universiti putra malaysia · revealed that the reaction was a first order irreversible reaction....

33
UNIVERSITI PUTRA MALAYSIA OPTIMISATION OF SECOND STAGE DILUTE ACID HYDROLYSIS OF OIL PALM FRONDS INTO GLUCOSE SOHEIL NEKOUI FK 2014 109

Upload: trandien

Post on 31-Mar-2019

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: UNIVERSITI PUTRA MALAYSIA · revealed that the reaction was a first order irreversible reaction. ... oleh reka bentuk eksperimen yang dihasilkan oleh rekabentuk metodologi

UNIVERSITI PUTRA MALAYSIA

OPTIMISATION OF SECOND STAGE DILUTE ACID HYDROLYSIS OF OIL PALM FRONDS INTO GLUCOSE

SOHEIL NEKOUI

FK 2014 109

Page 2: UNIVERSITI PUTRA MALAYSIA · revealed that the reaction was a first order irreversible reaction. ... oleh reka bentuk eksperimen yang dihasilkan oleh rekabentuk metodologi

© COPYRIG

HT UPM

OPTIMISATION OF SECOND STAGE DILUTE ACID HYDROLYSIS OF OIL PALM FRONDS INTO GLUCOSE

By

SOHEIL NEKOUI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the

Requirements for the Degree of Master of Science

October 2014

Page 3: UNIVERSITI PUTRA MALAYSIA · revealed that the reaction was a first order irreversible reaction. ... oleh reka bentuk eksperimen yang dihasilkan oleh rekabentuk metodologi

© COPYRIG

HT UPM

ii

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia. Copyright © Universiti Putra Malaysia

Page 4: UNIVERSITI PUTRA MALAYSIA · revealed that the reaction was a first order irreversible reaction. ... oleh reka bentuk eksperimen yang dihasilkan oleh rekabentuk metodologi

© COPYRIG

HT UPM

iii

This thesis is dedicated to my beloved parents

for their love, endless supports and encouragement with love

Page 5: UNIVERSITI PUTRA MALAYSIA · revealed that the reaction was a first order irreversible reaction. ... oleh reka bentuk eksperimen yang dihasilkan oleh rekabentuk metodologi

© COPYRIG

HT UPM

i

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Science

ABSTRACT

OPTIMISATION OF SECOND STAGE DILUTE ACID HYDROLYSIS OF OIL PALM FRONDS INTO GLUCOSE

By

SOHEIL NEKOUI

October 2014

Chairman :Professor Robiah Yunus, PhD Faculty :Engineering In this study, the potential of OPF as a lignocellulosic feedstock to produce fermentable sugars using two-stage dilute-acid hydrolysis was assessed. The proximate analysis revealed that OPF fibre was composed of 32.93% cellulose, 29.91% hemicellulose and 19.53% lignin. This study focused on the hydrolysis of cellulose fraction of OPF into glucose in the second-stage of two-stage dilute acid hydrolysis. The second stage reactions were carried out above 150 °C. Four parameters that affect the yield of glucose, namely acid concentration, reaction temperature, reaction time and liquid to solid ratio were investigated. The batch reactions were carried out under different operating conditions as proposed by the experimental design generated by the Response Surface Methodology (RSM). The RSM was used to determine the optimum point for the second stage dilute acid hydrolysis process. In the first stage of dilute acid hydrolysis 4.33 g/L (33% yields) glucose was recovered. From the second stage hydrolysis, at optimum condition of 150 °C temperature, 6 % sulphuric acid concentration, 62 min of reaction time and a liquid/solid ratio of 28:1, the glucose yield was 4.48 g/L (34%). The amount of generated inhibitor (HMF and furfural) was 0.22 g/l. The total glucose yield from both stages of the two-stage hydrolysis process under optimum conditions was 67%. The kinetics study on the formation of glucose from dilute acid hydrolysis of OPF revealed that the reaction was a first order irreversible reaction. Based on the values of rate constants, it was found that the rate of formation of glucose (k1) was more dominant than the rate of degradation (k2). The activation energy values at the optimum acid concentration of 6% were 85.733 kJ/mol for glucose formation and 123.238 kJ/mol for glucose degradation. The n value for glucose formation at 150 °C was 0.647 while for glucose degradation was at 0.487. The findings of this study suggest that the glucose yield can be increased while the inhibitor formation can be decreased by increase in acid concentration and decrease in reaction temperature.

Page 6: UNIVERSITI PUTRA MALAYSIA · revealed that the reaction was a first order irreversible reaction. ... oleh reka bentuk eksperimen yang dihasilkan oleh rekabentuk metodologi

© COPYRIG

HT UPM

ii

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia Sebagai memenuhi keperluan untuk ijazah Master Sains

ABSTRAK

PENGOPTIMUMAN TAHAP KEDUA HIDROLISIS ASID CAIR PELEPAH KELAPA SAWIT KEPADA GLUKOSA

Oleh

SOHEIL NEKOUI

Oktober 2014

Pengerusi : Professor Robiah Yunus, PhD Fakulti : Kejuruteraan Dalam kajian ini potensi pelepah kelapa sawit sebagai bahan mentah untuk menghasilkan lignoselulosa gula beragi menggunakan dua peringkat hidrolisis asid-cair dinilai. Analisis proksimat mendedahkan bahawa serat pelepah kelapa sawit terdiri daripada 32.93% selulosa, 29.91% hemiselulosa dan 19.53% lignin. Itu, kajian ini memberi tumpuan kepada hidrolisis pecahan selulosa daripada pelepah kelapa sawit menjadi glukosa dalam peringkat kedua bagi dua peringkat hidrolisis asid-cair. Tindakbalas peringkat kedua telah dijalankan di atas suhu 150 °C. Empat parameter yang memberi kesan kepada hasil glukosa, iaitu kepekatan asid, suhu, masa tindak balas dan nisbah cecair kepada pepejal telah disiasat. Reaksi ‘kelompok’ telah dijalankan di bawah keadaan operasi yang berbeza seperti yang dicadangkan oleh reka bentuk eksperimen yang dihasilkan oleh rekabentuk metodologi tindakbalas permukaan (RSM). RSM ini digunakan untuk menentukan titik optimum untuk peringkat kedua hidrolisis asid-cair. Peringkat pertama hidrolisis asid-cair telah menghasilkan glukosa sebanyak 4.33 g/L (33% yield). Daripada hidrolisis asid peringkat kedua, pada keadaan suhu optimum 150 °C, 6% kepekatan asid sulfurik, 62 minit masa tindak balas dan nisbah cecair / pepejal 28:1, hasil glukosa adalah 4.48 g/L(34 % yield). Jumlah perencat (HMF dan furfural) yang dihasilkan adalah 0.22 g/L. Jumlah hasil glukosa daripada kedua peringkat proses hidrolisis dua peringkat pada keadaan optimum adalah 67%. Kajian kinetik kepada pembentukan glukosa daripada hidrolisis asid-cair pelepah kelapa sawit mendedahkan bahawa reaksi itu adalah kadar pertama reaksi tidak boleh diubah. Berdasarkan nilai pemalar kadar, didapati bahawa kadar pembentukan glukosa (k1) adalah lebih dominan daripada kadar degradasi (k2). Nilai tenaga pengaktifan pada kepekatan asid optimum 6% adalah 85.733 kJ/mol untuk pembentukan glukosa dan 123.238 kJ/mol untuk degradasi glukosa. Nilai n untuk pembentukan glukosa pada 150 °C adalah 0.647 manakala bagi degradasi glukosa adalah pada 0.487. Hasil kajian ini mencadangkan bahawa hasil glukosa boleh

