

+19

3930

.26

F9I

IIa

5570

C07

2.9

C07

-0.3

5C07

0.36

0.42

0.06

IRL0

54H

D00

6903

ext

0109

49.2

0+1

939

30.2

6F

9III

a55

70C

072.

9C

07-0

.35C

070.

320.

370.

04IR

L202

HD

2366

9701

1953

.61

+58

1830

.73

M0.

5Ib

3565

CT

R0.

69S

T0.

00S

T0.

931.

210.

28IR

L201

HD

2366

97ex

t01

1953

.61

+58

1830

.73

M0.

5Ib

3814

CT

R0.

69S

T0.

00S

T0.

780.

970.

19IR

L010

HD

0079

2701

2004

.91

+58

1353

.80

F0I

a74

25C

070.

7C

070.

00C

070.

290.

430.

14IR

L009

HD

0079

27ex

t01

2004

.91

+58

1353

.80

F0I

a74

25C

070.

7C

070.

00C

070.

130.

170.

04IR

L209

BD

+602

65ex

t01

3333

.05

+61

3330

.73

M1.

5Ib

3771

CT

R0.

61S

T0.

00S

T0.

761.

010.

24IR

L210

BD

+602

6501

3333

.05

+61

3330

.73

M1.

5Ib

3468

CT

R0.

61S

T0.

00S

T0.

971.

330.

36IR

L124

HD

0098

5201

3751

.23

+61

5141

.74

K0.

5III

4678

FS

F2.

88S

T0.

01F

SF

0.67

0.81

0.14

IRL1

23H

D00

9852

ext

0137

51.2

3+6

151

41.7

4K

0.5I

II47

40F

SF

2.88

ST

-0.0

5FS

F0.

550.

610.

06IR

L067

HD

0103

0701

4147

.14

+42

3648

.12

G1V

5847

C07

4.28

C07

0.02

C07

0.32

0.34

0.03

IRL1

44H

D01

0476

0142

29.7

6+2

016

06.6

0K

1V51

50C

074.

44C

07-0

.17C

070.

450.

530.

08IR

L225

HD

0104

65ex

t01

4311

.10

+48

3100

.36

M2I

b37

83C

TR

0.62

ST

0.00

ST

0.78

1.00

0.22

IRL2

26H

D01

0465

0143

11.1

0+4

831

00.3

6M

2Ib

3673

CT

R0.

62S

T0.

00S

T0.

841.

090.

26IR

L081

HD

0106

9701

4455

.82

+20

0459

.33

G3V

a56

88F

SF

3.82

FS

F-0

.09F

SF

0.36

0.44

0.08

IRL0

39H

D01

1443

0153

04.9

0+2

934

43.7

8F

6IV

6288

C07

3.91

C07

0.00

C07

0.27

0.35

0.08

IRL1

892M

ASS

J020

8183

3+25

4253

302

0818

.33

+25

4253

.30

L122

85C

TR

≥5.0

ST

0.00

ST

0.90

1.49

0.58

IRL0

16H

D01

3174

0209

25.3

3+2

556

23.5

9F

0III

7000

C07

3.25

C07

-1.9

0C07

0.18

0.19

0.01

Page 23: University of Groningen Stellar population models in the ... · MQ08 stars-3-2.5-2-1.5-1-0.5 0 0.5 [Z/Z ] Figure 2.3 – HR diagram of the stars that compose the template library

34 Preparation of the IRTF spectral stellar libraryTa

ble

2.1

-C

on

tin

ued

fro

mp

revi

ou

sp

age

IDSt

arR

AD

ecC

lass

Tef

f(K

)lo

gg

[Z/Z

¯](J

-H)

(J-K

)(H

-K)

IRL2

57H

D01

4386

0219

20.7

9−0

258

39.4

9M

5III

3668

CT

R1.

04S

T0.

00S

T0.

631.

100.

47IR

L212

HD

0144

04ex

t02

2142

.41

+57

5146

.12

M1I

ab39

52C

TR

0.0

SE

C0.

00S

T0.

710.

870.

17IR

L213

HD

0144

0402

2142

.41

+57

5146

.12

M1I

ab35

93C

TR

0.0

SE

C0.

00S

T0.

901.

180.

28IR

L242

HD

0144

69ex

t02

2206

.89

+56

3614

.86

M3I

ab37

73C

TR

0.16

ST

0.00

ST

0.75

1.00

0.25

IRL2

43H

D01

4469

0222

06.8

9+5

636

14.8

6M

3Iab

3538

CT

R0.

16S

T0.

00S

T0.

901.

240.

34IR

L232

HD

0144

88ex

t02

2224

.29

+57

0634

.36

M3.

5Iab

3525

CT

R0.

14S

T0.

00S

T0.

881.

260.

37IR

L233

HD

0144

8802

2224

.29

+57

0634

.36

M3.

5Iab

3340

CT

R0.

14S

T0.

00S

T1.

051.

510.

47IR

L101

HD

0161

39ex

t02

3617

.99

+27

2820

.36

G7.

5III

a51

23F

SF

2.88

FS

F-0

.31F

SF

0.47

0.57

0.10

IRL1

02H

D01

6139

0236

17.9

9+2

728

20.3

6G

7.5I

IIa

5069

FS

F2.

7F

SF

-0.4

1FS

F0.

510.

630.

12IR

L166

HD

0160

6802

3652

.80

+55

5455

.41

K3I

I42

85F

SF

1.88

FS

F-0

.09F

SF

0.78

0.94

0.15

IRL1

65H

D01

6068

ext

0236

52.8

0+5

554

55.4

1K

3II

4380

FS

F1.

73F

SF

-0.0

6FS

F0.

620.

690.

06IR

L029

HD

0162

3202

3657

.74

+24

3853

.02

F4V

6097

FS

F4.

08F

SF

-0.0

2FS

F0.

230.

260.

03IR

L034

HD

0179

1802

5311

.69

+16

2900

.45

F5I

II66

95F

SF

3.25

FS

F0.

00S

T0.

220.

220.

01IR

L200

DE

NIS−P

J025

5.0−

4700

0255

03.5

7−4

700

50.9

9L8

1952

CT

R≥5

.0S

T0.

00S

T1.

101.

720.

61IR

L266

HD

0181

9102

5548

.49

+18

1953

.90

M6I

II35

36C

TR

1.92

C07

-0.9

9C07

0.95

1.24

0.29

IRL0

92H

D01

8474

0259

49.7

9+4

713

14.4

8G

5III

5878

FS

F3.

73F

SF

-0.1

1FS

F0.

460.

500.

03IR

L249

HD

0190

5803

0510

.59

+38

5024

.99

M4I

IIa

3549

CT

R0.

57S

EC

-0.2

2SE

C0.

961.

230.

27IR

L205

HD

0193

0503

0626

.73

+01

5754

.63

M0V

3934

CT

R4.

65S

T0.

00S

T0.

690.

850.

16IR

L061

HD

0206

1903

1901

.89

−02

5035

.49

G1.

5V60

94F

SF

4.04

FS

F-0

.18F

SF

0.38

0.45

0.07

IRL1

09H

D02

0618

0319

55.7

9+2

704

16.0

6G

7IV

5430

FS

F3.

