understanding the role of thermal …ossanworld.com/...12-13_venkatraman_nonequilibrium... ·...

35

Upload: ngokiet

Post on 31-Jan-2018

225 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: UNDERSTANDING THE ROLE OF THERMAL …ossanworld.com/...12-13_VenkatRaman_Nonequilibrium... · UNDERSTANDING THE ROLE OF THERMAL NONEQUILIBRIUM ON SCRAMJET FLOWS VENKAT RAMAN ... •

U N D E R S TA N D I N G T H E R O L E O F T H E R M A L N O N E Q U I L I B R I U M O N S C R A M J E T F L O W S

V E N K AT R A M A N A E R O S PA C E E N G I N E E R I N G D E PA RT M E N T U N I V E R S I T Y O F M I C H I G A N

Page 2: UNDERSTANDING THE ROLE OF THERMAL …ossanworld.com/...12-13_VenkatRaman_Nonequilibrium... · UNDERSTANDING THE ROLE OF THERMAL NONEQUILIBRIUM ON SCRAMJET FLOWS VENKAT RAMAN ... •

S H O C K S A N D C O M B U S T I O N

• Scramjet stability relies on compression and ignition

• Flame stabilization is the critical design consideration

• Flame-holding at Ma <10

• Fuel-air Mixing at Ma > 10

• Typical fuels: Hydrogen or Hydrocarbon (kerosene, JP-8 etc.)

Page 3: UNDERSTANDING THE ROLE OF THERMAL …ossanworld.com/...12-13_VenkatRaman_Nonequilibrium... · UNDERSTANDING THE ROLE OF THERMAL NONEQUILIBRIUM ON SCRAMJET FLOWS VENKAT RAMAN ... •

S H O C K S A N D N O N E Q U I L I B R I U M

• Compression shocks have other effects on molecules

• Throw internal motions out of equilibrium

• If relaxation back to equilibrium is slow, then this effect might alter scramjet behavior

• What does nonequilibrium do to scramjet combustors?

Page 4: UNDERSTANDING THE ROLE OF THERMAL …ossanworld.com/...12-13_VenkatRaman_Nonequilibrium... · UNDERSTANDING THE ROLE OF THERMAL NONEQUILIBRIUM ON SCRAMJET FLOWS VENKAT RAMAN ... •

N O N E Q U I L I B R I U M

• Refers to non-Boltzmann distribution of internal energy modes

• Translational, vibrational, and rotational motion

• External aerodynamics (hypersonics)

• All modes could be in nonequilibrium

• Scramjet internal flows

• Roughly 0.5-1 atm pressure

• Translational/rotational equilibrium (roughly)

• Strong vibrational nonequilibrium post compression shocks

Page 5: UNDERSTANDING THE ROLE OF THERMAL …ossanworld.com/...12-13_VenkatRaman_Nonequilibrium... · UNDERSTANDING THE ROLE OF THERMAL NONEQUILIBRIUM ON SCRAMJET FLOWS VENKAT RAMAN ... •

R E L E VA N C E T O S C R A M J E T S

• HYSHOT/HIFIRE type experimental scramjet

PSAAP/Stanford University

Page 6: UNDERSTANDING THE ROLE OF THERMAL …ossanworld.com/...12-13_VenkatRaman_Nonequilibrium... · UNDERSTANDING THE ROLE OF THERMAL NONEQUILIBRIUM ON SCRAMJET FLOWS VENKAT RAMAN ... •

R E L E VA N C E T O S C R A M J E T S

• Distance from bow shock to combustor ~ 0.2m

• Flow velocity 1800 m/s

• Relaxation time at operating conditions ~ 0.17 ms (Millikan & White)

• Vibrational relaxation time is approximately equal to flow through time between shock and injector

Combustor entrance: 57kPa 1800 m/s, 1500K, Ma 2.3

H2 fuel injection 1200 m/s, 250K, Ma 1.0

Page 7: UNDERSTANDING THE ROLE OF THERMAL …ossanworld.com/...12-13_VenkatRaman_Nonequilibrium... · UNDERSTANDING THE ROLE OF THERMAL NONEQUILIBRIUM ON SCRAMJET FLOWS VENKAT RAMAN ... •

I S O L AT O R F L O W

M

T ( K )

D E N S I T Y G R A D I E N T

Page 8: UNDERSTANDING THE ROLE OF THERMAL …ossanworld.com/...12-13_VenkatRaman_Nonequilibrium... · UNDERSTANDING THE ROLE OF THERMAL NONEQUILIBRIUM ON SCRAMJET FLOWS VENKAT RAMAN ... •

E F F E C T O F N O N E Q U I L I B R I U M

• Shocks tend to underpopulate higher vibrational levels

• Potentially retard chemical reactions

• Unfortunately

• Very difficult to experimentally characterize

• Significant challenges for computations as well

Page 9: UNDERSTANDING THE ROLE OF THERMAL …ossanworld.com/...12-13_VenkatRaman_Nonequilibrium... · UNDERSTANDING THE ROLE OF THERMAL NONEQUILIBRIUM ON SCRAMJET FLOWS VENKAT RAMAN ... •

G A S P H A S E U N D E R E Q U I L I B R I U M

• Fluid modeling begins with the description of gas phase

• Gas mixture decomposed into chemical species

• H2, O2, etc.