Page 7: UNIVERSITI PUTRA MALAYSIA · revealed that the reaction was a first order irreversible reaction. ... oleh reka bentuk eksperimen yang dihasilkan oleh rekabentuk metodologi

© COPYRIG

HT UPM

iii

ditingkatkan manakala pembentukan perencat boleh dikurangkan dengan peningkatan dalam kepekatan asid dan pengurangan suhu tindakbalas.

Page 8: UNIVERSITI PUTRA MALAYSIA · revealed that the reaction was a first order irreversible reaction. ... oleh reka bentuk eksperimen yang dihasilkan oleh rekabentuk metodologi

© COPYRIG

HT UPM

iv

ACKNOWLEDGEMENTS

With the completion of this thesis, I wish to express my extreme gratitude to my supervisor Prof. Dr. Robiah Yunus for encouragement, guidance, critics and friendship. I would like to thank my co-supervisor; Prof. Dr. Said Salah Elnashaie for his valuable advice and help during this project. I owe my loving thanks to my father Reza Nekoui and my mother Zahra Safaiyan, and other family members for their continuous support while completing this project.

Page 9: UNIVERSITI PUTRA MALAYSIA · revealed that the reaction was a first order irreversible reaction. ... oleh reka bentuk eksperimen yang dihasilkan oleh rekabentuk metodologi

© COPYRIG

HT UPM

v

APPROVAL

Page 10: UNIVERSITI PUTRA MALAYSIA · revealed that the reaction was a first order irreversible reaction. ... oleh reka bentuk eksperimen yang dihasilkan oleh rekabentuk metodologi

© COPYRIG

HT UPM

vi

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows: Robiah Yunus, PhD Professor Faculty of Engineering Universiti Putra Malaysia (Chairman) Said Salah Elnashaie, PhD Professor Faculty of Engineering Universiti Putra Malaysia (Member) BUJANG BIN KIM HUAT, PhD Professor and Dean School of Graduate Studies Universiti Putra Malaysia Date:

Page 11: UNIVERSITI PUTRA MALAYSIA · revealed that the reaction was a first order irreversible reaction. ... oleh reka bentuk eksperimen yang dihasilkan oleh rekabentuk metodologi

© COPYRIG

HT UPM

vii

Declaration by Graduate Student

DECLARATION I hereby confirm that: this thesis is my original work; quotations, illustrations and citations have been duly referenced; this thesis has not been submitted previously or concurrently for any other degree

at any other institutions; intellectual property from the thesis and copyright of thesis are fully-owned by

Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;

written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;

there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: _______________________ Date: __________________ Name and Matric No.: _________________________________________

Page 12: UNIVERSITI PUTRA MALAYSIA · revealed that the reaction was a first order irreversible reaction. ... oleh reka bentuk eksperimen yang dihasilkan oleh rekabentuk metodologi

© COPYRIG

HT UPM

viii

Declaration by Members of Supervisory Committee

This is to confirm that: the research conducted and the writing of this thesis was under our supervision; supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate

Studies) Rules 2003 (Revision 2012-2013) are adhered to. Signature:_______________________ Name of Chairman of Supervisory Committee:_______________________ Signature: _______________________ Name of Member of Supervisory Committee: _______________________

Page 13: UNIVERSITI PUTRA MALAYSIA · revealed that the reaction was a first order irreversible reaction. ... oleh reka bentuk eksperimen yang dihasilkan oleh rekabentuk metodologi

© COPYRIG

HT UPM

ix

TABLE OF CONTENTS

Page

ABSTRACT i ABSTRAK ii ACKNOWLEDGEMENTS iv

APPROVAL v

DECLARATION vii LIST OF TABLES xii LIST OF FIGURES xiv

LIST OF ABBREVIATIONS xvi CHAPTER 1 INTRODUCTION 1

1.1 Background 1 1.2 Problem Statement 2 1.3 Research Objective 3 1.4 Thesis Outline 3

2 LITERATURE REVIEW 4

2.1 Bioethanol 4 2.2 Global Production of Bioethanol 4 2.3 Bioethanol Feedstocks 5

2.3.1 First Generation Feedstocks (Starch and Sugar-based) 5 2.3.2 Second Generation Feedstocks, SGB (Cellulose-based) 5

2.4 Agriculture Sector and Bioethanol Resources in Malaysia 6 2.5 Lignocellulosic Materials 6

2.5.1 Cellulose 7 2.5.2 Hemicellulose 7 2.5.3 Lignin 8 2.5.4 Hexoses 8 2.5.5 Pentoses 9 2.5.6 Inhibitors 9 2.5.7 Hydroxymethylfurfural 9 2.5.8 Furfural 10 2.5.9 Weak acids 10

2.6 Pretreatment Process 10 2.7 Hydrolysis 11 2.8 Enzymatic Hydrolysis 12 2.9 Acid Hydrolysis 12

Page 14: UNIVERSITI PUTRA MALAYSIA · revealed that the reaction was a first order irreversible reaction. ... oleh reka bentuk eksperimen yang dihasilkan oleh rekabentuk metodologi

© COPYRIG

HT UPM

x

2.9.1 Concentrated Acid Hydrolysis 13 2.9.2 Dilute Acid Hydrolysis 13 2.9.3 Two-stage Dilute Acid Hydrolysis 14

2.10 Main Operating Parameters in Hydrolysis of Lignocellulosic Materials 16 2.11 Response Surface Methodology 16 2.12 Kinetic and Order of Reaction of Acid Hydrolysis 17

