unclassified ad number limitation changes · computer program mb4 16 3. assumptions 18 4....

88
UNCLASSIFIED AD NUMBER LIMITATION CHANGES TO: FROM: AUTHORITY THIS PAGE IS UNCLASSIFIED ADB008182 Approved for public release; distribution is unlimited. Distribution authorized to U.S. Gov't. agencies only; Test and Evaluation; NOV 1974. Other requests shall be referred to Air Force Materials Laboratory, Attn: Nonmetallic Materials Division, Elastomers and Coastings Branch, AFML/MBE, Wright-Patterson AFB, OH 45433. AFWAL Notice dtd 3 Nov 1983

Upload: others

Post on 17-Nov-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

UNCLASSIFIED

AD NUMBER

LIMITATION CHANGESTO:

FROM:

AUTHORITY

THIS PAGE IS UNCLASSIFIED

ADB008182

Approved for public release; distribution isunlimited.

Distribution authorized to U.S. Gov't. agenciesonly; Test and Evaluation; NOV 1974. Otherrequests shall be referred to Air ForceMaterials Laboratory, Attn: NonmetallicMaterials Division, Elastomers and CoastingsBranch, AFML/MBE, Wright-Patterson AFB, OH45433.

AFWAL Notice dtd 3 Nov 1983

Page 2: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

kfißä) ?/ r*L »*•»>»

Cft i

AUTHORITY.

*►»»•

ä£MLILL <>wa IWIU ' ■

jpMfos

.'•- > fv * ■*- L *- '- ii>i^M^aia

Page 3: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

^3i-fi^ >mmpMmmm,mmu mw' •.^ll^^^.'¥^|.^|!iJJUJJlUll.^4^l^pp^lWWPillWp^WP^WffWI^B^WWyl

»**,

AFMLTR75-17

ML-101 THERMAL CONTROL COATING SPACEFUGHT EXPERIMENT

i

cc ELASTOMERS AND COATINGS BRANCH NONMETALLIC MATERIALS DIVISION

AUGUST 1975

r

TECHNICAL REPORT AFML-TR-75-17 FINAL REPORT FOR PERIOD JANUARY 1972 - JANUARY 1974

Distribution limited to U.S. Government agencies only; (test and evaluation), November £974. Other requests for this document must be referred. 4e the AifTofce Materials Laboratory, Nonmetallic Materials Division, Elastomers and Coatings Branch, AFML/MBE, Wright-Patterson AFB, Ohio 45433.

AIR FORCE MATERIALS LABORATORY AIR FORCE WRIGHT AERONAUTICAL LABORATORIES Air Force Systems Command WrlghtPctterson Air Force Bcse, Ohio 45433.

Page 4: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

- V i!«H,i!.- IBW .l,u!^.J..j.p.p1.-w,j,i .Pi .-HH-tp .ljWtf-.-j|i iw^fwrwn^«.' ■"■-"■"")' "Mi'- JUU imnjip.ifiM.nijuipii^.i IUI> »

NOTICE

Whan Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responribility nor any obligation whatsoever: and the fact that the government may have formulated, furnished, or In any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or <x>nveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related tliereto.

This report was submitted by the Elastomers and Coatings Branch, Nonmetallic Materials Division, Air Force Materials Laboratory, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio under job order 73400703. Daniel E. Prince (AFML/MBE) was the laboratory project engineer.

This technical report has been reviewed and is approved for publication.

_3 *£U~JL £ 6 Daniel E. Prince Project Monitor

FOR THE COMMANDER

M. LAMinges ChiefAElastomers and Coatings Branch MonmetVllIc Materials Division

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document. AIR lORCl - 12-12-75 - 200

- - Wii'iriT timmiilii' - 'a nna.ru. mivjMllwir■,»>si..;--.;*n,r. .■*.*:■* J.,-.».MHUMMMMMJUIBBi «m-Sw f»Jvi^:;^aKiaj.^;i,.t.:m^:.'i-iai-a,'<f|^

Page 5: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

"«C'.''""""1" ■ • ' ' «■»———■~^»..-^* •, ' • "■ ■ "~<*C WB^^wayna^waBi^jjBii»

UNCLASSIFIED SECURITY CL ASSIFICATION Or THIS PAGEfWn»/! Dal« Enltrtd)

Block 20 (continued)

Based on selected data from over 5000 revolutions covering a period of one year, it was found that all the coatings initially degraded to a greater degree than expected, possibly due to contamination. The most stable coatings were optical solar reflectors and the least stable was a white q-AUO^

pigmented coating. An experimental fabric material showed greater stability than state-of-the-art white coatings.

\

A !;VT

;URITY CLATSTF^A'TWNW'TH" IS PAGEfWhwi Dtl* Entered.)

ft£iäü.. ,\ >. ■jjailfr I '->fr%iilllfc»i«itf .'linit; ff'ifa- r:, ntf-a (a nSL>~*hmt* -*■*&■- .^^.^frfi^^itfa,-^^^^. ,*

Page 6: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

i^^rS^» !■■■■!■■ w HI . ''■»»'**C'Wiw ■■«/'''~*MI **».'?*^ ,- ■■.■■. ■ ■■ —- - — ■ . - . . —- - .- tit.

j ■■■■• aoqw&gBVMffl

AFML-TR-75-17

FOREWORD

This report was submitted by the Elastomers and Coatings Branch,

Nonmetallic Materials Division, Air Force Materials Laboratory, Air Force

Systems Command, Wright-Patterson Air Force Base, Ohio. The work was

performed under Project 7340, Job Order 73400703. Daniel E. Prince

(AFML/MBE) was the laboratory project engineer.

Contributions by Lt. M. Blessing, AFML/MBE, to data reduction and

analysis were greatly appreciated.

in

'iiiftiäiiiVia-iWaWir^^lMSihWMl^ v -,*e-^ri*Mfc:^ ifow. ti;3«ia,>-aii.....^a.t.-'.. :-.■■> .iM*2&

Page 7: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

\l»W *m H" ! *** ~ ^i't n i —mmi i ■———■»- *»•. >•«. ■ppjinu'i'..' -mmjii-tmtmmm-*w «.iPTOimsspB ...... „K j-.-j.n^p^!.

FHBCBDIN3.PA0K BLAH&NOT FIIWED

IWNftMJUK. UJL.-J

AFML-TR-75-17

TABLE OF CONTENTS

SECTION PAGE

I INTRODUCTION 1

II SATELLITE ORBITAL PARAMETERS AND EXPERIMENTS 3

III STP FLIGHT P72-1 SATELLITE SYSTEMS 5

IV EXPERIMENTAL PACKAGE 7

V EXPERIMENTAL THERMAL CONTROL COATINGS 9

VI OPTICAL PROPERTY DETERMINATION AND ENVIRONMENTAL EXPOSURE 12

VII COMPUTER DATA ANALYSIS 14

1. Heat Balance Equations 14

2. Runge-Kutta Integration Technique and Computer Program MB4 16

3. Assumptions 18

4. Development of Time-Temperature Profiles 19

VIII DISCUSSION OF RESULTS 20

IX CONCLUSIONS AND RECOMMENDATIONS 23

1. Conclusions 23

2. Recommendations 23

REFERENCES 24

APPENDIX I COMPUTER PROGRAM MB4 25

APPENDIX II COMPUTER PROGRAM DAN 30

..-..'. ^..^.. KfigpSgj ... w^,**^,vv»^^^ ^,^M^ä^Msm^mi^^m^^M^M

Page 8: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

AFML-TR-75-17

liMIHpWJii"! 1» .. ip.iMii.li Ui)lill|p!i,."

LIST OF ILLUSTRATIONS

FIGURE

1

2

3

11

12

13

14

15

16

17

ML-101 Sample Holder

ML-101 Sample Holders Attached to 72-1 Satellite

Beckman DK-2A Spectrophotometer with a Gier- Dunkle Absolute Integrating Sphere

Gier-Dunkle Model DB100 Portable Infrared R:flectometer

AFML In-Situ Exposure Device

ML-101 Simulation Experiment S-13G (500 EUVSH)

ML-101 Simulation Experiment Si0? Fabric (500 EUVSH)

ML-101 Simulation Experiment FEP/A1 (500 EUVSH)

ML-101 Simulation Experiment Zn?Ti0,/0I650 (500 EUVSH) ~ 4

ML-101 Simulation Experiment PV-100 (500 EUVSH)

ML-101 Simulation Experiment TiO?/RTV602 (500 EUVSH)

ML-101 Simulation Experiment .008" OSR (500 EUVSH)

ML-101 Simulation Experiment .050" OSR (500 EUVSH)

ML-101 Simulation Experiment Eu203/RTV602 (500 EUVSH)

ML-101 Simulation Experiment A1203/RTV602 (500 EUVSH)

Sensor Temperature vs Time for S-13G During Revolutions 46 and 4162

Sensor Temperature vs Time for SiOp Fabric During Revolutions 46 and 4162

PAGE

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

VI

M^.-IL.. - -J^JU^q J..^.^^^..*^^^ ■i-j.- -.V': '"I'n•rrfMMtf1J?fifeifiiTi Wi> ■'■'---■■■■'■.'■.- ■ -.:.> „:■,,■: l.j.i.

Page 9: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

«WMj*" i.Kiibii^ii«.: in..!! 1j.41.j1.,.> im.mv^mm.\m«^Mjmm^^'.^m'mmH^^-^nTma-rsj^mmimw-- ■' i-m» ' '""" I- " "~*<**v " '"in. . - -->-,i | " :

wmm ly^umwmi^um'vv-jwwmgm»*

AFML-TR-75-17

LIST OF ILLUSTRATIONS (Continued)

FKURE PAGE

18 Sensor Temperature vs Time for FEP/A1 During Revolution: 46 and 4162 55

19 Sensor Temperature vs Time for Zn?Ti0./0I65] During Revolutions 46 and 4162 4 56

20 Sensor lemperatuie vs Time for PV-100 During Revolutions 46 and 4162 57

21 Sensor Temperature vs Time for 3M Black Velvet During Revolutions 46 3nd 4162 58

22 Sensor Temperature vs Time for Ti0?/Silicone During Revolutions 46 and 4162 59

23 Sensor Temperature vs Time for OSR (0.008) During Revolutions 46 and 4162 60

24 Sensor Temperature vs Tine for OSR (0.050) During Revolutions 46 anJ 4162 61

25 Sensor Temperature vs Time for Eu?0,/Silicone During Revolutions 46 and 4T62 6 62

26 Sensor Temperature vs Time for a-AI^CL/Silicone During Revolutions 46 and 4162 63

27 Sensor Temperature vs Time for Temperature Reference During Revolutions 46 and 4162 64

28 Resistance vs Time for Reference Resistor (499 Ohm) 65

29 Comparison of Simulated and Flight Data for S-13G 66

30 Comparison of Simulated and Flight Data for Si02 Fabric 67

31 Comparison of Simulated and Flight Data for FEP/A1 68

32 Comparison of Simulated and Flight Data for Zn2Ti04/0I650 69

33 Comparison of Simulated and Flight Data for PV-100 70

34 Comparison of Simulated and Flight Data for Ti0?/Silicone 71

vii

iffi^L&£idfej£äi1^dB^^ .^^■»..^WlMW,...*^.^ ...y^Wtfitftofrv-

Page 10: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

■ i . vmwiujiimj W»m^^"ww».ijmp.1 jwwumiwp. mijt,.Br

L: :•! Of ILLUSTRATIONS (Concluded)

[CUR!