16F

SF

-0.2

5FS

F0.

490.

570.

09IR

L279

LP41

2−31

0320

59.6

5+1

854

23.3

1M

8V28

41C

TR

4.96

ST

0.00

ST

0.72

1.17

0.45

IRL0

63H

D02

1018

ext

0323

38.9

8+0

452

55.5

7G

1III

5924

FS

F3.

48F

SF

-0.0

4FS

F0.

350.

410.

06IR

L064

HD

0210

1803

2338

.98

+04

5255

.57

G1I

II59

20F

SF

3.58

FS

F-0

.04F

SF

0.40

0.49

0.09

IRL0

28H

D02

1770

0332

26.2

6+4

603

24.6

9F

4III

6204

FS

F3.

75S

T-0

.04S

EC

0.21

0.23

0.02

IRL2

86LP

944−

2003

3935

.22

−35

2544

.09

M9V

2821

CT

R5.

0S

T0.

00S

T0.

701.

200.

50IR

L145

HD

0230

82ex

t03

4405

.77

+44

5304

.91

K2.

5II

4270

FS

F1.

22F

SF

0.00

FS

F0.

630.

730.

10IR

L146

HD

0230

8203

4405

.77

+44

5304

.91

K2.

5II

4215

FS

F1.

42F

SF

-0.1

6FS

F0.

780.

960.

18IR

L227

HD

0234

75ex

t03

4931

.27

+65

3133

.50

M2I

I38

00C

TR

1.0

ST

0.00

ST

0.80

0.98

0.18

IRL2

28H

D02

3475

0349

31.2

7+6

531

33.5

0M

2II

3650

CT

R1.

0S

T0.

00S

T0.

881.

120.

23IR

L027

HD

0260

1504

0741

.98

+15

0946

.02

F3V

7090

CT

R4.

29S

T0.

04S

EC

0.14

0.12

-0.0

2IR

L141

HD

0259

7504

0815

.38

+37

4338

.98

K1I

II49

66F

SF

2.92

FS

F-0

.24F

SF

0.47

0.53

0.06

Page 24: University of Groningen Stellar population models in the ... · MQ08 stars-3-2.5-2-1.5-1-0.5 0 0.5 [Z/Z ] Figure 2.3 – HR diagram of the stars that compose the template library

2.A The stars of the IRTF spectral library and their atmospheric parameters. 35

Tab

le2.

1-

Co

nti

nu

edfr

om

pre

vio

us

pag

e

IDSt

arR

AD

ecC

lass

Tef

f(K

)lo

gg

[Z/Z

¯](J

-H)

(J-K

)(H

-K)

IRL1

06H

D02

5877

0409

27.5

7+5

954

29.0

5G

7II

4904

C07

1.3

C07

-0.1

5C07

0.45

0.52

0.06

IRL1

05H

D02

5877

ext

0409

27.5

7+5

954

29.0

5G

7II

4904

C07

1.3

C07

-0.1

5C07

0.39

0.42

0.03

IRL0

52H

D02

7383

0419

54.8

5+1

631

21.3

2F

8V61

27F

SF

4.02

FS

F-0

.05F

SF

0.24

0.25

0.02

IRL0

17H

D02

7397

0419

57.7

0+1

402

06.7

1F

0IV

6799

FS

F4.

1S

T0.

00S

T0.

130.

11-0

.02

IRL2

51H

D02

7598

0420

41.3

4−1

649

47.9

1M

4III

3623

CT

R1.

07S

T0.

00S

T0.

901.

150.

25IR

L100

HD

0272

7704

2053

.54

+50

1618

.20

G6I

II51

96F

SF

2.54

FS

F-0

.20F

SF

0.47

0.55

0.08

IRL0

37H

D02

7524

0421

31.6

4+2

102

23.5

6F

5V65

76C

074.

25C

070.

13C

070.

210.

230.

02IR

L235

HD

0284

8704

2938

.94

+05

0951

.35

M3.

5III

3553

CT

R1.

27S

T0.

00S

T0.

961.

220.

27IR

L234

HD

0284

87ex

t04

2938

.94

+05

0951

.35

M3.

5III

3603

CT

R1.

27S

T0.

00S

T0.

921.

170.

25IR

L001

HD

0319

9604

5936

.34

−14

4822

.53

C7.

621

81C

TR

-0.5

C07

0.20

C07

1.40

2.55

1.14

IRL2

07H

D03

5601

ext

0527

10.2

1+2

955

15.7

9M

1.5I

ab37

38C

TR

0.0

C07

-0.2

0C07

0.79

1.03

0.24

IRL2

08H

D03

5601

0527

10.2

1+2

955

15.7

9M

1.5I

ab34

97C

TR

0.0

C07

-0.2

0C07

0.95

1.29

0.34

IRL1

59H

D03

5620

ext

0527

38.8

8+3

428

33.2

1K

3III

4367

C07

1.75

C07

-0.0

3C07

0.64

0.77

0.13

IRL1

60H

D03

5620

0527

38.8

8+3

428

33.2

1K

3III

4367

C07

1.75

C07

-0.0

3C07

0.68

0.84

0.15

IRL1

80H

D03

6003

0528

26.0

9−0

329

58.3

9K

5V44

64C

074.

61C

070.

09C

070.

610.

720.

11IR

L140

HD

0361

3405

2923

.68

−03

2647

.01

K1I

II48

37F

SF

2.24

FS

F-0

.32F

SF

0.60

0.68

0.08

IRL2

11H

D03

6395

0531

27.3

9−0

340

38.0

3M

1.5V

3651

CT

R4.

57S

EC

0.53

SE

C0.

730.

920.

18IR

L197

SDSS

J053

951.

99−0

0590

2.0

0539

52.0

0−0

059

01.9

0L5

2325

CT

R≥5

.0S

T0.

00S

T0.

931.

450.

52IR

L253

Gl2

1305

4209

.26

+12

2921

.62

M4V

4063

CT

R4.

75S

T0.

00S

T0.

530.

790.

26IR

L240

HD

0390

45ex

t05

5125

.74

+32

0728

.89

M3I

II36

90C

TR

1.25

ST

0.00

ST

0.86

1.08

0.22

IRL2

41H

D03

9045

0551

25.7

4+3

207

28.8

9M

3III

3619

CT

R1.

25S

T0.

00S

T0.

901.

150.

24IR

L217

HD

0398

01ex

t05

5510

.30

+07

2425

.43

M2I

a41

90C

TR

0.0

C07

0.05

C07

0.68

0.73

0.05

IRL2

18H

D03

9801

0555

10.3

0+0

724

25.4

3M

2Ia

4016

CT

R0.

0C

070.

05C

070.

740.

830.

09IR

L068

HD

0399

49ex

t05

5705

.55

+27

1859

.95

G2I

b56

71F

SF

1.55

ST

-0.0

7FS

F0.

410.

480.

07IR

L069

HD

0399

4905

5705

.55

+27

1859

.95

G2I

b57

26F

SF

1.55

ST

-0.2

5FS

F0.

470.

580.

11IR

L025

HD

0405

3505

5901

.08

−09

2256

.00

F2I

II67

91F

SF

3.81

ST

-0.2

4FS

F0.

