unit 2 why life on earth is possible

56
Unit 2 Why Life on Earth is Possible Table of Contents Introduction 3 Essential Questions 4 Review 4 Lesson 2.1: The Origin of Planet Earth 5 Objectives Warm-up Learn about It Key Points Web Links Check Your Understanding Challenge Yourself 5 5 7 11 12 12 13 Lesson 2.2: Water: The Medium of Life 15 Objectives Warm-up Learn about It Key Points Web Links Check Your Understanding Challenge Yourself 15 15 17 21 22 22 24 Lesson 2.3: Sun as the Main Source of Energy 25 Objectives Warm-up Learn about It Key Points Web Links Check Your Understanding Challenge Yourself 25 26 27 33 33 34 35

Upload: others

Post on 23-Dec-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Unit 2 

Why Life on Earth is Possible

Table of Contents Introduction  3 

Essential Questions  4 

Review  4 

Lesson 2.1: The Origin of Planet Earth  5 

Objectives Warm-up Learn about It Key Points Web Links Check Your Understanding Challenge Yourself 

5 5 7 

11 12 12 13 

Lesson 2.2: Water: The Medium of Life  15 

Objectives Warm-up Learn about It Key Points Web Links Check Your Understanding Challenge Yourself 

15 15 17 21 22 22 24 

Lesson 2.3: Sun as the Main Source of Energy  25 

Objectives Warm-up Learn about It Key Points Web Links Check Your Understanding Challenge Yourself 

25 26 27 33 33 34 35 

 

 

Lesson 2.4: Earth’s Atmosphere  36 

Objectives Warm-up Learn about It Key Points Web Links Check Your Understanding Challenge Yourself 

36 36 40 46 47 47 49 

Laboratory Activity  50 

Performance Task  52 

Self Check  53 

Key Words  54 

Wrap up  55 

Photo Credits  55 

References  55 

 

Copyright © 2018 Quipper Limited 2 

Do you have a garden at home? Our moms usually have a green thumb, so they are                                 typically the one in charge of the garden. What if your mom bought a new plant but                                 she will not be around for days, and you were asked to take care of this plant? How                                   are you going to make this plant survive? The first thing that you need to do is to                                   expose it to an area where the plants will receive enough sunlight and air. The next                               important thing is to water them every day. What if you failed to do these two                               important things? The result will be a reprimand from your mom because you                         made her plant wilt.  

Sunlight, air in the atmosphere, and water are the basic things for a plant to                             survive. Without plants, animals and other organisms that depend on them will                       eventually diminish or even die. In the case of humans and other life forms,                           sunlight, air and water are also needed for survival. Without these three, life is not                             possible here on Earth.  

Copyright © 2018 Quipper Limited3 

 

 

At the end of this unit, you should be able to answer the following questions. 

● What makes sunlight, air, and water essential for life on Earth to exist? ● Is there an infinite supply of sunlight, air, and water?  ● Can human activities affect the supply of sunlight, air, and water? ● What can we contribute to conserve these three resources? 

 

● There are different theories on the origin of the universe. These are the big                           bang theory, oscillating universe theory, nebular theory, and encounter                 theory.  

○ The big bang theory suggests that the universe started as a                     “singularity”— an area predicted to be in the core of a black hole with                           very high temperature and density 

○ The oscillating universe theory discusses that the universe is                 expanding and will contract once all the energy after the big bang has                         been used up, only to expand again once it approaches the point of                         singularity 

○ The nebular theory explains that the solar system originated from a                     nebula — a cloud made up of dust and ionized particles. 

○ The encounter theory proposes that the planets formed from the                   material ejected from the sun during an encounter with another                   celestial object.

 

 

Copyright © 2018 Quipper Limited 4 

 

 

 

  Have you ever built a snowman? Whether you tried it yourself or just watched it                             from a movie, the idea of making one is simple. You just roll a piece of snow on                                   your hand to form a sphere. Then, put it back to the ground and roll it. Since the                                   snow is likely to stick to itself, your small sphere can grow as big as you are by                                   accumulating snow from the ground. This is also the same thing that happens in                           the formation of planets. Before the solar system is formed, stars and planets exist                           in a massive cloud of dust and gas. These fragments of dust and gas start to bump                                 into each other forming a huge piece of matter. This collision is the start of the                               process of accretion. How does accretion forms the planets?  

 Formation of Earth

 Materials: 

● ball ● string ● color coded cards with numbers written on it. 

○ black = 6 ○ red = 5  ○ yellow = 3 ○ brown = 1  ○ blue = ½ 

 

 

Copyright © 2018 Quipper Limited 5 

 

 

Procedure: 1. Use a string to hang the ball on the ceiling. Make sure that the ball is around                                 

3 feet above the ground. This ball represents the particle with the most                         density and will draw another particle towards it. 

2. Assign one student to take a video of a bird's eye view. The video will be                               watched by all students after the activity.  

3. Each student should receive one color card. Then, students will move at a                         random position surrounding the ball. Each student represents a particle                   having its own gravity. The arrangement of the particles from heaviest to                       lightest is: black - red - yellow - brown - blue. Remember that the ball is the                                 heaviest and densest. It tends to pull the kids towards it and towards each                           other.  

4. Students will now move towards the ball depending on the number of steps                         written on their card. Make sure that each step will be from heel to toe. If                               they hit another student while taking steps toward the ball, they will combine                         to create a larger particle by getting the sum of the number written on their                             card. For example, a student with a yellow card (3) bumps into a student                           with a brown card (1), together they will move 3 + 1 = 4 steps.  Note: The ball's gravity is so strong that each student representing a particle                         wants to put one hand on the ball. If a student cannot reach the ball, that                               student can just put their hand on the shoulder of the person touching the                           ball. Take note that the students touching the ball directly forms the first                         layer. The second layer is formed by the students who are touching the                         shoulders of the person that is touching the ball directly. If the shoulders of                           the students in the first layer are full, other less massive students can just                           touch the shoulders of those students in the second layer and so on. 

 5. Stop when you are attached to the ball already.  6. Watch the video recorded to know what is really happening. 

 Guide Questions: 

1. What is the shape formed after the particles, which is represented by                       students, were pulled towards the ball?  

2. What is the composition of the formed inner layer? outer layers? 3. What is the relationship of the particle size and the gravitational pull? 4. How can you relate this activity to Earth’s formation? 

  

 

Copyright © 2018 Quipper Limited 6 

 

 

 In a carnival or fair, there is usually a man with a cotton candy machine. When you                                 have seen them making one, you can observe that sugars tend to stick to itself as it                                 spin in the machine and form a large cotton candy. Planet formation is similar to                             this. The accumulation of small pieces of dust forming huge lumps of matter is a                             process known as accretion.  Accretion happens when gravity attracts tiny bits of matter towards an object. This                         results in a gradual increase of the object’s size. In relation to the solar system                             formation, the objects increase its size until it turn into planets and stars. As the                             objects grow bigger, it pull more fragments of matter due to stronger gravitational                         pull.  

   

   

Fig. 1. Steps in accretion.  