35

?!

Comparison of Simulated and Flight Data for OSR (0.00S)

omparison of Simulated and Flight Data for OSR (0.050)

Comp-ins ■).! of Simulated and Flight Data for Eu90 , 'Si :ioone

'.ompariscn of Simulated and Flight Data for -A'LO,/Silicons

PAGE

72

73

74

75

vm

mmmmmp ^iww^rtWaäMä^MMflti^^ ^taSfa^iU^^^k.Afa:.,,., jj g

Page 11: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

._,.., JJJ,.H».,II^

■—*5~""

AFML-TR-75-17

LIST Or TABLE:

TABLE

I Satellite C.bital Parameters

II Satellite Payloads

III Initial Data Inputs

IV Initial vs Space Solar Absorptance

TAGE

13

IX

Page 12: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

r^ff^STFrUi.i#..mem[; -W **■-"W'.*«-«-«^ W «pwpj ,'^-J»**-' f-"■■' •-- '--^Jfm.tM w-'Mj4 JV ■ * ^IJJUPIMJWfflE:MJ^ti)! iI.J., tupf*?. . 4 -IJUgHWjjLJWU !lJMIPppFfgpipj^MgyW'W^.^^'fc^'. ■ ■ IJU;«W»- ■•»'},*,m' ?T-g! '*BHB1

"^ i i iiiPiiiiiinMi n^ *■■""? .. \ ■■ ' mmmm———^ — ■■-*-,, ,„ L f

AFML-TR-75-17

LIST Of SYMBOLS

SYMBOL

A p

S F e-m

Fe-s

G

H_

ne

TS

ref

as

,xm

e

(th

r ■n

f n

DESCRIPTION

Area of edge of sample

Cross-sectional area of sample

Specific heat of sample

Shape factor from edge of sample to Mylar holder

Shape factor from edge of sample LO space

Solar heating constant.

Incident planetary heating flux

Incident planetary albedo heating flux

Incident solar heating flux

Current

Thermal Conductance of sample

Mass of sample

Net heat exchange rate between sample and Mylar-

Total solar heat incident on sample edge

Temperature of sample

Temperature of adjacent Mylar

Temperature of adjacent samples

Temperature of sample holder base

Absorptance of sample

Absorptance of adjacent Mylar

Emittance of sample edge

Emittance of sample

Emittance of Mylar holder

Emittance of adjacent sample edges

Stephan-Boltzmann constant, 0.17 14x10

x

UNITS

ft'

ftc

BTU/lbm-°R

BTU/ftd -hr

BTU/ft2 -hr

BTU/ft? -hr

BTU/ft2 -hr

Amps

BTU/hr- R

lbm

BTU/hr

BTU/hr

"R

rR

f>R

°R

BTU/ft?-rR4

*frjswriiiwlfo»i jKJMiaiiaatiMiiiiiMl^ ,i,- i&mirhi .nnrif -i ,. .. . V./.,..: • .^ä

Page 13: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

JuWJiHIWjii.j]t.,it-xy^jj»JH»A.w ipumuwn- 'nukw jupiipjiimii ti. ~ r , ,^,-U. I.lll W1W»«»' ■ ■""

AFML-TR-75-17

SECTION I

INTRODUCTION

The temperature control of spacecraft is one of the most challenging

technical problems confronting spacecraft designers today. The ultimate

objective of thermal design is to ensure that the spacecraft will operate

within the prescribed temperature ranges defined by the temperature

limitations of the spacecraft's materials and components, such as detectors,

batteries, solar cells, and electronics, which operate properly and

efficiently only if maintained within specific temperature ranges.

The surface temperature of a spacecraft depends primarily upon

the solar radiation absorptance (a ) of the surface, the radiation of

solar energy from the surface or surface emittance (< ), and the

generation of heat in *';(? body of the spacecraft. Secondary parameters

that influence the sun •■ temperature of a spacecraft are material

properties such as then . conductivity and specific heat of components.

Solar absorptance is defined as the ratio of solar energy absorbed by

a surface to that absorbed by a blackbody, while emittance is the ratio

of the energy radiated from a surface to that radiated from a blackbody

at the same temperature.

Two techniques are used for regulating spacecraft temperatures:

active systems and passive systems. Active systems usually employ

electrical power and moving parts which can be adjusted providing a

constantly varying surface in terms of optical properties. Passive

systems, in contrast, require neither electrical power nor moving parts

and rely on surfaces with appropriate thermophysical properties; namely,

solar absorptance, a and infrared emittance (c). Regardless of what

combination of systems is used, the thermophysical properties of the

entire spacecraft surface must be known since it is the average surface

properties which determine the spacecraft equilibrium temperature.

i i

Because of the large role surface coatings play in the passive

temperature control of spacecraft, extensive programs have been conducted

**J(Xfc; *#»»*<!».

nlfaiftftfaft^^*'^-"'**"^"^ ^ufoti^^*-**^*-^ '■■■'■ £Miti^"£z&iifcrii ia&m&-

Page 14: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

AFML-TR-75-17

to develop space-stable, low a /e coatings. Future spacecraft requirements

call for the development of coatings with an initial solar absorptance

of less than 0.10 and initial emittance of more than 0.90, with long-term

stability (5-10 years) in the space environment; i.e., increase in ac

of less than 10i. Low a /c surfaces can be divided into three division: s

(1) those represented by diffusely reflecting white pigmented coatings,

or paints; (2) those represented by second surface mirrors that obtain

heir low solar absorptance from the metallic reflection of an aluminum

or silver mirror and their emittance from a selectively transmitting

substrate such as quartz or FEP Teflon; and (3) those represented

by newly emerging white fabric cloth materials.

Many of the previous materials have been extensively subjected to

in situ laboratory simulation exposures, however, most important to the

thermal designer is knowledge of actual spaceflight data and its

correlation with laboratory data. This report describes an Air Force

Materials Laboratory coatings spaceflight experiment wl.ose primary

objective was to determine the effects of the space environment on the

equilibrium-radiative properties of selected candidate temperature

control coating systems. Its secondary objective was to correlate the

actual space degradation with simulated laboratory data.

&iÄ&yf£iüiätt£ä: rtaaa^aädsJBteäaah

Page 15: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

""'■iBWHiwiaiiH^ ■ »'«"T ■. j—»—,■»■ ».,. ■^WwwMin'" ^i^Siw.^.i ——www ■■■■■■■ .i—ii-i . . -— -

I |

••■■

t...

AFML-TR-75-17

SECTION II

SATELLITE ORBITAL PARAMETERS AND EXPERIMENTS

The Space Test Program (STP) is a Department of Defense program

for the spaceflight of research and development payloads as well as

operational payloads. The STP P72-1 flight vehicle was launched from

\/ander,berg Air Force Base on an Atlas-F/BII combination. Liftoff

occurred at 2012.5 Z on 2 October 1972. The satellite orbit was sun-

synchronous with a nominal inclination of 98.34 degrees (polar) and a

nominal circular altitude of 400 nautical miles. The initial orbital

parameters and the orbital parameters as of September 30, 1973 are

compared to the planned nominal parameters for the 72-1 vehicle in Table I.

TABLE I

SATELLITE ORBITAL PARAMETERS

Planned Flight Parameters Nominal Actual (Initia 1) A ctual (Sep 197 3)

Maximum altitude (nm) 409.19 411.41 411.21

Minimum altitude (nm) ^98.13 400.37 399.27

Eccentricity 0.00041375 0.00039 0.00055995

Inclination (deg) 98.348 98.424 98.433

Period (min:sec) 99:40.158 99:39.465 99:30.217

Rev. No. 1 5191

The 72-1 satellite included a payload of six experiments. These

ore listed in Table II together with the type of experiment, principal

investigator, and appropriate organization.

.■...,. ■:..**.

Page 16: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

w i.i"^ ■" '* Caw • "•♦.irv. mn< ■«■■«-j -• ■■J-awiij >.J »m_pii-UJ. ..Jjli „na. unn,wjta^un# 11 . ,n,.» i ^J^^iWiyivP,1 '.'BWJJintM-A'iBj

AFML-TR-75-17

TABLE II

SATELLITE PAYLOADS

Experiment No.

ML- ,\

RTD-802

ARPA-501

NNRL-114

SSD-988A

SSD-988B

Investigator fo Organization Dose ription

D. E. Prince Thermal Control Air Force Materials Laboratory Coatings

A. Y. Harper Ab'MDA-Huntsville

Radar calibration target

J. B. Reagen Gamma- spectrometer Lockheed Research Laboratory

C. S. Weiler Extreme UV radiation Naval Research Laboratory

D. R. Croley, Jr. Aerospace Corporation

P. Rothwell AFCRL: Hanscom Field

Low altitude particles

Low altitude particles

■ ■■:■,:■..;•, ■.■.t.iX.™ -"ittrrfft'mi ■■!■■-■•■ -itr-mr'^ M*itr m

Page 17: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

'^W!^ffl^.'i''l'',f^,fT VfM»M!w-mm*',>T

AFML-TR-75-17

SECTION III

STP FLIGHT P72-1 SATELLITE SYSTEMS

1. ELECTRICAL POWER SYSTEM

The satellite electrical power is supplied by a solar cell array

that generates electrical energy required to operate the satellite sub-

system and experiments and to charge two nickel-cadmium batteries that

supply electrical power during solar eclipse. The electrical power is

distributees directly from the main power bus or switched by a relay control

box by uplink command.

2. TELEMETRY, TRACKING, AND COMMAND SYSTEM

The telemetry system transmits all data in PCM/PM at 8 or 64 Kbps

real-time and recorded data at 64 or 512 Kbps. A 2-watt SGLS reference

transmitter is used for the 8 Kbps rate and a 10-watt data transmitter

is used for the 64 and 512 Kbps data rate. The processor furnishes

multiplexing, analog to digital conversion (where required) formatting,

clocking, and synchronizing signals for the TT&C systems including

the programmer. Three tape recorders are supplied for reliability and

high data capacity for unusually high peak load periods. All other

systems are dual redundant. A command system which is also dual

redundant, includes the Command Receiver Demodulator and the Decoder/

Programmer which provides 375 MHz system real-time uplink command capability

and stored program routines for flexible payload and telemetry system

control.

3. STABILIZATION, ORIENTATION, AND ATTITUDE DETERMINATION

The STP P72-1 satellite operates in a sun-synchronous orbit with

the spin axis nominally normal to the orbit plane within five degrees

with a goal of one degree. The satellite spin speed is controlled

within 12+2 rpm.