• Mixture composition specified using mass fractions, typically

• Thermal equilibrium assumption

• Single temperature to describe the gas phase internal energy

Page 10: UNDERSTANDING THE ROLE OF THERMAL …ossanworld.com/...12-13_VenkatRaman_Nonequilibrium... · UNDERSTANDING THE ROLE OF THERMAL NONEQUILIBRIUM ON SCRAMJET FLOWS VENKAT RAMAN ... •

G O V E R N I N G E Q U AT I O N S

• Energy equation is used to obtain temperature

@⇢ui

@t

+@⇢ujui

@xj= � @P

@xi+

@⌧ij

@xj

@⇢�↵

@t

+@⇢uj�↵

@xj=

@

@xj⇢D

@�↵

@xj+ ⇢S↵(�1,�2, · · · ,�N )

@Et

@t

+@uj(Et + P )

@xj=

@

@xjk

@Tt

@xj� @

@xj(⌧ijui) +

NX

↵=1

⇢S↵ev↵

V E L O C I T Y

S P E C I E S M A S S F R A C T I O N

T O TA L E N E R G Y

Page 11: UNDERSTANDING THE ROLE OF THERMAL …ossanworld.com/...12-13_VenkatRaman_Nonequilibrium... · UNDERSTANDING THE ROLE OF THERMAL NONEQUILIBRIUM ON SCRAMJET FLOWS VENKAT RAMAN ... •

C O M B U S T I O N A N D C H E M I S T R Y• Flame chemistry based on Arrhenius rates

• Sequence of chemical reactions that lead from fuel/oxidizer to products

found to be appropriate and are used. The discus-sion below highlights the choice of key rateparameters.

The rate expression of H + O2 = O + OHwas taken from GRI 3.0 [8]. The rate coeffi-cient of H + O2(+M) = HO2(+M) was basedon Troe [2], who employed a high-pressurerate krec,1 (cm3 mol!1 s!1) = 4.65 · 1012T0.44 anddeveloped the low-pressure and fall-off expres-sions for Ar and N2 as the bath gases. The broad-ening factor Fc was found to be 0.5 for both thirdbodies. Troe!s fall-off rate parameterization, how-ever, could not be directly used in CHEMKIN[19], because the low-pressure limit rate coefficientk0 does not share the same temperature depen-dence for different third bodies. We had to devel-op parameterized rate expressions (see Fig. 1)based on the k0 expression of Ar and using thefall-off formula of Troe [20]. A collision efficiencyfactor b = 0.53 was used for Ar relative to N2.The collision efficiency of He was assumed to beequal to that of Ar. The study of Michael et al.[3] supports a collision efficiency of O2 smallerthan that of N2. We found that for O2, b = 0.75gives a good agreement with experiment [3] andtheory [2]. For H2O, Troe [2] suggested that thebroadening factor is close to the strong-collisionlimit. We chose a b value of 12 (relative to N2)with the resulting rate in good agreement withthose of Troe and others [2,3,21].

The k0 expression of H + OH +M =H2O +M was taken from [8] with the b valuesequal to 0.38 and 6.3 for Ar and H2O, respectively[12]. The rate expression of Michael et al. [10] was

employed for H2 + O2 = H + HO2. ForOH + OH(+M) = H2O2(+M), the k0 expression,given in the reverse direction by Baulch et al.[12], was refitted based on the new heat of forma-tion of the OH radical along with the low temper-ature data of Zellner et al. [11]. The krec,1expression and the b value of H2O (6) were takenfrom [11] while the Troe fall-off parameters [22]were the same as those in GRI 3.0. The rateexpressions for H2O2 + OH = HO2 + H2O weretaken directly from [15], though the high-temper-ature expression was refitted using a modifiedArrhenius expression to avoid the rate constantvalues exceeding the collision limit when extrapo-lated to high temperatures.

For CO + O(+M) = CO2(+M), the k1 expres-sion was taken from [13], and following Allenet al. [23], k0 was taken from the QRRK analysisof Westmoreland et al. [24] and fall-off was that ofLindemann. The collision efficiency of H2O wasassumed to be 12. The rate constant forCO + OH = CO2 + H was re-analyzed in thepresent study, and the experimental data wererefitted by the sum of two modified Arrheniusexpressions. The new expression resolves moreaccurately the high temperature data of Woold-ridge et al. [25] as well as the data found in [26].Without this revision, it was not possible to recon-cile the high-temperature H2 ignition data withthe H2–CO laminar flame speeds. The knownpressure dependence of this reaction was not con-sidered as this dependence is quite unimportantfor the CO oxidation experiments consideredherein.

Fig. 1. Trial reaction model of H2–CO oxidation, active parameters, and their spans employed in model optimization(see Refs. [9,14,16–18]).