 

Copyright © 2018 Quipper Limited 7 

 

 

As shown in Fig. 1, accretion happens in four steps. First, clumps of dust grains                             collide forming planetesimals and eventually turn into protoplanet as more                   planetesimals are attracted. A protoplanet is a planetary embryo that consists of                       collection of matter, from which a planet is formed.  There are two hypotheses on how the structure of Earth was formed which both                           involves accretion: homogeneous and heterogeneous accretion hypotheses.  Homogeneous Accretion Hypothesis The homogeneous accretion hypothesis states that the formation of Earth began                     after the condensation of fine particles of the primitive nebula about 4.6 billion                         years ago. When these particles accreted, they formed a homogeneous primordial                     Earth. Thus, early Earth had a uniform solid composition. Its primary components                       were iron, magnesium, nickel, silicates, and some radioactive elements such as                     uranium and thorium. Due to gravitational contraction and decay of radioactive                     elements, the temperature of early Earth increased. Iron and nickel melted, and                       they sank towards the center because of its high density. On the other hand, less                             dense silicates were displaced, and moved upwards.  In this hypothesis, it took many years for iron and nickel to accumulate and reach                             the center of about 4000 miles deep. During this time, Earth’s surface experienced                         turmoil, violent earthquakes, continual volcanic eruptions, and covering of the                   surface with flowing lava. Eventually, iron and nickel accumulated and formed                     Earth’s core. After cooling down, a thin layer of solid rock formed the crust including                             the continental and ocean basins. In between the core and the crust is the mantle,                             which is made up of semi-molten silicate rocks and other minerals.  

 Fig. 2. Steps in homogeneous accretion. 

 

 

Copyright © 2018 Quipper Limited 8 

 

 

Fig. 2 shows a summary of the homogeneous accretion hypothesis. First, similar                       elements attached to each other, forming a solid mass. Second, particles were                       melted due to the heat produced in the process. Lastly, heavier elements descend                         to the center due to gravity, forming the solid core of Earth.   

  Heterogeneous Accretion Hypothesis The heterogeneous accretion hypothesis states that the core has formed at the                       same time as Earth. Therefore, early Earth had its basic layered structure with core,                           mantle, and crust.  According to this theory, as the nebula cooled down, its particles have condensed                         depending on their condensation points. Oxides of aluminum and calcium                   condensed first, followed by iron and nickel. When the nebula cooled further, the                         silicates condensed. The condensed particles collided with each other and accreted.                     The formed particles during the initial stage of condensation accreted first.                     Following this, aluminum and calcium oxides accreted first then followed by iron                       and nickel to form Earth’s core. The outermost layer is composed of silicates, as                           well as volatile particles including water.  

 Fig. 3. Steps in heterogeneous accretion. 

 

Copyright © 2018 Quipper Limited 9 

 

 

Fig. 3 shows a summary of the heterogeneous accretion hypothesis. First, particles                       of metal attach with each other first, forming Earth’s core. As it cools further, lighter                             elements attached to this core.  

 

  Evidence and Loopholes of the Two Hypotheses  Table 1. Difference of Homogenous and Heterogenous Accretion Hypothesis. 

  Homogeneous Accretion Hypothesis 

Heterogeneous Accretion Hypothesis 

Main Point  Earth accreted from materials of the same composition after condensation. Accretion was followed by differentiation. 

Earth accreted during condensation, forming a differentiated planet as it grew in size. 

Supporting Statements 

The homogeneous accretion hypothesis provides a mechanism that explains the presence of volatile elements in the core. It also provides an explanation of the heat source for early mantle melting and formation of early continents. 

The heterogeneous accretion hypothesis qualitatively explains the density differences among terrestrial planets (Mercury, Venus, Earth, and Mars). Also, it can explain the abundance of elements such as osmium, iridium, ruthenium, and rhodium in the mantle. 

Loopholes  The hypothesis cannot explain the abundance of elements such as osmium, iridium, ruthenium, and rhodium in the mantle. 

Accretion must be very fast (103 to 104 years for completion). This rate does not coincide with the occurrence of large impact craters. Also, the abundances 

 

Copyright © 2018 Quipper Limited 10 

 

 

of iron, calcium, titanium, and aluminum do not coincide with what was predicted by the theory. 

 

  The more commonly accepted postulate is the homogeneous accretion hypothesis.                   Most materials that formed early Earth homogeneously accreted after their                   complete condensation. After the formation of early Earth, collisions with                   meteorites and comets resulted to the presence of volatile elements on the surface.  Earth is considered as a dynamic planet. It continuously changes ever since its                         formation 4.6 billion years ago. Through time, several changes happened in the                       geographic distribution of continents and composition of the atmosphere.  

  

● Accretion happens when gravity attracts tiny bits of matter towards an                     object. This will result to gradual increase of the object’s size. 

● Homogeneous accretion is when Earth accreted from materials of the same                     composition after condensation. Differentiation followed accretion in the               process. 

● Heterogeneous accretion is when Earth accreted during condensation,               forming a differentiated planet as it grew in size. 

  

 

Copyright © 2018 Quipper Limited 11 

 

 

For further information, you can check the following web links: 

 

● Watch this video to visualize how the solar system was formed.  The Daily Conversation. 2014. ‘The Formation of the Solar System in 4K.’ https://www.youtube.com/watch?v=x1QTc5YeO6w&t=25s  

 

● To deepen your knowledge on accretion, watch this short video                   clip.  Teach Astronomy. 2010. ‘Teach Astronomy - Accretion.’ https://www.youtube.com/watch?v=ynS3or1-xvM  

 

● Explore the solar system by clicking this interactive site.  Space Science Institute. 2014. Build a Solar System.’ http://www.alienearths.org/online/starandplanetformation/planetfamilies.php  

 

 A. Arrange the following events in order. Write numbers 1 to 5 where 1 indicates                           

the first event that occurs, 2 is the second and so on.   

Homogeneous accretion 

_______________  Iron and nickel melted, and they sank towards the center                   because of their high density. 

_______________  Condensation of fine particles of the primitive nebula. 

_______________  Due to gravitational contraction and decay of radioactive               elements, the temperature of early Earth increased. 

_______________  Less dense silicates were displaced, and they moved upwards. 

_______________  Particles accreted forming a homogeneous primordial Earth. 

 

 

Copyright © 2018 Quipper Limited 12 

 

 

Heterogeneous accretion 

_______________  The condensed particles collided with each other. 

_______________  Condensation of oxides of aluminum and calcium followed by                 iron and nickel. 

_______________  The nebula cooled further. 

_______________  Condensation of silicates. 

_______________  Accretion of aluminum and calcium oxides accreted followed               by iron and nickel forming Earth’s center core. 

 B. Write true if the statement is correct. Otherwise, write false if incorrect. 

1. Accumulation and attachment of particles to an object is known as                     condensation. 

2. Accretion is a term describing sticking together of huge particles to an                       object. 

3. According to homogeneous accretion hypothesis, early earth had its basic                   layered structure.  

4. In homogeneous accretion, the early earth’s temperature increased               because of gravity and radioactive decay of elements. 

5. Elements with lower density sank towards the center of Earth.  6. According to heterogeneous accretion hypothesis, the core has formed at                   

the same time as Earth. 7. The outermost layer of Earth is composed of iron and nickel. 8. Earth is considered a dynamic planet. 9. The presence of volatile elements in the core is explained by homogeneous                       

accretion hypothesis. 10. As the object increase in size, the gravitational pull decreases. 

  

 Answer the following. Limit your answer in 2 to 3 sentences.  