The Satellite Attitude Control System (ACS), makes use of magnetic

torque coils to control the attitude and spin rate of the highly stable

spinning vehicle. Body fixed earth sensors provide data for primary

fg^H^äiäsälM IjHfr^aÜBüäatei.^^ätti» ■wi;iiiiiiiir#iii'ViiMito«>rkii'teAMi I

Page 18: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

W^iPHHIpW-J.J-^'^i.WWjiiiP'-^uii^UtWil'WIlHlJUUi

AFML-TR-75-17

determination of attitude and rate. Ground commands control the torque

coil current to provide correction of observed errors. Gobble damping

is provided by a passive fluid loop damper.

Measurement of the earth's magnetic field is provided by two

three-axis magnetometers mounted on the forward antenna boom. The

associated Magnetometer Electronics Assembly provides proportional

outputs that are multiplexed into the telemetry stream. The outputs

are used as a polarity sense switch for spin control and provide data

for the backup attitude and spin rate determination.

A dual winding iron-core precession coil is used to maintain the

spin axis within five degrees of the orbit normal. The coil is operated

continuously to provide orbit regression rate. Periodic updates by

ground control commands to the muititap precession coil eliminate any

buildup of errors caused by random disturbance torques or bias in the

satellite magnetic field. Attitude information is provided by a

redundant horizon sensor system. A spin rate control coil, identical

to the precession coil, s provided to update the satellite spin speed

on command from the ground. The coil is automatically commutated by

radial magnetometer output signals. Backup capability is provided by

cross strapping a backup magnetometer through the PCM Processors

to the dual spin coil windings.

■i

i-:. t j-;,:-.iaa*^>^«i.aia.>. I^M^, I.-. --. ^-'T^grwiaiiWiiMitt-* Ajkifea^n^vM^j^in^^ .^Ji-.^V»,^iiJki*^*(£!i'Jäi,-**.:-.-.-^^.;-^^. I'-....- ._..A

Page 19: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

pMu;!;.«»'«» W.H») .«H.

>-*« -—— <^w Tim '. ■■ »I - " '

U|f;'»|i#.J|M.II,L PjWIBW He4',""J»JJWWPilH,WW''p '"■'*?»

AFML-TR-75-17

SECTION IV

EXPERIMENTAL PACKAGE

£

The complete basic design and initial evaluation data are contained

in References 1 and 2. Sample holders used on the 72-1 satellite are

Numbers 7 and 12. Each sample holder weighs approximately 11 ounces

(300 grams), occupies approximately 40 cubic inches, and will accommodate

five test samples and one reference sample. The samples or thermal

control coating specimens are 15/16 inch in diameter with the thickness

depending on coating applied and substrate. The sensor disks used for the

sample holders are Trans-Sonics T4086-3 platinum resistance thermistors

cemented in stainless steel sensor disks. Each platinum thermistor

has been calibrated to an accuracy of +0.5°C at temperatures of -193°C,

O'X, and 100' C. The constants for the temperature resistance relationship

of platinum are supplied with each sensor and are used in translating

resistance to temperature. A sensor (Trans-Sonics T4086-3) is attached

to the bottom surface of the holders as a temperature reference for

correction of conduction losses from the sample sensors.

The sensors are supported upon 50 layers of super-insulation (1/4

mil Mylar aluminized on one side) by a continuous Dacron cord under

tension. The individual samples and sensors are thus thermally isolated

from each other with the primary conduction loss through the thin sensor

leads. A temperature sensor is placed adjacent to the electrical

connector to permit correction of flight data for this loss. Ten pounds

of tension is placed on the Dacron thread used to bind the sensors in

place during fabrication. Each sensor is held at three places by the

cord and is cemented to the cord at these points. The sensors rest upon

a three mil sheet of Mylar (aluminized side down) which acts as a cover

for the Dacron cord.

The measurement of the resistance of the sensors is obtained by

supplying an external voltage (90 millivolts) to the sensors and measuring

the voltage drop across each sensor. The voltage drop across each

thermistor is in turn a linear function of resistance which in turn is

-:...>■ :i

_;_j-Tl"J-ri"'";«-" ■■""-"^^■MMI I „■ j ,lMMtlfffi.ftiai<^tfiir-^^

Page 20: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

~*c ^™^*e^*-^^yiw**v3?*gmv l-iti^pw.iJMi;.'?»iiw.iJj*»,jitiy1'!mnjii

AFML-TR-75-17

a linear function of temperature for this range. Through the calibration

data for each thermistor, the temperature can be determined. Room

temperature calibration was performed in both real-time and tape

recorder modes in the pre-launch satellite acceptance test phase. This

calibration data obtained prior to launch together with the installed

flight hardware is being used for the data reduction and then calculation

of the desired thennophysical values.

Figure 1 shows the ML-101 sample holder with six coatings attached

and Figure 2 shows the ML-101 sample holders attached to the partially

completed 72-1 satellite.

, a^aa^At-^. j.--.^J:---.J---.-^|iWWMJ<Mri,i, mmMtwiihumtregtn-t^ ü^^.^...^^.~^.,^ .. ^^^

Page 21: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

" II in'» HI " '""*:*rt"*^ ■ i i mi i' i—nil im ii -- "-I, I, i

AFML-TR-75-17

SECTION V

EXPERIMENTAL THERMAL CONTROL COATINGS

A total of 12 thermal control coating samples were used on two

sample holders for the ML-101 spaceflight thermal control coating

experiment. The sample holders are designated 7 and 12 on all experiment

references.

7-1, ZnO (Silicate Coated)/Methyl Silicone (S-13G)

Formulation, processing, and application was performed by IITRI*

in accordance with IITRI Report 4-6053-5-7; Batch No. C-133. The

S-13G was sprayed to a thickness of 8.0 + 1.0 mils.

7-2, Si02 Cloth Fabric

2024-T3 unclad 15/16 inch diameter 0.032 inch thick aluminum

substrate was prepared as follows: (1) faced on 240 SiC stationary

grinder, (2) prepolished with jeweler's rouge and buffed, and (3) final

polished using Buehler's Magomet (M0) on Microcloth. The silica cloth

fabric is a 12 harness double layer satin weave woven from 450/1/0

Suprasil yarn. Polyvinylalcohol sizing was removed by heating, and

filament diameter size was six microns. The fabric construction consists

of 150 ends/inch by 240 picks/inch. The fabric thickness is nominally 2 0.005 inch and weighs 4.65 oz/yd . The fabric was bonded to the polished

aluminum substrate with General Electric SR-585 silicone adhesive and

the entire system vacuum outgassed at 375°F. I j i :

7-3, Aluminized 5 mil FEP Teflon Second Surface Mirror I ? . ,—,

This material was manufactured by G. T. Schjeldahl, Northfield, i -

Minnesota, T>pe G400900, lot number 12-33 and was supplied to the AFML

throurh the courtesy of Mr. A. E. Hultquist, Lockheed Missiles and

' Space Company of Sunnyvale, California. The material was bonded to a

15/16 inch diameter 2024 NaOH etched aluminum disc in the following

manner. Both the front side of the disc and the back side of the vacuum

* ITT Research Institute, Technology Center, Chicago, Illinois.

rÜi W#jMinWfrT1i^"J^"--!fe,,J^^-""-'h^it^t-'-ii'WJMIilMfiteiJI^iifiittdailiih• iiriiuVii MI rft iiiir^'riltf'f »Wiffiilirii'flr,"-"ii-ir mir- if i r. m -TrMfi Ji '-■ 11r- rrirnr --■ --nriffii r

Page 22: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

iJJWJl,*»"WJIIUlipi_up|(|p|| mm. ■ WmwnwpwF'l I ■HIIMli'|I[!>W litHlfUH -*S"-"

mpw «I I"'"««! i J UfNp»«fppp

AFML-TR-75-17

np.tigpipL. m» v" '«.«*

deposited aluminum were primed with General Electric SS4004 clear silicone

primer and then 3M Company's Number 465 adhesive transfer tape was used

on both the disc and the back side of the vacuum deposited aluminum

layer and pressure applied by hand rubbing with 0.125 inch Teflon sheet.

7-4, Zn^TiO./Methyl Silicone

Pigment synthesis, coating formulation, and application was performed

by the Illinois Institute of Technology using Owens Illinois 650 methyl

silicone resin as a binder material. Ccating thickness was 5+1.0 mils.

7-5, PV-100

This material is a rutile Ti0? pigment in a silicone-alkyd binder,

better known as Vita-Var heat absorption paint, formulation PV-100,

15966 white. The coating was prepared on 0.040 inch thick, 15/16 inch

diameter 2024 aluminum disks after they were cleaned by solvent wiping

followed with a sodium hydroxide etch and water rinse. Strontium

chromate primer was applied per MIL-P-23377B to a thickness of 0.0005 inch.

The PV-100 topcoat was then sprayed to a thickness of 0.002 inch and air-

dried.

7-6, 3M Black Velvet

This is a two component polyester-epoxy paint, type 401-C10

prepared by dispersing three parts of Part A, Lot No. VC-39-125 and one

part of Part B, Lot No. 16. This was then spray applied onto 0.032

inch aluminum discs which had been sanded, solvent wiped, and primed

with G. E.'s SS4044 primer (thickness less than 0.001 inch). Thickness

of the coating was 0.006 T 0.001 inch.

12-1, TiOo/Methyl Silicone

This coating consisted of a Ti02 pigment (Dupont R-992, Lot No. 9980)

in purified RTV 602 (G1638-46 EFG from Hughes Aircraft Company under

Contract F33615-71-C-1155) polydimethylsiloxane A pigment to binder

ratio of 150/100 was used. Thickness was 5.5 + 0.5 mils.

10

**<.-■«**»»

ta*aaBi^ ^ t[^|m; .|;... ,..i.:....:'j,. ..-..,...; _,..!..,

Page 23: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

> i IPHWI —» .ii, i '•• i a -ii—i—— >■ \.,

-

AFML-TR-75-17

12-2, Optical Solar Reflector, 0.008

This is a second surface mirror with the front surface consisting

of 0.008 inch of Corning 7940 quartz, and the back surface coated with

vacuum deposited silver, overcoated with Inconel and a final dielectric

back cover. These samples were supplied to AFML through the cooperation

of Mr. E. N. Börsen, Aerospace Corporation and Mr. A. E. Hultquist,

Lockheed Missile and Space Company. This material was bonded to the

aluminum disc using the same procedure as sample 7-3.

12-3, Optical Solar Reflector 0.050

Same material as 12-2 except, the Corning 7940 quartz was 0.050

inch thick. The same bonding procedure used on sample 7-3 was utilized.

12-4, Eu20,/Methyl Silicone

This coating consisted of a europium oxide pigment (American

Potash and Chemical, Code 1014, Lot No. D1031, silicate treated) in

purified RTV 602 (G1538-46EFG from Hughes Aircraft under Contract

F33615-71-C-l155) polydimethylsiloxane. A pigment to binder ratio of

270/100 was used. Thickness was 8.0 + 1.0 mils.

