unit 8 reflection of light in mirrors

57
Unit 8 Reflection of Light in Mirrors Table of Contents Table of Contents 1 Introduction 3 Essential Questions 4 Review 4 Lesson 8.1: Reflection of Light 5 Objectives 5 Warm-Up 5 Learn about It 6 Key Points 9 Web Links 10 Check Your Understanding 10 Challenge Yourself 11 Lesson 8.2: Convex Mirrors 12 Objectives 12 Warm-Up 12 Learn about It 13 Worked Examples 16 Key Points 22 Web Links 22 Check Your Understanding 22 Challenge Yourself 24 Lesson 8.3: Mirror Equation 25 Objectives 25 Warm-Up 25 Learn about It 26 Worked Examples 28 Worked Examples 31 Key Points 34

Upload: others

Post on 13-May-2022

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Unit 8 Reflection of Light in Mirrors

Unit 8 

Reflection of Light in Mirrors

Table of Contents  

Table of Contents 1 

Introduction 3 

Essential Questions 4 

Review 4 

Lesson 8.1: Reflection of Light 5 Objectives 5 Warm-Up 5 Learn about It 6 Key Points 9 Web Links 10 Check Your Understanding 10 Challenge Yourself 11 

Lesson 8.2: Convex Mirrors 12 Objectives 12 Warm-Up 12 Learn about It 13 Worked Examples 16 Key Points 22 Web Links 22 Check Your Understanding 22 Challenge Yourself 24 

Lesson 8.3: Mirror Equation 25 Objectives 25 Warm-Up 25 Learn about It 26 Worked Examples 28 Worked Examples 31 Key Points 34 

Page 2: Unit 8 Reflection of Light in Mirrors

 

 

Web Links 34 Check Your Understanding 34 Challenge Yourself 35 

Lesson 8.4: Concave Mirrors 36 Objectives 36 Warm-Up 36 Learn about It 37 Worked Examples 41 Key Points 47 Web Links 47 Check Your Understanding 47 

Laboratory Activity 49 

Performance Task 50 

Self Check 51 

Key Words 52 

Key Formula 53 

Wrap Up 54 

Photo Credits 55 

References 55 

Answer Key 56 

  

 

Copyright © 2018 Quipper Limited 2 

Page 3: Unit 8 Reflection of Light in Mirrors

 

 

GRADE 10 | SCIENCE

Unit 8 Reflection of Light in Mirrors 

Mirrors are used in different applications. It is used in several laboratory                       equipments and apparatus for its ability to form various characteristics of images                       that enhances the object for observation. Perhaps one of the most life-saving uses                         of mirrors is its utilization in automobiles. Side mirrors and rear view mirror in cars                             serve as precautionary factors when deciding to turn, speed up, slow down, and                         when parking. These mirrors are convex mirrors which produce a wider view of the                           images at the back of the car. This type of mirror makes objects appear smaller,                             hence, the sign on new car mirrors “Objects in mirror are closer than they appear.”   With various uses of mirrors, it is inevitable for one to wonder how mirrors create                             images. This unit will discuss the reflection property of light and its behavior when                           striking mirrors. 

 

Copyright © 2018 Quipper Limited 3 

Page 4: Unit 8 Reflection of Light in Mirrors

 

 

  Essential Questions 

At the end of this unit, you should be able to answer the following questions. 

● How does light behave when striking mirrors? ● How do mirrors create images? ● What are the types of mirrors and what makes one different from the other? ● How can one predict the type, orientation, and position of an images formed                         

from different types of mirrors using ray diagram techniques? ● How can one predict the type, orientation, and position of an images formed                         

from different types of mirrors using mirror equation?  

  Review 

● Electromagnetic waves are waves that are made of electric and magnetic                     field components. They do not need a medium to propagate, hence, they can                         travel through space. 

● Among the different types of electromagnetic waves, only visible light has its                       own spectrum, and is visible to the human eye. 

● Light travels in a straight line in a vacuum, and has both wave-like and                           particle-like nature. 

● Light, as well as EM waves, exhibits different behaviors when it encounters a                         medium. Some of the behaviors of light were reflection, refraction,                   dispersion, absorption, interference, diffraction, transmission, and           scattering.  

● Reflection is the bouncing of light when it reaches the boundary between                       two media; light stays in the original medium. 

● Refraction is the bending of light as it passes from one medium to the other. ● Magnification is a unitless value that tells how much something is enlarged. ● Orientation tells whether the image is upright or inverted. 

     

 

Copyright © 2018 Quipper Limited 4 

Page 5: Unit 8 Reflection of Light in Mirrors

 

 

Lesson 8.1: Reflection of Light 

 

 Objectives In this lesson, you should be able to: 

● discuss the reflection of light and law of reflection in mirrors; ● differentiate diffuse and specular reflection; and ● predict the type, orientation, and position of an image formed by 

plane mirrors.   

Light travels in a straight line, specifically in a vacuum. It has several properties and                             is influenced usually by the medium where it propagates. One property of light is it                             bounces off as it strikes a surface, what particular property of light enables it to                             bounce off a surface?   

  Warm-Up  

AirPLANE mirrors Materials: 

● plane mirror (at least 1’ ✕ 1’ size) ● toy airplane (or a printed photo of an airplane) 

 Procedure: 

1. Observe the toy airplane in terms of its height, width, and other physical                         appearance. You may use a ruler to measure or as reference.   

2. Place the toy airplane in front of the plane mirror. 3. Observe the image of the toy airplane from the mirror. 

 Guide Questions: 

1. What similarities and differences did you notice from the object (actual toy)                       and the image (shown in the mirror)?  

2. Are the height and width of the image and object the same? Why or why not? 3. Is the image vertically upright or not relative to the object? Why or why not? 

 

Copyright © 2018 Quipper Limited 5 

Page 6: Unit 8 Reflection of Light in Mirrors

 

 

 Learn about It 

 

Behavior of Light and Law of Reflection  Light ordinarily travels in straight line path called ray. This means that in order for                             light to go from one point to another, it takes the shortest and most efficient path                               available to it. The idea that the path which light travels is the one that uses the                                 shortest time is called Fermat’s principle of least time, formulated by the French                         scientist Pierre Fermat in 1650.  

 Fig. 1. Light takes the shortest path possible. 