210.

250.

04IR

L292

2MA

SSJ0

5591

915−

1404

489

0559

19.1

4−1

404

48.8

8T

4.5

1105

CT

R≥5

.0S

T0.

67S

EC

0.21

0.09

-0.1

2IR

L239

HD

0402

3905

5956

.09

+45

5612

.24

M3I

Ib35

58C

TR

1.0

ST

0.00

ST

0.94

1.22

0.28

IRL2

19H

D04

2581

0610

34.6

1−2

151

52.7

1M

1V39

37C

TR

4.69

ST

0.00

ST

0.66

0.85

0.19

IRL0

70H

D04

2454

ext

0612

05.4

8+2

929

31.7

2G

2Ib

5772

FS

F1.

55S

T-0

.01F

SF

0.36

0.40

0.05

IRL0

71H

D04

2454

0612

05.4

8+2

929

31.7

2G

2Ib

5751

FS

F1.

55S

T0.

02F

SF

0.46

0.57

0.11

Page 25: University of Groningen Stellar population models in the ... · MQ08 stars-3-2.5-2-1.5-1-0.5 0 0.5 [Z/Z ] Figure 2.3 – HR diagram of the stars that compose the template library

36 Preparation of the IRTF spectral stellar libraryTa

ble

2.1

-C

on

tin

ued

fro

mp

revi

ou

sp

age

IDSt

arR

AD

ecC

lass

Tef

f(K

)lo

gg

[Z/Z

¯](J

-H)

(J-K

)(H

-K)

IRL2

90H

D04

4544

0622

23.8

5+0

325

27.8

8SC

5.5

3055

CT

R0.

2S

T-1

.12S

EC

1.15

1.53

0.38

IRL1

27H

D04

4391

ext

0622

47.8

7+2

759

12.0

3K

0Ib

4786

FS

F1.

48F

SF

-0.1

3FS

F0.

540.

660.

11IR

L128

HD

0443

9106

2247

.87

+27

5912

.03

K0I

b47

64F

SF

1.65

FS

F-0

.11F

SF

0.61

0.76

0.15

IRL0

06H

D04

4984

0625

28.1

7+1

443

19.1

6C

N4

3248

CT

R-0

.5S

T-0

.17S

EC

1.01

1.41

0.40

IRL1

74H

D04

5977

ext

0630

07.3

0−1

148

32.1

9K

4V47

38F

SF

4.39

FS

F0.

14F

SF

0.49

0.56

0.07

IRL1

75H

D04

5977

0630

07.3

0−1

148

32.1

9K

4V48

05F

SF

4.17

FS

F0.

15F

SF

0.53

0.62

0.09

IRL0

07H

D04

8664

0644

40.7

1+0

318

58.6

5C

N5

2710

CT

R-0

.5S

T-0

.62S

EC

1.17

1.78

0.61

IRL0

48H

D05

1956

0659

31.7

4+0

055

00.3

6F

8Ib

6130

FS

F1.

7S

T-0

.17F

SF

0.35

0.42

0.07

IRL0

47H

D05

1956

ext

0659

31.7

4+0

055

00.3

6F

8Ib

6268

FS

F1.

7S

T-0

.10F

SF

0.27

0.30

0.03

IRL2

48G

l268

0710

01.8

3+3

831

46.0

6M

4.5V

3772

CT

R4.

75S

T0.

00S

T0.

600.

890.

29IR

L003

HD

0571

6007

2059

.00

+24

5958

.07

CJ5

2889

CT

R-0

.5S

T0.

00S

T1.

101.

640.

55IR

L099

HD

0583

6707

2538

.89

+09

1633

.95

G6I

Ib50

09F

SF

1.56

FS

F-0

.19F

SF

0.49

0.57

0.09

IRL2

36G

l273

0727

24.4

9+0

513

32.8

3M

3.5V

3971

CT

R4.

74S

T0.

00S

T0.

580.

840.

26IR

L237

CD−3

1491

6ex

t07

4102

.62

−31

4059

.10

M3I

ab37

78C

TR

0.12

ST

0.00

ST

0.78

1.00

0.22

IRL2

38C

D−3

1491

607

4102

.62

−31

4059

.10

M3I

ab35

17C

TR

0.12

ST

0.00

ST

0.95

1.27

0.31

IRL2

89H

D06

2164

0742

17.4

6−1

052

47.1

8S5

3198

CT

R0.

45S

T0.

00S

T1.

061.

440.

38IR

L188

2MA

SSJ0

7464

256+

2000

321

0746

42.5

6+2

000

32.1

8L0

.525

04C

TR

≥5.0

ST

0.00

ST

0.77

1.28

0.51

IRL1

37H

D06

3302

ext

0747

38.5

2−1

559

26.4

8K

1Ia

4500

C07

0.2

C07

0.12

C07

0.51

0.60

0.10

IRL1

38H

D06

3302

0747

38.5

2−1

559

26.4

8K

1Ia

4500

C07

0.2

C07

0.12

C07

0.67

0.86

0.19

IRL2

88H

D06

4332

0753

05.2

7−1

137

29.3

5S4

.537

27C

TR

0.27

SE

C-0

.41S

EC

0.90

1.16

0.26

IRL2

55G

l299

0811

57.5

7+0

846

22.0

5M

4V40

55C

TR

4.75

ST

0.00

ST

0.48

0.77

0.29

IRL2

54G

l299

ext

0811

57.5

7+0

846

22.0

5M

4V38

28C

TR

4.75

ST

0.00

ST

0.45

0.71

0.27

IRL2

65H

D06

9243

0816

33.8

2+1

143

34.4

5M

6III

3377

CT

R1.

0S

T0.

00S

T0.

911.

460.

55IR

L002

HD

0701

3808

1943

.09

−18

1552

.84

CJ4

.5II

Ia32

16C

TR

-0.5

ST

0.00

ST

0.97

1.43

0.46

IRL1

992M

ASS

J082

5196

8+21

1552

108

2519

.68

+21

1552

.12

L7.5

1355

CT

R≥5

.0S

T0.

00S

T1.

232.

020.

80IR

L264

GJ

1111

0829

49.3

4+2

646

33.7

4M

6.5V

3285

CT

R4.

85S

T0.

00S

T0.

601.

000.

40IR

L062

HD

0743

9508

4340

.37

−07

1401

.43

G1I

b52

50C

071.

3C

07-0

.05C

070.

400.

470.

07IR

L031

HD

0755

5508

5221

.79

+44

5351

.46

F5.

5III

6745

FS

F3.

19F

SF

-0.2

2FS

F0.

240.

280.

04IR

L116

HD

0757

32ex

t08

5235

.81

+28

1950

.95

G8V

5079

C07

4.48

C07

0.16

C07

0.37

0.44

0.07

IRL1

17H

D07

5732

0852

35.8

1+2

819

50.9

5G

8V50

79C

074.

48C

070.

16C

070.

410.

500.

09IR

L284

LHS2

065

0853

36.1

9−0

329

32.1

1M

9V26

38C

TR

5.0

ST

0.00

ST

0.79

1.32

0.53

Page 26: University of Groningen Stellar population models in the ... · MQ08 stars-3-2.5-2-1.5-1-0.5 0 0.5 [Z/Z ] Figure 2.3 – HR diagram of the stars that compose the template library

2.A The stars of the IRTF spectral library and their atmospheric parameters. 37

Tab

le2.