12-5, aAl203/Methyl Silicone

This coating was made from an cx-alumina pigment (#1013 from

Martin-Marietta Company under Contract F33615-71-C-1410) in unpurified

commercial RTV 602, Lot #242, polydimethylsiloxane. A pigment to

binder ratio of 200/100 was used. Coating thickness was 8.0 + 1.0 mils.

12-6, 3M Black

A duplicate 3M Black per sample 7-6.

I s. v

7-7 and 12-7 Reference Temperatures

Junction inside each sample holder.

54-6 Calibrated Resistor

A 499 ohm resistor in sample holder number 7, used as a check on

voltage variations.

11

jitiin.if-.nii-iMfc y i,v, , ifcrW - ÜBB .TifjMpM*^^-««^^««-^' »idÄiMiiijfc^Äiy*.»^

Page 24: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

MIB^f£iftiW|^ :ttm|L '"i a. -!?=m ■ w ■n.n/iipwjyiMBw.yw.i;^ M",. mi

SECTION VI

OPTICAL PROPERTY DETERMINATION AND ENVIRONMENTAL EXPOSURE

Table III provides initial data for each coating, including mass,

emittance, solar absorptance, and specific heat. The solar absorptance

(a ) value for each coating was determined utilizing a Beckman DK-2A

spectrophotomcter with a Gier-Dunkle Integrating Sphere and a xenon

energy source (Figure 3). Integration of solar absorptance was accomplished

using 25 points in conjunction with F. S. Johnson Solar Spectrum. In-air

infrared spectral reflectance of each coating was measured in-house

utilizing a Gier-Dunkle Model DB100 Portable Infrared Reflectometer

(Figure 4). Subtracting the infrared reflectance from unity gave the

total normal emittance. The theory employed by this instrument has teen

described by Nelson, et al (Reference 3).

12

-

AFML-TR-75-17

Figure 5 depicts the AFML In Situ Exposure Device for simulation

of ultraviolet-vacuum space conditions. The system was operated

generally in the 10" torr region during radiation exposure. A xenon

lamp ultraviolet source was used with an ultraviolet sun rate of

approximately 1.25. The coating reflectance values were measured in

situ before and after ultraviolet radiation exposure utilising a Beckman

DK-2A spectrophotometer with an integrating sphere inside the expos ire

chamber. Figures 6 through 15 present typical reflectance curves, btfore

and after 500 EUVSH, for the coating samples flown. The pre-test and

post-test solar absorptance values are also given for each coating. ■

■^^filftn'riiffi'' i-nr" j fejkiühfcüaiäaaiiÄi«

Page 25: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

uiiwiniiwiH»' 'us

M.4Jj-Jt.p,.Jl ■ Lj.i 1.1, II.LJ IW!'»» 'WW 'H-.M ■ --.^JBHl,a.H- ,1. IP—P^g^mT!Wjtiai^»!t»L| »Uli ll Ifipi ;»t» l,ll l II , „ii|t.|um,.j

*^r^

AFML-TR-75-17

co.

+J « 0> I u

in in LO »/I in t- <r! in in in in in r- < < u o> a.

o O O c c o Z O o o o o o 2

t/2

1* <u

<« y rH C 0 nj in pn in m

W O. o in t r- en X < o- r- r» m ^ X < <r .2 3

ro *~* •~* •■"' -^. o O c o O o Z o o o o O o z z

33

Z a- in o i* in t\j < n- o (M o nj < < oc 00 00 X X' o- X 00 X CT- a- CT- o o O o o o 2 O o o O o O z z

£ o in <t r~ ff> * p- O o r~

< < < o o o O o o o o o O o o

o o o O o o z o o o O o o 2 z

0 2

O

, rn "♦ in r- r—< t\] 1 i i i ^ 1 1 1 i nj t- r- r- r- r- t- in

0 I

<u M

01 c 0

0

01 c (/] o c 0 LO u »~J v:

C Ü

u »-<

ft n) o

< ft

■^3

0 ■*

0 H

o o

1

u a

s

e u c o

u

t

0

X o o

o

«

o in o o

ft

i

o

in l

2

CD

<!

u

s

0) u C u u 0/

OS

0)

.a

0 ■"? r^ W B > A i) tn en 3 <; 01 ni

U C/) 10 U4 N ft m « H 0 U ft « m Pi u

13

"4«||SS;»'ill*i - ■*

-iä,faift^itirttiifir-ni ryttiyiitffliff^itifl^^ irii i; ^a.^^^,,...^:Hliyg,

Page 26: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

*%_ nmyj.i^ijyiiiii i) iiiu^i.niiii—HI. \i^*nkiA.«iJw,mmmmm*>*m!*l!tBI'>*t*t! .. i.. i n .i.,pi„i|i,ni!ipp|}npy|l

-«sr

AFML-TR-75-17

SECTION VII

COMPUTER DATA ANALYSIS

1. HEAT BALANCE EQUATIONS

The heat balance equations, usir.g the list of symbols, for a single

sample of a thermal control coating on this experiment are:

Q (input) = Q (direct solar) + Q (conduction) (1)

+Q (sensor dissipation) + Q (reflected so'lar)

+Q (albedo) + Q (earth emission)

Q (output) = Q (emitted) + Q (exchange with surroundings) {?.)

+Q (storage)

The individual terms of Equations 1 and 2 are:

Q (direct solar) = a AH

Q (conduction) = K(Ts"Tref)

9 Q (sensor dissipation) = I R loss in sensor

Q (reflected solar) = reflected sunlight from

the Mylar upper surface and other areas of

surroundings = Q

Q (albedo) = cxsAnHr

Q (earth emission) = t ..A H

Q (emitted) = e^ffTj

Q (exchange with surrounds)

Q, . = A ( F CTT + A F off 4 [ne) e e e-s s e e-m e m(T

s

+ I A F of ( (T4 . T4)

e e-m en s n

Q (storage) = MC dT /de

T

(3)

(4)

(5)

(6)

(?)

(8)

(9)

(10)

(ID

14

,jMa^^i^^*^ jtf^^^ aüüi

Page 27: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

POU- .'■mnrW!W^e"^^imPWm'»i'r.n.H[> JLUJIIUJ » .. n iiM^*^iiF™w.«ir™ww*p»»w!iWB™wiip-pp. 11.1,11. - JWI ..^LIUJWUIIUIU .,ii»j,gipu„M«i.|.iui.ij,.,..

AFML-TR-75-17

Combining Equations 1-11 results in:

«sA 11 +K(T -T ) + Q H asA „ , r A H n s s rei rs n r tl n [3

' , A aJ + A ( F <?T4 4 A F off (T4 - T4 ) th n s e c' p"-s s c e-m c m1 s m'

= ' , A oT H A ' F

(1?)

where I R and SA F fff f (T - T ) are considered nealioible e e-rn e n s n ^1/4

terms. Letting T_

tor MC dT

cl9

«m(H +H )/t Ml s r m {

results in the following:

dT

J •! and solvinn

MC p de A (H + H )Qs + A F ( am (H l-H )

n s r c e-m e s r

f(A F ( ( +A f )H +Q tKT -OIA , e e-m . m n th' p rs ref n'th

(13)

4 KTS +A F ( f +A t F ) T - —y±- e e-m e m e e e-s s vii

Dividing by MC and defining the following:

A A -- A (H 4 H n s ) as + A F ( nm (H +H

r e e-m e s r

P (14)

+ A F ( ( H + KT .+ Q Hi A ( e e-m e m p rej r s

MC p nth

BB - K

MC :i5i

cc ff(An'th ■' A F ' < + A f F P. £n e e-m cm e e e-s

MC

(If)

upon substitution into Equation 13 gives:

I i:

dT

dfi — AA - BBT - CCT (17)

! 15

4g* :;.Sf^»VW«*i«»''s**i:'Ä'''

iiiMii'll iiii'lifii I ,'"iirfMWIIiWitf^l*äajdK*'1-;'-l---'-:' *•'»-'*■ ■.>.»;/.VJ<^>-:..»^~V..;I.*£~^..U»»^^ n«<a»Je,J.,,a.a«5«.h.j,:Ja

Page 28: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

ArML-TR-75-17

From Equation 15, it can be seen that. BB is a constant dependent

only upon property factors. Likewise tC in Equation 16 is dependent

upon the property factor of the particular sample in question. The term

AA in Equation 14 contains the heat inputs, property factors, and the

solar absorptance term which is the quantity to be calculated.

The resulting differential equation (Equation 17) cannot be

solved analytically because it is nonlinear due to the T term. It can s A

be solved by La Place transform methods after the fourth order T term J s is linearized by an e-nansion such as the Taylor series expansion with

higher order terms being neglected. However, errors result by neglecting

these higher order terms.

Another more accurate method is to use the Runge-Kutta integration

technique with the aid of the computer which is the method chosen

and explained in Section 2.

2. RUNGE-KUTTA INTEGRATION TECHNIQUE AND COMPUTER PROGRAM MB4

The fourth order Runge-Kutta integration method solves the

differential equation (Equation 17) by giving a. solution set of values

of the dependent variable, T , for several increments of the independent

Variable, 6.

The method uses a variable step integration with the interval of

integration being specified. An interval of 0.001 was used in this

analysis. This varible step integration is designed to keep the maximum

local relative error of the dependent variable less than 1 x 10" . The

method integrates from one point to another. The initial point is assumed

to be at 9 = 0 for the independent variable while the dependent value

of temperature at 0 = 0 is given as T . so

A program to solve the differential equation of the form of

Equation 17 using Runge-Kutta integration techniques W5S written and

appears in Appendix I. The program integrates from some initial

condition (Lc.^nerature T at time T zero) to some final condition

16

..c^k.»^«^^^ ^ikiMtätlliätMätmtMläMtm

Page 29: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

^^,i ,^- i^wjyipp^r^wwnp^ii JJ*!WWyiJ»iVWajiW^MtffHms^^'^lil^^

AFML-TR-75-17

(temperature T . at time T check). The program then checks to see if

the temperature found from the integration is the same as that given

from telemetry readings to within 0.1°R. If the temperature does not agree i

the parameter AA is then adjusted by 1.0 unit until the temperature

agrees. This adjustment of AA by 1.0 unit was found to be the best factor

to use. Should the function begin to oscillate the agreement interval ■

is increased to 0.4°R and AA adjusted until that interval of agreement

is met.

After the integration is completed and the equation fit to match

that received from telemetry data, the values of AA (fit parameter)

and corresponding values of temperature calculated from integration and

compared to T . are printed out. The solution set of temperatures SC K

found for the fitted differential equation from time zero to some later

time is printed out. Then these can be checked against further points

from telemetry for a good overall fit if desired.