 If light needs to strike a medium in order to get from one point to another, the                                 photon must strike the surface in such a way that the travel time between the two                               points will be the least. The study dealing with the path of light as it strikes a                                 medium which involves straight-line rays at various angles is referred to as                       geometric optics.  

 Fig. 2. The path light takes when striking a reflective surface. 

 The angle of incidence, 𝜃i ,is the angle which an incident ray makes with an                             imaginary line perpendicular to the surface, referred to as the normal. The angle of                           reflection, 𝜃 r , is the angle which the reflected ray makes with the normal.                           

 

Copyright © 2018 Quipper Limited 6 

Page 7: Unit 8 Reflection of Light in Mirrors

 

 

The law of reflection states that the incident and reflected rays lie in the same                             plane with the normal and that the angle of reflection equals the angle of incidence,                             𝜃 i = 𝜃 r.  

 Fig. 3. The law of reflection which states that the angle of incidence is always equal 

to the angle of reflection.  

  Diffuse and Specular Reflection  Diffuse reflection happens when light is reflected into multiple directions. This                     happens when light hits a rough surface. Objects that might appear smooth to                         touch but still performs diffuse reflection are actually microscopically rough. One                     good example is an eggshell. An eggshell can be smooth to touch but                         microscopically has small bumps causing light to be diffused in many different                       directions. Ordinary objects can be viewed at many different angles since light is                         reflected by the object in many directions.  

 Fig. 4. Diffuse reflection on a rough surface which shows light rays reflected in 

multiple directions.  

Copyright © 2018 Quipper Limited 7 

Page 8: Unit 8 Reflection of Light in Mirrors

 

 

When a beam of light hits a mirror, light will not hit your eyes unless your eye is                                   positioned at the right place where the law of reflection is satisfied. Since mirrors                           are microscopically smooth, light rays travel at only one path. This kind of reflection                           is called specular reflection (speculum is Latin for mirror).  

 Fig. 5. Diffuse reflection (a) vs. specular reflection (b). 

 When someone looks on a mirror, it would appear that the objects (or even the                             observer) are located beyond the mirror even though they are not. The one seen                           beyond the mirror is called image, while the one that produces the image is the                             object. Simply speaking, objects are the source of incident light.  Plane Mirror  A plane mirror is a smooth, flat reflecting surface. It creates images that are                           located on the same distance as the object from the mirror and with the same                             height but are inverted from left to right.  

 Fig. 6. Image formation by a plane mirror. 

 

 

Copyright © 2018 Quipper Limited 8 

Page 9: Unit 8 Reflection of Light in Mirrors

 

 

The law of reflection is followed when images are formed by mirrors. The image                           appears to be formed as far behind as the object in front. The image distance, di,                               which is measured from image location to mirror, is equal to the object distance,                           do, which is measured from object location to mirror.  The images formed by plane mirrors are virtual images. Light rays do not actually                           pass through the image location itself; it just appears to be. There are no actual                             rays converging behind the mirror (thus, virtual) which makes it impossible to                       project the image on any surface placed at the location of image. Real images are                             the opposite of virtual images and can be projected on surface placed at the image                             position. This is due to the fact that actual rays converge to a point forming a ‘real’                                 image.  

   

 Key Points 

 

● Light travels in straight line paths called rays, and travels a path which uses                           the shortest time which is an idea of Fermat’s principle of least time. 

● The law of reflection states that the incident and reflected rays lie in the                           same plane with the normal and that the angle of reflection equals the angle                           of incidence. 

● Diffuse reflection happens when light is reflected into multiple directions,                   while specular reflection happens when a light hits a microscopically                   smooth mirror. 

● A plane mirror is a smooth, flat reflecting surface. Images formed by this                         mirror are virtual images. 

  

 

Copyright © 2018 Quipper Limited 9 

Page 10: Unit 8 Reflection of Light in Mirrors

 

 

 Web Links 

 

For further information about reflection of light, you can check the following web                         links: 

 

● Read this article to understand more about the law of reflection and if a diffuse reflection obeys this lay microscopically.  Davidson, Michael W. & The Florida State University. 2018. ‘Specular and Diffuse Reflection.’  http://micro.magnet.fsu.edu/primer/java/reflection/specular/   

 

● Watch this video to know how mirrors are created using glass and silver nitrate. Tech Insider. 2017. ‘Watch This Artist Create A Mirror Using Glass And Silver Nitrate.’ https://www.youtube.com/watch?v=atCtLsh4MBs  

 

 Check Your Understanding 

 

A. Read and analyze the following statements given. Identify what is being                     described by each of the given statements. 1. It is the type of reflection that happens when light is reflected into                         

multiple directions. 2. It is study dealing with the path of light as it strikes a medium which                             

involves straight-line rays at various angles. 3. It is the idea or principle that tells that the path which light travels is the                               

one that uses the shortest time. 4. It is the type of reflection that happens when light hits a microscopically                         

smooth surface. 5. It is the opposite of virtual images. 6. It is the angle which an incident ray makes with an imaginary line                         

perpendicular to the surface. 7. It is the law that states that the angle of reflection is always equal to the                               

angle of incidence. 8. It is the angle which the reflected ray makes with the normal. 9. It is a smooth, flat reflecting surface. 

10. It is the type of images formed by plane mirrors. 

 

Copyright © 2018 Quipper Limited 10 

Page 11: Unit 8 Reflection of Light in Mirrors

 

 

B. Identify whether each situation uses diffuse or specular reflection. Write D if                       it is diffuse reflection, otherwise write S.  1. You see a clear reflection of your body in a plane mirror. 2. A fisherman sees a reflection of the sky on the rough waters of a lake. 3. Light is shined on a concrete floor. 4. A car sees a wide view of the road behind it through the side mirrors. 5. You pointed a flashlight on a shiny black wall.

  

 Challenge Yourself 

 

Answer the following questions. 1. Why can’t you see your reflection in the mirror if the room is very dark? 2. Will there be any possibility that you can have a magnified image using a 

plane mirror? Why? 3. Why can’t you see a clear and distinctive image of yourself in a plane 

concrete floor? 4. How can the position of the image be determined when using a plane 

mirror? 5. Are mirrors used for driving vehicles plane mirrors? What type of mirror is 

this? What is its difference from plane mirrors?                 