1. Make an analogy showing the process of accretion. 2. Discuss the basic steps in accretion. 

 

Copyright © 2018 Quipper Limited 13 

 

 

3. If you were shown two models of accretion hypothesis, how could you distinguish one from the other?  

4. In your own opinion, which accretion hypothesis best explains the formation of Earth? 

5. What are the pros and cons of each accretion hypothesis? 

 

Copyright © 2018 Quipper Limited 14 

 

 

 

  Have you heard of a fireproof balloon? Most of us know that when an inflated                             balloon is near a source of heat, it will explode immediately. Therefore, making it                           fireproof is a nice trick. You don’t need any complicated materials for you to be able                               to do this trick. Just pour water into the balloon before you inflate it. Then, place the                                 part of the balloon with water on the source of heat. Those who are not familiar                               with the properties of water will be amazed because the balloon will not explode.                           What properties of water made this trick possible?

 Measuring the Heat Capacity of Sand and Water

 Materials: 

● beaker ● water ● sand ● metal cup 

● lamp  ● thermometer ● weighing scale ● graduated cylinder 

 Procedure: 

1. Obtain the density of the 50 mL water and 50 mL sand. a. Obtain the mass of an empty graduated cylinder.  b. Transfer water until it reaches the 50 mL mark of the graduated                       

cylinder.  c. To obtain the mass of water, subtract the mass in 1b from 1a. 

 

Copyright © 2018 Quipper Limited 15 

 

 

d. Get the density of water by dividing mass by volume.  e. Repeat steps 1a to 1c using sand. 

2. Pour the 50 mL water and 50 mL sand into two separate metal cups.  3. Using a thermometer, measure the initial temperature in each cup. Record                     

the measurement on the table provided.  4. Place the two metal cups directly under a lamp. Make sure that each cup                           

receive equal amount of light.  5. Record the temperature of each metal cups every minute for 5 minutes.                       

Record the measurement on the table provided. 6. After 5 minutes, turn off the lamp. Continue recording the temperature every                       

minute for another 5 mins. Record your data.   Sample Data Table: 

Time  (in minutes) 

Temperature (oC) 

Water  Sand 

     

     

     

     

     

     

     

 Guide Questions: 

1. Heat capacity is the amount of heat needed to increase the temperature of a                           substance by one degree. In the activity, which has higher heat capacity,                       water or sand? Explain. 

2. Recall the obtained density for water and sand. What is the relationship of                         heat capacity and density? 

3. Which material had the highest change in temperature after exposure to                     heat? 

4. Which material cools down the fastest? 

 

Copyright © 2018 Quipper Limited 16 

 

 

 Earth is also known as the blue planet because two-thirds of it is covered by water.                               Even it is abundant, humans should still conserve and not abuse water resources.                         Conservation of water resources is important because all life forms depend on                       water in various ways such as drinking, irrigation, food preparation, hygiene,                     watering plants, and many more.   It is undeniable that water plays an important role for all living organisms in the                             planet. Since the prehistoric stage, human beings depend on water for the                       development. Therefore, life is not possible on Earth without water.   Hydrosphere The water environment on Earth is known as the hydrosphere. At present, all                         water on Earth (water vapor, liquid water, and ice) comprise the hydrosphere. It                         includes all bodies of water such as oceans, lakes, rivers, and marshes. Clouds,                         snow, glacier, and rain are also part of the hydrosphere. Hydrosphere is comprised                         of 97.5% saltwater and 2.5% freshwater.  

  

Fig. 4. World water distribution.  

 

 

Copyright © 2018 Quipper Limited 17 

 

 

Saltwater As the name implies, salt water is composed of certain amount of salt. Saltwater                           comprises the oceans and seas. The ocean houses many species of marine life and                           diverse mineral resources. If you are fond of diving, you know how much diversity is                             there under the sea. A lot of organisms depend on saltwater for survival such as                             saltwater fishes and other marine invertebrates. Since some people are attracted to                       the wonder of the sea, some wants to keep saltwater organisms in their aquarium.                           If you are one of these people, you should know that utmost care is needed since                               marine animals are sensitive to the quality of water.   Freshwater Contrary to the popular belief that the freshwater is devoid of salt, freshwater still                           has small amount of salts but in very low concentrations. Freshwater can be                         present in the form of rain and snow, and it can even be found in permanently                               frozen soil known as permafrost. It is commonly stored in rivers, streams, ponds,                         lakes, marshes, glaciers, and polar caps.   Despite the abundance of water on earth, only a small amount of Earth’s water is                             accessible as freshwater. It only accounts for 2.5% of the total water on Earth. Out                             of this total percentage, only 1% of freshwater is potable. This percentage will be                           constant since water is continually recycled through the atmosphere. However,                   increasing population yields to growing competition on clean water resource.    Properties of Water That Enable Existence of Life Water provided optimum environment for the existence of the first life forms on                         Earth. Water dissolved early Earth molecules which reacted and formed more                     complex molecules. Water has the right density, transition temperatures, and heat                     capacity that enable existence and perpetuation of life in the planet.  Density Density is measured as mass per unit of volume (in g/cm³). The density of water                             changes with several factors such as temperature and salinity. Water is densest at                         3.98°C and is least dense at freezing temperature.   Ice floats on the surface of liquid water because ice has a lower density. Ice                             insulates the underlying liquid and prevents the liquid from further freezing. If ice                         sinks when frozen, then the surface of the liquid water will freeze and sink again                             until such point that all water will be frozen, making chemical reactions impossible.   

 

Copyright © 2018 Quipper Limited 18 

 

 

When the lakes start to freeze during winter, people can skate on that frozen lake. If                               ice doesn’t have low density which enables it to float, all organisms living in the lake                               will be dead.  

 Fig. 5. A frozen lake. 

 Transition Temperatures All life forms are composed of cells in which their cell membrane separates them                           from the environment. The cell membrane is important to selectively take in                       important substances and prevent toxic products to go in. In this case, the                         consistency of water in maintaining liquid form at room temperatures is important                       as it allows flow and transfer of substances from the cell to its environment and                             vice versa.  Heat Capacity When you go to the beach especially on a hot day, you will notice that the sand                                 heats faster than the sea. This is because water needs a higher amount of heat                             before its temperature is raised by one degree. This high heat capacity of water is                             also the reason why it is important in vehicle engines. It is an excellent coolant since                               high amount of heat energy can be absorbed without getting too hot. In addition,                           this property is the reason why the fireproof balloon trick is possible. Unlike the air                             in the balloon, the water inside needs higher amount of heat before its                         temperature is increased causing the explosion of balloon.   The water’s high heat capacity is important because, without this property, the                       atmosphere will be extremely cold during winter and extremely hot during                     

 

Copyright © 2018 Quipper Limited 19 

 

 

summer. Moreover, fishes will not survive if bodies of water gets hot quickly. Most                           importantly, cells in our bodies are composed of mostly water that allows the                         maintenance of constant temperature intracellularly. Therefore, if water doesn’t                 have a high heat capacity, our temperature can get too high quickly which can be                             highly detrimental to most organisms.   