1-

Co

nti

nu

edfr

om

pre

vio

us

pag

e

IDSt

arR

AD

ecC

lass

Tef

f(K

)lo

gg

[Z/Z

¯](J

-H)

(J-K

)(H

-K)

IRL0

75H

D07

6151

0854

17.9

4−0

526

04.0

5G

2V59

40F

SF

4.23

FS

F0.

01F

SF

0.34

0.41

0.08

IRL0

05H

D07

6221

0855

22.8

8+1

713

52.5

8C

N4.

527

82C

TR

-0.5

ST

-0.3

7SE

C1.

111.

720.

61IR

L008

HD

0768

4608

5948

.94

+33

4626

.47

CR

2III

a55

82S

T2.

09F

SF

-0.1

5FS

F0.

560.

720.

15IR

L030

HD

0878

2210

0815

.88

+31

3614

.58

F4V

6377

FS

F3.

75F

SF

-0.0

8FS

F0.

210.

240.

03IR

L221

Gl3

8110

1204

.69

−02

4105

.07

M2.

5V39

86C

TR

4.7

ST

0.00

ST

0.62

0.84

0.22

IRL0

80H

D08

8639

1013

49.7

0+2

708

08.9

5G

3III

b54

31F

SF

2.85

FS

F-0

.41F

SF

0.44

0.50

0.06

IRL0

15H

D08

9025

1016

41.4

1+2

325

02.3

2F

0III

a70

83C

073.

2C

07-0

.03C

070.

180.

210.

02IR

L246

Gl3

8810

1936

.27

+19

5212

.06

M3V

3988

CT

R4.

74S

T0.

00S

T0.

620.

840.

22IR

L186

HD

2379

0310

3025

.31

+55

5956

.83

K7V

4070

C07

4.7

C07

-0.1

8C07

0.66

0.78

0.12

IRL1

39H

D09

1810

1037

20.5

5+5

625

52.8

2K

1III

b45

25F

SF

2.79

ST

-0.0

6FS

F0.

590.

710.

12IR

L004

HD

0920

5510

3733

.27

−13

2304

.35

CN

4.5

3039

CT

R-0

.5C

07-0

.10C

071.

091.

540.

45IR

L283

DE

NIS−P

J104

814.

7−39

5606

1048

14.6

4−3

956

06.2

4M

9V30

69C

TR

5.0

ST

0.00

ST

0.61

1.05

0.44

IRL0

85H

D09

4481

1054

17.7

7−1

345

28.9

4G

4III

5347

FS

F2.

87F

SF

-0.3

7FS

F0.

450.

520.

07IR

L256

HD

0947

0510

5601

.46

+06

1107

.32

M5.

5III

3561

CT

R0.

2C

07-2

.50C

070.

911.

210.

31IR

L268

Gl4

0610

5628

.86

+07

0052

.77

M6V

3158

CT

R4.

84S

T0.

00S

T0.

641.

030.

39IR

L066

HD

0951

2810

5927

.97

+40

2548

.92

G1V

5834

C07

4.34

C07

0.04

C07

0.31

0.35

0.04

IRL2

31H

D09

5735

1103

20.1

9+3

558

11.5

6M

2V40

50C

TR

4.8

C07

-0.2

0C07

0.57

0.77

0.20

IRL1

57H

D09

9998

ext

1130

18.8

9−0

300

12.5

9K

3III

4176

CT

R1.

67C

07-0

.39C

070.

730.

860.

13IR

L158

HD

0999

9811

3018

.89

−03

0012

.59

K3I

II39

30C

TR

1.67

C07

-0.3

9C07

0.82

0.99

0.17

IRL1

31H

D10

0006

1130

29.0

3+1

824

35.2

8K

0III

4810

FS

F2.

93S

T-0

.32F

SF

0.59

0.67

0.09

IRL1

15H

D10

1501

1141

03.0

1+3

412

05.8

8G

8V54

01C

074.

6C

07-0

.13C

070.

370.

420.

05IR

L192

2MA

SSJ1

1463

449+

2230

527

1146

34.4

9+2

230

52.7

4L3

2170

CT

R≥5

.0S

T0.

00S

T0.

951.

570.

62IR

L044

HD

1028

7011

5041

.71

+01

4552

.99

F8.

5IV

6109

C07

4.2

C07

0.17

C07

0.28

0.32

0.03

IRL1

12H

D10

4979

1205

12.5

4+0

843

58.7

4G

8III

5030

FS

F2.

35F

SF

-0.1

3FS

F0.

540.

620.

08IR

L281

BR

B12

19−1

336

1221

52.4

8−1

353

10.2

0M

9III

3487

CT

R0.

6S

T0.

00S

T0.

761.

280.

52IR

L018

HD

1085

1912

2746

.30

+27

2521

.95

F0V

6608

FS

F4.

3S

T0.

00S

T0.

160.

200.

04IR

L084

HD

1084

7712

2749

.44

−16

3754

.63

G4I

II54

42F

SF

3.25

ST

-0.0

5FS

F0.

450.

530.

09IR

L270

HD

1088

4912

3021

.01

+04

2459

.16

M7I

II34

91C

TR

0.84

ST

0.00

ST

0.92

1.30

0.38

IRL0

60H

D10

9358

1233

44.5

4+4

121

26.9

2G

0V59

86F

SF

4.11

FS

F-0

.13F

SF

0.33

0.35

0.02

IRL0

50H

D11

1844

1251

54.3

8+1

910

05.0

6F

8IV

6524

FS

F3.

92S

T-0

.74S

EC

0.13

0.13

0.00

IRL2

91SD

SSJ1

2545

3.90

−012

247.

412

5453

.93

−01

2247

.49

T2

1449

CT

R≥5

.0S

T0.

00S

T0.

760.

920.

16

Page 27: University of Groningen Stellar population models in the ... · MQ08 stars-3-2.5-2-1.5-1-0.5 0 0.5 [Z/Z ] Figure 2.3 – HR diagram of the stars that compose the template library

38 Preparation of the IRTF spectral stellar libraryTa

ble

2.1

-C

on

tin

ued

fro

mp

revi

ou

sp

age

IDSt

arR

AD

ecC

lass

Tef

f(K

)lo

gg

[Z/Z

¯](J

-H)

(J-K

)(H

-K)

IRL0

26H

D11

3139

1300

43.6

9+5

621

58.8

1F

2V68

10C

073.

87C

070.

22C

070.

210.

220.

02IR

L191

Kel

u13

0540

.19

−25

4105

.99

L221

25C

TR

≥5.0

ST

0.00

ST

0.95

1.60

0.66

IRL0

53H

D11

4710

1311

52.3

9+2

752

41.4

5F

9.5V

5975

C07

4.4

C07

0.09

C07

0.22

0.21

-0.0

1IR

L154

HD

1149

6013

1357

.56

+01

2723

.20

K3.