 

Copyright © 2018 Quipper Limited 11 

Page 12: Unit 8 Reflection of Light in Mirrors

 

 

Lesson 8.2: Convex Mirrors 

 

 Objectives In this lesson, you should be able to: 

● identify the parts of a curved mirror; ● differentiate plane, convex and concave mirrors as well as the 

images that they form; and ● apply ray diagramming techniques in describing the 

characteristics and positions of images formed by mirrors.   

Convex mirror is a type of mirror usually used by automobiles and convenience                         stores. They are useful in seeing a wide-angled view of a portion of a driveway or of                                 a store. What makes convex mirrors useful in these kind of situations?  

  Warm-Up  

Spoon-tastic mirror! Materials:  

● spoon ● small toy or a colored push pin 

 Procedure: 

1. Observe the toy in terms of its height, width, and other physical appearance.                         You may use a ruler to measure or as reference.   

2. Place the toy in front of the back of the spoon as a mirror. 3. Observe the image (shown in the mirror) formed from the actual toy.   

 Guide Questions: 

1. What similarities and differences did you notice from the object (actual toy)                       and the image (shown in the mirror)?  

2. Are the height and width of the image and object the same? Why or why not? 3. Is the image vertically upright or not relative to the object? Why or why not? 

 

Copyright © 2018 Quipper Limited 12 

Page 13: Unit 8 Reflection of Light in Mirrors

 

 

 Learn about It 

 Parts of a Curved Mirror Diagram Curved mirrors are mirrors that form a section of a sphere. This curve has                           numerous parts. The principal axis is an imaginary line passing through the center                         of the sphere at the exact center of the mirror. The point on the mirror’s surface                               where the principal axis meets the mirror is known as the vertex. The point in the                               center of the sphere from which the mirror was sliced is known as the center of                               curvature, C. Halfway between the center of curvature and vertex is the focal                         point, F. The distance between the vertex and the focal point is the focal length, f.  

 Fig. 7. The different parts of a curved mirror diagram. 

 There are two types of curved mirrors—convex and concave mirrors. A convex                       mirror is a curved mirror wherein the reflecting surface is on the outer surface of                             the sphere so that the center of the mirror bulges towards the viewer. This mirror                             focuses light away from the focal point that is why it is called diverging mirror.  

 Fig. 8. The back of a spoon acts a convex mirror for the pushpin. 

 

Copyright © 2018 Quipper Limited 13 

Page 14: Unit 8 Reflection of Light in Mirrors

 

 

Ray Diagramming Techniques for Convex Mirrors In order to find where an image will be located if an object is placed in front of a                                     mirror, a technique called ray diagramming is used. It uses three reference rays in                           order to locate the image.   Object in ray diagrams are usually represented by bold and thick arrows. In the                           illustration below, an object is represented by an orange arrow. First, a reference                         ray starting from the object going parallel to principal axis is drawn. It reflects                           through the focal point, F, after it hits the mirror. This is called the principal ray.   

 Fig. 9. Drawing the principal ray for a convex mirror. 

 The second reference ray goes through F and then goes parallel to principal axis                           after hitting the mirror. This is called the focal ray.   

 Fig. 10. Drawing the focal ray for a convex mirror. 

 

Copyright © 2018 Quipper Limited 14 

Page 15: Unit 8 Reflection of Light in Mirrors

 

 

The third reference ray goes through C then goes back along itself through C. This is                               called the central ray.  

 Fig. 11. Drawing the central ray for a convex mirror. 

 Since the F and C of a convex mirror are situated behind the mirror’s surface,                             dotted lines are extended along the reflected rays to points behind the mirror. The                           intersection of two or more rays locates the image.  

 Fig. 12. Ray-diagramming for a convex mirror. 

 The created images in convex mirrors are always located behind the mirror –                         virtual, upright and diminished (smaller than the object). Because of these                     characteristics, the images formed by convex mirrors are easily predictable.  

Copyright © 2018 Quipper Limited 15 

Page 16: Unit 8 Reflection of Light in Mirrors

 

 

  

 Worked Examples 

 

Example 1 Determine the location and characteristics of the image of the arrow using ray                         diagramming techniques in the given illustration below. 

 

  Solution: Step 1 Draw the principal ray. 

  

 

Copyright © 2018 Quipper Limited 16 

Page 17: Unit 8 Reflection of Light in Mirrors

 

 

Step 2 Draw the focal ray.  

  Step 3 Draw the central ray. 

 

  Step 4 Draw the image formed on the intersection of lines. 

 

  

Therefore, the image which is upright, virtual and reduced is formed at the back of                             the mirror. 

 

Copyright © 2018 Quipper Limited 17 

Page 18: Unit 8 Reflection of Light in Mirrors

 

 

Let us Practice Given the illustration below, determine the location and characteristics of the                     image of the arrow using ray diagramming techniques.  

 

  Example 2 What is the orientation, size, and type of image formed from the object positioned                           in front of a convex mirror below?   

 Solution: Step 1 Draw the principal ray. 

  

Copyright © 2018 Quipper Limited 18 

Page 19: Unit 8 Reflection of Light in Mirrors

 

 

Step 2 Draw the focal ray.  

 Step 3 Draw the central ray. 

  Step 4 Draw the image on the intersection of lines. 

 

  

The image is formed at the back of the mirror. It appears upright, diminished                           (smaller) and it is a virtual image.  

 

Copyright © 2018 Quipper Limited 19 

Page 20: Unit 8 Reflection of Light in Mirrors

 

 

Let us Practice What is the orientation, size and type of image formed from the diagram below?  

 

 Example 3 What is the orientation, size, and type of image formed from the object positioned                           in front of a convex mirror if the object’s distance from the mirror is 40 cm?   Solution: Step 1 Draw the diagram for the situation.  

  Step 2 Draw the principal ray.  

 

 

Copyright © 2018 Quipper Limited 20 

Page 21: Unit 8 Reflection of Light in Mirrors

 

 

Step 3 Draw the focal ray.  

  Step 4 Draw the central ray.  

  Step 5 Draw the image on the intersection of lines.  

  

The image is formed at the back of the mirror. It appears upright, diminished                           (smaller) and it is a virtual image.  

Let us Practice An object was placed in front of a diverging mirror which has a focal length of                               0.5 m. If object’s distance was 1 meter from the mirror, what is the orientation,                             size and type of the image formed? 

 

 

Copyright © 2018 Quipper Limited 21 

Page 22: Unit 8 Reflection of Light in Mirrors

 

 

 Key Points 

 

● A convex mirror is a curved mirror wherein the reflecting surface is on the                           outer surface of the sphere so that the center of the mirror bulges towards                           the viewer. 