  Hypothesis on the Origin of Water on Earth The prevailing hypothesis on the origin of water on Earth suggests that water came                           from comets that collided with Earth. In 2000, scientists investigating LINEAR S-4                       comet had discovered that water from the comet had the same isotopic                       composition as the water in the seas. (Recall that isotopes are atoms with the same                             number of protons but different number of neutrons.)  Other studies suggest that water was already present within Earth since formation                       as volatiles trapped in magma, and manifested as liquid water during degassing                       after the crust had formed. The truth may be a mixture of both theories.  Uses of Water in Modern Civilizations In modern civilizations, water has a variety of uses. Water is commonly used in                           agriculture for the irrigation of crops. About 70% of global freshwater use is for                           agricultural purposes. For industrial purposes, about 20% of water is used globally.                       Every product that is manufactured utilizes water throughout the production                   process such as fabricating, washing, cooling, transporting a product, integrating                   water into a product, and sanitizing the manufacturing facility. For domestic                     purposes, about 10% of freshwater is used for drinking water, washing dishes,                       brushing teeth, and bathing. As shown in Fig. 6, water usage for different purposes                           varies among countries.   

 

Copyright © 2018 Quipper Limited 20 

 

 

 Fig. 6. Global water use 

 

  

  

● Hydrosphere is the water environment on Earth. It is comprised of 97.5%                       saltwater and 2.5% freshwater. 

● Salt water is composed of certain amount of salt. It comprises the oceans                         and seas. 

● Freshwater has still amount of salts but in very low concentrations.                     Freshwater can be present in the form of rain and snow, and it can even be                               found in permanently frozen soil known as permafrost. It can also be stored                         in rivers, streams, ponds, lakes, marshes, glaciers, and polar caps. 

● Water has the right density, transition temperatures, and heat capacity                   that enable existence and perpetuation of life. 

● The prevailing hypothesis on the origin of water on Earth suggests that                       water came from comets that collided with Earth. Other studies suggest                     that water was already present within Earth since formation as volatiles                     

 

Copyright © 2018 Quipper Limited 21 

 

 

trapped in magma, and manifested as liquid water during degassing after the                       crust had formed. 

● About 70% of global freshwater use is for agriculture. For domestic purposes,                       about 10% of freshwater is used for drinking water and bathing. For                       industrial purposes, about 20% of water is used globally. 

 

 For further information, you can check the following web links: 

 

● Play this interactive game to know more on using water wisely.   Water Use It Wisely. n.d.. ‘Tip Tank Game.’ https://wateruseitwisely.com/tip-tank-game/  

 

● Do you want to know the current status of the Pasig river? Click                         this link to read an article entitled “The Water Quality of the                       Pasig River in the City of Manila, Philippines: Current Status,                   Management and Future Recovery”.  Gorme, et al. “The Water Quality of the Pasig River in the City of Manila, Philippines: Current Status, Management and Future Recovery.” Environ. Eng. Res.,15 no. 3 (2010), 173-179 

 

● Watch this short video clip for you to know why should we care                         about water? National Geographic. 2010. ‘Why Care About Water?”’ https://www.youtube.com/watch?v=Fvkzjt3b-dU  

 

A. Write F if the statement describes a freshwater and S if it describes a saltwater. 1. It is potable water 2. It comprises the oceans and seas. 3. It has very little amount of dissolved salt. 4. It comprises the rivers, streams, ponds, lakes. 5. It may cause dehydration if huge amounts are consumed. 6. It is characterized by huge amounts of salt present. 

 

Copyright © 2018 Quipper Limited 22 

 

 

7. It covers 2.5% of the hydrosphere. 8. It can be present in the form of rain, snow, and permafrost. 9. It houses many species of marine life and diverse mineral resources. 

10. It covers 97.5% of the hydrosphere.  B. Explain why the following situations are possible. 

1. 

 

frozen lake fishing 

2. 

 

different temperature of land and sea 

3. 

 

fireproof balloon 

 

Copyright © 2018 Quipper Limited 23 

 

 

4. 

 

frozen lake skating 

5. 

 

Saltwater fish die when transferred to freshwater.  

  

 Answer the following questions. Limit your answer in 2 to 3 sentences. 

1. Why does ice float on water? 2. What do you think will happen if water has low heat capacity? 3. In boiling water using a kettle, why does the kettle becomes hot faster than                           

the water? 4. What theory on the origin of water is more convincing to you? Why? 5. Earth has an abundant supply of water. If this is the case, why do some                             

individuals lack supply of clean drinking water?     

 

Copyright © 2018 Quipper Limited 24 

 

 

 

  Have you ever tried sunbathing? You might be one of those people who spend                           summer breaks going to the beach and do sunbathing. It is undeniably a nice way                             of relaxation and appreciation of nature. If sunbathing is a leisure for people, to                           plants, sunbathing is an important step to sustain life. In fact, plants have                         developed variety of ways to maximize the use of sunlight exposure while at the                           same time, preventing water loss.  It is undebatable that the sun provides each living thing with the essential                         necessities of life on Earth. How do humans obtain this life-sustaining                     nourishment? That's where photosynthesis, a process that involves the capture                   and use of the sun’s energy to create biological compounds, comes into place.                         Everything is related in the process. When the sun shines, plants capture sunlight                         and obtain carbon dioxide from the atmosphere and water in the soil. In return,                           plants produce sugar and oxygen that are essential for living organisms. Then, the                         cycle persists for as long as the sun shines.  The important role of the sun in photosynthesis is just one of the countless benefits                             that we can get from the sun. All life forms depend on the sun's warmth for                               survival. What would life be without the sun? Will there be life in the first                             place?      

 

Copyright © 2018 Quipper Limited 25 

 

 

 Understanding Albedo

 Materials: 

● black construction paper ● white construction paper ● scissors ● stapler ● desk lamp with 60 watt bulb ● 2 thermometers 

 Procedure: 

1. Fold the black construction paper twice. The first fold is crosswise while the                         next is lengthwise. Cut only one square out of the four squares formed. 

2. Fold the square into half twice more. Staple the two open edges to form a                             pocket.  

3. Repeat steps 1 to 2 but this time using a white construction paper. 4. The bulb end of each thermometer should be inside the pocket.  5. Place the pockets with thermometer directly under a lamp. Make sure that                       

each pockets receive equal amount of light.  6. Record the initial temperature of both pockets prior to turning on the lamp.                         

Write your observations on the initial temperature column. 7. Record the temperature again five times with a two-minute interval (if there                       

is enough time, record up to ten times). Write your observation on the table                           below. 

 Data and Results 

Surface Temperature (degrees Celsius) 

Initial  2 mins  4 mins  6 mins  8 mins  10 mins 

12 mins 

14 mins 

16 mins 

18 mins 

20 mins 

White                       

Black                       

  

 

Copyright © 2018 Quipper Limited 26 

 

 

Guide Questions: 1. Which pocket has the highest temperature after the time duration given?  2. The measurement of the amount of solar energy reflected off a surface is                         

termed as albedo. How is albedo measured in this activity? 3. In relation to activity, which has higher albedo, the black or white pocket? 4. How is the color related to temperature? Why? 

  

 On a hot sunny day, wearing a black clothing adds heat to your body than when                               you are wearing a light colored clothing. The science behind this is because of                           albedo. Albedo is the ability of a material to reflect light. Therefore, a high albedo                             means that a material can reflect light more than a material with low albedo. Black                             surfaces have low albedo since it absorbs more sunlight and its associated heat                         than the light colored surfaces.   Albedo can be measured on a scale of 0 to 1. Values closer to 0 means that a                                   material absorbs all the light while a value of 1 means that a material reflects all the                                 light. This is why black surfaces such as asphalt have values closer to 0 while light                               colored surfaces such as white paint or ice has values closer to 1.   