3 METHODOLOGY 21

3.1 Introduction 21 3.2 Materials and Chemicals 22 3.3 Raw Material Preparation: 22 3.4 Materials Characterization 23

3.4.1 Composition Analysis 23 3.4.2 Thermogravimetric Analysis 23

3.5 Sugar and By-product Analysis 24 3.6 General Description of Reactor 24 3.7 Design of Experiment 25

3.7.1 First Stage of Dilute Acid Hydrolysis 26 3.7.2 Second Stage of Dilute Acid Hydrolysis 27

3.8 Statistical Analysis 27 3.9 Scanning Electron Microscope (SEM) 27 3.10 Energy Dispersive X-ray Spectroscopy (EDX) 28 3.11 Kinetics Study 28

4 RESULTS AND DISCUSSION 30

4.1 Introduction 30 4.2 Proximate Analysis 30 4.3 First-Stage Dilute Acid Hydrolysis 31 4.4 Second Stage Dilute Acid Hydrolysis 31

4.4.1 Experimental Design and Statistical Analysis 31 4.4.2 Experimental Results Analysis 32 4.4.3 ANOVA for Response Surface Quadratic Models 34 4.4.4 Diagnostic Plots of Models 37 4.4.5 Response Surface (3D) Plot 37 4.4.6 Perturbation Plots of Responses 39 4.4.7 Optimisation Point Prediction and Verification 40

4.5 Material Characterization 41

4.5.1 Scanning Electron Microscope Analysis 41 4.5.2 Energy Dispersive X-ray Analysis 43

Page 15: UNIVERSITI PUTRA MALAYSIA · revealed that the reaction was a first order irreversible reaction. ... oleh reka bentuk eksperimen yang dihasilkan oleh rekabentuk metodologi

© COPYRIG

HT UPM

xi

4.6 Kinetics Study 44

4.6.1 Maximum Potential Concentration of Glucose: 44 4.6.2 Model Verification 50 4.6.3 Determination of Reaction Constants for Kinetics Study 51 4.6.4 Calculation of Activation Energy, and Other Kinetic Constants from Expansion of Arrhenius Equation 52

5 CONCLUSIONS AND RECOMMENDATIONS 55

5.1 Conclusion 55 5.2 Recommendations 55

REFERENCES 56

APPENDICES 66

Appendix A: HPLC Chromatograms 66 Appendix B: Model Verification: 80 Appendix C: Plots of calculated k1 and k2 value 83

BIODATA OF STUDENT 89

LIST OF PUBLICATIONS 90

Page 16: UNIVERSITI PUTRA MALAYSIA · revealed that the reaction was a first order irreversible reaction. ... oleh reka bentuk eksperimen yang dihasilkan oleh rekabentuk metodologi

© COPYRIG

HT UPM

xii

LIST OF TABLES Table Page

2.1 Main components of oil palm frond according to previous studies

6

2.2 The content of Cellulose, Hemicellulose and lignin in common agricultural residues and wastes (Sun and Cheng, 2002)

7

3.1 Analytical reagents

23

3.2

Experimental range and levels of the independent variables 25

3.3

Experimental design matrix 26

4.1

Chemical constituent in OPF fibre 30

4.2

Elemental analysis of OPF fibre 30

4.3

Experimental design matrix and results obtained with OPF hydrolysis in the second stage

32

4.4

Sequential model sum of square for glucose concentration 33

4.5

Lack of Fit Tests for glucose concentration 33

4.6

Statistics summary of the models for glucose concentration 33

4.7

Sequential model sum of square for inhibitor concentration 34

4.8

Lack of Fit tests for inhibitor concentration 34

4.9

Statistics summary of the models for inhibitor concentration 34

4.10

Analysis of variance table for glucose concentration response 35

4.11

Analysis of variance table for inhibitor concentration response 36

4.12

EDX analysis of OPF fibre 43

4.13

Statistical analysis of the experimental data 51

4.14

Calculated k1 and k2 values from experimental data at 6% H2SO4 and different temperature

51

4.15

Calculated k1 and k2 values from experimental data at 150 °C and different acid concentration

52

4.16

Estimated Ea values for k1 and k2 53

Page 17: UNIVERSITI PUTRA MALAYSIA · revealed that the reaction was a first order irreversible reaction. ... oleh reka bentuk eksperimen yang dihasilkan oleh rekabentuk metodologi

© COPYRIG

HT UPM

xiii

4.17 Estimated n values for k1 and k2 53

4.18 Comparison obtained Ea in this work with other previous works with different raw materials

54

4.19 Comparison obtained n value in this work with other previous works with different raw materials

54

Page 18: UNIVERSITI PUTRA MALAYSIA · revealed that the reaction was a first order irreversible reaction. ... oleh reka bentuk eksperimen yang dihasilkan oleh rekabentuk metodologi

© COPYRIG

HT UPM

xiv

LIST OF FIGURES Figure Page

2.1 World Fuel Ethanol Production by Country or Region (Million

Gallons) (AFDC, 2013)

5

2.2 Molecular Structure of Cellulose (Baty et al., 2010)

7

2.3 The allocation of the lignin within lignocellulosic matrix (Brandt et al., 2013)

8

2.4 Cyclic and Linear Structures of 훼-D-Glucose (a) and 훽-D-Glucose (b) (Pigman, 2012)

8

2.5 Disruption of cellulosic biomass by pretreatment (Brandt et al., 2013)

10

2.6 Proposed mechanism for acid hydrolysis of cellulose (Harmsen et al., 2010)

13

3.1 Overall methodology

21

3.2 General Schematic diagram of two-stage dilute acid hydrolysis

22

3.3 Photographs showing oil palm tree (left), Oil palm frond (center), and fibre (right)

22

3.4 Lab scale batch reactor for acid hydrolysis

24

4.1 Thermogravimetric curve for OPF

31

4.2 Comparative plot between experimental and predicted of glucose (a) and Inhibitor (b) concentration

37

4.3 Response surface plot of glucose concentration as a function of acid concentration – time at 170 °C and LSR of 28:1 (a) and reaction temperature-time at 6% H2SO4 and LSR 28:1 (b)

38

4.4 Response surface plot of inhibitor concentration as a function of acid concentration - time at 170 °C and LSR of 28:1 (a) and reaction temperature-time at 6% H2SO4 and LSR 28:1 (b)

39

4.5 Perturbation plot of glucose concentration

40

4.6 Perturbation plot of inhibitor concentration

40

4.7 Contour plot of glucose concentration as a function of acid concentration - time at 150 °C and LSR of 28:1 (a) and reaction temperature-time at 6% H2SO4 and LSR 28:1 (b)