● Ray diagramming techniques involves the drawing of the principal ray, focal                     ray, and the central ray. 

● The created images in convex mirrors are always located behind the mirror –                         virtual, upright and diminished (smaller than the object). 

 

 Web Links 

 

For further information on convex mirrors, you can check the following web links: 

 

● Read this article to know more about the different uses of convex mirrors.  Specadel Technologies PRivate Limited. n.d.. ‘10 Uses Of Convex Mirrors.’ http://www.edurite.com/kbase/10-uses-of-convex-mirror   

 

● Watch this video to understand more about the proper way to draw and illustrate ray diagram using pen and ruler.  Mr. Primmer’s VIDEOS!!!. 2016. ‘Ray Diagrams for Convex Mirrors.’ https://www.youtube.com/watch?v=NJ5EQE47IyM  

 

 Check Your Understanding 

 

A. Read and analyze the following statements given. Write T if the statement is                         correct, and F if it is false. 1. There are usually three rays in ray diagramming for convex mirrors. 2. Ray diagramming techniques follows the law of reflection 3. In ray diagramming of mirrors, it is assumed that no refraction will occur. 4. Curved mirrors are mirrors that form a section of a sphere. 5. Convex and concave mirrors form the same characteristics of images. 

 

Copyright © 2018 Quipper Limited 22 

Page 23: Unit 8 Reflection of Light in Mirrors

 

 

B. Match column B with its definition in column A. Write the letter of your                           answer on the space before each number.  

 

Column A  Column B 

1. It is the point that is halfway between               the center of curvature and vertex. 

 2. It refers to a point in the center of the                   

sphere from which the mirror was sliced.  

3. This is also known as a diverging mirror.  

4. It is an imaginary line passing through             the center of the sphere at the exact               center of the mirror. 

 5. It is a point on the mirror’s surface               

where the principal axis meets the           mirror. 

 6. A type of curved mirror wherein the             

reflecting surface is on the outer surface             of the sphere so that the center of the                 mirror bulges towards the viewer. 

 7. It is a technique that uses three             

reference rays in order to locate the             image. 

 8. It also means that the image is smaller               

than the object.  

9. It is used to describe an image formed               behind the mirror. 

 10. A type of mirror that focuses light away                 

from the focal point 

a. diminished  b. magnified  c. virtual  d. upright  e. vertex  f. center of curvature  g. convex mirror  h. concave mirror  i. principal axis  j. focal point  k. ray diagramming 

 

 

Copyright © 2018 Quipper Limited 23 

Page 24: Unit 8 Reflection of Light in Mirrors

 

 

 Challenge Yourself 

 

1. Is there any possibility that a convex mirror will produce a magnified image?                         Why? 

2. What are the other uses of the convex mirror? 3. Is it possible to determine the characteristics of the image formed using the                         

convex mirror without ray diagramming? How? 4. In which region will the image appear using the following diagram below? 5. What are the characteristics of the image formed in the diagram below? 

 

  

             

 

Copyright © 2018 Quipper Limited 24 

Page 25: Unit 8 Reflection of Light in Mirrors

 

 

Lesson 8.3: Mirror Equation 

 

 Objectives In this lesson, you should be able to: 

● predict the type, orientation, and position of an image formed by different kinds of mirrors using the mirror equation and the ray diagram method; and 

● compute for the magnification of an image.   

Ray diagramming only presents the image qualitatively. Manufacturing mirrors,                 especially those which has critical uses such as side mirrors in automobile, requires                         accurate measurement of a part of a mirror such as the focus. So, it is important to                                 know the precise characteristics of the images formed. How to predict the                       characteristics of the image formed by mirrors without ray diagrams?  

  Warm-Up  

Would you like it plane or curved?

Materials:  ● plane mirror ● spoon ● two identical small toy or colored push pin 

 Procedure: 

1. Position a toy in front of the plane mirror and another toy in front of the back of the spoon. Make sure that the toys are equidistant from the mirrors. 

2. Observe the images formed from the two mirrors.  Guide Questions: 

1. In which mirror is the image formed larger? 2. What causes this difference in size of images formed? 3. What would be the size of the image if the other side of the spoon was used? 

 

Copyright © 2018 Quipper Limited 25 

Page 26: Unit 8 Reflection of Light in Mirrors

 

 

 Learn about It 

 Mirror Equation It is possible to not have all the rays meet when using ray diagrams. Ideally, all                               three rays should meet but most of the time, only two rays would. This is mostly                               due to human error when doing ray diagrams. There is only one condition when an                             image will not be formed when placed in front of a mirror.   

 Fig. 14. All rays produced from any reference point of an object will converge if they 

should converge.  It is possible to mathematically calculate where an image will show up if distance of                             the object is known. It is also possible to know the radius of curvature of a mirror                                 given the location of object and the image.   The object distance, image distance and the radius of curvature are                     interdependent. The equation that relates the three is called the mirror equation.                       A set of sign conventions for the three variables must be established for use with                             the mirror equation.  

  

p is the object distance, q is the image distance and f is the focal length of the                                   image. Units for distances and focal length should be consistent.Take note of the                         sign conventions shown in Table 1 for the mirror equation. 

   

Copyright © 2018 Quipper Limited 26 

Page 27: Unit 8 Reflection of Light in Mirrors

 

 

Table 1. Sign conventions for the mirror equation. 

Symbol  Situation  Sign  Illustration 

p  object is in front of the mirror  

 

q  image is in front of the mirror (real image) 

 

q  image is behind the mirror (virtual image) 

 

R, f  center of curvature is in front of the mirror (concave mirror) 

 

R, f  center of curvature is behind the mirror (convex mirror)  

 

R, f  mirror has no curvature 

∞ 

 

 

  

Copyright © 2018 Quipper Limited 27 

Page 28: Unit 8 Reflection of Light in Mirrors

 

 

 Worked Examples 

Example 1 What is the focal point distance of a convex mirror if the object located 10 cm away                                 from the mirror forms a virtual image which is 30 cm away from the mirror?   Solution Step 1  Identify what is required to find in the problem.     You are asked to find for the focal point distance (f).   Step 2  Identify the given in the problem.     The object distance and image distance are given.     p = 10 cm and q = (-30 cm)   Step 3  Write the working equation. 