1284 S.G. Davis et al. / Proceedings of the Combustion Institute 30 (2005) 1283–1292

Page 12: UNDERSTANDING THE ROLE OF THERMAL …ossanworld.com/...12-13_VenkatRaman_Nonequilibrium... · UNDERSTANDING THE ROLE OF THERMAL NONEQUILIBRIUM ON SCRAMJET FLOWS VENKAT RAMAN ... •

N O N E Q U I L I B R I U M G A S P H A S E

• Each chemical species occupies a range of vibrational and rotational states

• Species mass fraction is sum over all states

• At equilibrium, given , and assuming Boltzmann distribution, it is possible to find

• Not valid for nonequilibrium distribution

� =X

j,i

�j,i

�j,i

Page 13: UNDERSTANDING THE ROLE OF THERMAL …ossanworld.com/...12-13_VenkatRaman_Nonequilibrium... · UNDERSTANDING THE ROLE OF THERMAL NONEQUILIBRIUM ON SCRAMJET FLOWS VENKAT RAMAN ... •

N O N E Q U I L I B R I U M

• When internal states are not in equilibrium

• Boltzmann distribution is not valid

• Single temperature does not describe species population

➡ State-specific species mass fractions need to be solved

➡ 10-30 times increase in number of PDEs

➡ ~100 times more expensive than equilibrium case

Page 14: UNDERSTANDING THE ROLE OF THERMAL …ossanworld.com/...12-13_VenkatRaman_Nonequilibrium... · UNDERSTANDING THE ROLE OF THERMAL NONEQUILIBRIUM ON SCRAMJET FLOWS VENKAT RAMAN ... •

M U LT I - T E M P E R AT U R E D E S C R I P T I O N

• Tractable approach for describing nonequilibrium

• Assume that species are in Boltzmann distribution but at different temperatures

• Three temperatures at each spatial location for each species

• Different species relax fast to common vibrational temperature

• Rotational and translational temperature are assumed to be equal

➡ Two-temperature model

• Vibrational and translational temperatures

Page 15: UNDERSTANDING THE ROLE OF THERMAL …ossanworld.com/...12-13_VenkatRaman_Nonequilibrium... · UNDERSTANDING THE ROLE OF THERMAL NONEQUILIBRIUM ON SCRAMJET FLOWS VENKAT RAMAN ... •

G O V E R N I N G E Q U AT I O N S

• Source terms should be recast for two temperatures

@⇢ui

@t

+@⇢ujui

@xj= � @P

@xi+

@⌧ij

@xj

@Et

@t

+@uj(Et + P )

@xj=

@

@xjk

@Tt

@xj� @

@xj(⌧ijui)�QT�V +Qreac

@⇢Ev

@t

+@⇢ujEv

@xj=

@

@xjk

@Tv

@xj+QT�V +

NX

↵=1

⇢S↵ev↵

@⇢�↵

@t

+@⇢uj�↵

@xj=

@

@xj⇢D

@�↵

@xj+ ⇢S↵(�1,�2, · · · ,�N )

Page 16: UNDERSTANDING THE ROLE OF THERMAL …ossanworld.com/...12-13_VenkatRaman_Nonequilibrium... · UNDERSTANDING THE ROLE OF THERMAL NONEQUILIBRIUM ON SCRAMJET FLOWS VENKAT RAMAN ... •

C H E M I C A L R AT E S

• Equilibrium rates updated using efficiency function

• Efficiency functions obtained from literature

• Empirical in nature

• Derived for external hypersonic (re-entry flows)

• Parks model

• CVCV model (used here)

k(Tt, Tv) = g(Tt, Tv)keq(Tt)

Page 17: UNDERSTANDING THE ROLE OF THERMAL …ossanworld.com/...12-13_VenkatRaman_Nonequilibrium... · UNDERSTANDING THE ROLE OF THERMAL NONEQUILIBRIUM ON SCRAMJET FLOWS VENKAT RAMAN ... •

S U B S O N I C D N S O F M I X I N G

• Nonequilibrium can be created by mixing

• Jet configuration :

• fuel nozzle diameter = 8mm

• co-flow nozzle diameter = 100mm

• Re = 32,000

• LES grid: (Nx,Nr,Nθ) = (320,192,32)

• 80 cells along nozzle jet exit

20D 21D

Ma0.05ρ=0.353kg.m-3

T0=1000KYO2=0.233YN2=0.767

Ma0.568ρ=0.221kg.m-3

T0=500KYH2=0.1765YN2=0.8235

Page 18: UNDERSTANDING THE ROLE OF THERMAL …ossanworld.com/...12-13_VenkatRaman_Nonequilibrium... · UNDERSTANDING THE ROLE OF THERMAL NONEQUILIBRIUM ON SCRAMJET FLOWS VENKAT RAMAN ... •

F L A M E S TA B I L I Z AT I O N

Yfuel T

T-Tv

Page 19: UNDERSTANDING THE ROLE OF THERMAL …ossanworld.com/...12-13_VenkatRaman_Nonequilibrium... · UNDERSTANDING THE ROLE OF THERMAL NONEQUILIBRIUM ON SCRAMJET FLOWS VENKAT RAMAN ... •

F L A M E S TA B I L I Z AT I O N

• Vibrational nonequilibrium reduces fuel reactivity

• Flame stabilization occurs further downstream

• Stabilization distance depends on relaxation rate

E Q N E Q

Page 20: UNDERSTANDING THE ROLE OF THERMAL …ossanworld.com/...12-13_VenkatRaman_Nonequilibrium... · UNDERSTANDING THE ROLE OF THERMAL NONEQUILIBRIUM ON SCRAMJET FLOWS VENKAT RAMAN ... •

B U T W H AT A B O U T C H E M I S T R Y ?

• Results depend on the chemistry model used

• Efficiency function

• How do we verify the chemistry?