 Fig. 7. Albedo values.  

 

 

Copyright © 2018 Quipper Limited 27 

 

 

It is undeniable that sunlight and its associated heat is essential for organisms to                           function properly. This is true to most organisms especially to plants since it                         capture the sun's energy to produce food. However, too much heat is damaging.                         Therefore, using your knowledge of albedo might help to avoid too much heat                         exposure. An example is to paint the roof and wall of your house with a white color.                                 This helps in keeping your house cooler since white surfaces reflect more light.  

 Uses of Solar Energy The sun is the primary source of energy on Earth. This energy is required for almost all processes that take place within Earth’s atmosphere, hydrosphere, lithosphere,                   and biosphere.   

 Fig. 8. Importance of the sun on humans and other life forms.  

 Even before the modern civilization, sun is undeniably an essential part of human                         lives. Moreover, sun played a role in many mythologies and even systems of                         worship. Since people consider it as a bringer of light and life, sun has been the                               central deity of humankind. However, as time goes by, people no longer worship                         the sun, but its importance did not subside.   

 

Copyright © 2018 Quipper Limited 28 

 

 

Without the sun, plants cannot perform photosynthesis. This will have a domino                       effect since, without plants, herbivores that depend on them will diminish or even                         die. People who consume herbivores such as cows, will also be affected. In addition,                           sunlight converts molecule precursors in your skin to produce vitamin D, which is                         responsible for bone maintenance. 

 Solar energy also warms Earth. It is             one of the the driving forces of             weather and climate. The sun’s         energy is transferred across an         empty space or vacuum to Earth’s           surface through radiation.     Radiation is the transfer of heat           through electromagnetic waves.     This heat is essential in         regulating Earth’s temperature.  The abundance of solar energy will           be put into waste if we will not take                 advantage of it. Since it is a             renewable resource, supply of       solar energy will never run out. As             long as the sun shines, solar           energy is available for everyone to           utilize. Through advancement of       technology, people can now       harness solar energy by means of           solar panels. This is a significant           development since utilization of solar energy when compared to fossil fuels is                       better because it is cleaner and the cost of maintenance of equipment is minimal.   

 

 

Copyright © 2018 Quipper Limited 29 

 

 

 Earth’s Energy Budget Planning budget is important especially if you are the bread winner of the family.                           You need to ensure that your income will tally to the expenses spent and savings                             kept. This also holds true for Earth's energy budget. It needs to ensure that                           absorbed solar radiation is balanced to the radiated ones. Keeping Earth’s energy                       budget ensures that the average temperature on Earth remains stable and that life                         continues to exist.  Earth's albedo is 0.3. Thirty percent of the solar energy that reaches the surface of                             Earth is reflected back to space by the clouds, atmosphere, and light-colored areas                         (deserts and areas covered with ice and snow). The remaining 70% of the solar                           energy is absorbed by the atmosphere, land, and oceans. The absorbed energy                       drives wind and ocean currents. These currents distribute the heat throughout the                       planet since more sunlight shines on equatorial region than polar regions. All this                         solar energy absorbed by the atmosphere, air, land and oceans must be radiated                         back to space. Therefore, energy in should always equal to energy out.   

 Fig. 10. Earth’s energy budget. Thirty percent of the energy from the sun is reflected 

and scattered by clouds, atmosphere, and Earth’s light-colored surfaces.   

 

Copyright © 2018 Quipper Limited 30 

 

 

  Factors Affecting Earth’s Energy Budget There are certain factors that affect Earth’s energy budget such as the amount of                           light colored surfaces, amount of radiation received, Earth’s axial tilt, and the                       presence of greenhouse gases. Recall that light-colored areas enable the reflection                     of solar energy. Therefore, when the size of these areas is altered, then energy                           balance is also affected.   Energy balance can also be affected when the amount of radiation received by                         Earth from the sun changes. For instance, the changes in Earth’s orbit and axial tilt                             led to a series of ice ages over the last million years.   Earth’s axial tilt also affects the amount of radiation coming from the Sun.                         Throughout the year, the orientation of Earth toward the sun changes due to the                           23.5° vertical tilt of its axis, causing the position of the sun across the sky to wander                                 at about 47°. This change has a direct effect on the intensity of insolation.                           Insolation is the amount of solar radiation that reaches a given area. Simply put, it                             is the exposure to the sun’s rays. For instance, if the sun is located directly                             overhead, then the intensity of insolation is higher as compared when the sun’s                         altitude across the sky is about 45° wherein the sun’s rays are spread over a larger                               area. This explains why areas within or near the equator experience higher                       amounts of solar radiation, making the areas warmer.  Lastly, the energy balance is affected by the presence of greenhouse gases such as                           methane, nitrous oxide, ozone, water vapor, and carbon dioxide in the atmosphere.                       These gases trap solar energy which should have been reflected back to space. The                           increase of greenhouse gases would mean that more energy is trapped, and some                         energy are re-emitted in all directions, thus, heating Earth. This heating                     phenomenon is known as the greenhouse effect.  

 

Copyright © 2018 Quipper Limited 31 

 

 

 Fig. 11. Greenhouse effect is one of the factors that affects Earth’s energy budget. 

 The energy of the sun is released through ultraviolet, visible, and infrared radiation. About 44% of the radiant energy emitted by the sun is in the form of visible light;                                 49% is in the form of near-infrared, far-infrared, microwave, and radio waves; and                         the remaining 7% accounts for ultraviolet radiation.  

 Fig. 12. The sun’s electromagnetic radiation. 

 

Copyright © 2018 Quipper Limited 32 

 

 

  

● Albedo is the ability of a material to reflect light. ● Earth’s energy budget ensures that the absorbed solar radiation is                   

balanced to the radiated ones. Keeping Earth’s energy budget ensures that                     the average temperature on Earth remains stable and that life continues to exist. 

● Thirty percent (30%) of the solar energy that reaches the surface of Earth is                           reflected back to space while the remaining 70% of the solar energy is                         absorbed by Earth’s surface. 

● The factors that affect Earth’s energy budget are the amount of light colored                         surfaces, amount of radiation received, Earth’s axial tilt and the presence of                       greenhouse gases. 

 

For further information, you can check the following web links: 

 

● Read this article entitled “On the Effects of Albedo Increase                   through Reflective Roofing on Philippine Urban Atmospheric             Temperature: Real-Time Parameter Inputs” to know more             about the effects of increasing the albedo.  Caraquil, et al. “On the Effects of Albedo Increase through Reflective Roofing on Philippine Urban Atmospheric Temperature: Real-Time Parameter Inputs.” Journal of Science, Engineering, and Technology. 4 (2016), 21-28.  