The portion of the T versus 6 telemetry curve that is fit, is the

initial portion where the effect of H should be minimized and the points

chosen for the fit should be the same for all the curves in which the j

a are to be compared. The portion of the curve used in this analysis

begins with time zero and temperature T at 0.155 hours into the orbit 3 r so after just passing into the sun. The final point for which the curve is

fit is at time 0.47 hours later or 0.625 hours into the orbit. The I

temperature T . is the temperature from the T versus 6 curve which

occurs at this time and is used as a check temperature for fitting

the differential equation solution to the telematry curve. Although

this relatively large interval allows more time for the effect of

changing H to enter the system, it permits more smoothing of integrated

data.

The reason the initial point of 0.155 hours into the orbit was

chosen was that some of the telemetry curves to be compared did not

have telemetry data until that time in the orbit. This is due to

tracking acquisition that occurred on certain revolutions. I

17

Page 30: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

-IPIM4IPIIUIIIIIW1IIIJ ■Wt.llJWUHHIBll I • ._,, , , immm< «HIII

AFML-TP-75-17

During the actual calculation, values of initial temperature T

and check temperature T . for each sample for a given revolution are bCK

obtained. These are supplied to the program in the following order:

Sample 7-6, 7-1, 7-2, 7-3, 7-4, 7-5, 12-1, 12-2, 12-3, 12-4, and 12-5.

The program then uses the data from the black sample 7-6 to fit the

integrated equation to the telemetry data and obtain the amount of

heat incident upon each of the samples. This is done by calculating

the amount of heat from the equation for a fixed alpha (0.985). This

can Le done because the solar absorptance of the black samples should

not change appreciably with exposure time. This amount of total heat

input is then used to calculate the alphas for each of the nonblack

samples after they are fit to their corresponding telemetry curves.

The alpha values are then printed out along with coating property

information used in the calculations.

3. ASSUMPTIONS

(a) The heat capacity, C , was assumed to be constant and the

values given in Table III were used as the correct values for each

sample.

(b) The value of the total solar heat incident on the sample edge,

Qrs, was constant at 0.0375 BTU/hr.

(c) The shape factor from the edge of the sample to Mylar holder,

F , and the shape factor from edge of sample to space, F , were e-m 3 r r e-s constant at 0.5.

(d) The planetary heating flux, H , was 18.1 BTU/hr-ft2. r

(e) The solar heating flux, H , and the planetary albedo heating

flux, H , were constant and found from sample 7-6 for each revolution.

(f) The constant H assumption is made because only the initial

portion of the temperature vs time curve is used where increasing H

should have the smallest effect. 4 4

(g) The term 2 A F at < (T - T ) is zero, indicating

neglibible interaction between adjacent sample edges.

18

■L ^.uiSiäi*ÄUjteiiftfci&f-'; m^afcyyaeifa^l-nifM^aSAfe .^-MSa-to. ^a.^^-Hiiriirtt.wiig. ""^"' •■■•■■-

Page 31: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

ltM|4WWf^PiV«HII!^H»ij--.^w.i|!WBlaJwtiW,-tiWs^

AFML-TR-75-17

2 (h) Sensor dissipation or I R loss of the platinum resistors is

taken as zero since the term at 500 ohms and 100 mv results in a

temperature rise of about 1/4UF, which is well within our temperature

error limits.

4. DEVELOPMENT OF TIME-TEMPERATURE PROFILES

The computer program presented in Appendix II was utilized to

convert raw digital data tapes for each required revolution directly

into time-temperatur» curves. The program utilizes ground based

sensor calibration data and sample holder conduction coefficients to

convert millivolts to resistance to temperature. The program also plots

directly the reference temperature and the resistance of the reference

calibrated resistor. Typical plots for all sensors are presented in

Figures 16 through 28.

19

*a«Uii««iwsiii»iuakii^^ .ar-.^fiw....':.ri.',fe.

Page 32: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

I ■ II -1» HJ. '" "" "*~'l I» I I nil r—mi "- -"Si.. ,m m ......

11 AFML-TR-75-17

SECTION »'III

DISCUSSION OF RLSULTS

Table IV presents the solar absorptance changes for the coatings

investigated. Column one indicates the initial laboratory measured

solar absorptance, column two the initial in space calculated solar

absorptance (calculated during revolution number 46 after the satellite

had stabilized), and column three the calculated in space solar absorptance

after one year (5191 revolutions, 2160 EUVSH).

One of the most important features to be noted in Table IV is that

the initial in space solar absorptances of the two OSR's are twice those

measured in the laboratory. This indicates some form of contamination

on the surfaces. This contamination, from all indications, was present

even during revolution number one, indicating contamination during

liftoff as well as contamination during the initial revolutions from

outgassing of volatile constituents from the satellite materials.

The effects of contamination on the initial in space sclar absorp-

tance values for the other coatings appear much smaller with the greatest

change being for FEP/A1. The OSR coatings and the FEP/A1 coating were,

undoubtedly, affected the most because of their low initial solar

absorptance which produced low surface temperatures, therefore attracting

condensable contaminants. Also their low initial solar absorptance

values were the most vulnerable to changes caused by small amounts of

contaminant. The two coatings, EUpO^/m-silicone and a-Ai„0^/m-silicone

both had initial in space solar absorptances which were lower than those

measured in the laboratory. The reasons for this are not clear, but

these initial calculated values were used for determining the total

solar absorptance changes in Figures 37 and 38.

Figures 29 through 38 present a comparison of laboratory simulated

data and flight data for all the coatings flown, except for 3M black

velvet. These figures also indicate the rate of change in solar

absorptance over the one year exposure period. The flight L c

20

1

j^yu/U^*. *■:****..<.■*&&*.. *Jta>' ■ ■'( toiVntAiP^ lllTlllflftfllwItilillliMnT IIBii 1n ilf n fTM ^ ■

i

Page 33: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

W--' ■Jiwit-m ' »JP!'";M,.'.i»..n, "HW-i, I.UL.LHIIII ■ 1.1. .JIM»" m 'fl.JP '"-J )1HJ.J»H. !,.'■ !■'- l..,l||-iJiiJJi»ll.lillll!J,Lll|l(p)WI|(

1 II wpMM^IMaM^g ■ ■ ■' - ■ l—ii ■ ■» ,^—

-•■»'iiwki«p>.|'U*-»Bi ',. v-mf-mmimwrn: .JaJii,itn«limi|JLJLJll, ...HIMHiJLaBWHW."IBfr.»i

I

i|

AFML-TR-75-17

in these figures is the change in coating solar absorptance when compared

to the initial calculated in space solar absorptance, not the initial

laboratory values. For example, although the 0SR(0.008) increased by

0.087 from laboratory to initial in space, it only increased another

0.025 after one year exposure in space and this is the A a reported.

Each flight curve represents the compilation and analysis of 200

revolutions of data between revolution 1 and revolution 5191. The data

scatter was extremely small, primarily because of the satellite stability

in space and the large amount of data received per unit time (in this

experiment each sample was pulsed every 0.9 seconds), which allowed for

excellent computer data averaging. The actual plots of time-temperature

curves from the raw data tapes showed minimal data scatter and maximum

consistency from one revolution to the next. Over 800 data tapes were

received during the first year which allowed for the selection of

revolutions of primary interest.

From Figures 29 through 38 it can be seen that, in all instances,

after 500 hours, the flight coatings were degrading more rapidly than

the laboratory tested coatings. As indicated earlier, this can best be

explained by the synergistic effect of contamination. If, as it appears,

all surfaces were contaminated, the degradation of the coatings consisted

of a combination of coating solar degradation DIUS solar degradation of

the contaminant on the coating surface. Results from the Air Fc""ce

Materials Laboratory D024 thermal control coatings experiment aboard

SKYLAB, where samples were returned to earth from space and evaluated,

clearly indicated the detrimental effects of contamination on thermal

control coating stability. In all instances where contamination occurred

during the SKYLAB exposure, solar degradation of the coatings increased

much more rapidly than expected from laboratory tests.

Figures 30, 31, 35, 36, and 37 for Si02 Fabric, FEP/A1, two OSR's

and EUpO.,, all indicate an initial solar absorptance increase during the

early revolutions with a gradual leveling of degradation with continued

exposure. This result indicates a trend toward saturation of degradation

21

HMMMMW 11*1 irimiiliifff-ftitiMit''^''*J^*'"T - itirtiin'iiil'iliiWitti'ri-irrrii rtMl'ti'JTirifr[-Ji-iiitnrMi'ltli),i - n'- n- ■ -'filtiäfi-tmüMiSif- ■I-i-^--"- i(*ai-#jttVA^ftUgü>w üwrltfi MÜ iihtrr;ii^^^ja.iJ

Page 34: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

B»t»Mra»M».^'i'g»^'^'^'^^^

AFML-TR-75-17

for these coatings, however, additional data collection beyond one year

is needed to confirm this as well as determine the degradation saturation

point for all of the coatings.

One further note relative to the figures is that in Figure 38 the

ordinate has been increased, because the degradation of the a-Al?CL

coating was much more severe than any other coating.

22

r; •ii'aHSfifathiaivrri n ftfaiifJiMHffll^

Page 35: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

"**ig." —r'Ci.

t

j^WHi|jBgllV<L.*^IIIIW W,*JI M^gpi» J|»»lljlii»iW!tlHpijltlll|JlU!l|^l«JBhgHWiphl.WPI 1, )l^ ll^^|UljJI)^■IW^LI^^j!^^ii4^J'^^''y*^^,

AFML-TR-75-17

! ::

ll R I

a. oc o OO 00 <

> < i—• _i

o _J CO ÜJ < o I- <

£L oo

00

u c

Id * a ° CO .O

C < U

o 01

u

a en

id

o

-1

'3 5 e °

M CO

o O

p—i

O

o

in

in

o

N

>~ 00 O- f\J ,-* X«

• • • o o o

N

o

1*1 (NJ

o

o

o in sC

o a o u

in a-

o

in o .—i

JD CO it)

1—1

< <*

0 o Ü m

1

a) U

i—i W H

o i

> g w w UH r< a, H

o o

« CO o

o m o

K CO 0

00

00 o

i—i

O

CO I

f 0

w

X o

CO i

< i

d

23

11 - nil i ' f- i ri'rtiaiiitifrilftiiiiiii"»tiwia iüüaiüi

Page 36: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

SflUBOf J-*! "' ' ' ",' " ' lJ^' ^T^4*,'^'u5='-'- . «..- lifliW-lIg :,«,J»II,»1 ■. UUILJ.- ip^'IJ"

AFML-TR-75-17

SECT'uN IX

CONCLUSIONS AND RECOMMENDATIONS

1. CONCLUSIONS

a. Some form of contamination, most likely from outgassing materials

from the satellite, caused flight degradation of the thermal control

coatings to be more severe than ground simulated degradation.

b. Of all the coatings flown, the Optical Solar Reflectors

(OSR's) were the most stable. No significant difference in degradation

was observed for the two OSR's of different thicknesses. This would

indicate that the solar degradation was primarily a surface phenomenon

rather than a bulk phenomenon.

c. FEP/A1 was very stable wi.h a Aa = 0.04 after one year at

400 nautical miles (EUVSH = 2,160 hrs).

d. Of the white coatings flown, EUpO^/m-silicone was the most

stable (Aa = 0.08) and Al^Oo/m-si1icone was the most unstable (Act = 0.20).

e. The silica fabric material flown was more stable than the white

coatings with a Aa of 0.08 after one year exposure.