• Experiments cannot isolate vibrational state-to-state rates

• Ab-initio computational chemistry

• Only approach to obtaining such rates

Page 21: UNDERSTANDING THE ROLE OF THERMAL …ossanworld.com/...12-13_VenkatRaman_Nonequilibrium... · UNDERSTANDING THE ROLE OF THERMAL NONEQUILIBRIUM ON SCRAMJET FLOWS VENKAT RAMAN ... •

Q U A S I - C L A S S I C A L T R A J E C T O R Y A N A LY S I S

• Monte-Carlo approach for obtaining reaction ratesTwo-temperature model

from state-to-state ab-initio data

Inelastic Scattering

Reactive Scattering

Q C T A L G O R I T H M • M A S S I V E LY PA R A L L E L Q C T C O D E • S U R FA C E - A C C E L E R AT I O N A L G O R I T H M • 1 0 B I L L I O N T R A J E C T O R I E S / D AY O N 4 0 0 0 C O R E S

T (K)

Tv(K

)

log 1

0(ϕ)

0.5 1 1.5 2x 104

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2x 104

0

1

2

3

4

5

H +O2 ! OH +H

T (K)

Tv(K

)

log

10(')

Page 22: UNDERSTANDING THE ROLE OF THERMAL …ossanworld.com/...12-13_VenkatRaman_Nonequilibrium... · UNDERSTANDING THE ROLE OF THERMAL NONEQUILIBRIUM ON SCRAMJET FLOWS VENKAT RAMAN ... •

• General effect of Tv: ➡ Tv > T enhances rate

➡ Tv < T suppresses rate

➡ Efficiency response is proportional to Tv/T ratio

• Are these observations consistent among all reactions and species?

Vibrational Nonequilibrium Effects

• The gained/lost efficiency of the reaction due to vibrational nonequilibrium is defined as

H + O2 (Tv) → O + OH

' = k(T, Tv)/keq(T )11/20/15, 1:34 PM

Page 1 of 1file:///Users/svoelkel/Desktop/phi_ho2_o2.svg

E�cien

cy

Page 23: UNDERSTANDING THE ROLE OF THERMAL …ossanworld.com/...12-13_VenkatRaman_Nonequilibrium... · UNDERSTANDING THE ROLE OF THERMAL NONEQUILIBRIUM ON SCRAMJET FLOWS VENKAT RAMAN ... •

Efficiency functions are reaction and species dependent

Vibrational Nonequilibrium Effects

11/20/15, 1:33 PM

Page 1 of 1file:///Users/svoelkel/Desktop/phi_h2o_h2.svg

11/20/15, 1:34 PM

Page 1 of 1file:///Users/svoelkel/Desktop/phi_h3o_h2.svg

11/20/15, 1:34 PM

Page 1 of 1file:///Users/svoelkel/Desktop/phi_h3o_oh.svg

H + O2(Tv) → O + OH O + H2(Tv) → H + OH

OH(T) + H2(Tv) → H2O + H OH(Tv) + H2(T) → H2O + H

11/20/15, 1:34 PM

Page 1 of 1file:///Users/svoelkel/Desktop/phi_ho2_o2.svg

E�cien

cyE�cien

cy

E�cien

cyE�cien

cy

Page 24: UNDERSTANDING THE ROLE OF THERMAL …ossanworld.com/...12-13_VenkatRaman_Nonequilibrium... · UNDERSTANDING THE ROLE OF THERMAL NONEQUILIBRIUM ON SCRAMJET FLOWS VENKAT RAMAN ... •

Comparison of T-Tv Models

• Park’s two-temperature model ➡ Nonequilibrium rate is equivalent to the equilibrium rate

evaluated at effective temperature

➡ is a measure of the relative effect of Tv compared to T

• Coupled Vibration-Chemistry-Vibration (CVCV) model ➡ Efficiency function derived using truncated harmonic oscillator

approximation and

- Dissociation energy of reactants

- Characteristic vibrational frequency of reactants

- Activation energy of the reaction

Teff = (TT ⇠v )

1/(1+⇠)

⇠ = 1

Page 25: UNDERSTANDING THE ROLE OF THERMAL …ossanworld.com/...12-13_VenkatRaman_Nonequilibrium... · UNDERSTANDING THE ROLE OF THERMAL NONEQUILIBRIUM ON SCRAMJET FLOWS VENKAT RAMAN ... •

2000

T (K)

150010000.5

Tv/T

11.5

2

1.5

0.5

1

Efficien

cy

• Models compared over range ➡ T = 800 K - 2000 K and Tv/T = 0.5 - 1.5

• Both Park and CVCV over-predicts nonequilibrium affects

• Optimized Park’s model improves Park’s model considerably

Comparison of T-Tv Models

H + O2 (Tv) → O + OH

Present results CVCV model

Park’s model ( ) Optimized Park’s Model

⇠ = 1

⇠ = 0.182

Teff = (TT ⇠v )

1/(1+⇠)

Page 26: UNDERSTANDING THE ROLE OF THERMAL …ossanworld.com/...12-13_VenkatRaman_Nonequilibrium... · UNDERSTANDING THE ROLE OF THERMAL NONEQUILIBRIUM ON SCRAMJET FLOWS VENKAT RAMAN ... •

S C R A M J E T F L O W S• In scramjet applications

• Fuel injection creates expansion regions

• Associated with higher vibrational temperature

• Is there an effect of geometry on ignition?

