unit 1 transistors, ujts and thyristors. unit 1: transistors, ujts and thyristors objectives:...

96
Unit 1 Transistors, UJTs and Thyristors

Upload: archibald-baker

Post on 19-Jan-2018

230 views

Category:

Documents


1 download

DESCRIPTION

1.1 Operating (Q) Point To design an amplifier: 1.DC & AC analysis 2.Operating Point in active region  by biasing circuits 1.Fixed bias 2.Emitter bias 3.Collector-to-base bias 4.Voltage divider bias with emitter bias

TRANSCRIPT

Page 1: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

Unit 1

Transistors, UJTs and Thyristors

Page 2: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

Unit 1: Transistors, UJTs and Thyristors

• Objectives:• Operating Point• CE configuration• Thermal runaway• UJT• SCR

Page 3: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

1.1 Operating (Q) Point

To design an amplifier:1. DC & AC analysis

2. Operating Point in active region by biasing circuits

1. Fixed bias2. Emitter bias3. Collector-to-base bias4. Voltage divider bias with emitter bias

Page 4: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

…selecting suitable Q point

Page 5: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

…selecting suitable Q point

• Point A no biasCut-off region

• Point B near to knee portion Do not allow more output swing

• Point C close to PD(max) curve Output’s +ve swing is limited

• Point D middle of active regionAllows +ve & -ve excursions of output

Page 6: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

1.2 CE configuration• Popular as provides considerable AV & AI

To learn:• Biasing Circuits:

1. Fixed bias2. Emitter bias (self bias)3. Voltage divider bias with emitter bias

• Analysis: DC, load-line

• merits & demerits

Page 7: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

05/06/23 10:33 AM Unit 1: Transistors, UJTs and SCR

7

fixed bias circuit• Simplest

• Biasing components:– 2 resistors (RB & RC)– Vcc

• BE junction FB by Vcc through RB (100s of kΩ)

• CB junction RB by Vcc through Rc (few k Ω)

Page 8: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

05/06/23 10:33 AM Unit 1: Transistors, UJTs and SCR 8

DC analysis

To get DC equivalent circuit:

Open Circuit all capacitors, and redraw the circuit

Page 9: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

05/06/23 10:33 AM Unit 1: Transistors, UJTs and SCR

9

…From fundamentals• VBE = VB – VE

Similarly• VCE = VC – VE

Next, by KVL to BE loop

VCC – IBRB – VBE = 0

VCC – VBE IB = ----------------- RB

Page 10: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

05/06/23 10:33 AM Unit 1: Transistors, UJTs and SCR

10

…But IC = β IB where β is transistor gain

VCC - VBE

IC = β ( ---------------- ) RB

VCC

IC = β ( ---------- ) -----(1) RB

Page 11: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

05/06/23 10:33 AM Unit 1: Transistors, UJTs and SCR

11

β VCC

IC ≈ ------------ RB

IC

Where β is transistor current gain = ------ IB

Page 12: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

05/06/23 10:33 AM Unit 1: Transistors, UJTs and SCR

12

Next, apply KVL to output loop,

VCC = ICRC + VCE

VCE = VCC – ICRC ----(2)

Page 13: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

Put Ic = 0 in eqn (2)∴ VCE = Vcc

Put VCE = 0 in eqn (2)∴ Ic = Vcc / Ic

05/06/23 10:33 AM Unit 1: Transistors, UJTs and SCR 13

Page 14: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

05/06/23 10:33 AM Unit 1: Transistors, UJTs and SCR 14

Page 15: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

05/06/23 10:33 AM Unit 1: Transistors, UJTs and SCR

15

• Q point is influenced by

– IB – base current– RC – collector resistance– VCC – supply voltage

Page 16: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

05/06/23 10:33 AM Unit 1: Transistors, UJTs and SCR

16

Page 17: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

05/06/23 10:33 AM Unit 1: Transistors, UJTs and SCR

17

Page 18: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

05/06/23 10:33 AM Unit 1: Transistors, UJTs and SCR

18

Page 19: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

05/06/23 10:33 AM Unit 1: Transistors, UJTs and SCR

19

Numerical example:

Find values ofICQ & VCQ

Find values ofIC & VCE,

forcing each value to zero,

each time

Page 20: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

05/06/23 10:33 AM Unit 1: Transistors, UJTs and SCR

20

Solution:

Page 21: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

05/06/23 10:33 AM Unit 1: Transistors, UJTs and SCR

21

• Thus,

ICQ = 1.43 mA & VCEQ = 9.28 V

Which are the coordinates of Q point

Page 22: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

05/06/23 10:33 AM Unit 1: Transistors, UJTs and SCR

22

Page 23: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

05/06/23 10:33 AM Unit 1: Transistors, UJTs and SCR

23

Page 24: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

Emitter bias / self bias configuration• Additional resistor RE, improves stability,as it produces negative feedback.