5III

b43

31F

SF

1.97

FS

F-0

.13F

SF

0.68

0.82

0.13

IRL1

08H

D11

4946

1314

10.8

9−1

955

51.4

0G

7IV

5171

C07

3.64

C07

0.13

C07

0.50

0.58

0.08

IRL0

94H

D11

5617

1318

24.3

1−1

818

40.3

0G

6.5V

5531

C07

4.32

C07

-0.0

1C07

0.32

0.33

0.01

IRL2

87B

D+4

4226

713

2118

.73

+43

5913

.67

S2.5

3926

CT

R0.

55S

T0.

00S

T0.

841.

070.

22IR

L229

HD

1200

5213

4725

.39

−17

5135

.42

M2I

II36

08C

TR

1.35

ST

0.00

ST

0.91

1.16

0.25

IRL1

76H

D12

0477

1349

28.6

4+1

547

52.4

6K

5.5I

II39

13C

TR

1.32

SE

C-0

.30S

EC

0.81

1.00

0.19

IRL1

14H

D12

2563

1402

31.8

4+0

941

09.9

4G

8III

4566

C07

1.12

C07

-2.6

3C07

0.58

0.68

0.10

IRL2

06IR

AS

1408

6−07

3014

1118

.03

−07

4447

.30

M10

III

3601

CT

R0.

5S

T0.

00S

T2.

154.

121.

98IR

L135

HD

1248

97sh

ape

ext

1415

39.6

7+1

910

56.6

7K

1.5I

II43

61C

071.

93C

07-0

.53C

070.

680.

770.

09IR

L136

HD

1248

97sh

ape

1415

39.6

7+1

910

56.6

7K

1.5I

II43

61C

071.

93C

07-0

.53C

070.

710.

820.

11IR

L134

HD

1248

97li

nes

1415

39.6

7+1

910

56.6

7K

1.5I

II43

61C

071.

93C

07-0

.53C

070.

710.

820.

11IR

L133

HD

1248

97li

nes

ext

1415

39.6

7+1

910

56.6

7K

1.5I

II43

61C

071.

93C

07-0

.53C

070.

680.

770.

09IR

L042

HD

1248

5014

1600

.86

−06

0001

.96

F7I

II61

16C

073.

83C

07-0

.11C

070.

280.

300.

02IR

L043

HD

1266

6014

2511

.79

+51

5102

.67

F7V

6202

C07

3.84

C07

-0.2

7C07

0.24

0.30

0.05

IRL0

74H

D12

6868

1428

12.1

3−0

213

40.6

5G

2IV

5731

FS

F3.

35F

SF

-0.1

5FS

F0.

360.

420.

06IR

L285

LHS2

924

1428

43.2

3+3

310

39.1

4M

9V27

72C

TR

5.0

ST

0.00

ST

0.76

1.26

0.50

IRL2

74IR

AS

1430

3−10

4214

3259

.89

−10

5603

.60

M8I

II33

06C

TR

0.7

ST

0.00

ST

0.79

1.38

0.59

IRL1

902M

ASS

J143

9283

6+19

2914

914

3928

.36

+19

2914

.98

L125

28C

TR

≥5.0

ST

0.00

ST

0.75

1.25

0.50

IRL2

75IR

AS

1443

6−07

0314

4618

.41

−07

1549

.80

M8I

II34

65C

TR

0.7

ST

0.00

ST

0.76

1.29

0.53

IRL1

49H

D13

2935

1502

04.2

3−0

820

40.9

9K

2III

4547

FS

F2.

17F

SF

-0.1

1FS

F0.

730.

870.

15IR

L148

HD

1329

35ex

t15

0204

.23

−08

2040

.99

K2I

II45

02F

SF

2.68

ST

-0.0

7FS

F0.

660.

780.

11IR

L193

2MA

SSJ1

5065

441+

1321

060

1506

54.4

1+1

321

06.0

8L3

2064

CT

R≥5

.0S

T0.

00S

T0.

971.

650.

67IR

L196

2MA

SSJ1

5074

769−

1627

386

1507

47.6

9−1

627

38.6

2L5

2234

CT

R≥5

.0S

T0.

00S

T0.

961.

530.

57IR

L282

IRA

S15

060+

0947

1508

25.7

7+0

936

18.2

0M

9III

2203

CT

R0.

6S

T0.

00S

T1.

302.

451.

15IR

L012

HD

1351

5315

1437

.31

−31

3108

.85

F0I

b70

73F

SF

2.07

FS

F-0

.06S

EC

0.21

0.29

0.08

IRL0

11H

D13

5153

ext

1514

37.3

1−3

131

08.8

5F

0Ib

7037

FS

F2.

03F

SF

-0.0

6SE

C0.

150.

190.

04IR

L198

2MA

SSJ1

5150

083+

4847

416

1515

00.8

3+4

847

41.6

9L6

2014

CT

R≥5

.0S

T0.

00S

T1.

041.

680.

64IR

L113

HD

1357

2215

1530

.16

+33

1853

.39

G8I

II48

47C

072.

56C

07-0

.44C

070.

540.

650.

11

Page 28: University of Groningen Stellar population models in the ... · MQ08 stars-3-2.5-2-1.5-1-0.5 0 0.5 [Z/Z ] Figure 2.3 – HR diagram of the stars that compose the template library

2.A The stars of the IRTF spectral library and their atmospheric parameters. 39

Tab

le2.

1-

Co

nti

nu

edfr

om

pre

vio

us

pag

e

IDSt

arR

AD

ecC

lass

Tef

f(K

)lo

gg

[Z/Z

¯](J

-H)

(J-K

)(H

-K)

IRL2

22G

l581

1519

27.5

0−0

743

19.4

4M

2.5V

3966

CT

R4.

7S

T0.

00S

T0.

590.

840.

26IR

L150

HD

1377

5915

2455

.77

+58

5757

.83

K2I

II44

98C

072.

38C

070.

05C

070.

630.

750.

12IR

L263

HD

1421

4315

5046

.62

+48

2858

.85

M6.

5III

3443

CT

R0.

88S

T0.

00S

T0.

961.

360.

40IR

L142

HD

1420

9115

5113

.93

+35

3926

.56

K1I

Va

4796

C07

3.22

C07

0.00

C07

0.51

0.58

0.07

IRL1

32H

D14

5675

1610

24.3

1+4

349

03.5

2K

0V52

64C

074.

66C

070.

34C

070.

390.

430.

05IR

L022

BD

+382

803

1635

57.2

8+3

758

02.1

0F

2Ib

6588

FS

F1.

87F

SF

0.00

ST

0.34

0.41

0.08

IRL2

73G

l644

1655

28.7

5−0

820

10.7

8M

7V32

78C

TR

4.9

ST

0.00

ST

0.59

1.00

0.41

IRL2

58H

D15

6014

1714

38.8

7+1

423

25.0

1M

5Ib

4135

CT

R0.

76C

07-2

.50C

070.

680.

760.

08IR

L038

HD

1603

6517

3857

.85

+13

1945

.34

F6I

II60

70C

073.

0C

07-0

.26C

070.

200.

16-0

.04

IRL0

95H

D16

1664

ext

1747

45.6

0−2

228

40.0

5G

6Ib

4739

FS

F1.

64F

SF

-0.0

7FS

F0.