H2 injection

Density gradient shows shocks H2 iso-contour shows fuel injection

OH iso-contour shows flame frontAirflow

Turbulent boundary layer

Bleed

Page 27: UNDERSTANDING THE ROLE OF THERMAL …ossanworld.com/...12-13_VenkatRaman_Nonequilibrium... · UNDERSTANDING THE ROLE OF THERMAL NONEQUILIBRIUM ON SCRAMJET FLOWS VENKAT RAMAN ... •

• HyShot II Scramjet (reference configuration) ➡ Same geometry : wedge, ramp, isolator, combustor

➡ RANS simulation of wedge

➡ Fully resolved turbulent boundary layer for DNS, Reynolds 18,800

x=-28.5 [cm] x=0 x=6.0 x=12.3 x=36.518°

T∞=300KP∞=1197PaMa=8.0 H2 injector

T0=300KP0=6.4MPaMa=1.0

wedge ramp isolator combustor

bleed

turbulent boundary layerbow shock

Simulation configurations

RANS DNS

Page 28: UNDERSTANDING THE ROLE OF THERMAL …ossanworld.com/...12-13_VenkatRaman_Nonequilibrium... · UNDERSTANDING THE ROLE OF THERMAL NONEQUILIBRIUM ON SCRAMJET FLOWS VENKAT RAMAN ... •

Simulation configurations

• Computational domain ➡ (nx, ny, nz) = (2048, 128, 128)

~ (20y+,1:20y+,20y+)

➡ Periodic in spanwise direction

➡ 300K isothermal walls

• Equilibrium vs Nonequilibrium runs ➡ Equal total energy for equilibrium and nonequilibrium cases

- Upstream nonequilibrium induced by wedge bow-shock computed from 1D relaxation

➡ Fuel Tv frozen at total temperature = 300K

➡ 5 days, 4000 cores on NASA Pleiades cluster

1/64th points shown

Page 29: UNDERSTANDING THE ROLE OF THERMAL …ossanworld.com/...12-13_VenkatRaman_Nonequilibrium... · UNDERSTANDING THE ROLE OF THERMAL NONEQUILIBRIUM ON SCRAMJET FLOWS VENKAT RAMAN ... •

Key Result

• Nonequilibrium accelerates ignition!

E Q U I L I B R I U M

W I T H N O N E Q U I L I B R I U M

x=-28.5 [cm] x=0 x=6.0 x=12.3 x=36.518°

T∞=300KP∞=1197PaMa=8.0 H2 injector

T0=300KP0=6.4MPaMa=1.0

wedge ramp isolator combustor

bleed

turbulent boundary layerbow shock

Page 30: UNDERSTANDING THE ROLE OF THERMAL …ossanworld.com/...12-13_VenkatRaman_Nonequilibrium... · UNDERSTANDING THE ROLE OF THERMAL NONEQUILIBRIUM ON SCRAMJET FLOWS VENKAT RAMAN ... •

Equilibrium

Nonequilibrium

mass fraction of H2O

Macroscopic effect of nonequilibrium on combustion

Y(H2) = 0.1 Y(O2) = 0.1

Y(H2O) = 0.1

• Flame lift-off

• Flow is still out of equilibrium at the injector

• Quickly reaches equilibrium after ignition

Page 31: UNDERSTANDING THE ROLE OF THERMAL …ossanworld.com/...12-13_VenkatRaman_Nonequilibrium... · UNDERSTANDING THE ROLE OF THERMAL NONEQUILIBRIUM ON SCRAMJET FLOWS VENKAT RAMAN ... •

0 2 4 6 8 101

2

3

4

5

6

7

Teq Tnneq TV(N2) TV(O2)

Nonequilibrium in the isolator

• Vibrational relaxation still undergoing by combustor entrance ➡ Underpopulated vibrational modes

• Higher translational temperature than equilibrium ➡ Successive shocks increases

this trend

➡ Reaction rates evaluated with translational temperature

-

H + O2 → O + OH : keq(1600K) ~ keq(1300K)O + H2 → H + OH : keq(1600K) = keq(1300K) + 23% OH + H2 → H + H2O : keq(1600K) = keq(1300K) + 45%

centerline temperature profiles

300K100KT/T∞

x[cm]

Page 32: UNDERSTANDING THE ROLE OF THERMAL …ossanworld.com/...12-13_VenkatRaman_Nonequilibrium... · UNDERSTANDING THE ROLE OF THERMAL NONEQUILIBRIUM ON SCRAMJET FLOWS VENKAT RAMAN ... •

Effect of Arrhenius parameters

• Plot at conserved internal energy ➡ (Tv,Tnneq) Teq

➡ Teq ∈ [Tv,Tnneq]

• Temperature dependence of the pre-exponential factor ➡ could counterbalance the effect

of the efficiency function

➡ reaction-dependent

keq

(Teq

) = A Tn

eq

exp( �Ea

/RTeq

) (1)

knneq

(Tnneq

, Tv

) = �(Tnneq

, Tv

) A Tn

nneq

exp( �Ea

/RTnneq

) (2)

knneq

keq

= �(Tnneq

, Tv

)