2. RECOMMENDATIONS

a. This data could also be used to calculate changes in coating

emittance. This was not done due to time limitations.

b. Additional thermal control coating experiments should be

flown at or near synchronous orbit to more closely simulate the

environment of operational Air Force satellites.

c. The STP 72-1 satellite has continued to function satisfactorily

even after one year of orbit life. Data from the ML-101 experiment

should continue to be analyz^j to determine the effects of long-^erm

space exposure on these t'iermal control coatings.

d. Correlation of t,,e ML-101 degradation data with data obtained

from the AFML D024 experiment aboard the manned SKYLAB orbital workshop

should be attempted.

24

_:_<,£&& j^Vjaajafita^^

Page 37: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

MßAmmmJm?$***mQmf!!iBmmmm>Mi,<>< .«wpjpny!|w..'.J!.i"i"'A 's

AFML-TR-75-17

2.

3.

REFERENCES

RTD-TDR-63-4269, Design and Construction of Sample Holders for Orbital Temperature Control Coatings Experiment, Vol. 1, Design, Analysis, and Test Results, TRW Systems, April 1964.

RTD-TDR-63-4269, Calibration Data and Drawings, Vol. 2, TRW Systems, April 1964.

K. E. Nelson, E. E. Luedke, and J. T. Bevans, Journal of Spacecraft Rockets, Vol. 3, No. 5, p. 758, 1966.

25

-.:■:■■■,*.. :,■.;.:.,.:.,■_. .--. ■--.;,,-,_-.,,,. ... "nftaHrfWtfraiftT^iiilitfttfril-iTftr•• 'a^a^^Ae^rt^^agfcai^u.^itfcd^^w«».^^^-^^ \^m,^^JääBil^^^ätt^-m^, ■-*jtififarWiifr1Wrii'f-r I - - "\\WMlfiftttkif^ iff -"far --i-:^M^it^/-'"J^ifcA^

Page 38: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

'^

i ■!

AFML-TR-75-17

3

—S|

APPENDIX I

COMPUTER PROGRAM MB4

XP( ) = Theta printout and storage array.

YP( ) = TS(1) printout and storage array.

TS (1) = Temperature of sample at time theta.

P (1) - Highest derivative value.

ACHECK ( ) = Storage array for AA values.

TSCHEK ( ) = Storage array for TS (1) values calculated and compared to TSCK.

AA = Constant in differential equation which is changed to fit different equation solution to telemetry curve in

(—- = AA - BBTs - CCTs4).

BB, CC = Other differential equation constants.

NSC = Sample identifier label check for sample 7-6.

TCHECK = Time value at which differential equation solution check is to be made with curve from telemetry data.

REV = Revolution number.

TREF = Reference sample temperature.

G = Solar heating constant.

NEXEC = Counter of number of times calculation loop is executed.

NS = Sample identifier label.

XMASS = Mass of sample.

CP = Heat capacity of sample.

ES = Emittance of sample.

TSO = Initial value of temperature of sample for integration.

TSCK = Temperature at which check is to be made of integrated equation temperature with telemetry data value.

AS = Solar absorptance.

HS = Solar heat input.

HR = Earth albedo heat input.

HP = Planetary heat from earth.

26 f

II- / ) P. I

... jjgrflKs»»»«»^ * ~

Page 39: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

*-HCa. -^^<A ..'•■»iii.iig.i^^i.fi ■iiiiWij^wl.iilu,lij.i<nn*Vfjppp^Biw!«*«^VW^CWip<^lJl il«lll

AFML-TR-75-17

TIMEE

QRS

AN

AE

FES

FEM

EL

AM

EM

ZK

SIG

N

ICHECK

THETA

DTHETA

NCOUNT

NCT

NPLT

SUBROUTINE F(THETA, TS, P)

RKDF

IER

Upper limit on time for integration.

Total solar heat incident on sample edge.

Cross-sectional area of sample.

Area of edge of sample.

Shape factor edge sample to space.

Shape factor edge sample to Mylar.

Emittance of edge of sample.

Absorptance of adjacent Mylar.

Emittance of Mylar holder.

Thermal conductance of sample.

Stephan-Boltzmann constant.

Order of equation to be integrated.

Check variable for oscillation of function, if oscil *"ing, agreement interval increased to 0.4°F.

Time.

Increment for integration.

Counter.

Counter for printing out every 10th integration solution point.

Counter of number of solution points.

Function subroutine for differential equation.

Runge-Kutta subroutine.

Error flag.

27

Ummmmm

'"•-"• ■"---"■- * -*."-.:? .,~n~,. ■L.^.fJ&.K^sn^* ..^^t,^^»^. f rnn'iii.-i»» ' iWfUriM

Page 40: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

BpH^pr^..»u.-.a■ I.I.HJ ii»ii. jam ) JIHUI iitmn.41. .J|.Ji^,'WM",L,»ffliw.iy^j .in. i i »i»i-ii..i n;» ^...........n,.. n i ■■» iini'.i'wm j|i,ni iw»«^ - Jiiut., Jum"

SFML-TR-75-17

o

r

t— h- »- f\j »

! 3 Z - ,» O LÜ Q at o

«X (\J o •-<

(J UN 4 • 4

u * UJ

• UJ vi D VI J < 4

UJ

r D

• 4

o * at > *4 o UJ »- ► U. O *N K « r > LJ UJ k- bj » — -» o a »-« VI »*- *" IN* u M * X L, O I

►- D b. — a «- z • » CO « (_> *- (J — c • o a 0 lL O »V X •- "v *<4 rwoim * VI tf v z UJ » o Z 1-H O — (J U

o in Q. v> o m

* IKS 1 o ■* •

K j iiv; _J V o N.

II 1 ►• L" K O X • * •

<J * S ~ O -» UJ m «JJ O V> U-

o VI

o

L-

X * 0* Vl

VI *- UJ ft » «

a u * VI

4 * VI UJ

o X O

-r <zhjxH<ea zo^in X Z »l^»- • b- 1 — z *- VI • o ^ 13» 1 ff J Z 7 7 <

,* b. O V o UJ » K Z *1 •£ T-t » X UJ * ■? V 4 X J UJ --I C: ^ V UJ Ut 5 Z O •* • -«■-« UD in -4 13 o r> irv u> J VI » r *t O (T X o o -*■ O O O O 4 L'WIkJ e» ►- CT o i- \D a i- » » a? ^ «■ ^ o w -s 0- UJ X c- c? o V> N* <?" VI • ^- HlflMMM ta I C_> 0: ■^ *o in — uj IT. — «o in «■ <D —t -4 • fr> jr -t SC 1 K # I I • o o II o ►- to o >- II

< wvii/i j Z t- *- *- o K> «C ►- • » r- n ►- «H o • li e= O O UN IP ■s Ml UJ • z * »- s. 19 *- r-u ir II II -u ^ II a a- r z z z a # * V! * o < w •4 V UJ • D O • u. « »n K 1-t 1 V) x h- Z VI VI (J 4 ►- *- 4 4 — K u < iu UJ u' r naiitr?

4 UJ «I 4 «r e o r z D c 1- O r ■ UJ II - . II H *c II — or" UJ i^. VI yi D fc- h- UJ ►- z X lp- T- UJ h- L*> 1- h- 4 Of -> -3 O' 4 a- ii II II r vi ii ii r t^ II II O II C? 3 II UJ o _l -1 T UJ •M ef UJ - I

(t a M KH M a 4 Z 4 4 «i. OU-OU-LJiO a or u. »-* od u>

o UJ O VI :» Q i- or X U; U UJ LJ r r *■ t-t <x * I* ICO Ii K O UJ ut w T VI u Q o X Ifl IF

a o a a a <j o « a o O o e u I X X If o ■or <i L_ b. UJ «j UJ f^ in «i Or or o z t« zoo t— b- »~ •-» O- u. k" h» o a* i •H UJ

o o o > z a »* o UN rl o r> o © «0 O if) O (T> or

u t J o (. UN UN IT >D o I J o

K> 0* 10

'

28

-'•». ii^"" -"■' 'li I- |Mf|p°*^i*M**"J ».i-H^ii^l^i'ilirr.äj^^^^rrirattiW MriSiiferiirMii^ 'nili^^a^^.^^^iat^^^; ^iiriiil^ito^;.

Page 41: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

«W^*1P!P> HU, i,.!-1- "wwp^^~™" üpv '"^"'"w" iujj|..BiiJD|ijmiPpppippi -^X" ^

t. i

AFMl-TR-75-17

[

4.5

» a

x * ru »

-Jl-

*UJ - (

>- J J J »- O 0, «* «t O i Z Z O <J Z >

»- * » 1 * I» g. w

ruj * -a x

J» Ü »II •! -»

JH « a

III X <■• X <\J o • »

- —ax

6- » 0J

— I 'I fj * *• •■ v4

z z O O (J O >

* UJ II • r y [ u o (J UJ

UJ i. r o O (A i •Ik- i5<MM«>- O

• O ftl * UJ li

X V

z z

o o o u z z

U UJ t UJ X I T O

- H- K *

W «0 J » — J

*1 T? * J r f 4;

j -H w « UJ

a a 2

'►- O U ft _J H '1/1 H Z Z Z ^ li) . «P — — -Jj h> ««

o I H ^ I »- «- . :J U. t

Z T ►- »■« or • ar o a u.

* u. » O ♦* V\ * II

I- b- X » r> ft;

a -i » i o *

v>«r a i o *- »u. * c » » • •- n > x or UJ O I <X -H #

• » es * x j-

► J

s*

' u a i z »

i/i w .*

K. X. - •

•■ » a -* U x *■« w o ■* *■ a. + » • T*

V V * cr * ri »

I/I «i er H Ui » OD r » * V)

0. m • «

' J<S » rma r X t (fl r v ft» . «J « » •

I X • • ► or tn

^ t/f o u. <-« J Z U- »UJ

•- » » a

H (T M (T V

• «a *- <t '. x z x f O f» o . U. Q. U.

z r * i

Of o a. : 0 u. -* •

■ uj <: < • z r •■« i t-t a* x « Of r? ft) * i a u i

t « rvi

» — a. x u 4 » » o UI UJ • CO u> on * » -4 JC r M X u • «- U |i II » o

(i.;**'-i»5-n**«"«i"'>"'

^A,^. ^ ,- , .- .: .....,-„.,. -^■■■-„a. -.,..^..,.J,.^, Mr. i*..^i.j,M,n^.t:;»^.i .Ü

Page 42: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

!W. '"■!!! ' *»si ,W ilWWi1 W(WiWlP«i>»»JJHWM!!PpiW limn, imw tw--1 «■»- 'wi-apH^wwpu^

AFML-TR-7'j-17

G.CJ X • * e»

fit1 • I J1

» Ic in r X * " II

o o * *■

UHX » *-4 (\J UJ »4 H- z> o »- z *4 »-*< HI

• XT N. 0. it H * x o e

or a" o rat Ol^lJ

— — 9 Ifl U, (fl £D I-

I- CD » uj »ai ZZ«(D w a < i »- M «* 3 vi X < z o z o ii rv at UJ x — 3 a* S r -^ *• 3HO«*UJ

30

—. --»■--• , "-In ■ • r I,'", ■ "M ,-I ■> rt-.-v-.-^'^rwirfirfÄ^.iifc^wi* i .limiB-ii^rT'iifiiTtnTi'l^ar-

Page 43: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

AFML-TR-75-17

APPENDIX II

COMPUTER PROGRAM DAN

This appendix lists the computer program utilized to convert

raw digital data tapes directly into time-temperature profile curves.