05/06/23 10:33 AM Unit 1: Transistors, UJTs and SCR

24

Page 25: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

DC analysis

• By KVL to input base loop,

VCC – IB RB – VBE – IE RE= 0

VCC – VBE

IB = -------------------- ----(1) RB + (β+1)RE

Page 26: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

neglecting VBE VCC

IB = -------------------- RB + (β+1)RE

Vin

Compare this equation with Iin = -------- Rin

Page 27: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

We get input resistance = RB + (β+1)RE

Next, applying KVL to output collector loop,

VCC – IC RC – VCE – IE RE = 0

VCE = VCC – IC (RC + RE) ------(2)

From basics, IC = IB + IEIB is << IE = IC

Page 28: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

…Also VE = IE RE = IC RE

From eqn. (1) & (2)

VCC – VBE

ICQ = β -------------------- RB + (β+1)RE

VCEQ = VCC – IC (RC + RE)

The coordinates of Q point

Page 29: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

Load line analysis

We have

VCE = VCC – IC (RC + RE)

Put IC = 0

VCE = VCC│IC = 0 is point of load line on x – axis (VCC, 0)

Page 30: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

For second point,

Put VCE = 0

VCC

IC = ---------------(RC + RE) VCE = 0

Page 31: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

…thus we have

on y- axis

(0, VCC/(RC + RE))

as another

point on load line.

Page 32: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

How stability increased:

VCC – VBE

ICQ = β -------------------- RB + (β+1)RE

VCEQ = VCC – IC (RC + RE)

Page 33: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

RE introduces negative (ac emitter) feedback, due to which• Stability of Av increases

How stability is improved by RE:

IEVE

VBE

IB

IE ≈ Ic IE = VE / RE

VCC = IB RB + VBE + VE

VBE = IB RBIB = β IB

Due to temperature or else, ICIC

Initial increase and later decrease proves that RE improves stability

Page 34: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

Small Signal Operation:

AC and DC Currents in an Amplifier:

IBQ

ib

IB = IBQ + ib

ieIEQ

IE = IEQ + ie

ICQ

ic

IC = ICQ + ic

Page 35: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

Numerical example:• Refer to figure. Find the values of RB, RC &

RB, given that IB=40µA, VE=2V, IC=4mA, VCE=12V & supply voltage VCC=15V. Assume silicon transistor.

Page 36: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR
Page 37: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

Numerical:

Page 38: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

Numerical:

Page 39: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR
Page 40: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

3. Voltage-divider-bias with emitter-bias configuration:

• Stability further improved, ( but gain decreases)

• Most commonly used configuration

• Gain can be improved by bypass capacitor, later studied.

Page 41: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

DC equivalent circuit:

To get DC equivalent circuit:

Open Circuit all capacitors,

and redraw the circuit

Page 42: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

DC analysis2 methods:

1. Accurate method (uses Thevenin’s theorem)

2. Approximate method

Page 43: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

1. Accurate Method:Using Thevenin’s Theorem:

DC Equivalent Circuit

Thevenin’s Equivalent Circuit

Redrawn showing Vcc

Page 44: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

Calculating RTH & VTH:RTH:

Identify the 2 points short circuit all DC voltages

RTH

Little consideration will show that –RTH is = parallel combination of RB1 & RB2

RTH = RB1 ║ RB2

Page 45: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

VTH:Consider the circuit, again –

VTH is nothing but – the voltage across the 2 points OR across RB2

RB2 VCC

VTH = ---------------- (RB1 + RB2)

VTH

Page 46: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

Now replace the base circuit with Thevenin’s equivalent circuit -

• Applying KVL to the base loop –

VTH – IB RTH – VBE – IE RE = 0

Substituting IE = (β+1)IB

VTH - VBE

IB = ---------------------- RTH + (β+1)RE

IE = IC + IBDividing by IC, as it is to be eliminated,

IE IC + IB---- = ----- -----IC IC IC

1 = 1 + ----

β

β + 1 = ---------- β

IC (β + 1) = -------------- IC / IB

IE = IB (β + 1)

Proof

Page 47: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

… VTH - VBE

IB = β --------------------- -----(1) RTH + (β+1)RE

By KVL to output collector loop,

VCC –IC RC – VCE – IE VE = 0

VCE = VCC – IC RC – IC RE as IC = IE

VCE = VCC – ICQ (RC + RE) -----(2)

Hence equations (1) & (2) represent Q point.