     

   Step 4  Substitute the given values. 

   Step 5  Find the answer. 

      

Therefore, the focal point distance is 15 cm.  

Let us Practice An image was formed 0.5 m away from the mirror, which is unclassified. The                           object was placed 0.5 m away from the mirror. What is the focal distance of the                               mirror? What type of mirror is it? 

 

Copyright © 2018 Quipper Limited 28 

Page 29: Unit 8 Reflection of Light in Mirrors

 

 

Example 2 An object was placed 1m away from the mirror. If it has a focal length of 1.2 m, how                                     far will the image formed be from the convex mirror? Where will the image form?   Solution: Step 1  Identify what is required to find in the problem. 

You are asked to image distance (q).   Step 2  Identify the given in the problem. 

The object distance and the focal length are given.     p = 1 m and f = (-1.2 m)   Step 3  Write the working equation. 

     

       

Step 4  Substitute the given values. 

  

Step 5  Find the answer.  

 Therefore, the image distance is 0.55 m away from the mirror. The image is formed                             behind the mirror because of the negative sign.   

Let us Practice Where will the image of an object 5 meters away from the convex mirror with                             2.5 m focal length form? How far is it from the mirror? 

     

 

Copyright © 2018 Quipper Limited 29 

Page 30: Unit 8 Reflection of Light in Mirrors

 

 

Example 3 A concave mirror is is a curved mirror wherein the reflecting surface is on the inner surface of the sphere so that the center of the mirror sinks away from the viewer. A                                 concave mirror with a center of curvature of 40 cm, produced an image that is 35                               cm in front of a mirror. How far is the object placed?   Solution Step 1  Identify what is required to find in the problem.     You are asked to find for the object distance (p).   Step 2  Identify the given in the problem.     The center of curvature (C) and image distance (q) are given.     C = 40 cm and q = 35 cm   Step 3  Write the working equation. 

   

 

  Step 4  Substitute the given values. 

      Step 5  Find the answer. 

       Therefore, the object was placed 46.67 cm away from the front of the mirror.  

Let us Practice A convex mirror has a center of curvature of 2 m. An object was placed 1.25 m                                 away from this mirror. How far and where will the image appear?   

  

Copyright © 2018 Quipper Limited 30 

Page 31: Unit 8 Reflection of Light in Mirrors

 

 

Magnification of Image The magnification of an image formed by mirrors can be computed either by using                           the height of the image and the object or their distances. A positive M means that                               image is upright and virtual and a negative value means it is inverted and real.  

  

The image height is denoted by h’, while the object distance is h. For distances, the                               denotation is similar to that of the mirror equation: q for the image distance, and p                               for the object distance. Units of the height and distances should be consistent.  

  

 Worked Examples 

Example 1 What is the magnification of a convex mirror if it produced a 43 cm high image from                                 a 55 cm high object?    Solution Step 1  Identify what is required to find in the problem.     You are asked to find for the magnification (M).   Step 2  Identify the given in the problem.     The image height and object height are given.     h’ = 43 cm and h = 55 cm   Step 3  Write the working equation. 

         

Copyright © 2018 Quipper Limited 31 

Page 32: Unit 8 Reflection of Light in Mirrors

 

 

Step 4  Substitute the given values. 

   Step 5  Find the answer.       Therefore, the magnification of the convex mirror is 0.78.  

Let us Practice What is the magnification of a mirror which produced an image which has the                           same height as the object at any distance? What type of mirror is it? 

 Example 2 A mirror has a magnification of 2.5 times. How far will the image be formed from                               the mirror if the object is placed 0.5 m away from the mirror?   Solution: Step 1  Identify what is required to find in the problem. 

You are asked to find the image distance.   Step 2  Identify the given in the problem. 

The magnification and object distance are given.     M = 2.5 and p = 0.5 m   Step 3  Write the working equation. 

     

       

Step 4  Substitute the given values. 

  

Step 5  Find the answer.  

 Therefore, the image distance is 1.25 m. the image will form in front of the mirror.  

Copyright © 2018 Quipper Limited 32 

Page 33: Unit 8 Reflection of Light in Mirrors

 

 

Let us Practice How far is the object placed in front of a 2.0 times magnifying mirror when the                               image was shown 30 cm in front of the mirror?  

  Example 3 A 70 mm wide rubix cube was magnified to a 92 mm wide cube (image). How far is                                   the object when the image was formed 30 cm from the mirror?    Solution Step 1  Identify what is required to find in the problem.     You are asked to find object distance.   Step 2  Identify the given in the problem. 

The object and image height (the width of a cube is equal to its height), and                               image distance are given. h = 70 mm, h’ = 92 mm, and q = 30 cm 

  Step 3  Write the working equation. 

   

  Step 4  Substitute the given values. 

      Step 5  Find the answer.        Therefore, the object distance is 22.83 cm.  

Let us Practice Dave has a height of 175 cm. If he is 0.5 m away from the front of a magnifying                                     mirror, his height is increased by 10 cm. How far from the mirror is his image? 

 

 

Copyright © 2018 Quipper Limited 33 

Page 34: Unit 8 Reflection of Light in Mirrors

 

 

 Key Points 

 

● Mirror equation relates the object distance, image distance and radius of                     curvature. It is given by the formula: 

 ● Magnification can be computed either by using the height of the image and                         

the object or their distances. It is given by the formula: 

  

 Web Links 

For further information on mirror equation, you can check the following web links: 

 

● Read the mirror equation in concave mirrors.  The Physics Classroom.. ‘The Mirror Equation - Concave Mirrors.’ http://www.physicsclassroom.com/class/refln/Lesson-3/The-Mirror-Equation   

 

● Watch an animation of the explanation of the mirror formula and magnification. 7activestudio. 2015. ‘MIRROR FORMULA AND MAGNIFICATION.’ https://www.youtube.com/watch?v=cQ492W3VSfc  

 

 Check Your Understanding 

 

A. Identify the relationship of the following. Indicate it as directly proportional if                       one of the quantity increases or decreases after the other increases or                       decreases at the same time, otherwise, indicate it as inversely proportional. 1. magnification and image height 2. magnification and image distance 3. magnification and object distance 

 

Copyright © 2018 Quipper Limited 34 

Page 35: Unit 8 Reflection of Light in Mirrors

 

 

4. image height and image distance 5. object height and image distance 

 B. Identify whether the image will be magnified, diminished or undiminished                   

(same size as the object). Write M, D, or U, respectively. 1. A mirror has a magnification power of 0.75. 2. A mirror has a magnification power of 1. 3. A mirror has a magnification power of 2.25. 4. An object which is 35 cm high appears to be 20 cm in front of a mirror. 5. A toy car in front of a plane mirror. 