31

- > i l to»>»«»■•■«■«•-'—^^--->- muHlkik. «Mill-All in ik

Page 44: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

— ^.-Sw,,,; , —. ' IZ .

r-

j

AFHL-TR-75-17

O O er «-t *H » Pw

IVJ

05 X <NJ ■»

0 ru Kl

K T* K «c \r tn lf V » * * » -r 0 K •■

K> J c; 0 0 a> ■H W «if « J

iTMm ip ir c J 4? iC

OM IT • * P- -H .* c» ro ,ß l/-> in K> O PO s. * » IT J-

»-I CT IT« K u> C3 O IT p*i r> N.

-■ -»H K J- ü? \C er er er c IT IT. er K P- p- J fcH ^ 0 J- J J- «c ■r* IT N- W K K -< O PO * 0 J PO K C3 K PO U- IT ro 0 c> V -J UJ

er M 7- tn m p- -J J^ a 0 0 O K er tr un Po n a 0 0 O 1 X z

m a X «■ —. IT 4 vT 01 CJ 0 0 es • tn 3 «1 O <T> J C3 0 0 C3 K> z r j K O tJ 0 e» O *H O

J- 0 J er \D IM Cl 0 0 O 1 r^t CD •r* r* ro ^ 0 0 0 0 O er

er O Po i£ 4 * 0 0 0 O -» c l/l N -H pv ir ro K( 0 0 0 O PO Ü

U, *- a Cn f* u> J j; a; CD 0 0 O 1 0 ÜJ in ft j J- C3 0 0 O «- ca fr

0

PJ

z UJ

0 *-* > «i

c

O 0

Po <\J

0 rv, p- *H

0 l/-

O

IT-

IT IT

0 PO

P- ir j-

IT

C ff

Po J1

N. •

O O O O C3 V

0 0 0 0 0 0

0 0 0 0

ec et K fv

O O O O O

cc r- K

1

1

IT

PO

er 1

IT

II

IT

tl

M

IT

1- ro C3 K,

Po O

z

fr 0 fr fr UJ

0 0 0 X s- » rf K >H a O TH M PO

0 « ir *-t fr 0 0 (D •^ K- 1 h- N er If -~ _.

»-■ O > tl -* II vT ii 0 0 O 11 O CJ »-* c HHt< «I O < t— 0 0 O •-• (\l » 0 O u. fr fr UJ *- a Po ^ e jr c cj • tr 0 0 O t~ 0 u- 0 >- 0 ro fr «s

Ci m u) W r- -« IP » — • 0. ro — OD «Hl 0 0 O m M > * • -) «1 0 » >-l a x 1- in ir> i/i «H 0 t-< 0 0 O K« M PO O Po et PO

0? v LU r» »- j^ a 0 O er <-i IT L. li. er u. fr ♦ X z 7 <r» O * 7 ~ in IT pj f^ LA 0 0 O U j1 *-t »- ir in IT \r «r ■H 7 r4 t- Ü -» 0 O -r» O ~ O O 0 1- -f ►- \C «1 0 0 O {/) m w O Po O rt ^1 *-l *-t n H O UJ r4 PO t-i i-i DlfM H *•< 0 a 0£ et * r 0 O O t-> •H _i V ir> -» ^ 11 11 tr 0 r- er j

— v in C r\j T^V- 0 a u er — er 0 0 O II II a v C3 0 CD h- ►- "> •— O II O fr K

in z Z Lu ~ z p- p- ■s .» 0 0 IT 0 0 O a 0 0 II II II O •Q r « kD -i O II Z 11 P- < — UJ Ü-' l/1 z wkio pj u «1 « • «r 0 0 O <r *T >- 0 a _J 0 er C3 It u 0 0 _J «5 r « r fO UJ f> lj- U L5 Z X

r r X _J l<" ►- r N --< cr t- s *- rf 0 0 O *- K -» *- Ii -1 er M K UJ ►- It II *~ UJ er uj er it X Z «H ;^ ^~ u er ►- »~ ♦- V V > > ir ■i f a 0 0 O •t «t if WO« 11 11 U C Cf 0 c: er u ü- c er er 0 V ►- 0 er C II U Ü Qr e» 0

• er c r »c » t— r ^f C UD D C3 O O c c O er 0 X >- -J -J »-. M l-t t-> M u. ii. C ►- D t~< t-t -i r r; »-^ 1— M a u T-4 T-* P\J PO »4 p m -* --* -i-« 1-4 P.J K) 0

3 a

2 >-. I w

32

r'ii iitfiintiftäMif*ia" '-■--■■■-■- A^^;. -^i-uvth-^^SJ..',;f[ jii|iTHÜfc ir—c-.i&—J-^«.'^.-.-- : u^ijt>^u<Jde-v rf-liM-Wlfc"' ----■'- - ^^Mirt^' ':-TJ(-lil.^i<*rl1hi;,ll-i i.ti-^riiviri.!

Page 45: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

--"TV, , .lim» J.HI M.^Jl ..1IJI..IJ,1 .i,.,-, ;^JlJyjn„J.B«|l!j«'W^|l»'l m-W».W».''.'»|l^J-l'-W»T'--l*-!-'-t.|M«JHt|.jl»^|||||MWjlllli /it .»i,jJ-T..^naH,-H|J*'—!K»'.H' W - p»W1..»MM»B» Hjy» 'J■'^ MIM

r AfML-TR-75-17

m r r.

— Jir

«en: « r < z : w> x — • IT ♦ (T I

U. OD b. b. T

~ ~ + » u u. u r iMj*4y LJ UJ K • U II > > > UOKVO O o zuiHirr or a r in »H o c H « «H « J JCJM J+ ♦ J* ♦ _J ♦

L k v a < ii n « it r _jn it «J ii

t-tiHweoni o"» zoo

K *H *w • H «J

r -i -> r _»-> n < t< t» «J II

r z - ; II nu( x o»- •

-»DODO J Z 2 X Z -H « « «r -a » H || II II

it rlNn HH- ♦ ♦ ♦ 4 + J) *! * X M *

3*W — »■*-•»* I II Z Z Z Z II r^oi^toto(o^ c VPHUHHV

I*» O V> w z *- o < o Z II z

«H -J

D O z z < «I

>m w ")TI w Z I« II o _t >- C 1 O 1 Ii: w < O "» C "J I« x o

fc" Z Z c a we i x x o ■

j- *. « *. or >- w

HN j^y ' >• K j o II y

z < Of

g

33

iiiiWiiffliiltnWIiiirtai' irtiaÜaMitt?«»*tliigMMllfni Wi^VJii Ji vr ■ ■ ili.fr irii-i ■A-ji.^.jifjaat- , .;, . _,..'— Ii -J ... HI I jjjaiyüi ■ ^ - >^iiJ&i£i^Btd^:**'K***l'-«V-<«°~~^

Page 46: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

~ -**S iHilw I..II n^, ■«--^r^n.iwiiM L," «llllll ii —.■'?■■.■,.,. ii» _

I i -

•-1

AFHL-TR-75-17

Pp. .1

i.i

or a- z • * (/i

K ♦ li » *■ ft* >• **

* »» Z *- « <M It O - fc- C *» -J i o "> ■> u. I H **»«-» 4IVJNX *

i n v

- w 7 *_ «

or er z

-, -. a v ~ -. , *• v — * *- — *- z K <

*- (\J *- or <r z or <r z

: a -) H

or or -> -) u p — -i t- »- o

irx*»<)

f- ►- « K. t- II K fc- < I otfuoorvoeroc

»■ ►■ j o II y i- i

i -> u *■* • ■

I IT K

m ^ « M- ii k i '. a o- c: to a v cr I

■ K -a ' or u

• I- v * — z i- « — — z iu M O »H M I frl — JKKObJ -s u o ft n & *• ** • it II a (O + K H W J Ui o v II »- »- _J or K II K- H- K « WKOrfföfüK

I

* — w Z ►-

u. a or ~t ">

" K ♦ • .».-. or v

: *- — Z »- i^M H I *- k- O ~ J atT3 it it

ay z ♦ 10 ►- » IM

— ~ O' w y v — t- i- — — Z «r

M X II O

N * X rtM J *4 4 X rlM JIM i

N II I ■ K « ' or o

-H II I V) V (

h- I- J *VJ V II ►- I- « r< II K or or o V) *• or

»- ►- o - _ or or *) "» li- lt n — »4 • <H M J W * K i- H- mi N y « K K « *•* || fr- a or u IT ic or

34

^ri-iYV'^ififi^üi >iV-frffli^%^Jrfitt; »■ •■ -i ■ • ' ■-'■;-- t-^ir' -Vrif'' •" büK^.¥ii^a Jiäifr-rf it^-W--TM ■^/^^j^^^.rf^^^^,-^^^v,^^.-i.^ .^;,^:.,-. ■

Page 47: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

JIIIULIIIIIMIIIUIW III,- il«HH»1 IM«! " '"»"'"'''w»

ivm .-.'-■"'.■-«'■iL ■■vjiiw^giin^nyiipup W*>™»"WW IMBWHU.-W-V -*-.Jl««|.'-.' .■,■'.»'!

APMI -TR-75-17

1 i

0 IT

< se : r * ~ K ■ — r o — <NZ II J *-< ■ t- o -> U. ►- ! Of ") "5 »or

II »HM II t N _J .# ♦ *■» ■Kjwy ii

t~ o . O' -) ■

i .- o; . - •s * k- ~ » o — — x »- _J -H C\J I II U. I- K O *»

»». or ►- >- ,

I W J I •KOI

■ t =! r- p- •■ *i II *~ ►- K <r OfOroW^O'O'Or'O

«H II lokrororo'ov^O'or

l ). K K 4 d II k I-

J K •» ' M ,»

*H IT

»-I 0J m ** in tu r^ H ruK) j CJOOQOCJOOMNWISJ

UJ U1 TH * *|| •* f\j fl jt 3 »*-K • • • • • • • • • • • • • iQ")t4NM4 WtCK HHrlH XJ-l-t-OOOCJOOOOOCJOOCJO c_>*j*3«3<I*I<I«l««nrel« M O «» _J no I- JI Ii II II I) II II II II M II II II It II II (Ti II II II II It II H II II II || r — tr *- H«yojir»PK j *-i C\J nn * CUCCHMmJlfuxyK ^^rtH^rlHUCHWrjIMCf ,-( ,-« ^ *-«

r £

or

g o.