✓Tnneq

Teq

◆n

exp

✓Tnneq

� Teq

Tnneq

Teq

◆EaR

(3)

knneq

(Tnneq

, Tv

) = �(Tnneq

, Tv

) A Tn

nneq

exp( �Ea

/RTnneq

) (4)

e = etr

(Tt

) + erot

(Tr

) + evib

(Tv

) (5)

@⇢e

@t+

@⇢ui

e

@xi

= �p@u

i

@xi

+ ⇢q + ⌧ij

@uj

@xi

(6)

@⇢k

@t+

@⇢ui

k

@xi

= �⇢u00i

u00i

@ui

@xj

� ⌧ij

@u00j

@xi

+

@

@xj

✓� 1

2

⇢u00i

u00i

u00j

+ ⌧ij

u00i

◆� u

00i

@p

@xi

(7)

@⇢K

@t+

@⇢ui

K

@xi

= ⇢u00i

u00i

@ui

@xj

� ⌧ij

@uj

@xi

+

@

@xj

✓� 1

2

⇢ui

u00i

u00j

+ ⌧ij

ui

◆� u

i

@p

@xi

+ ui

u00i

@⇢u00j

@xj

(8)

@⇢ui

e

@xi

= �p@u

i

@xi

+ ⇢q + ⌧ij

@uj

@xi

(9)

@⇢ui

˜h

@xi

= ui

@p

@xi

+ ⇢q + ⌧ij

@uj

@xi

(10)

@⇢ui

˜h

@xi

= ui

@p

@xi

+ ⌧ij

@uj

@xi

+ ⇢q +@�

i

@xi

(11)

@⇢ui

˜h

@xi

= ui

@p

@xi

+ u00i

@p

@xi

+ ⌧ij

@uj

@xi

+ ⌧ij

@u00j

@xi

+ ⇢q +@�

i

@xi

(12)

@⇢ui

k

@xi

= �⇢u00i

u00i

@ui

@xj

� ⌧ij

@u00j

@xi

+

@

@xj

✓� 1

2

⇢u00i

u00i

u00j

+ ⌧ij

u00i

◆� u

00i

@p

@xi

(13)

@⇢ui

K

@xi

= ⇢u00i

u00i

@ui

@xj

� ⌧ij

@uj

@xi

+

@

@xj

✓� 1

2

⇢ui

u00i

u00j

+ ⌧ij

ui

◆� u

i

@p

@xi

(14)

˜H =

˜h+

uk

uk

2

+

]u00k

u00k

2

=

˜h+K + k (15)

k =

]u00k

u00k

2

(16)

K =

uk

uk

2

(17)

˜Ss,i

(f) =Ss,i

(f)

Ss,i

(f = fi

)

(18)

˜As,i

=

Ss,i

(f = fi

)

h(19)

X = X + x (20)

1 of 8

American Institute of Aeronautics and Astronautics

keq

(Teq

) = A Tn

eq

exp( �Ea

/RTeq

) (1)

knneq

(Tnneq

, Tv

) = �(Tnneq

, Tv

) A Tn

nneq

exp( �Ea

/RTnneq

) (2)

knneq

keq

= �(Tnneq

, Tv

)

✓Tnneq

Teq

◆n

exp

✓Tnneq

� Teq

Tnneq

Teq

◆EaR

(3)

knneq

(Tnneq

, Tv

) = �(Tnneq

, Tv

) A Tn

nneq

exp( �Ea

/RTnneq

) (4)

e = etr

(Tt

) + erot

(Tr

) + evib

(Tv

) (5)

@⇢e

@t+

@⇢ui

e

@xi

= �p@u

i

@xi

+ ⇢q + ⌧ij

@uj

@xi

(6)

@⇢k

@t+

@⇢ui

k

@xi

= �⇢u00i

u00i

@ui

@xj

� ⌧ij

@u00j

@xi

+

@

@xj

✓� 1

2

⇢u00i

u00i

u00j

+ ⌧ij

u00i

◆� u

00i

@p

@xi

(7)

@⇢K

@t+

@⇢ui

K

@xi

= ⇢u00i

u00i

@ui

@xj

� ⌧ij

@uj

@xi

+

@

@xj

✓� 1

2

⇢ui

u00i

u00j

+ ⌧ij

ui

◆� u

i

@p

@xi

+ ui

u00i

@⇢u00j

@xj

(8)

@⇢ui

e

@xi

= �p@u

i

@xi

+ ⇢q + ⌧ij

@uj

@xi

(9)

@⇢ui

˜h

@xi

= ui

@p

@xi

+ ⇢q + ⌧ij

@uj

@xi

(10)

@⇢ui

˜h

@xi

= ui

@p

@xi

+ ⌧ij

@uj

@xi

+ ⇢q +@�

i

@xi

(11)

@⇢ui

˜h

@xi

= ui

@p

@xi

+ u00i

@p

@xi

+ ⌧ij

@uj

@xi

+ ⌧ij

@u00j

@xi

+ ⇢q +@�

i

@xi

(12)

@⇢ui

k

@xi

= �⇢u00i

u00i

@ui

@xj

� ⌧ij

@u00j

@xi

+

@

@xj

✓� 1

2

⇢u00i

u00i

u00j

+ ⌧ij

u00i

◆� u

00i

@p

@xi

(13)