500.

580.

08IR

L096

HD

1616

6417

4745

.60

−22

2840

.05

G6I

b48

04F

SF

1.63

FS

F-0

.09F

SF

0.63

0.80

0.16

IRL1

87H

D16

4136

1758

30.1

4+3

011

21.3

8F

2IV

6799

C07

2.63

C07

-0.3

0C07

0.24

0.26

0.02

IRL1

21H

D16

4349

ext

1800

03.4

1+1

645

03.3

0K

0.5I

Ib44

46C

071.

5C

070.

39C

070.

490.

520.

03IR

L122

HD

1643

4918

0003

.41

+16

4503

.30

K0.

5IIb

4446

C07

1.5

C07

0.39

C07

0.53

0.59

0.06

IRL1

43H

D16

5438

1806

15.1

9−0

445

04.5

1K

1IV

4862

C07

3.4

C07

0.02

C07

0.51

0.59

0.08

IRL0

93H

D16

5185

1806

23.7

1−3

601

11.2

3G

5V59

74F

SF

3.85

FS

F-0

.15F

SF

0.29

0.34

0.05

IRL0

57H

D16

5908

1807

01.5

3+3

033

43.6

8F

9V59

28C

074.

24C

07-0

.53C

070.

260.

310.

05IR

L125

HD

1657

82ex

t18

0826

.51

−18

3307

.92

K0I

a52

11F

SF

0.25

ST

0.20

FS

F0.

340.

440.

10IR

L126

HD

1657

8218

0826

.51

−18

3307

.92

K0I

a56

00F

SF

0.25

ST

0.21

FS

F0.

630.

900.

27IR

L119

HD

1708

2018

3213

.11

−19

0726

.28

G9I

I46

04C

071.

62C

070.

17C

070.

690.

890.

20IR

L118

HD

1708

20ex

t18

3213

.11

−19

0726

.28

G9I

I46

04C

071.

62C

070.

17C

070.

530.

630.

10IR

L019

HD

1736

38ex

t18

4643

.32

−10

0730

.17

F1I

I70

05F

SF

2.1

FS

F-0

.68F

SF

0.14

0.14

0.00

IRL0

20H

D17

3638

1846

43.3

2−1

007

30.1

7F

1II

7146

FS

F2.

2F

SF

-0.5

6FS

F0.

250.

320.

07IR

L259

HD

1758

6518

5520

.10

+43

5645

.93

M5I

II36

90C

TR

0.5

C07

0.14

C07

0.87

1.08

0.21

IRL0

56H

D17

6051

1857

01.6

0+3

254

04.5

7F

9V58

95F

SF

3.91

FS

F-0

.21F

SF

0.36

0.40

0.05

IRL0

78H

D17

6123

ext

1859

26.7

7−1

833

59.1

6G

3II

5449

FS

F2.

8F

SF

-0.2

3FS

F0.

420.

480.

06IR

L079

HD

1761

2318

5926

.77

−18

3359

.16

G3I

I53

02F

SF

2.61

FS

F-0

.30F

SF

0.46

0.54

0.08

IRL1

61H

D17

8208

ext

1905

09.8

3+4

955

23.3

9K

3III

4882

FS

F2.

53F

SF

-0.2

6FS

F0.

620.

720.

10IR

L162

HD

1782

0819

0509

.83

+49

5523

.39

K3I

II48

84F

SF

2.48

FS

F-0

.23F

SF

0.66

0.78

0.13

IRL1

29H

D17

9870

ext

1913

53.5

8+0

901

59.5

9K

0II

4776

FS

F1.

53F

SF

0.04

FS

F0.

440.

440.

00IR

L130

HD

1798

7019

1353

.58

+09

0159

.59

K0I

I49

28F

SF

1.57

FS

F0.

06F

SF

0.49

0.53

0.04

Page 29: University of Groningen Stellar population models in the ... · MQ08 stars-3-2.5-2-1.5-1-0.5 0 0.5 [Z/Z ] Figure 2.3 – HR diagram of the stars that compose the template library

40 Preparation of the IRTF spectral stellar libraryTa

ble

2.1

-C

on

tin

ued

fro

mp

revi

ou

sp

age

IDSt

arR

AD

ecC

lass

Tef

f(K

)lo

gg

[Z/Z

¯](J

-H)

(J-K

)(H

-K)

IRL0

86H

D17

9821

ext

1913

58.6

0+0

007

31.9

2G

4Ia

5708

CT

R1.

08F

SF

0.00

ST

0.25

0.38

0.13

IRL0

87H

D17

9821

1913

58.6

0+0

007

31.9

2G

4Ia

4645

CT

R0.

95F

SF

0.00

ST

0.43

0.67

0.24

IRL2

78G

l752

1916

55.2

6+0

510

08.1

0M

8V29

70C

TR

4.96

ST

0.00

ST

0.64

1.09

0.45

IRL1

79H

D18

1596

1918

30.1

2+5

013

39.4

2K

5III

4275

FS

F2.

35S

T-0

.41F

SF

0.80

0.98

0.18

IRL1

82H

D18

1475

ext

1920

48.3

1−0

430

09.0

1K

7IIa

3996

FS

F0.

65F

SF

-0.3

7FS

F0.

780.

960.

19IR

L183

HD

1814

7519

2048

.31

−04

3009

.01

K7I

Ia41

24F

SF

0.83

FS

F-0

.21F

SF

0.94

1.22

0.28

IRL1

07H

D18

2694

1923

56.5

0+4

323

17.4

1G

7III

5312

FS

F2.

63F

SF

-0.1

9FS

F0.

450.

550.

10IR

L024

HD

1828

3519

2631

.09

+00

2018

.85

F2I

b73

50C

072.

15C

070.

09C

070.

250.

310.

06IR

L023

HD

1828

35ex

t19

2631

.09

+00

2018

.85

F2I

b73

50C

072.

15C

070.

09C

070.

120.

11-0

.01

IRL0

59H

D18

5018

1936

52.4

5+1

116

23.5

3G

0Ib

5550

C07

1.3

C07

-0.2

4C07

0.41

0.48

0.07

IRL0

58H

D18

5018

ext

1936

52.4

5+1

116

23.5

3G

0Ib

5550

C07

1.3

C07

-0.2

4C07

0.37

0.43

0.05

IRL1

68H

D18

5622

ext

1939

25.3

3+1

634

16.0

3K

4Ib

3736

FS

F1.

05S

T-0

.19F

SF

0.74

0.92

0.18

IRL1

69H

D18

5622

1939

25.3

3+1

634

16.0

3K

4Ib

3898

FS

F0.

63F

SF

-0.1

4FS

F0.

901.

170.

27IR

L035

HD

1861

5519

4050

.18

+45

3129

.78

F5I

I65

90F

SF

3.34

FS

F0.

31F

SF

0.18

0.22

0.03

IRL1

56H

D18

7238

1948

11.8

3+2

245

46.3

5K

3Iab

4143

FS

F0.

99F

SF

-0.0

1FS

F0.

811.

020.