C. Solve the following problems. 

1. What is the magnification power of a mirror which increases a ballpens’                       height (9 cm) by 2 cm? 

2. How far will an object appear (image distance) if it is placed 1 meter away                             from a convex mirror with focal length of 40 cm? 

3. How far will an object appear (image distance) if it is placed 1 meter away                             from a concave mirror with focal length of 40 cm? 

4. How far will an object appear (image distance) if it is placed 1 meter away                             from a plane mirror? 

5. What should be the object’s distance if its image should appear 30 cm                         behind a convex mirror with a focal length of 45 cm? 

 

 Challenge Yourself 

 

Answer the following questions. 1. Why do plane mirrors form images with the distance similar to that of the                           

object? 2. If the object is placed at an infinite distance, will the image still appear in a                               

convex lens? 3. If the object is placed at an infinite distance, will the image still appear in a                               

concave lens? 4. If the object is placed at an infinite distance from a plane mirror, what will be                               

its image distance? 5. Is it possible for a concave mirror to produce an image with a similar size to                               

that of an object? How? 

 

Copyright © 2018 Quipper Limited 35 

Page 36: Unit 8 Reflection of Light in Mirrors

 

 

Lesson 8.4: Concave Mirrors 

 

 Objectives In this lesson, you should be able to: 

● differentiate plane, convex and concave mirrors as well as the images that they form; and 

● apply ray diagramming techniques in describing the characteristics and positions of images formed by mirrors. 

  

Convex mirror is indeed very helpful in creating diminished image which makes it                         ideal for automobiles and convenience stores usage. However, there are certain                     jobs that needs magnification of reflections such as that in the cosmetics and                         dentistry industries. What type of mirror produces an enlarged real image?   

  Warm-Up  

Spoon-tastic (reversed) Mirror  Materials:  

● spoon ● small toy or a colored push pin 

 Procedure: 

1. Observe the toy in terms of its height, width, and other physical appearance.                         You may use a ruler to measure or as reference.   

2. Place the toy in front of the other curved side of the spoon as a mirror. 3. Observe the image (shown in the mirror) formed from the actual toy.   

 Guide Questions: 

1. What similarities and differences did you notice from the object (actual toy)                       and the image (shown in the mirror)? 

2. Are the height and width of the image and object the same? Why or why not? 3. Is the image vertically upright or not relative to the object? Why or why not? 

 

Copyright © 2018 Quipper Limited 36 

Page 37: Unit 8 Reflection of Light in Mirrors

 

 

 Learn about It 

 

Concave Mirrors A concave mirror is a curved mirror wherein the reflecting surface is on the inner                             surface of the sphere so that the center of the mirror sinks away from the viewer.  

 Fig. 15. The front of a spoon acts as a concave mirror for the pushpin. 

 It is also called a converging mirror because it focuses light rays towards its focal                             point. It can produce both real and virtual images depending on where the object is                             placed in front of it.  Ray Diagramming Techniques for Concave Mirrors The figure below shows how a concave mirror forms an image (h is the object’s                             height, h’ is the image height, p is the object’s distance from the mirror and q is the                                   image’s distance from the mirror).  

 Fig. 13. Ray diagrams showing the image formation by a concave mirror. 

  

Copyright © 2018 Quipper Limited 37 

Page 38: Unit 8 Reflection of Light in Mirrors

 

 

When an object is placed in front of a concave mirror, light rays extend from the                               object towards the mirror.The light rays that hit the mirror are then focused                         towards the center of the curvature. The meeting of light rays forms the image. If                             the image formed by the concave mirror is real, it can be projected on a screen or                                 on a film placed at the location of the image.  To draw the ray diagram for a concave mirror, the principal ray is drawn. It is                               parallel to the principal axis and will be reflected to the focal point.  

 Fig. 17. Drawing the principal ray for concave mirrors. 

 Next, the focal ray is drawn. It passes through the focal point and is reflected                             parallel to the principal axis.  

 Fig. 18. Drawing the focal ray for concave mirrors. 

 

 

Copyright © 2018 Quipper Limited 38 

Page 39: Unit 8 Reflection of Light in Mirrors

 

 

The central ray was drawn next. It passes through the central point and will be                             reflected back to the central point.  

 Fig. 19. Drawing the central ray for concave mirrors 

 The point where the rays intersect is where the image will appear.  

 Fig. 20. Image formation by concave mirrors. 

 A concave mirror can form different kinds of images depending on where objects                         are located in relation to the center of curvature and focal point.    

 

Copyright © 2018 Quipper Limited 39 

Page 40: Unit 8 Reflection of Light in Mirrors

 

 

 

  

Fig. 17. The characteristics of the images formed by concave mirrors for different object positions. 

 

 

Copyright © 2018 Quipper Limited 40 

Page 41: Unit 8 Reflection of Light in Mirrors

 

 

  

 Worked Examples 

 

Example 1 Determine where the image will appear when an object is placed in front of a                             concave mirror. Use ray diagramming techniques on the figure below.   

  Solution: Step 1 Draw the principal ray.  

 

 

Copyright © 2018 Quipper Limited 41 

Page 42: Unit 8 Reflection of Light in Mirrors

 

 

Step 2 Draw the focal ray.  

  Step 3 Draw the central ray. 

 

  Step 4 Draw the image on the intersection of lines.  

  

Therefore, the image is formed in between the center of curvature and focal point.                           It is an inverted, diminished and real image.   

 

Copyright © 2018 Quipper Limited 42 

Page 43: Unit 8 Reflection of Light in Mirrors

 

 

Let us Practice An object was placed at an infinite distance in front of a concave mirror.                           Determine the characteristics and location of the image formed through ray                     diagramming. 

 Example 2 An object was placed between the center of curvature and focus of a concave                           mirror as shown in the illustration below. Determine the location and the                       characteristics of the image formed using ray diagrams.  

  Solution: Step 1 Draw the principal ray.  