41

Page 19: UNIVERSITI PUTRA MALAYSIA · revealed that the reaction was a first order irreversible reaction. ... oleh reka bentuk eksperimen yang dihasilkan oleh rekabentuk metodologi

© COPYRIG

HT UPM

xv

4.8 Contour plot of inhibitor concentration as a function of acid concentration - time at 150 °C and LSR of 28:1 (a) and reaction temperature-time at 6% H2SO4 and LSR 28:1 (b)

41

4.9 Control OPF fibre

42

4.10 First stage dilute acid hydrolysis of OPF (6% H2SO4, 140 °C, 62 min and LSR of 28:1)

42

4.11 Acid hydrolysis at optimum of second-stage of OPF (6% H2SO4, 150 °C, 62 min and LSR of 28:1)

43

4.12 Effect of temperature on glucose concentration at 6% H2SO4 and LSR of 28:1

45

4.13 Effect of temperature on HMF (a), Furfural (b) and total Inhibitor (c) concentration at 6% H2SO4 and LSR of 28:1

46

4.14 Effect of acid concentration on glucose concentration at 150 °C and LSR of 28:1

47

4.15 Effect of acid concentration on HMF (a), furfural (b) and total inhibitors (c) concentration at 150 °C and LSR of 28:1

48

4.16 Comparison between calculated and experimental value of glucose at 6% H2SO4, 150 °C and LSR 28:1

50

4.17 Arrhenius plot for estimation the Ea values for kinetics constant expansion, at 6% H2SO4

52

4.18 Arrhenius plot for estimation the n values for kinetics constant expansion, at 150 °C

53

Page 20: UNIVERSITI PUTRA MALAYSIA · revealed that the reaction was a first order irreversible reaction. ... oleh reka bentuk eksperimen yang dihasilkan oleh rekabentuk metodologi

© COPYRIG

HT UPM

xvi

LIST OF ABBREVIATIONS

OPF Oil Palm Frond

LSR Liquid solid Ratio

RSM Response Surface Methodology

HPLC

High-performance liquid chromatography

TGA Thermogravimetric Analysis

SEM Scanning Electron Microscope

EDX Energy-dispersive X-ray spectroscopy

HMF Hydroxymethylfurfural

NDF Neutral Detergent Fibre

ADF Acid Detergent Fibre

ADL Acid Detergent Lignin

SST

Total Sum of Square Error

SSE

Sum of Square Error

ANOVA

Analysis of variance

DF

Degree of Freedom

C.V

Coefficient of Variation

Page 21: UNIVERSITI PUTRA MALAYSIA · revealed that the reaction was a first order irreversible reaction. ... oleh reka bentuk eksperimen yang dihasilkan oleh rekabentuk metodologi

© COPYRIG

HT UPM

CHAPTER 1

1 INTRODUCTION 1.1 Background Due to fluctuation in price of petroleum, limited fossil fuel reserve and growing concern associated with the environmental impact of fossil fuel, the current research attention is driven towards finding alternative non-fossil fuels for the transportation sector. An alternative fuel must be readily available, environmentally acceptable, economically competitive and technically feasible (Meher et al., 2006). Biomass-based fuel is known as biofuel. Biofuels are the potential candidate for alternative “green” energy substitute for fossil fuels (Demirbas, 2009). Currently biodiesel and bioethanol are two main renewable liquid fuels for the transportation sector, which could substitute for diesel and gasoline fuels (Demirbas, 2008). The advantages of biomass-based fuels are as following: (1) they reduce the greenhouse gases (GHG) emissions, (2) They are easily produced from common organic resources, (3) they represent a CO2-cycle within combustion, (4) They are biodegradable and contribute to sustainable development (Demirbas, 2008). Bioethanol is a grain-based alcohol, scientifically known as ethyl alcohol EtOH or C2H5OH (Balat, 2011). It can be produced synthetically from crude oil or by microbial process of biomass resources via fermentation process. Compared to gasoline, ethanol provides a larger octane number (108), wider flammability limit and faster flame speed (Balat et al., 2008). In 2011, global bioethanol production reached a record of 22.356 million gallons (AFDC, 2013). The US and Brazil are the world's largest producers of biofuel, together providing around 90% of the biofuel production exploiting corn and sugarcane respectively (Limayem and Ricke, 2012). Bioethanol is currently being used as an additive in gasoline formulation usually at concentration of 10% bioethanol to 90% gasoline (E10). It is commonly known as “gasohol” which provides higher octane and cleaner emissions compared to gasoline. E10 could be applied in all conventional engines without any engine modification. This blend could also be utilized at a higher concentration, if the engine is modified, for example, E85 (Balat and Balat, 2009). Some countries have employed bioethanol program such as the Brazil (E20, E25, and any blend), United States (E10 and E85), Canada (E10 and E85) and Australia (E10) (Balat et al., 2008). Bioethanol can be produced from various feedstocks containing fermentable sugars after which will be metabolized by different microorganisms. Two types of feedstocks are mostly utilized globally in the last decades: sugar cane and corn starch, particularly in regions like Brazil and United States. The production of bioethanol from these sources is controversial because of the food versus fuel issues. These raw materials have been used historically as food for humans and as feed for animals. Thus, using these feedstocks for fuels will disturb the food supply and may trigger sharp increase in food prices. The bioethanol derived from the edible source is known as the first-generation bioethanol (FGB) (Goh et al., 2010b). In order to minimize the controversy

Page 22: UNIVERSITI PUTRA MALAYSIA · revealed that the reaction was a first order irreversible reaction. ... oleh reka bentuk eksperimen yang dihasilkan oleh rekabentuk metodologi