21IR

L155

HD

1872

38ex

t19

4811

.83

+22

4546

.35

K3I

ab42

28F

SF

0.77

FS

F-0

.09F

SF

0.63

0.73

0.10

IRL2

14H

D33

9034

ext

1950

11.9

3+2

455

24.1

9M

1Ia

3960

CT

R-0

.0S

T0.

00S

T0.

640.

870.

22IR

L215

HD

3390

3419

5011

.93

+24

5524

.19

M1I

a33

42C

TR

-0.0

ST

0.00

ST

1.05

1.51

0.46

IRL0

89H

D19

0113

ext

2002

02.8

5+3

538

28.0

1G

5Ib

4968

FS

F1.

45F

SF

-0.2

8FS

F0.

450.

490.

05IR

L090

HD

1901

1320

0202

.85

+35

3828

.01

G5I

b49

96F

SF

1.59

FS

F-0

.31F

SF

0.60

0.73

0.14

IRL1

04H

D33

3385

2002

27.3

7+3

004

25.4

6G

7Ia

5375

FS

F0.

36S

T0.

14F

SF

0.61

0.90

0.29

IRL1

03H

D33

3385

ext

2002

27.3

7+3

004

25.4

6G

7Ia

5475

FS

F1.

05F

SF

0.21

FS

F0.

290.

380.

10IR

L046

HD

1903

2320

0349

.61

+14

5858

.74

F8I

a57

40C

TR

0.81

ST

0.07

FS

F0.

320.

380.

06IR

L045

HD

1903

23ex

t20

0349

.61

+14

5858

.74

F8I

a69

06F

SF

0.81

ST

0.09

FS

F0.

220.

220.

00IR

L077

HD

1927

1320

1530

.23

+23

3032

.05

G3I

b48

64C

070.

1C

07-0

.43C

070.

480.

570.

09IR

L076

HD

1927

13ex

t20

1530

.23

+23

3032

.05

G3I

b48

64C

070.

1C

07-0

.43C

070.

440.

500.

07IR

L184

HD

1941

9320

2245

.29

+41

0133

.64

K7I

II40

25F

SF

1.42

FS

F-0

.14F

SF

0.88

1.09

0.20

IRL0

91H

D19

3896

2023

00.7

9−0

939

16.9

5G

5III

a53

32F

SF

3.2

ST

-0.4

9FS

F0.

500.

610.

11IR

L244

RW

Cyg

ext

2028

50.5

9+3

958

54.4

2M

3Iab

3844

CT

R0.

16S

T0.

00S

T0.

740.

950.

21IR

L245

RW

Cyg

2028

50.5

9+3

958

54.4

2M

3Iab

3341

CT

R0.

16S

T0.

00S

T1.

091.

510.

42IR

L267

HD

1966

1020

3754

.72

+18

1606

.89

M6I

II36

43C

TR

0.91

ST

0.00

ST

0.86

1.12

0.26

Page 30: University of Groningen Stellar population models in the ... · MQ08 stars-3-2.5-2-1.5-1-0.5 0 0.5 [Z/Z ] Figure 2.3 – HR diagram of the stars that compose the template library

2.A The stars of the IRTF spectral library and their atmospheric parameters. 41

Tab

le2.

1-

Co

nti

nu

edfr

om

pre

vio

us

pag

e

IDSt

arR

AD

ecC

lass

Tef

f(K

)lo

gg

[Z/Z

¯](J

-H)

(J-K

)(H

-K)

IRL2

30G

l806

2045

04.0

9+4

429

56.6

6M

2V36

60F

SF

4.65

FS

F-0

.23F

SF

0.62

0.78

0.17

IRL1

70H

D20

1065

ext

2105

35.7

8+4

657

47.7

6K

4Ib

4068

FS

F1.

16F

SF

-0.5

0FS

F0.

730.

880.

15IR

L171

HD

2010

6521

0535

.78

+46

5747

.76

K4I

b42

26F

SF

0.87

FS

F-0

.47F

SF

0.83

1.04

0.20

IRL0

41H

D20

1078

2106

30.2

4+3

111

04.7

6F

7II

6157

C07

1.65

C07

0.13

C07

0.26

0.33

0.07

IRL1

85H

D20

1092

2106

55.2

6+3

844

31.4

0K

7V43

48C

TR

4.37

SE

C-0

.72S

EC

0.59

0.73

0.14

IRL0

98H

D20

2314

2114

10.2

8+2

954

03.4

5G

6Ib

4864

C07

1.3

C07

-0.0

5C07

0.51

0.66

0.14

IRL0

97H

D20

2314

ext

2114

10.2

8+2

954

03.4

5G

6Ib

4864

C07

1.3

C07

-0.0

5C07

0.48

0.60

0.12

IRL2

47H

D20

4585

2128

59.7

7+2

210

45.9

6M

4.5I

IIa

3700

CT

R1.

11S

T0.

00S

T0.

861.

070.

21IR

L216

HD

2047

2421

2956

.89

+23

3819

.81

M1I

II37

65C

TR

1.5

ST

0.00

ST

0.78

1.01

0.23

IRL2

76IR

AS

2128

4−07

4721

3106

.51

−07

3420

.50

M8I

II31

30C

TR

0.7

ST

0.00

ST

0.87

1.48

0.61

IRL2

24H

D20

6936

2143

30.4

6+5

846

48.1

6M

2Ia

3540

CT

R0.

0S

T0.

00S

T0.

861.

240.

38IR

L223

HD

2069

36ex

t21

4330

.46

+58

4648

.16

M2I

a38

79C

TR

0.0

ST

0.00

ST

0.66

0.92

0.26

IRL2

71H

D20

7076

2146

31.8

4−0

212

45.9

3M

7III

2750

C07

-0.5

C07

-2.5

0C07

0.78

1.03

0.25

IRL1

72H

D20

7991

ext

2151

55.3

8+4

826

13.5

9K

4III

4355

FS

F1.

98F

SF

-0.2

1FS

F0.

790.

940.

15IR

L173

HD

2079

9121

5155

.38

+48

2613

.59

K4I

II41

92F

SF

2.48

ST

-0.3

2FS

F0.

841.

020.

18IR

L111

HD

2086

0621

5520

.59

+61

3230

.52

G8I

b47

18F

SF

0.66

FS

F-0

.16F

SF

0.67

0.86

0.19

IRL1

10H

D20

8606

ext

2155

20.5

9+6

132

30.5

2G

8Ib

4709

FS

F1.

26F

SF

0.10

FS

F0.

540.

640.

10IR

L203

HD

2092

9022

0210

.27

+01

2400

.82

M0.

5V38

10C

TR

4.65

ST

0.00

ST

0.68

0.88

0.20

IRL1

52H

D21

2466

2223

07.0

1+5

557

47.6

2K

2Ia

3749

CT

R0.

2S

T0.

18F

SF

0.73

1.10

0.37

IRL1

51H

D21

2466

ext

2223

07.0

1+5

557

47.6

2K

2Ia

5018

FS

F0.

2S

T0.

02F

SF

0.42

0.61

0.19

IRL1

952M

ASS

J222

4438

1−01

5852

122

2443

.81

−01

5852

.14

L4.5

1267

CT

R≥5

.0S

T0.

00S

T1.

262.

060.