    

 

Copyright © 2018 Quipper Limited 43 

Page 44: Unit 8 Reflection of Light in Mirrors

 

 

Step 2 Draw the focal ray.  

  Step 3 Draw the central ray. 

 

  Step 4 Draw the image on the intersection of lines. 

 

  

The image is formed beyond the center of curvature. It appears inverted, magnified                         and it is a real image. 

 

Copyright © 2018 Quipper Limited 44 

Page 45: Unit 8 Reflection of Light in Mirrors

 

 

Let us Practice An object is placed on the center of curvature of a concave mirror. Draw the ray                               diagram of image formation to determine the location and characteristics of the                       image formed. 

 Example 3 An object is located 15 cm away from a converging mirror which has a 1-meter                             center of curvature. What would be the location and characteristics of the image                         formed?  Solution: Step 1 Draw the principal ray.  

  Step 2 Draw the focal ray. 

 

   

 

Copyright © 2018 Quipper Limited 45 

Page 46: Unit 8 Reflection of Light in Mirrors

 

 

Step 3 Draw the central ray.  

  Step 4 Draw the image on the intersection of lines. 

 

  

The image is formed in between the focal point and the mirror. It is an upright,                               magnified and virtual image.  

Let us Practice A 5 feet tall person stands 12 cm away from a concave mirror which has a focal                                 length of 8 cm. What would be the location and characteristics of the image                           formed in this scenario? 

    

 

Copyright © 2018 Quipper Limited 46 

Page 47: Unit 8 Reflection of Light in Mirrors

 

 

 Key Points 

 

● A concave mirror is a curved mirror wherein the reflecting surface is on the                           inner surface of the sphere. 

● Ray diagramming techniques involves the drawing of the principal ray, focal                     ray, and the central ray. 

● The created images in concave mirrors depends on the distance of the object                         from the mirror. 

 

 Web Links 

For further information on concave mirrors, you can check the following web links: 

 

● Read this article to know more about the different uses of concave mirrors. Aenne, Rachel. 2018. ‘Simple Uses of Concave Mirrors.’ https://sciencing.com/simple-uses-concave-mirrors-7298957.html   

 

● Watch this video to understand more about a mirascope, an optical device creates a real 3D image.  Uploaded by user derinsherman62t. 2013. ‘How the Mirage/Mirascope creates a real 3D image.’  https://www.youtube.com/watch?v=33IvhNsiPb4  

  

 Check Your Understanding 

 

A. Complete the anagram below. 1. concave: converge :: convex: __________ 2. inner surface of sphere: diverging mirror :: outer surface of sphere:                     

__________ 3. real: in front of mirror :: virtual: __________ 4. real: virtual :: upright: __________ 5. real: virtual :: magnified: __________ 

  

Copyright © 2018 Quipper Limited 47 

Page 48: Unit 8 Reflection of Light in Mirrors

 

 

B. Modify the underlined term(s) to make the statement correct. Otherwise,                   write true. 1. A concave mirror is also called a diverging mirror. 2. A convex mirror can produce both real and virtual images. 3. In a concave mirror, the position of an object is crucial to the                         

characteristics of the formed image. 4. The meeting of light rays forms the image. 5. If the image formed by the concave mirror is real, it can be projected on a                               

screen or on a film placed at the location of the image. 6. In a concave mirror, if the object is at an infinite length away from the                             

mirror then it will appear on the focal point. 7. If an object is placed on the center of curvature of a concave mirror, the                             

image will be undiminished in size. 8. If the object is placed within the focal length of a concave mirror, its image                             

magnification is greater than 1. 9. If the object is placed between the focal length and center of curvature of                           

a concave mirror, then the image formed will be inverted. 10.If the object is placed between the focal length and center of curvature of                           

a concave mirror, then the image formed will be a real image.  

 

Answer the following questions. 

1. How does a mirascope, an optical device which creates a hologram, work? 2. Why is converging lens used in dentistry rather than a diverging lens? 3. Is using converging lens in driving useful? How? 4. What are the other uses of concave mirrors? 5. Which type of mirror is used in microscopes? Why is this so? 

 

 

 

   

 

Copyright © 2018 Quipper Limited 48 

Page 49: Unit 8 Reflection of Light in Mirrors

 

 

 Laboratory Activity 

 

Activity 8.1 Law of Reflection 

 Objectives At the end of this laboratory activity, the students should be able to: 

● verify the law of reflection by measuring the angles of incidence and reflection; and 

● discuss the reflection of light and law of reflection in mirrors.  Materials and Equipment 

● plane mirror ● laser(s)  ● protractor  

 Procedure 

1. Position the laser such that it hits the mirror at an angle of 20° with the normal line (line perpendicular to the point where the light hits the plane mirror and the mirror itself). 

2. Record the measurement of the angle of reflected light with respect to the normal line in table 1. Repeat this for three trials.  

3. Repeat the steps with laser angles’ 30°, 40°, and 50°.  Data and Results Table 1. Angle of reflection measured given the angle of incidence. 

Angle of Incidence, degrees 

Angle of Reflection, degrees 

Trial 1  Trial 2  Trial 3  Average 

20         

30         

40         

50         

 

Copyright © 2018 Quipper Limited 49 

Page 50: Unit 8 Reflection of Light in Mirrors

 

 

Guide Questions 1. What can you notice on the relationship of the angle of incidence and angle 

of reflection using the plane mirror? 2. Does your angle measurements in each trial follow the law of reflection? Why 

or why not? 3. If you are to continue measuring the angle of reflection of a laser incident at 

75 degrees, what will be the outcome? 4. Will the law of reflection still, hold true for convex and concave mirrors?  5. Are your angle measurements exactly equal with each other? What could be 

the causes of error in measuring?  

 Performance Task 

 

Interior Designer  Goal  

● Your group’s goal is to design a theft-free convenience store by using mirrors                         instead of CCTV cameras. 

 Role  

● Your group is a team of professional interior designers of commercial                     spaces. 

  Audience  

● Your audience are your clients who are owners of a convenience stores                       located near the school community. 

 Situation  

● Your group’s potential in designing commercial spaces attracted a                 convenience store owner who intends to minimize his expenditures in                   electronic surveillances such as using CCTV cameras. 