© COPYRIG

HT UPM

2

associated with these food-grade feedstocks for bioethanol production, attention have been shifted towards lignocellulosic materials as feedstock for bioethanol production (Tye et al., 2011). The bioethanol generated from these lignocellulosic feedstocks is known as second-generation bioethanol (SGB) (Goh et al., 2010b). The use of these feedstock has been currently extended to several countries worldwide, such as China, India, Australia, Canada and many others (Balat, 2011). Since the beginning of 1970, palm oil industry has been one of the most important industries in Malaysia (Alam and Ainuddin, 2007). Malaysia has emerged as one of the top producers and exporters of palm oil, which account for 89% of global exports and 47% of the current global palm oil production (Sabiha-Hanim et al., 2011). In Malaysia, major proportions of agriculture waste come from oil palm cultivation, in the form of chopped trunks, shell and fibres, empty fruit bunch (EFB) and oil palm fronds (OPF) (Sumathi et al., 2008). Oil palm frond amounts to 70% of the total oil palm cultivations waste in Malaysia (Alam and Ainuddin, 2007). It is reported that each hectare of oil palm plantation generates 10.88 tons of dead fronds as a by-product. These wastes constitute biomass in the form of lignocelluloses, celluloses and hemicellulose which are suitable for bioethanol production (Kelly-Yong et al., 2007) Lignocellulose biomass is composed of cellulose, hemicellulose and lignin. This complex is resistant against many chemical and microbial attacks (Balat et al., 2008). Typically, oil palm fronds contain a high portion of cellulose and the lower percentage of lignin (Kim et al., 2003). There are four main process steps in the production of bioethanol from lignocellulosic biomass: pre-treatment, hydrolysis, fermentation and distillation (Balat, 2011). A cost effective bioethanol production is highly dependent on the availability of cheap feedstock and plant operability (Alvarado-Morales et al., 2010). Lignocellulosic feedstock is considered as the cheapest raw material for bioethanol production (Goh et al., 2010a). Currently, acid hydrolysis and enzymatic hydrolysis are the most common hydrolysis processes for lignocellulosic biomass (Balat, 2011). Dilute acid hydrolysis is a simple and fast process in which acid recovery is not needed after this process(Conde-Mejía et al., 2012; Hu et al., 2010) .However, dilute acid hydrolysis is recommended to be carried out in two stages in order to avoid sugar degradation and generation of inhibitors, at high temperature. In the first stage, hemicellulose in relatively mild condition is converted to 5-carbon sugars, which is sometimes considered as the pre-treatment step. In the second stage, cellulose in the residual solid is hydrolyzed under more harsh condition to 6-carbon sugar. (Karimi et al., 2006; Taherzadeh and Karimi, 2007a) 1.2 Problem Statement Currently, a large amount of OPF is mainly disposed by burning or direct decaying in the environment. Only a small amount is converted into compost. These activities lead to serious environmental problems(Sheh et al., 2013). Production of bioethanol from this low cost biomass is a promising alternative to convert the waste into useful products (Goh et al., 2010b). However, the hydrolysis of lignocellulosic biomass to fermentable sugar prior to converting to bioethanol has been the major hurdles. Many attempts have been made by researchers to improve the hydrolysis of

Page 23: UNIVERSITI PUTRA MALAYSIA · revealed that the reaction was a first order irreversible reaction. ... oleh reka bentuk eksperimen yang dihasilkan oleh rekabentuk metodologi

© COPYRIG

HT UPM

3

lignocellulosic materials such as OPF. Hence different hydrolysis techniques have been proposed in order to combat this problem. Based on the literature, there is little information on the hydrolysis of OPF via dilute acid hydrolysis. However, Amirkhani et al.(2014) have successfully developed the optimum process for the first stage of the two-stage dilute acid hydrolysis of OPF. They managed to convert almost 94% of potential xylose in the OPF at 120°C using 2% acid. Nevertheless, their study only optimized the conversion of OPF to xylose and only a small percentage of glucose was present in the sugar solution. Hence, a large percentage of lignocellulosic components in OPF namely cellulose has yet to be hydrolyzed. This process will only can take place at higher acid concentration and higher temperature. In this study, the processing conditions for the second stage of the two-stage dilute acid hydrolysis of OPF will be explored for optimum glucose recovery. 1.3 Research Objective Among the chemical hydrolysis techniques dilute acid hydrolysis is considered as the most widely utilized process in the hydrolysis of lignocellulosic wastes. Oil Palm Frond (OPF) fibre contains high cellulose and hemicellulose content, thus a potential feedstock for simple sugars production. The overall objective of this study is to evaluate the two-stage dilute-acid hydrolysis process to convert the cellulose portion of OPF fibre to simple sugars predominantly glucose. The specific objectives of this thesis are listed below.

1) To optimize the second-stage dilute acid hydrolysis for maximum glucose recovery.

2) To perform the kinetics study of the second stage hydrolysis.

Two-stage dilute acid hydrolysis is an effective method for hydrolysis of lignocellulosic material. The scope of this research emphasizes on the hydrolysis of cellulose fraction of OPF into glucose in the second-stage of two-stage dilute acid hydrolysis using a pressurized-batch reactor. The second stage reactions were carried out above 150 °C. In this study, the acid concentration, temperature, time and liquid to solid ration are process parameters investigated in the second stage of two-stage dilute acid hydrolysis. 1.4 Thesis Outline This thesis consists of five chapters. Chapter one introduces the research background, problem statement and objectives of the study. Chapter two presents the detailed literature review associated with bioethanol, lignocellulosic biomass, and different technologies for hydrolysis process. Chapter three describes the materials and the methodology involved in this study. The analytical methods, including characterization and testing procedures for the determination of sample composition, the design and analysis of experiments and the experiments of hydrolysis procedures are discussed in this chapter. Discussions on data analysis and interpretation are presented in chapter four. Finally, the conclusion for the objectives, recommendations and suggestions for further work is presented in chapter five.

Page 24: UNIVERSITI PUTRA MALAYSIA · revealed that the reaction was a first order irreversible reaction. ... oleh reka bentuk eksperimen yang dihasilkan oleh rekabentuk metodologi

© COPYRIG

HT UPM

56

REFERENCES AFDC. (2013). Global ethanol production. Retrieved 2 February, 2014, from

http://www.afdc.energy.gov/data/10331 Alam, Z., and Ainuddin, M. (2007). Bio-composting process development by ssf for

utilization agro-industrial wastes. Paper presented at the 3rd Kuala Lumpur International Conference on Biomedical Engineering 2006.

Alvarado-Morales, M., Hamid, M. K. A., Sin, G., Gernaey, K. V., Woodley, J. M.,

and Gani, R. (2010). A model-based methodology for simultaneous design and control of a bioethanol production process. Computers & Chemical Engineering, 34(12), 2043-2061

Amirkhani, H. (2014). Xylose production of oil palm frond by using dilute acid

hydrolysis. (Master), Universiti Putra Malaysia. Amirkhani, H., Yunus, R., Rashid, U., Salleh, S. F., Awg Biak, D. R., and Syam, S.

(2014). Low temperature dilute acid hydrolysis of oil palm frond. Chemical Engineering Communications(just-accepted)

Avci, A., Saha, B. C., Dien, B. S., Kennedy, G. J., and Cotta, M. A. (2013).