 

● Try this simple interactive scenarios to identify the answer to                   some “what if” scenarios in earth’s energy balance.  University Corporation for Atmospheric Research - Center for Science Education. 2015. ‘Earth’s Energy Balance.’ https://scied.ucar.edu/earths-energy-balance  

 

● Click this link to know more about the net metering scheme in the Philippines.   Fortunato Sibayan. n.d. ‘Net Metering.’ https://www.doe.gov.ph/sites/default/files/pdf/announcements/e-power_03_02_net_metering.pdf  

 

 

Copyright © 2018 Quipper Limited 33 

 

 

 

 A. Answer the following question. Use the illustrations below as a guide. 

 

  

1. What is the total percentage of solar energy reflected? 2. What type of surfaces reflect incoming solar energy? 3. What is the total percentage of solar energy absorbed? 4. Are all the energy absorbed radiated back to space?  5. How much energy is reflected by the atmosphere? Absorbed? 

 

  

 

Copyright © 2018 Quipper Limited 34 

 

 

6. What is the role of greenhouse gases? 7. What will happen if we keep on adding the production of greenhouse                       

gases? 8. If greenhouse gases are non-existent, what would be Earth's temperature? 9. What are the possible effects to the environment if Earth's temperature is                       

raised?  10. What can you contribute to reduce the amount of greenhouse gases? 

 B. Write true if the statement is correct. Otherwise, write false. 

1. Albedo is the ability of the material to absorb light. 2. High albedo means more light energy is reflected. 3. Black surfaces have an albedo value of 1. 4. Earth’s energy budget ensures that energy in is always balanced to energy                       

out.  5. When the size of the area of light surfaces, energy balance is also affected.  6. Earth's axial tilt affects the amount of sun's radiation.  7. Greenhouse gases help cools Earth. 8. Greenhouse effect is a phenomenon that involves the trapping of solar                     

energy by greenhouse gases. 9. Vitamin E which helps in bone maintenance can be obtained by exposure to                         

the sun. 10. People can harness solar energy by means of solar panels.  

 

 Answer the following questions. Limit your answer in 2 to 3 sentences. 

1. Compare the albedo values in Alaska and Sahara. Which do you think has higher albedo? Explain. 

2. What will be the effect to the ocean's temperature and ice formation during winter if the ocean's albedo decreases?  

3. Without greenhouse gases, earth will be as cold as the moon. Why is this possible?  

4. How is the greenhouse effect on Earth similar to the greenhouse where plants are grown? 

5. What would life be without the sun?    

 

Copyright © 2018 Quipper Limited 35 

 

 

 

  When you do star gazing, you are surely amazed of the wide space of the sky that                                 looks never ending. You will observe not only stars but also airplanes passing by                           and if you’re lucky enough, shooting stars as well. Most people love to see shooting                             stars because they say that wishes do come true when you see one. Other people                             don’t have patience to wait for shooting stars. Instead, they just write their wishes                           on a piece of paper and tie it on the string of a balloon hoping that when the                                   balloon flew away, it will reach the heaven.   All of these objects, the sky, shooting stars, airplanes and balloons reach different                         portion of the atmosphere. What are the different layers of the atmosphere and                         where these layers could be found? 

 Atmospheric Gases

 Materials: 

● printable grid paper (100 × 100 grids) ● colored pens 

 Procedure: 

1. Print out three copies of the 100 × 100 grid paper. 2. Label the first grid paper as "Planet A". The second grid paper as "Planet B"                             

and the third as "Planet C".  

 

Copyright © 2018 Quipper Limited 36 

 

 

3. Color the squares on each grid paper based on the legend below: ● Planet A 

○ Red = 96 large blocks and 50 small blocks ○ Blue = 3 large blocks and 50 small blocks 

● Planet B ○ Red = 3 small blocks ○ Blue = 78 large blocks ○ Yellow = 21 large blocks ○ Green = 90 small blocks 

● Planet C ○ Red = 95 large blocks ○ Blue = 2 large blocks and 70 small blocks ○ Yellow = 13 small blocks ○ Green = 1 large block and 60 small blocks 

 4. Take note of the following before you answer the questions that follow: 

● Each large block is equal to 1% or 1 out of 100 parts.  ● Each small block within the large block is equal to 0.01% or 1 out of                             

10 000 parts.  

 For example, 50 large colored blocks means 50%, 8 small colored blocks  means 0.08 %, and 90 colored small blocks means 0.9%. 

 

Copyright © 2018 Quipper Limited 37 

 

 

Sample Grid Paper Template (100 × 100)  

 

 

Copyright © 2018 Quipper Limited 38 

 

 

 Guide Questions: 

1. Describe the atmospheric conditions of each planet by writing the percent                     composition of each atmospheric gases present. Write your answer on the                     table provided. Use the following legend to write the correct answer.  

Planets ● Planet A = Venus ● Planet B = Earth ● Planet C = Mars 

Atmospheric Gases ● Red = carbon dioxide ● Blue = nitrogen ● Yellow = oxygen ● Green = argon 

 

Atmospheric gases 

Percent Composition of Atmospheric Gases  in Three Planets 

Venus  Earth  Mars 

carbon dioxide       

nitrogen       

oxygen       

argon       

 2. How is the atmosphere of Venus and Mars similar? 3. Differentiate the percent composition of atmospheric gases in Venus and                   

Mars to that of Earth. 4. How does the percent composition of the atmospheric gases on Earth makes                       

it habitable?  

 

Copyright © 2018 Quipper Limited 39 

 

 

 As compared to the apple and its skin, Earth is like the apple's flesh while the                               atmosphere is the thin skin. This thin layer is what protects us from harmful                           infrared rays and ultraviolet rays from the sun. It is composed of a mixture of gases                               with their unique physical and chemical properties.   The bulk of the atmospheric composition of Earth is nitrogen and oxygen in which                           together comprises 99%. Only 0.9% is argon and the remaining 0.1% is trace gases.                           Carbon dioxide and ozone, although available in minute amounts, are very                     essential to life on Earth.   

  

Fig. 13. Atmospheric composition of Earth.  

Layers of the Atmosphere Despite being thin, atmosphere could still be divided into layers. The layers are                         troposphere, stratosphere, mesosphere, thermosphere, and exosphere.   Troposphere The troposphere is the layer closest to Earth. The term troposphere comes from                         the Greek word “tropos” which means change. It is called such because of the                           persistently changing weather in this layer of the atmosphere. Its thickness varies                       depending on your location on Earth, but the range is between 5 and 9 miles (8 and                                 14 km). Temperature gets cooler as you go higher in the atmosphere.    

 

Copyright © 2018 Quipper Limited 40 

 

 

This lowest layer is where humans live. It also regulates weather and climate. It                           holds nearly all water vapor in Earth’s atmosphere, and is characterized by                       relatively high atmospheric pressure which allows high concentrations of oxygen                   ideal for life.  

 Fig. 14. Layers of the atmosphere. 

 Stratosphere The stratosphere is the next layer which is about 35 km thick. As opposed to the                               troposphere, the temperature in this layer gets warmer as you go higher.   An important feature of this layer is the ozone layer which protects Earth from the                             sun’s harmful UV radiation. However, insulating foams, air conditioners,                 refrigerators and other things manufactured by industries that use                 chlorofluorocarbons (CFCs) which causes ozone depletion. As CFCs reach the                   stratosphere, it will be broken down by the sun’s UV radiation releasing chlorine.                         These chlorine atoms react and destroy the ozone. A total of 100 000 ozone                           molecules can be broken apart by just a single chlorine atom.    

 

Copyright © 2018 Quipper Limited 41 

 

 

 Fig. 15. Ozone layer depletion. 