Q

Q

Page 48: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

Load line analysis:

• Same as that of emitter bias:

Page 49: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

Advantages & disadvantages of VDB:

• Excellent stability (against temperature & β), because of –ve feedback introduced by RE.

• But RE reduces gain AV.

• Again CE bypasses ac signal, increasing AV, also maintaining stability.

Page 50: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

IE ie

DC do not pass through CE asf=0 in XC = 1 / (2πfC)= resistance

Page 51: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

Numerical:

Page 52: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

Solution:

Page 53: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

4. Collector-to-base bias configuration:Little bit looking back:We have studied –1. base bias2. emitter (self) bias3. voltage-divider-bias with emitter-biaswith,• DC analysis (to know Q point/ICQ & VCEQ) • load-line analysis (points A & B of load-

line)

Page 54: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

• RB provides negative feedback, voltage-shunt feedback

• Better (not excellent, as VDB with EB) stability

Page 55: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

DC analysis:

IB + IC

IB IC

Page 56: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

• KVL to base-emitter loop,VCC – (IB + IC) RC – IB RB – VBE = 0

• Substitute IC = β IB

VCC – VBE

IB = --------------------- RB + (β + 1) RC

VCC – VBE

ICQ = β --------------------- -----(1) RB + (β + 1) RC

Page 57: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

• KVL to collector-emitter loop, VCC – (IB + IC) RC –VCE = 0

VCE = VCC – (IB + IC) RC

• Ignoring IB, VCE = VCC – IC RC

At quiescent conditions, VCEQ = VCC – ICQ RC -----(2)

Page 58: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

Advantages & disadvantages:• Provides stability

• Reduced gain, due to –ve feedback, can be reduced by bypassing capacitor, as shown below,

Page 59: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

We are not studying …

• 4.3 Common base circuit• 4.4 Common collector circuit• 4.5 Bias stabilization• 4.6 Bias compensation

But let us now study …

• 4.7 Thermal Runaway

Page 60: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

4.7 Thermal Runaway

• Power dissipation depends on• Physical size• Its construction• Mounting arrangement

• Maximum power rating is limited by• Temperature that CB junction can withstand• Ambient temperature

• When ambient temperature , power rating , is known as “power derating”

Page 61: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

…• Power dissipation capability range – 100s

milliwatts to 250 Watts

• Max. CB temperature – Si – 150 °C to 225 °C – Ge – 60 °C to 100

°C

Case temperature °C

Power dissipation PD

PD(MAX)

Typical power derating curve100 200

Maximum operating temperature

Page 62: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

Defn.:when the transistor is in operation it

dissipates power & its junction temperature rises, which in turn causes collector current to increase. This may lead to more power dissipation & further increase in temperature & subsequent increase in collector current. If this cycle continues, it may result in permanent damage to the transistor. This phenomenon is known as “Thermal Runaway”.

PD Tj IC

Page 63: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

…• Steady state junction temperature,

Tj – TA = θ PD

Where Tj – junction temperature TA – ambient temperaturePD – power dissipated in transistor

θ – thermal resistance °C/W

Page 64: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

Thermal Resistance:ratio of the rise in transistor junction

temperature to the amount of power dissipated.

Which depends on –

• Transistor size• Size of heat sink• Other cooling method, such as forced air

Page 65: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

Thermal resistance (θ):

Tj – TA dTj

θ = ----------- = -------- PD dPD

dPD 1 ----------- = -------- dTj θ

Page 66: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

Operating Point considerations against thermal run-away:

Page 67: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

At Q2:IC ↑ Q2 to move on

100mW curve PD ↓ thermally stable

At Q3:IC ↑ Q3 to move on

200mW curve PD ↑ thermally instable checked for thermal runaway

Page 68: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

4.8 Transistor switch

• Another major application of transistor is Switch

Page 69: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

…While designing,Transistor is heavily saturatedIC(sat) = VCC / RC

IB(sat) = IC(sat)/ βUsually IB(max) = IB(sat) x 0.25The minimum i/p voltage to drive

transistor in saturation isVIH = IB(max) RB + VBE

Rsat = VCE(sat) / IC(sat) ≈ few tens of Ohms

Page 70: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

Transistor Switching Delay:

During ON:tD=delay time=to 10%tr=rise time=10% to

90%turn-ON time=tD+tr

During OFF:ts=storage time=fall to

10%tf=fall time=90% to

10%toff=turn-OFF time =ts+tf

Page 71: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

Numerical:

An input pulse is applied to the transistor switch shown in figure. What is the minimum input voltage required to make the LED glow? It is given that the minimum current required by the LED to glow is 10mA, voltage drop across LED is 1.5V, BE voltage 0.7V, CE voltage at saturation is 0.5V.

Page 72: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

IE=IC=10mA 1.5V

VBE = 0.7V

IB=IC / β =10mA / 100 = 1µA

VCE(sat) = 0.5V

1..Vp ?

2..IC(sat) ?

3..IB(sat) ?

=β x IC(sat)

4..IB(max) ?

=1.25 x IB(sat)

Page 73: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR
Page 74: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

UJT (unijunction transistor)

• Only 1 pn junction, unlike 2 (BE & CB)• Current controlled• Negative resistance exists• May be used as switch

Page 75: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

Construction:

Page 76: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

Equivalent Circuit:

Intrinsic stand-off ratio:

= RBB1 / (RBB1 + RBB2)

Page 77: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

VI characteristics:VP = VBB + V

Page 78: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR
Page 79: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

Operation:when VE ↑ -IEO reaches 0, then ↑ to IP at VP, IE ↑ with VE ↓ up to IV & VV known as negative resistance, further behaves as a normal resistance.

Page 80: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

UJT Relaxation Oscillator:

Page 81: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

SCR (silicon controlled rectifier):Operation:A momentary pulse

applied to the gate increases the base current of npn transistor initiating regenerative feedback action;. This action ultimately drives both transistors to saturation causing switching-ON by conducting heavily.

Page 82: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

Characteristics:

CB

BEFB

BE FB

CB

Page 83: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

Questions:

1. Explain selecting a suitable operating point (104)

2. Explain DC & load-line analysis of fixed bias (105)

3. What are the parameters that vary the Q –point (ans:- IB, RC, VCC -108)

4. Problem 4.1 (109)5. Explain DC & load-line analysis of emitter /

self bias (110)6. Problem 4.2 & 4.3 (113)

Page 84: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

7. Explain DC & load-line analysis of VDB with EB circuit (115)

8. Problem 4.4 (119)9. Explain DC & load-line analysis of collector-to-

base bias (124)10. Problem 4.7 (127)11. Define thermal runaway. Explain operating point

considerations in thermal runaway (147)12. Explain transistor as a switch. Brief about switching

delays (152)13. Explain UJT, relaxation oscillator (215)14. Explain SCR (227)

Page 85: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

End

ofUnit 1: Transistors, UJT & Thyristors

Page 86: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

IC (Integrated Circuit)

Overview

Page 87: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

05/06/23 10:33 AM Unit 1: Transistors, UJTs and SCR 87

Page 88: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

05/06/23 10:33 AM Unit 1: Transistors, UJTs and SCR 88

Page 89: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

05/06/23 10:33 AM Unit 1: Transistors, UJTs and SCR 89

Page 90: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

05/06/23 10:33 AM Unit 1: Transistors, UJTs and SCR 90

Page 91: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

05/06/23 10:33 AM Unit 1: Transistors, UJTs and SCR 91

Page 92: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

05/06/23 10:33 AM Unit 1: Transistors, UJTs and SCR 92

Page 93: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

05/06/23 10:33 AM Unit 1: Transistors, UJTs and SCR 93

Page 94: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

05/06/23 10:33 AM Unit 1: Transistors, UJTs and SCR 94

Page 95: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

05/06/23 10:33 AM Unit 1: Transistors, UJTs and SCR 95

Page 96: Unit 1 Transistors, UJTs and Thyristors. Unit 1: Transistors, UJTs and Thyristors Objectives: Operating Point CE configuration Thermal runaway UJT SCR

05/06/23 10:33 AM Unit 1: Transistors, UJTs and SCR 96

Vin = HIGH (≈5Volts)Saturation region, IC(sat)=VCC / RC

VCE = VCC - IC(sat) RC

= 0 Volt = logic LOW

Cut-off region, IC ≈ 0VCE = VCC - IC RC

= logic LOW