Response surface optimization of corn stover pretreatment using dilute phosphoric acid for enzymatic hydrolysis and ethanol production. Bioresource Technology, 130, 603-612

Badger, P. (2002). Ethanol from cellulose: A general review. Trends in new crops

and new uses, 17-21 Balat, M. (2007). Global bio-fuel processing and production trends. Energy,

Exploration & Exploitation, 25(3), 195-218 Balat, M. (2009). Global status of biomass energy use. Energy Sources, Part A,

31(13), 1160-1173 Balat, M. (2011). Production of bioethanol from lignocellulosic materials via the

biochemical pathway: A review. Energy Conversion and Management, 52(2), 858-875

Page 25: UNIVERSITI PUTRA MALAYSIA · revealed that the reaction was a first order irreversible reaction. ... oleh reka bentuk eksperimen yang dihasilkan oleh rekabentuk metodologi

© COPYRIG

HT UPM

57

Balat, M., and Balat, H. (2009). Recent trends in global production and utilization of bio-ethanol fuel. Applied Energy, 86(11), 2273-2282

Balat, M., Balat, H., and Öz, C. (2008). Progress in bioethanol processing. Progress

in Energy and Combustion Science, 34(5), 551-573 Barbanti, L., Monti, A., and Venturi, G. (2007). Improved agronomy and

management of crop plants for industrial end uses Improvement of crop plants for industrial end uses (pp. 83-127): Springer.

Baty, J. W., Maitland, C. L., Minter, W., Hubbe, M. A., and Jordan-Mowery, S. K.

(2010). Deacidification for the conservation and preservation of paper-based works: A review. BioResources, 5(3)

Beguin, P., and Aubert, J.-P. (1994). The biological degradation of cellulose. FEMS

Microbiology Reviews, 13(1), 25-58 Brandt, A., Gräsvik, J., Hallett, J. P., and Welton, T. (2013). Deconstruction of

lignocellulosic biomass with ionic liquids. Green chemistry, 15(3), 550 Brown, M. A., Levine, M. D., Romm, J. P., Rosenfeld, A. H., and Koomey, J. G.

(1998). Engineering-economic studies of energy technologies to reduce greenhouse gas emissions: Opportunities and challenges. Annual Review of Energy and the Environment, 23(1), 287-385

Canettieri, E. V., De Moraes Rocha, G. J., De Carvalho, J. A., Jr., and De Almeida E

Silva, J. B. (2007). Optimization of acid hydrolysis from the hemicellulosic fraction of eucalyptus grandis residue using response surface methodology. Bioresource Technology, 98(2), 422-428

Chandel, A. K., Antunes, F. a. F., Arruda, P. V., Milessi, T. S. S., Silva, S. S., and

Almeida Felipe, M. D. G. (2012). Dilute acid hydrolysis of agro-residues for the depolymerization of hemicellulose: State-of-the-art. 39-61

Chandel, A. K., Chan, E., Rudravaram, R., Narasu, M. L., Rao, L. V., and Ravindra,

P. (2007). Economics and environmental impact of bioethanol production technologies: An appraisal. Biotechnology and Molecular Biology Review, 2(1), 14-32

Page 26: UNIVERSITI PUTRA MALAYSIA · revealed that the reaction was a first order irreversible reaction. ... oleh reka bentuk eksperimen yang dihasilkan oleh rekabentuk metodologi

© COPYRIG

HT UPM

58

Chiaramonti, D. (2007). Bioethanol: Role and production technologies Improvement of crop plants for industrial end uses (pp. 209-251): Springer.

Conde-Mejía, C., Jiménez-Gutiérrez, A., and El-Halwagi, M. (2012). A comparison

of pretreatment methods for bioethanol production from lignocellulosic materials. Process Safety and Environmental Protection, 90(3), 189-202

Demirbas, A. (2005). Bioethanol from cellulosic materials: A renewable motor fuel

from biomass. Energy sources, 27(4), 327-337 Demirbas, A. (2008). Biofuels sources, biofuel policy, biofuel economy and global

biofuel projections. Energy Conversion and Management, 49(8), 2106-2116 Demirbas, A. (2009). Biofuels securing the planet’s future energy needs. Energy

Conversion and Management, 50(9), 2239-2249 Ferreira, S., Duarte, A. P., Ribeiro, M. H., Queiroz, J. A., and Domingues, F. C.

(2009). Response surface optimization of enzymatic hydrolysis of cistus ladanifer and cytisus striatus for bioethanol production. Biochemical Engineering Journal, 45(3), 192-200

Ferrer, A., Requejo, A., Rodríguez, A., and Jiménez, L. (2013). Influence of

temperature, time, liquidsolid ratio and sulfuric acid concentration on the hydrolysis of palm empty fruit bunches. Biochemical Engineering Journal, 129, 506-511

Gámez, S., González-Cabriales, J. J., Ramírez, J. A., Garrote, G., and Vázquez, M.

(2006). Study of the hydrolysis of sugar cane bagasse using phosphoric acid. Journal of Food Engineering, 74(1), 78-88

Girisuta, B., Dussan, K., Haverty, D., Leahy, J. J., and Hayes, M. H. B. (2013). A

kinetic study of acid catalysed hydrolysis of sugar cane bagasse to levulinic acid. Chemical Engineering Journal, 217, 61-70

Girisuta, B., Janssen, L., and Heeres, H. (2007). Kinetic study on the acid-catalyzed

hydrolysis of cellulose to levulinic acid. Industrial & engineering chemistry research, 46(6), 1696-1708

Page 27: UNIVERSITI PUTRA MALAYSIA · revealed that the reaction was a first order irreversible reaction. ... oleh reka bentuk eksperimen yang dihasilkan oleh rekabentuk metodologi

© COPYRIG

HT UPM

59

Goh, C. S., Lee, K. T., and Bhatia, S. (2010a). Hot compressed water pretreatment of oil palm fronds to enhance glucose recovery for production of second generation bio-ethanol. Bioresource Technology, 101(19), 7362-7367

Goh, C. S., Tan, K. T., Lee, K. T., and Bhatia, S. (2010b). Bio-ethanol from

lignocellulose: Status, perspectives and challenges in malaysia. Bioresource Technology, 101(13), 4834-4841

Hammond, G. P., and Seth, S. M. (2013). Carbon and environmental footprinting of

global biofuel production. Applied Energy, 112, 547-559 Harmsen, P., Huijgen, W., Bermudez, L., and Bakker, R. (2010). Literature review

of physical and chemical pretreatment processes for lignocellulosic biomass: Wageningen UR, Food & Biobased Research.