 In effect, depleted ozone causes more UV radiation to reach Earth’s surface. This                         extra radiation causes cataracts and skin cancer in humans. Animals and plants                       can be harmed as well.   

  The ozone found in the stratosphere is essential to life. However, ozones can be                           detrimental as well. These harmful ozones are found in the troposphere. When                       inhaled, ozones can irritate the lungs and breakdown lung tissues. Plants are also                         affected by this tropospheric ozone.  

 

Copyright © 2018 Quipper Limited 42 

 

 

 Fig. 16. Good and bad ozone.  

 

  Mesosphere The mesosphere comes from the word “meso” which means middle. This 35 km                         thick layer is termed as the coldest layer because it has a minimum temperature of                             roughly -85 degrees Celsius. The reason behind this low temperature is the                       lessened solar heat and high cooling due to carbon dioxide.  Meteor shower or also known as the shooting stars are meteors burning up in the                             mesosphere. This layer protects Earth from the impact of those space debris. The                         debris burns as a result of the frictional force between air and debris molecules.  

 

Copyright © 2018 Quipper Limited 43 

 

 

Thermosphere The thermosphere comes from the word “thermo” which means heat.                   Thermosphere is roughly 600 km thick and can a reach a temperature of about                           1500 degrees Celsius. Moreover, the thermosphere regulates temperature and                 filters X-rays and some ultraviolet radiation emitted by the sun. Another interesting                       fact is that the International Space Station orbits through this layer.  Exosphere The exosphere comes from the word “exo” which means outside. This 10,000 km                         thick outermost layer forms a boundary between Earth and space. Exosphere is                       very thick so going to space is really too far.   This farthest layer absorbs some radiation and protects the layers underneath. It                       contains hydrogen and helium. The air is almost similar to the vacuum in space                           because it is so thin.   

  Considering the climate, the most important layer of the atmosphere is the                       boundary layer composed of troposphere and stratosphere. The boundary layer is                     just next to Earth’s surface. The energy transferred from Earth’s surface in the form                           of conduction or even moisture from evapotranspiration stays within this boundary                     and is not transferred to higher atmosphere.  Characteristics of the Atmosphere that Enable Life on Earth The atmosphere is crucial in enabling and maintaining life on Earth. Without the                         atmosphere, Earth would look like the moon. There would be no life forms existing                           on Earth.  Atmospheric gases, such as carbon dioxide and oxygen, are needed by organisms.                       Carbon dioxide is used by photosynthetic organisms, such as plants and algae, to                         convert the energy from the sun to usable energy through the process of                         photosynthesis. On the other hand, oxygen is required by some living organisms                       

 

Copyright © 2018 Quipper Limited 44 

 

 

including humans for cellular respiration.  The ozone layer in the stratosphere is necessary in enabling life on Earth. Without                           this layer, harmful rays from the sun would reach the surface of Earth and prevent                             most organisms from surviving. Together with the oceans, the atmosphere keeps                     Earth’s temperature within the suitable range for life forms.  Atmosphere’s Role in the Hydrologic Cycle  Water is a renewable resource because it is continually circulated across Earth                       through a process known as the hydrologic cycle. Its three main important                       processes are evaporation, condensation and precipitation.  Hydrologic Cycle One important process of this cycle is evaporation. Evaporation is the process of                         converting liquid to gas. Water from the oceans, lakes, streams, rivers, and other                         bodies of water undergo this process, and it becomes atmospheric water vapor. In                         plants, instead of evaporation, the process of evapotranspiration takes place.  

 Fig. 17. Steps in the hydrologic cycle. 

 

 

Copyright © 2018 Quipper Limited 45 

 

 

The water vapor in the atmosphere is stored in the form of clouds and moisture                             (humidity). Cloud formation happens by converting water vapor to liquid form                     through a process called condensation.  Another part of the cycle is precipitation. It is the process of releasing water from                             the clouds in the form of rain, snow, sleet, or hail. It is the process of returning                                 water from the atmosphere back to Earth’s surface. Once returned to the surface,                         liquid water may runoff the surface into streams and reservoirs such as lakes and                           oceans. Water may then infiltrate the subsurface and be incorporated into the                       groundwater system. It may be consumed and stored in organisms, or trapped in                         glaciers.  The atmosphere is a crucial part of the water cycle. It serves as the reservoir of                               large amounts of water. The water cycle or hydrologic cycle describes the                       movement of water from one area to another by changing states―liquid to vapor                         to ice and back again. It is a never-ending cycle that has occurred for billions of                               years. All living things depends on this continuous cycle.  Therefore, the atmosphere is an efficient medium to move water around the globe.   

  

● The atmosphere is crucial in enabling and maintaining life on Earth. Without                       the atmosphere, Earth would look like the moon. There would be no life                         forms existing on Earth. 

● The bulk of the atmospheric composition is nitrogen and oxygen in which                       together comprises 99%. Only 0.9% is argon and the remaining 0.1% is trace                         gases. 

● The layers are troposphere, stratosphere, mesosphere, thermosphere, and               exosphere. 

○ Troposphere is where humans live. It also regulates weather and                   climate. 

○ Stratosphere is where the ozone layer that protects Earth from the                     sun’s harmful UV radiation is found. 

○ Mesosphere protects Earth from the impact of space debris. 

 

Copyright © 2018 Quipper Limited 46 

 

 

○ Thermosphere regulates temperature and filters X-rays and some               ultraviolet radiation emitted by the sun. 

○ Exosphere absorbs some radiation and protects the layers               underneath. 

● The atmosphere is an efficient medium to move water around the globe.   

For further information, you can check the following web links: 

 

● Watch this video clip by National Geographic to know more                   about Earth’s atmosphere and the gases essential to life. National Geographic. 2008. ‘Reveal Earth’s Atmosphere.’ https://www.youtube.com/watch?v=1YAOT92wuD8  

 

● Play this interactive game to test your knowledge on Earth’s                   atmosphere.  Brain Pop. n.d.. ‘Time Zone X: Earth’s Atmosphere.” https://www.brainpop.com/games/timezonexearthsatmosphere/  

 

● Play this interactive game to know more on the hydrologic cycle Field Day. n.d.. ‘Water Cycle Games’ https://www.brainpop.com/games/watercyclegame/  

 

 A. Identify what layer of the atmosphere could the following objects be found.  

1. air balloons 2. meteors 3. satellite 4. airplanes 5. ozone 

 

 

Copyright © 2018 Quipper Limited 47 

 

 

B. Identify the layer of the atmosphere being described in each item. Choose the                         answer from the box below. Write letters only. 

 

A. Troposphere B. Stratosphere C. Mesosphere D. Thermosphere E. Exosphere 

 1. It is the coldest layer of the atmosphere. 2. It is the layer where bad ozone is found 3. It is a layer that protects us from the sun’s harmful UV radiation. 4. It protects Earth from the impact of space debris. 5. It is the atmospheric layer where humans live. 

 C. Find ten atmospheric gases in the word search below. Then, write the hidden                         

message by using the leftover letters in order from left to right and top to                             bottom. 