81IR

L033

HD

2133

0622

2910

.26

+58

2454

.71

F5I

b60

52F

SF

2.29

FS

F-0

.16F

SF

0.40

0.47

0.07

IRL0

32H

D21

3306

ext

2229

10.2

6+5

824

54.7

1F

5Ib

6052

FS

F2.

27F

SF

-0.1

4FS

F0.

340.

370.

03IR

L021

HD

2131

3522

2946

.02

−27

0626

.22

F1V

6404

FS

F4.

3S

T-0

.54F

SF

0.20

0.21

0.01

IRL2

04H

D21

3893

2234

35.9

3+0

035

42.6

3M

0III

b40

44C

071.

6C

07-0

.08C

070.

831.

010.

18IR

L261

Gl8

66ex

t22

3833

.72

−15

1757

.33

M5V

3728

CT

R4.

8S

T0.

00S

T0.

590.

900.

31IR

L262

Gl8

6622

3833

.72

−15

1757

.33

M5V

3369

CT

R4.

8S

T0.

00S

T0.

640.

980.

34IR

L250

HD

2146

6522

3837

.92

+56

4744

.28

M4I

II34

52C

TR

1.07

ST

0.00

ST

1.04

1.35

0.31

IRL0

88H

D21

4850

2240

52.6

8+1

432

56.9

7G

4V54

51F

SF

4.48

ST

-0.3

4FS

F0.

440.

530.

09IR

L040

HD

2156

4822

4641

.58

+12

1022

.38

F6V

6167

C07

4.04

C07

-0.3

2C07

0.26

0.29

0.03

IRL0

65H

D21

6219

2250

52.1

5+1

800

07.5

6G

1II

5727

C07

3.36

C07

-0.3

9C07

0.30

0.35

0.05

Page 31: University of Groningen Stellar population models in the ... · MQ08 stars-3-2.5-2-1.5-1-0.5 0 0.5 [Z/Z ] Figure 2.3 – HR diagram of the stars that compose the template library

42 Preparation of the IRTF spectral stellar libraryTa

ble

2.1

-C

on

tin

ued

fro

mp

revi

ou

sp

age

IDSt

arR

AD

ecC

lass

Tef

f(K

)lo

gg

[Z/Z

¯](J

-H)

(J-K

)(H

-K)

IRL2

72M

YC

ep22

5431

.71

+60

4938

.89

M7I

2595

CT

R-0

.2S

T0.

00S

T1.

472.

240.

77IR

L178

HD

2169

4622

5625

.99

+49

4400

.75

K5I

b38

39F

SF

0.49

FS

F-0

.10S

EC

0.95

1.24

0.29

IRL1

77H

D21

6946

ext

2256

25.9

9+4

944

00.7

5K

5Ib

3817

FS

F0.

68F

SF

-0.1

0SE

C0.

901.

160.

26IR

L036

HD

2188

0423

1027

.20

+43

3239

.15

F5V

6261

C07

4.05

C07

-0.2

3C07

0.27

0.32

0.05

IRL1

67H

D21

9134

2313

16.9

7+5

710

06.0

8K

3V47

17C

074.

5C

070.

05C

070.

560.

670.

10IR

L073

HD

2194

7723

1546

.29

+28

1452

.43

G2I

I59

89F

SF

2.87

FS

F-0

.23F

SF

0.36

0.41

0.05

IRL0

51H

D21

9623

2316

42.3

0+5

312

48.5

1F

8V61

55C

074.

17C

07-0

.04C

070.

290.

340.

05IR

L220

HD

2197

3423

1744

.64

+49

0055

.08

M2.

5III

3658

CT

R0.

9C

070.

27C

070.

891.

110.

22IR

L049

HD

2206

5723

2522

.78

+23

2414

.76

F8I

II63

80F

SF

2.96

FS

F-0

.66F

SF

0.36

0.47

0.10

IRL1

64H

D22

1246

2330

07.4

1+4

907

59.3

1K

3III

4359

FS

F2.

58S

T-0

.35F

SF

0.73

0.85

0.13

IRL1

63H

D22

1246

ext

2330

07.4

1+4

907

59.3

1K

3III

4308

FS

F1.

98F

SF

-0.1

9FS

F0.

670.

760.

09IR

L120

HD

2220

9323

3739

.55

−13

0336

.86

G9I

II47

50F

SF

2.01

FS

F0.

03F

SF

0.56

0.64

0.09

IRL2

69B

RI

B23

39−0

447

2342

02.7

5−0

431

04.8

8M

7III

3425

CT

R0.

84S

T0.

00S

T0.

931.

390.

46

Page 32: University of Groningen Stellar population models in the ... · MQ08 stars-3-2.5-2-1.5-1-0.5 0 0.5 [Z/Z ] Figure 2.3 – HR diagram of the stars that compose the template library

2.A The stars of the IRTF spectral library and their atmospheric parameters. 43

Table 2.2 – Additional stars from the MILES and CaT stellar libraries used as templates in the de-termination of the IRTF stellar temperatures, gravities and metallicities. Their stellar parameterswere determined by Cenarro et al. (2007).

Star Teff (K) log g [Z /Z¯]

BD442051 3696 5.00 −1.50HD058521 3238 0.00 −0.19HD069267 4043 1.51 −0.12HD073394 4500 1.10 −1.38HD073593 4717 2.25 −0.12HD076813 6072 4.20 −0.82HD078712 3202 0.00 −0.11HD079452 4829 2.35 −0.84HD081192 4705 2.50 −0.62HD083425 4120 2.00 −0.35HD083618 4231 1.74 −0.08HD083632 4214 1.00 −1.39HD087737 9625 1.98 −0.04HD095735 3551 4.90 −0.20HD096360 3550 0.50 −0.58HD099998 3863 1.79 −0.16HD103095 5025 4.56 −1.36HD107213 6298 4.01 0.36HD111631 3785 4.75 0.10HD114038 4530 2.71 −0.04HD114961 3012 0.00 −0.81HD119228 3600 1.60 0.30HD119667 3700 1.00 −0.35HD120933 3820 1.52 0.50

Star Teff (K) log g [Z /Z¯]

HD121299 4710 2.64 −0.03HD123657 3450 0.85 0.00HD126327 2819 0.00 −0.58HD130705 4336 2.10 0.41HD131430 4190 2.18 0.04HD134063 4885 2.34 −0.69HD136726 4120 2.03 0.07HD137704 4095 1.97 −0.27HD138481 3890 1.64 0.20HD145675 5264 4.66 0.34HD147923 3600 0.80 −0.19HD148783 3279 0.20 −0.06HD149661 5168 4.63 0.04HD154733 4279 2.10 0.00HD164058 3930 1.26 −0.05HD167768 5235 1.61 −0.68HD168720 3810 1.10 0.00HD184499 5738 4.02 −0.66HD184786 3467 0.60 −0.04HD185144 5260 4.55 −0.24HD187216 3500 0.40 −2.48HD191277 4459 2.71 0.30HD199799 3400 0.30 −0.24HD232078 4008 0.30 −1.73

Page 33: University of Groningen Stellar population models in the ... · MQ08 stars-3-2.5-2-1.5-1-0.5 0 0.5 [Z/Z ] Figure 2.3 – HR diagram of the stars that compose the template library