@⇢ui

K

@xi

= ⇢u00i

u00i

@ui

@xj

� ⌧ij

@uj

@xi

+

@

@xj

✓� 1

2

⇢ui

u00i

u00j

+ ⌧ij

ui

◆� u

i

@p

@xi

(14)

˜H =

˜h+

uk

uk

2

+

]u00k

u00k

2

=

˜h+K + k (15)

k =

]u00k

u00k

2

(16)

K =

uk

uk

2

(17)

˜Ss,i

(f) =Ss,i

(f)

Ss,i

(f = fi

)

(18)

˜As,i

=

Ss,i

(f = fi

)

h(19)

X = X + x (20)

1 of 8

American Institute of Aeronautics and Astronautics

H2(Tv) + O OH + H (n = 2.57)

O2(Tv) + H OH + O (n = 0)

keq

(Teq

) = A Tn

eq

exp( �Ea

/RTeq

) (1)

knneq

(Tnneq

, Tv

) = �(Tnneq

, Tv

) A Tn

nneq

exp( �Ea

/RTnneq

) (2)

knneq

keq

= �(Tnneq

, Tv

)

✓Tnneq

Teq

◆n

exp

✓Tnneq

� Teq

Tnneq

Teq

◆EaR

(3)

knneq

(Tnneq

, Tv

) = �(Tnneq

, Tv

) A Tn

nneq

exp( �Ea

/RTnneq

) (4)

e = etr

(Tt

) + erot

(Tr

) + evib

(Tv

) (5)

@⇢e

@t+

@⇢ui

e

@xi

= �p@u

i

@xi

+ ⇢q + ⌧ij

@uj

@xi

(6)

@⇢k

@t+

@⇢ui

k

@xi

= �⇢u00i

u00i

@ui

@xj

� ⌧ij

@u00j

@xi

+

@

@xj

✓� 1

2

⇢u00i

u00i

u00j

+ ⌧ij

u00i

◆� u

00i

@p

@xi

(7)

@⇢K

@t+

@⇢ui

K

@xi

= ⇢u00i

u00i

@ui

@xj

� ⌧ij

@uj

@xi

+

@

@xj

✓� 1

2

⇢ui

u00i

u00j

+ ⌧ij

ui

◆� u

i

@p

@xi

+ ui

u00i

@⇢u00j

@xj

(8)

@⇢ui

e

@xi

= �p@u

i

@xi

+ ⇢q + ⌧ij

@uj

@xi

(9)

@⇢ui

˜h

@xi

= ui

@p

@xi

+ ⇢q + ⌧ij

@uj

@xi

(10)

@⇢ui

˜h

@xi

= ui

@p

@xi

+ ⌧ij

@uj

@xi

+ ⇢q +@�

i

@xi

(11)

@⇢ui

˜h

@xi

= ui

@p

@xi

+ u00i

@p

@xi

+ ⌧ij

@uj

@xi

+ ⌧ij

@u00j

@xi

+ ⇢q +@�

i

@xi

(12)

@⇢ui

k

@xi

= �⇢u00i

u00i

@ui

@xj

� ⌧ij

@u00j

@xi

+

@

@xj

✓� 1

2

⇢u00i

u00i

u00j

+ ⌧ij

u00i

◆� u

00i

@p

@xi

(13)

@⇢ui

K

@xi

= ⇢u00i

u00i

@ui

@xj

� ⌧ij

@uj

@xi

+

@

@xj

✓� 1

2

⇢ui

u00i

u00j

+ ⌧ij

ui

◆� u

i

@p

@xi

(14)

˜H =

˜h+

uk

uk

2

+

]u00k

u00k

2

=

˜h+K + k (15)

k =

]u00k

u00k

2

(16)

K =

uk

uk

2

(17)

˜Ss,i

(f) =Ss,i

(f)

Ss,i

(f = fi

)

(18)

˜As,i

=

Ss,i

(f = fi

)

h(19)

X = X + x (20)

1 of 8

American Institute of Aeronautics and Astronautics

t ∞

Page 33: UNDERSTANDING THE ROLE OF THERMAL …ossanworld.com/...12-13_VenkatRaman_Nonequilibrium... · UNDERSTANDING THE ROLE OF THERMAL NONEQUILIBRIUM ON SCRAMJET FLOWS VENKAT RAMAN ... •

10-8 10-7 10-6 10-5 10-4 10-3500

1000

1500

2000

2500

T[K]

10-8 10-7 10-6 10-5 10-4 10-3

t[s]

0

0.5

1

1.5

10-8 10-7 10-6 10-5 10-4 10-3500

1000

1500

2000

2500

T[K]

10-8 10-7 10-6 10-5 10-4 10-3

t[s]

0

0.5

1

1.5

- Tv(N2) < Tv(O2) < T

• Increase T from 300K to 2600K in O2-H2-N2 mixture

• Multi-Tv description primordial ➡ Different relaxation timescales

➡ Impact on key reaction rates

- Tv(N2) < Tv(O2) < T 10-8 10-7 10-6 10-5 10-4 10-3500

1000

1500

2000

2500

T[K]

10-8 10-7 10-6 10-5 10-4 10-3

t[s]

0

0.5

1

1.5

Post-shock nonequilibrium reaction rates

dashed

Tv(O2)

298K

T

Teq (TPG)

Tv(N2)Tv(H2)