 

K  R  Y  P  T  O  N  C  T 

H  A  E  M  E  X  S  A  O 

H  S  R  P  H  Y  E  R  R 

E  E  H  G  A  G  S  B  A 

L  N  W  I  O  E  H  O  C 

I  K  A  N  A  N  Y  N  M 

U  M  T  N  E  T  D  D  H 

M  E  E  I  I  G  R  I  N 

O  R  R  T  O  S  O  O  P 

H  E  V  R  H  R  G  X  E 

I  T  A  O  I  A  E  I  S 

T  H  P  G  E  M  N  D  O 

S  T  O  E  U  N  K  E  N 

O  W  R  N  E  O  N  N  X 

 

Copyright © 2018 Quipper Limited 48 

 

 

 Answer the following. Limit your answer in 2 to 3 sentences. 

1. What is the importance of atmosphere in the hydrologic cycle? 2. Cite at least three atmospheric gases and give its importance. 3. What will happen if there will be no more hydrological cycle? 4. Why is the tropospheric ozone considered as bad ozone? 5. Can you survive if you will go to mesosphere for days? Why or why not? 

 

Copyright © 2018 Quipper Limited 49 

 

 

 Activity 2.1 

Hydrologic Cycle Model  

Objectives At the end of this laboratory activity, the students should be able to: 

● build a model of the hydrologic cycle; and ● appreciate the importance of sun, water and atmosphere in making life 

possible on Earth.  Materials and Equipment 

● warm water ● blue food coloring ● small bowl ● plastic wrap ● rubber bands ● lamp or any light source ● clear container or plastic aquarium ● ziplock bag filled with ice ● ziplock bag containing sand, gravel or soil 

 Procedure 

1. Pour water in the clear container. The depth should be around 2 to 5 cm. Put                               some food coloring to make the water easier to see. 

2. Put the ziplock bag containing sand, gravel or soil on one end of the                           aquarium. Make sure that the bag is above the water level. 

3. Put a small bowl on top of the bag with sand, gravel or soil. 4. Cover the clear container with a plastic wrap. Use a rubber band to hold the                             

wrap in place. 5. Put the ziplock bag filled with ice on the plastic wrap. Position it on the part                               

where the bag of sand and small bowl is located.   

 

Copyright © 2018 Quipper Limited 50 

 

 

6. Turn on the lamp and focus it through the lid. Refer to the setup shown in                               the illustration below.  

 7. Observe what happens after few minutes. Record your observation. 

8. For the second setup, repeat step 1 to 5. Take note that this setup doesn’t need lamp. 

9. For the third setup, repeat step 2 to 6. Take note that this setup doesn’t have water inside the clear container. 

10. For the fourth setup, repeat step 1, 2, 3, 6. Take note that this setup doesn’t have a plastic wrap and ice.  

 Data and Results Table 1. Materials in the Experiment and its Counterpart in the Hydrologic Cycle 

Materials Used Bag of sand 

Water  Plastic wrap 

Ice   Lamp 

Counterpart in the Hydrologic Cycle 

             

 Table 2. Observations on the Four Hydrologic Cycle Setups 

  First setup  Second setup  Third setup  Fourth setup 

Observations       

        

 

Copyright © 2018 Quipper Limited 51 

 

 

 Guide Questions 

1. Which part of the activity simulated evaporation, condensation and                 precipitation? 

2. Is condensation possible without the ice? Why or why not? 3. Is water considered a renewable or non-renewable resource? Why? 4. What do you think is the importance of sun, water and atmosphere for                         

making the hydrologic cycle possible? 5. What would happen if hydrologic cycle doesn’t occur? 

  

 Life on Earth  Goal:   

● Your goal is to create a skit, poem, or song regarding the importance of Sun,                             water and atmosphere in making life possible on Earth. 

 Role:   

● You have been asked to be an actor or actress, poet or singer  Audience:  

● The target audience is a senior high school class.  Situation:  

● You need to showcase your talent to show appreciation to things that makes                         Earth habitable. 

 Product, Performance, and Purpose:  

● You will create a skit, poem, or song to show the importance of sun, water                             and atmosphere. 

● Your work should be accurate and entertaining.      

 

Copyright © 2018 Quipper Limited 52 

 

 

Standards and Criteria Your performance will be graded by the following rubric.   

Criteria  Below Expectations,  0% to 49% 

Needs Improvement 

50% to 74% 

Successful Performance 75% to 99% 

Exemplary Performance 

100% 

Preparedness  The group seems unprepared. 

The group needs more time to prepare. Some member doesn’t know their role and act with a script on hand. 

The group is well-prepared. Some member doesn’t know their role and act with a script on hand. 

The group is well-prepared. Each member knows their role and act without script on hand. 

Roles  The group members failed to stay in character and didn’t take the roles seriously. 

Most members of the group didn’t seem to take their roles seriously. 

Some members of the group didn’t seem to take their roles seriously. 

Excellent job! All members of the group stayed in character and took the roles seriously. 

Overall Performance 

The presentation is not entertaining and informative. 

The presentation is entertaining but fails to give accurate information 

The presentation is entertaining but seems to lack more information. 

The presentation is entertaining and informative. 

 Check the box if you agree on the following statements.  

Check  I can… 

   differentiate homogeneous and heterogeneous accretion hypothesis. 

   discuss why sun, water, and atmosphere is essential to make life possible on Earth. 

   enumerate ways on how to harness solar energy efficiently, conserve water wisely and reduction of greenhouse gases effectively. 

 

Copyright © 2018 Quipper Limited 53 

 

 

 

Accretion  It happens when gravity attracts tiny bits of matter                 towards an object. This will result to gradual increase of                   the object’s size. 

Albedo  It is the ability of a material to reflect light. 

Exosphere  It absorbs some radiation and protects the layers               underneath. 

Heterogeneous accretion  

It states that Earth accreted during condensation, forming               a differentiated planet as it grew in size. 

Homogeneous accretion  

It states that Earth accreted from materials of the same                   composition after condensation. Accretion was followed           by differentiation. 

Hydrosphere  It is the water environment on Earth. 

Mesosphere  It protects Earth from the impact of space debris. 

Stratosphere   It is where the ozone layer that protects Earth from the                     sun’s harmful UV radiation is found. 

Thermosphere  It regulates temperature and filters X-rays and some               ultraviolet radiation emitted by the sun. 

Troposphere  It is the atmospheric layer where humans live. It also                   regulates weather and climate. 

 

Copyright © 2018 Quipper Limited 54 

 

 

 Why Life on Earth is Possible

  

 Fig. 4. World water distribution via Wikimedia Commons.  Fig. 5. Frozen lake by Jeff Pang is licensed under CC BY 2.0 via Flickr  

 NaotatsuShikazono. 2012. Introduction to Earth and Planetary System Science: New                   

View of Earth, Planets and Humans,Germany:Springer Science & Business                 Media. 

 RenuAnand. 2016.The Story of Planet Earth,New Delhi: The Energy and Resources                     

Institute (TERI). 

 

Copyright © 2018 Quipper Limited 55 

 

 

 Ronald Martin. 2012. Earth's Evolving Systems: The History of Planet Earth,                     

Massachusetts: Jones & Bartlett Publishers.  Michael Pidwirny. 2016. Chapter 4: Solar Radiation and Earth: Single chapter from                       

the eBook Understanding Physical Geography, Our Planet Earth Publishing.  Rubin, Kenneth. 2016. Geochemistry Lecture 33 Accessed March 17, 2017.                   

https://www.soest.hawaii.edu/krubin/GG325/lect33.pdf.   

 

Copyright © 2018 Quipper Limited 56