Hashem, A., and Rashad, M. (1993). Production of ethanol by yeasts grown on

hydrolysate of egyptian sweet potato. Egyptian Journal of Food Science, 21(2), 171-180

Hayes, D. J. (2009). An examination of biorefining processes, catalysts and

challenges. Catalysis Today, 145(1), 138-151 Hu, R., Lin, L., Liu, T., and Liu, S. (2010). Dilute sulfuric acid hydrolysis of sugar

maple wood extract at atmospheric pressure. Bioresource Technology, 101(10), 3586-3594

Jones, J., and Semrau, K. (1984). Wood hydrolysis for ethanol production—previous

experience and the economics of selected processes. Biomass, 5(2), 109-135 Jørgensen, H., Kutter, J. P., and Olsson, L. (2003). Separation and quantification of

cellulases and hemicellulases by capillary electrophoresis. Analytical Biochemistry, 317(1), 85-93

Kapdan, I. K., Kargi, F., and Oztekin, R. (2011). Effects of operating parameters on

acid hydrolysis of ground wheat starch: Maximization of the sugar yield by statistical experiment design. Starch‐Stärke, 63(5), 311-318

Karimi, K., Kheradmandinia, S., and Taherzadeh, M. J. (2006). Conversion of rice

straw to sugars by dilute-acid hydrolysis. Biomass and Bioenergy, 30(3), 247-253

Page 28: UNIVERSITI PUTRA MALAYSIA · revealed that the reaction was a first order irreversible reaction. ... oleh reka bentuk eksperimen yang dihasilkan oleh rekabentuk metodologi

© COPYRIG

HT UPM

60

Kelly-Yong, T. L., Lee, K. T., Mohamed, A. R., and Bhatia, S. (2007). Potential of hydrogen from oil palm biomass as a source of renewable energy worldwide. Energy Policy, 35(11), 5692-5701

Kennedy, J. F., and White, C. A. (1983). Bioactive carbohydrates: In chemistry,

biochemistry and biology: Ellis Horwood Ltd. Khalil, H. S. A., Alwani, M. S., and Omar, A. K. M. (2007). Chemical composition,

anatomy, lignin distribution, and cell wall structure of malaysian plant waste fibers. BioResources, 1(2), 220-232

Khanal, S. K. (2010). Bioenergy and biofuel from biowastes and biomass: ASCE

Publications. Kim, S. B., and Lee, Y. (2002). Diffusion of sulfuric acid within lignocellulosic

biomass particles and its impact on dilute-acid pretreatment. Bioresource Technology, 83(2), 165-171

Kim, T. H., Kim, J. S., Sunwoo, C., and Lee, Y. (2003). Pretreatment of corn stover

by aqueous ammonia. Bioresource Technology, 90(1), 39-47 Kupiainen, L., Ahola, J., and Tanskanen, J. (2011). Kinetics of glucose

decomposition in formic acid. Chemical Engineering Research and Design, 89(12), 2706-2713

Larsson, S., Palmqvist, E., Hahn-Hägerdal, B., Tengborg, C., Stenberg, K., Zacchi,

G., and Nilvebrant, N.-O. (1999). The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme and Microbial Technology, 24(3), 151-159

Lenihan, P., Orozco, A., O’neill, E., Ahmad, M., Rooney, D., Mangwandi, C., and

Walker, G. (2011). Kinetic modelling of dilute acid hydrolysis of lignocellulosic biomass. Biofuel production-recent developments and prospects. InTech, Croatia, 293-308

Lenihan, P., Orozco, A., O’neill, E., Ahmad, M. N. M., Rooney, D. W., and Walker,

G. M. (2010). Dilute acid hydrolysis of lignocellulosic biomass. Chemical Engineering Journal, 156(2), 395-403

Page 29: UNIVERSITI PUTRA MALAYSIA · revealed that the reaction was a first order irreversible reaction. ... oleh reka bentuk eksperimen yang dihasilkan oleh rekabentuk metodologi

© COPYRIG

HT UPM

61

Limayem, A., and Ricke, S. C. (2012). Lignocellulosic biomass for bioethanol production: Current perspectives, potential issues and future prospects. Progress in Energy and Combustion Science, 38(4), 449-467

Lu, Y. (2008). Kinetic and mechanistic studies of a biomimetic catalyst for

hemicellulosic biomass hydrolysis: ProQuest. Meher, L., Vidyasagar, D., and Naik, S. (2006). Technical aspects of biodiesel

production by transesterification—a review. Renewable and Sustainable Energy Reviews, 10(3), 248-268

Mohagheghi, A., Evans, K., Chou, Y.-C., and Zhang, M. (2002). Cofermentation of

glucose, xylose, and arabinose by genomic DNA-lntegrated xylose/arabinose fermenting strain of zymomonas mobilis ax101 Biotechnology for fuels and chemicals (pp. 885-898): Springer.

Montgomery, D. C. (1997). Design and analysis of experiments (Vol. 7): Wiley New

York. MPOB. (2011). Overview of the malaysian oil palm industry. Neureiter, M., Danner, H., Thomasser, C., Saidi, B., and Braun, R. (2002). Dilute-

acid hydrolysis of sugarcane bagasse at varying conditions Biotechnology for fuels and chemicals (pp. 49-58): Springer.

Nguyen, Q. A., Tucker, M. P., Keller, F. A., Beaty, D. A., Connors, K. M., and

Eddy, F. P. (1999). Dilute acid hydrolysis of softwoods. Applied Biochemistry and Biotechnology, 77(1-3), 133-142

Obeng, D. P., Morrell, S., and Napier-Munn, T. J. (2005). Application of central

composite rotatable design to modelling the effect of some operating variables on the performance of the three-product cyclone. International Journal of Mineral Processing, 76(3), 181-192

Omar, R., Idris, A., Yunus, R., Khalid, K., and Aida Isma, M. I. (2011).

Characterization of empty fruit bunch for microwave-assisted pyrolysis. Fuel, 90(4), 1536-1544

Page 30: UNIVERSITI PUTRA MALAYSIA · revealed that the reaction was a first order irreversible reaction. ... oleh reka bentuk eksperimen yang dihasilkan oleh rekabentuk metodologi

© COPYRIG

HT UPM

62

Palmqvist, E., and Hahn-Hägerdal, B. (2000). Fermentation of lignocellulosic hydrolysates. Ii: Inhibitors and mechanisms of inhibition. Bioresource Technology, 74(1), 25-33

Pigman, W. (2012). The carbohydrates: Chemistry and biochemistry: Elsevier. Quanhong, L., and Caili, F. (2005). Application of response surface methodology for

extraction optimization of germinant pumpkin seeds protein. Food Chemistry, 92(4), 701-706

Rahman, S. H., Choudhury, J. P., Ahmad, A. L., and Kamaruddin, A. H. (2007).