- H2(Tv) + O OH + H (n = 2.57)- O2(Tv) + H OH + O (n = 0)

- O2(Tv) O + O (n = 0.5)

keq

(Teq

) = A Tn

eq

exp( �Ea

/RTeq

) (1)

knneq

(Tnneq

, Tv

) = �(Tnneq

, Tv

) A Tn

nneq

exp( �Ea

/RTnneq

) (2)

knneq

keq

= �(Tnneq

, Tv

)

✓Tnneq

Teq

◆n

exp

✓Tnneq

� Teq

Tnneq

Teq

◆EaR

(3)

knneq

(Tnneq

, Tv

) = �(Tnneq

, Tv

) A Tn

nneq

exp( �Ea

/RTnneq

) (4)

e = etr

(Tt

) + erot

(Tr

) + evib

(Tv

) (5)

@⇢e

@t+

@⇢ui

e

@xi

= �p@u

i

@xi

+ ⇢q + ⌧ij

@uj

@xi

(6)

@⇢k

@t+

@⇢ui

k

@xi

= �⇢u00i

u00i

@ui

@xj

� ⌧ij

@u00j

@xi

+

@

@xj

✓� 1

2

⇢u00i

u00i

u00j

+ ⌧ij

u00i

◆� u

00i

@p

@xi

(7)

@⇢K

@t+

@⇢ui

K

@xi

= ⇢u00i

u00i

@ui

@xj

� ⌧ij

@uj

@xi

+

@

@xj

✓� 1

2

⇢ui

u00i

u00j

+ ⌧ij

ui

◆� u

i

@p

@xi

+ ui

u00i

@⇢u00j

@xj

(8)

@⇢ui

e

@xi

= �p@u

i

@xi

+ ⇢q + ⌧ij

@uj

@xi

(9)

@⇢ui

˜h

@xi

= ui

@p

@xi

+ ⇢q + ⌧ij

@uj

@xi

(10)

@⇢ui

˜h

@xi

= ui

@p

@xi

+ ⌧ij

@uj

@xi

+ ⇢q +@�

i

@xi

(11)

@⇢ui

˜h

@xi

= ui

@p

@xi

+ u00i

@p

@xi

+ ⌧ij

@uj

@xi

+ ⌧ij

@u00j

@xi

+ ⇢q +@�

i

@xi

(12)

@⇢ui

k

@xi

= �⇢u00i

u00i

@ui

@xj

� ⌧ij

@u00j

@xi

+

@

@xj

✓� 1

2

⇢u00i

u00i

u00j

+ ⌧ij

u00i

◆� u

00i

@p

@xi

(13)

@⇢ui

K

@xi

= ⇢u00i

u00i

@ui

@xj

� ⌧ij

@uj

@xi

+

@

@xj

✓� 1

2

⇢ui

u00i

u00j

+ ⌧ij

ui

◆� u

i

@p

@xi

(14)

˜H =

˜h+

uk

uk

2

+

]u00k

u00k

2

=

˜h+K + k (15)

k =

]u00k

u00k

2

(16)

K =

uk

uk

2

(17)

˜Ss,i

(f) =Ss,i

(f)

Ss,i

(f = fi

)

(18)

˜As,i

=

Ss,i

(f = fi

)

h(19)

X = X + x (20)

1 of 8

American Institute of Aeronautics and Astronautics

solid

- Tv(N2) =< Tv(O2) = T- Tv(N2) =< Tv(O2) = T+31%+24%+9%

Page 34: UNDERSTANDING THE ROLE OF THERMAL …ossanworld.com/...12-13_VenkatRaman_Nonequilibrium... · UNDERSTANDING THE ROLE OF THERMAL NONEQUILIBRIUM ON SCRAMJET FLOWS VENKAT RAMAN ... •

0.12 0.1250

0.20.40.60.81

1.21.41.6

Ignition at the injector

• Relaxation in low speed region + expansion wave ➡ Large Tv ratio

➡ N2 lowest Tv

➡ Faster chain reactions

➡ Faster exothermic

H2(Tv)+OH H2O+H(+59%)H2(Tv)+O OH+H (+24.7%)

O2(Tv)+H OH+O (+4.1%)

0.12 0.1250

0.20.40.60.81

1.21.41.6

0.12 0.125400

800

1200

1600

2000

2400

2800

0.12 0.1250

0.20.40.60.81

1.21.4

0.12 0.125400

800

1200

1600

2000

2400

2800

0.12 0.1250

0.20.40.60.81

1.21.4

Tv(O2)T

Tv(H2)Tv(N2)

Tv(H2)/TTv(N2)/TTv(O2)/T

T[K]

O2(Tv) O+O (+16.7%)H2(Tv) H+H (Suppressed)Normalized heat released

x[m] x[m] x[m]

Page 35: UNDERSTANDING THE ROLE OF THERMAL …ossanworld.com/...12-13_VenkatRaman_Nonequilibrium... · UNDERSTANDING THE ROLE OF THERMAL NONEQUILIBRIUM ON SCRAMJET FLOWS VENKAT RAMAN ... •

C O N C L U S I O N S

• Nonequilibrium introduces interesting and counter-intuitive behavior

• Overall, nonequilibrium is found to accelerate combustion

• Provides a design opportunity

• Fuel injection to increase combustion in expansion regions

Equilibrium Nonequilibrium