 Product, Purpose, Performance   

● Your group will create a miniature model of a theft-free convenience store                       equipt with mirrors as replacement of CCTV cameras to minimize the client’s                       expenditures in electronic surveillances. The output will be a presentation of                     

 

Copyright © 2018 Quipper Limited 50 

Page 51: Unit 8 Reflection of Light in Mirrors

 

 

the model of the interior design of the store. Standards and Criteria Your group’s performance will be based on the following rubrics.  

Criteria  Below Expectations,  0% to 49% 

Needs Improvement 

50% to 74% 

Successful Performance 75% to 99% 

Exemplary Performance 

100% 

Content.  Detailed facts are presented well. Content related to the task. 

Details not presented. Content is not related to the task. 

Details are presented but not organized. There are some content that are not related to task. 

Details are presented in an organized manner.Content are related to the task. 

Details are presented in an organized matter that can be easily understood. Content are related to the task. Additional supporting details are presented. 

Communication Skills. Presentation was done in a clear and logical manner.  

Presentation was not done. 

Presentation was done but in a disorganized and illogical manner. 

Presentation was done smoothly but the concepts are presented in such a way that should be rearranged for better understanding. 

Presentation was done clearly. Concepts were presented in a logical manner and easily understandable by the audience. 

 

 Self Check 

Upon learning from this unit, can you now do the following: 

Check  I can… 

   discuss the reflection of light and law of reflection in mirrors 

   differentiate diffuse and specular reflection 

   differentiate plane, convex and concave mirrors  

  predict the type, orientation, and position of an image formed by plane, convex and concave mirrors through ray diagrams, mirror and 

 

Copyright © 2018 Quipper Limited 51 

Page 52: Unit 8 Reflection of Light in Mirrors

 

 

magnification equations  

 Key Words 

  

Angle of incidence  It is the angle which an incident ray makes with an                     imaginary line perpendicular to the surface. 

Angle of reflection  It is the angle which the reflected ray makes with the                     normal. 

Center of curvature  It is the point in the center of the sphere from which the                         curved mirror was sliced. 

Concave mirror  It is a curved mirror wherein the reflecting surface is on                     the inner surface of the sphere so that the center of the                       mirror sinks away from the viewer. It is also called a                     converging mirror. 

Convex mirror  It is a curved mirror wherein the reflecting surface is on                     the outer surface of the sphere so that the center of the                       mirror bulges towards the viewer. It is also called a                   diverging mirror. 

Focal point  It is the midpoint of the vertex and the center of                     curvature. 

Orientation  It is either an upright or inverted orientation of image                   produced by mirrors. 

Plane mirror  It is a smooth, reflecting surface. 

Principal axis  It is an imaginary line passing through the center of the                     sphere at the exact center of the mirror. 

Real image  It is the opposite of virtual images and can be projected                     on surface placed at the image position. 

Reflection  It is the bouncing of light when it reaches the boundary  between two media. 

Vertex  It is the point where the principal axis and mirror                   meets. 

 

Copyright © 2018 Quipper Limited 52 

Page 53: Unit 8 Reflection of Light in Mirrors

 

 

Virtual image  It is the image formed when light rays do not pass                     through the image location itself. 

 

 Key Formula 

Concept  Formula  Description 

Mirror equation  

 where: 

● f is the focal length of the mirror 

● p is the object distance ● q is the image distance 

Mirror equation of different types of lenses 

 

Use this formula to solve for focal length if the image and object distance are given. 

 

Use this formula to solve for image distance if the focal length and object distance are given. 

 

Use this formula to solve for object distance if the focal length and image distance are given. 

Magnification  

where: ● M is the magnification 

power ● h’ is the image height 

Use this formula to solve for magnification if image and object height given. 

 

Copyright © 2018 Quipper Limited 53 

Page 54: Unit 8 Reflection of Light in Mirrors

 

 

● h is the object height 

 where: 

● M is the magnification power 

● q is the image distance ● p is the object distance 

Use this formula to solve for magnification if image and object distance given. 

 

 Wrap Up 

 

Mirrors and Reflection of Light  

 

 

Copyright © 2018 Quipper Limited 54 

Page 55: Unit 8 Reflection of Light in Mirrors

 

 

  

  Photo Credits 

Unit Photo. Rear view mirror view in Mt. Rainier National Park, driving to Longmire                           (https://commons.wikimedia.org/wiki/File:Rear_view_mirror_view_in_Mt._Rainier_National_Park,_driving_to_Longmire.jpg) by Joe Mabel is licensed under             CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0/legalcode) via         Wikimedia Commons. 

 

  References  

Serway, Raymond A. and Jerry S. Faugh. 2012. Physics. USA: Holt  Giancoli, Douglas C. 2013. Physics: Principles with Applications 7th Edition. New Jersey:                       

Pearson  Hugh D. Young, et al. 2012. Sears and Zemansky’s University Physics with Modern                         

Physics 13th Edition. California: Pearson Education Inc.  The Physics Classroom. “Reflection and the Ray Model of Light.” Accessed May 1,                         

2017 at http://www.physicsclassroom.com/class/refln  Mcdaniel College. “Convex and Concave Mirrors Activity.” Accessed May 2017 at                     

http://www2.mcdaniel.edu/Physics/LC%20Final%20version/Activity%2010%20-%20Results.doc. 

       

 

Copyright © 2018 Quipper Limited 55 

Page 56: Unit 8 Reflection of Light in Mirrors

 

 

 

  Answer Key 

Lesson 8.2: Convex Mirrors 

Let us Practice  1. The image will form at the back of the mirror. 2. The ray diagram is shown below. 

 3. The image is formed at the back of the mirror. It appears upright, diminished                           

(smaller) and it is a virtual image.  

Lesson 8.3: Mirror Equation 

Let us Practice  1. The mirror is a plane mirror. It has no focal point. 2. The image will form behind the mirror at a distance of 1.67 meters. 3. The image will form behind the mirror at a distance of 0.55 m. 4. The magnification is 1. It is a plane mirror. 5. The object was placed 60 cm away from the mirror. 6. Dave’s image is 0.52 m away from the mirror. 

 

Lesson 8.4: Concave Mirrors 

Let us Practice  1. The diagram is shown below.  

 

Copyright © 2018 Quipper Limited 56 

Page 57: Unit 8 Reflection of Light in Mirrors

 

 

 2. The diagram is shown below.  

 3. Since the focal point is very small compared to the distance of the person,                           

you consider this to be a case where the object is at infinity distance as                             shown in the diagram below. 

 

 

Copyright © 2018 Quipper Limited 57