Optimization studies on acid hydrolysis of oil palm empty fruit bunch fiber for production of xylose. Bioresource Technology, 98(3), 554-559

Ramirez, M. T., and Fraga, E. S. (2009). Mathematical modelling of feed

pretreatment for bioethanol production. Computer Aided Chemical Engineering, 26, 1299-1304

Rashid, U., Anwar, F., Ansari, T. M., Arif, M., and Ahmad, M. (2009). Optimization

of alkaline transesterification of rice bran oil for biodiesel production using response surface methodology. Journal of Chemical Technology & Biotechnology, 84(9), 1364-1370

Rodrı Guez-Chong, A., Alberto RamıRez, J., Garrote, G., and Vázquez, M. (2004).

Hydrolysis of sugar cane bagasse using nitric acid: A kinetic assessment. Journal of Food Engineering, 61(2), 143-152

Sabiha-Hanim, S., Noor, M. A., and Rosma, A. (2011). Effect of autohydrolysis and

enzymatic treatment on oil palm (elaeis guineensis jacq.) frond fibres for xylose and xylooligosaccharides production. Bioresource Technology, 102(2), 1234-1239

Saeman, J. F. (1945). Kinetics of wood saccharification-hydrolysis of cellulose and

decomposition of sugars in dilute acid at high temperature. Industrial & Engineering Chemistry, 37(1), 43-52

Saha, B. C. (2003). Hemicellulose bioconversion. Journal of Industrial

Microbiology and Biotechnology, 30(5), 279-291

Page 31: UNIVERSITI PUTRA MALAYSIA · revealed that the reaction was a first order irreversible reaction. ... oleh reka bentuk eksperimen yang dihasilkan oleh rekabentuk metodologi

© COPYRIG

HT UPM

63

Salleh, S. F. (2011). Dilute acid hydrolysis of oil palm empty fruit bunch in a batch reactor. Universiti Putra Malaysia.

Sarkar, N., Ghosh, S. K., Bannerjee, S., and Aikat, K. (2012). Bioethanol production

from agricultural wastes: An overview. Renewable Energy, 37(1), 19-27 Shallenberger, R. S., and Birch, G. G. (1975). Sugar chemistry: AVI Publishing Co.,

Inc. Sheh, H. L., Ibrahim, D., and Omar, I. C. (2013). Effect of physical parameters on

second generation bio-ethanol production from oil palm frond by saccharomyces cerevisiae. BioResources, 8(1), 969-980

Shuit, S. H., Tan, K. T., Lee, K., and Kamaruddin, A. (2009). Oil palm biomass as a

sustainable energy source: A malaysian case study. Energy, 34(9), 1225-1235 Sumathi, S., Chai, S. P., and Mohamed, A. R. (2008). Utilization of oil palm as a

source of renewable energy in malaysia. Renewable and Sustainable Energy Reviews, 12(9), 2404-2421

Sun, Y., and Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol

production: A review. Bioresource Technology, 83(1), 1-11 Taherzadeh, M. J., and Karimi, K. (2007a). Acid-based hydrolysis processes for

ethanol from lignocellulosic materials: A review. BioResources, 2(3), 472-499

Taherzadeh, M. J., and Karimi, K. (2007b). Enzymatic-based hydrolysis processes

for ethanol. BioResources, 2(4), 707-738 Taherzadeh, M. J., and Karimi, K. (2008). Bioethanol: Market and production

processes. Biofuels refining and performance, 69-106 Taherzadeh, M. J., and Niklasson, C. (2004). Ethanol from lignocellulosic materials:

Pretreatment, acid and enzymatic hydrolyses, and fermentation. Paper presented at the ACS Symposium Series.

Page 32: UNIVERSITI PUTRA MALAYSIA · revealed that the reaction was a first order irreversible reaction. ... oleh reka bentuk eksperimen yang dihasilkan oleh rekabentuk metodologi

© COPYRIG

HT UPM

64

Torget, R., and Teh-An, H. (1994). Two-temperature dilute-acid prehydrolysis of hardwood xylan using a percolation process. Applied Biochemistry and Biotechnology, 45(1), 5-22

Tye, Y. Y., Lee, K. T., Wan Abdullah, W. N., and Leh, C. P. (2011). Second-

generation bioethanol as a sustainable energy source in malaysia transportation sector: Status, potential and future prospects. Renewable and Sustainable Energy Reviews, 15(9), 4521-4536

Vamvuka, D., Kakaras, E., Kastanaki, E., and Grammelis, P. (2003). Pyrolysis

characteristics and kinetics of biomass residuals mixtures with lignite☆. Fuel, 82(15-17), 1949-1960

Van Soest, P. V., Robertson, J., and Lewis, B. (1991). Methods for dietary fiber,

neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583-3597

Vessia, Ø. (2005). Biofuels from lignocellulosic material-in the norwegian context

2010–technology, potential and costs. Norwegian Universtiy of Scince and Technology

Walker, G. M. (2010). Bioethanol: Science and technology of fuel alcohol:

Bookboon. Wyman, C. (1994). Ethanol from lignocellulosic biomass: Technology, economics,

and opportunities. Bioresource Technology, 50(1), 3-15 Wyman, C. (1996). Handbook on bioethanol: Production and utilization: CRC

press. Wyman, C., Decker, S. R., Himmel, M. E., Brady, J. W., Skopec, C. E., and Viikari,

L. (2005). Hydrolysis of cellulose and hemicellulose. Polysaccharides: Structural diversity and functional versatility, 1, 1023-1062

Xiang, Q., Lee, Y. Y., and Torget, R. W. (2004). Kinetics of glucose decomposition

during dilute-acid hydrolysis of lignocellulosic biomass. Paper presented at the Proceedings of the Twenty-Fifth Symposium on Biotechnology for Fuels and Chemicals Held May 4–7, 2003, in Breckenridge, CO.

Page 33: UNIVERSITI PUTRA MALAYSIA · revealed that the reaction was a first order irreversible reaction. ... oleh reka bentuk eksperimen yang dihasilkan oleh rekabentuk metodologi

© COPYRIG

HT UPM

65

Zahari, M. A., Zakaria, M. R., Ariffin, H., Mokhtar, M. N., Salihon, J., Shirai, Y., and Hassan, M. A. (2012). Renewable sugars from oil palm frond juice as an alternative novel fermentation feedstock for value-added products. Bioresource Technology, 110, 566-571