35

_J

Page 48: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

"^■"■^■■1 "iimtpiipiwp- ^"^m.ijjjwuiiHiiJi^iifiiiiii1-1. iiiL.iiiii ijiwpijp

AFHL-TR-75-17

S

* K

> X

+4 ** X «■ Ift W

lOOOOOOOOOf

> i« CA Cfl »4 -H <H ♦ ♦ ♦ V V. V

4 «4 «4 tft <-4 M PI [■(««« «X <

i It II II H H tl i *C K *

V V N, N. V

Of a I zxx . • K J > a — - * I I v4 D O O K

« (fl Ift • -JU-

N K M X ' — «e x tf> J Ift •■ » •

« Ifl • vi » *- K

«lull « UJ *

M »l/l » 1 .» » W

•t — • QC »in «o X fO — lL

* X *• r >■ » »- «■« I «I W x -

■4 • *»!». «4 tr ic «c •» •

i . ae • ■* (M x *o

HHTIHHHI [ < *i *r < « m «*

» it it ii it

*IT»DNH

n II n it it II

4 r4 -H H r < -t: «

HUü< JJCX

* *•*- Of -t IT U. U O IT, «I M M U. *

WO« x K »r « M .» Of NKITO

(M «-*

cy

c is* o

o

;» + ** e» * _i . üj cr ü M o • <r SliWJIM • M • M Jiiauoi JJHH^I

vl fg tn 4 IT J3 K >*4f4HHv4TlT44r

II II i

«4 N r

5 ri (H M t-t M »-* H * • Of Of

II II tl

■»IT tfl

♦ ♦ + M M M » » r

«of a

M II II

Kciri

+ ♦ ♦ uu u HHH

II H > II

IIMWS*.*.-. *4 H T4 «4 rl IP UMTt

UU I M M I r *

Of Of I

utkb.ub.ooue

i U U U Ifl T IHHWKMO > » HA i r ii ' Of or H * II w i M M U trt X X ' ~~ WtfHM ' ot or tfl i x t-

36

-- •; ■■ : iJL I •■ ■ I^j^^Äja&Kirt^^ r iiiWfliiVinMiiTi \\j!ir-l.r - p,, .i«nniyiiin«mi 'nlM

Page 49: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

gng gWJW^WIJJPi1^ 'JUP.P "■ m IHPipUJ,ftWPIJPP H;'jf » ' J.'-TWWSMffi 't^Mlj^UW- ,FW.«fflJ.PL;P» ■! :■■ M' ^PfiSipgR pps?

~.TS-

AFNL-TR-75-17

*» Co

X z

x r

i !

OOOQ-UUJ j JJIMW Ü- U U X * • < n it ii it K a

—: tu *-i M

(T W TH tr » T <r T* » <r <c *-• N «C — N"-

a> * tr po .» • o u l X UJ ) <-l >

C - o Ü ft M <\J ÜJ o — o a u *r x »~* Ul M CSJ

r »

i- o • i x

M » O (T- «T

— o o ■ •-4 • • ;

CD O '

I Of M 1 i x r i ; X x I

Old« HK<KOI -rau.rrxr»-i

n o K < .J H1 2T X *■-••— »-- i. u U ' •- mk M. r

u oft oooao^rftoorooi

O*-«H«OI-^ UJ « e» -» jh-xrrxH^ro'Kr»ri»-'

p—■ Q^ #H Q* y. ^ i

foaoaocoro H ft o o ? o a u. a. u. LT> Q u. z x u c

II *H <

> >- V W >

• flMO W —■ V> V» II II H H II ff ÜI H H „H«— — ~)X3XX M m *H cv fj II r- « «J 4- O l- K- O — t-H ZC II II iDT h J J *- *-i (M — T a w ^ozzo«-io4« X O ►- h- OVÜOCI

ft _j t wot tr er (

- x *. : i 3 >- : Z w ;

4 4 «T 4

37

(-I-" iiUiriii-üitT ItiiliMkT ifiif iiHii-in 'i ^sümaiäB,-i i MI iiri';ii»wtlWiiii'aiaifit;iiii ;iiaiiif.a n i m--—^--:■- ■■'■a.^^.j*~..^jjfaajtejj<~.

Page 50: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

mmm. JW- ''!... .■*■■?»■>S!äL|!l!MWJI!.'iegHgy-^ ^

I :

AFM1.-TR-75-17

s

I..J — —

• >- uj a -1 *-

7 » o — — v r • O UJ c M ■ a » or ►- ♦ -J D -i KO^O*C*-"»>>-* a. z a D t» v . » i v> a T

►-t O «-4 >- o » K ff Koa mi '•*- -1 Or II O a o ii « ii »- Z> JZJf « o * r cr >■ *■ *4 •►-*->■ ►•c

5 O nil O I U 9" O W 7 ÜUUUJ

E

38

..-.,. .,,■«.l,.»iiinJj.am,c„... ' • -*ja*j-minmi»MifiYfiHiirTh'iT - ^^»«a^aaitt^: TiWiuiAiHI ■■iTi'iiV'.- '-iM,jha'Mrthirii^"'-'-^"--^,j-j^^^"-i'^'-^allMi'aMii°

Page 51: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

""""""" ii in..— , p ■- |M| , nan j i, i >pw j,! ,

■"—«y _ ■ '.mi.im», IPIPM - I HMI '»«!ffT^JL-..L. J.,1 II > »m,4.J.U«Min

AfML-TR-75-17

o

Q. E

00

o I

ai s-

39

>'»i«^«jirriYi^mif«.^-in^^^^^^^ w^itfh^towr^iittfiaaay^^rtiftB itftyaM^.a.M^to^, ^.„amn

Page 52: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

^-'^W.i;!MHM'»^V-^ w■( P»'J WMINHH JJ*»'-.1111H J" T-'^"... ii «'PPW.P^^IWWPIV^IP^W

AFML-TR-75-17

i

T3 01

(J CO

s-

Q. E

i/o

Ol s-

CD

40

''■'^•■*",fa1lfiSMMif"'»"l^^1-"liltMtri'l'l*' ^■^^-'-J-'™»'«a*«M-^M.||a|git|T||- „ I — I ,,-., ■ .tntf^kiJJi».„' .»..J-rm ä^iim..,.:.' .:„■„», ..»-^uw., ,.,,.

Page 53: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

rmrm■■'■ WMJIUJ. HI ,-am,.,mmmm ,tw>» ■ " '■■')—w HLJDJUJ HJUH» IIJIIHILIJPJI.BIUI ..HUI»-«»««II .. ■ u <mmm...wm iumi ■» ■)■■■ - iniii.1

AFML-Tr-75-17

i- OJ

*r—

tfl (O

f ■»-> »r- a; » i.

(1J s- x: 0) a

4-> 00 OJ £ Oi o c

•*-> ■r-

o ■l-> x: tj CL i_ o m u 0)

■*-> +J o c (V i—i CL uo <u

+J •a: 3 CSJ f—

1 o :*; to o x)

<■

c (0 01 1 ■• -* o c OJ r>

CO Q

0J s-

CD

41

lib.ij . «->-'~:^..^-* . ,„C.,..:—r.,..;-. t.^jUii. jaamjMij^.^ . .■--.w,--.->...,-J.ii ..!.:- ■■*-U^^t|||iiKA,'il1WltimMff1fft . «r#fl Ya.lfa.hl

Page 54: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

--^«»^«pr^i-_.-.n.^**mj ■■ . 1.11.Kjmm^m^^K■qiLT|p_jiüaHi% j'-Mykv - +-:"fw w yy JIWISI ■ i■'!■= J . wa^i1 #»- Pf^ppjji jmp^sff^gwujm^iiiw. u^a^inpfinPMf - ->*j,ii -J

AFML-TR-75-17

H

m i

I * *' c

#•:'•!

•o o> S-

s. 4- C

13

O Q.

O o CO O

01

0) O) •(->

i— 01 ■x B c o 3 4-> Q U

I 01 1- I— ai 4- •r- O» L3 Q£

O) S-

CD

42

^■'■^fa-^'^iliritllllfllliWl'flirilri'Tlliliriif "n l"i i"iT»1mil1Miir£'^",*t^-v',^iin1fiiiilltilt'rr1iilfrlf[ir,- . ..■-. .-.»■■ ..... ■Ifirlll.'KtliflTi* ■ illljA'äriffellr-AfilfftfBHnhi- lrffl"--:i-,Tlill ■

Page 55: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

.rryT^HT^H».*.w».c>wm???*^»'mHtym*--.-&P!-"!*9*** - "-LH|'"-'1--1-"^«U-'»*U ■■ l»H!i».# ^ "lJ.U!■ W- W. — -■ ■'* -^T» J^IWP'. -1 ■ ■ ■". .I|lMffUHM '#If! .-. W"JyypgfL *W W WMJ'»?P-g!l?-^CH jy ^.Jjpi,.mI^WPBBPWffgll

***. I *—

AFML-TR-75-17

QJ

> lj

a L.

</> o

3

t/0 I

0' i-

CD

4.1

"i-i'lüf51^'-*" -.:■.■—•« ■s.Mia~vJL»'.,ij<.rffrlAlfc-..-,J,i,1t,..,,_J. ,»j.-.- ......iÜb&<<«■■"»«*■■ ■ - ■-"«■ '-—im urn-iiri) irnnifflf»■■!

Page 56: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

"•HP *W."-< UWMINK'"aW>^JUUi

AFHL-TR-75-17

IM M

1— 1— II w CO ÜJ UJ >T h- uA L.'J « w oi.

/I

o LD

O o

LD

10 o z LD O

• 0£ «-» CJ

LD r CO l-

E

01 Q. X

E o CD

12 •I- !/)

o r-O

I O

tu s- 1

a

a

-1— o □ a oo

—T~ a □ d CO

-r— o a

—i— a D

a CM

D

33NH1321J3y !N33a3d

44

■i-iiMrti.fii^- K;^:,;.^^Ki^^^iii^ ■W-ntr-tarf"'""'"-'■•■■■ teHftafeaK'-S«^. IS -1

Page 57: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

^z -

AFML-TR-75-17

o -LD

LD

a. a. S!

in o 2" LD cr>

■ at *-• cj »—1

E w

LD r CSJ >— - u •—1 *■

LU -J u >

O CT o X

o i— o

I o

a o o o

-r~ a □ o 03

a o a ID

—r- o a a ■a-

o CD

o CM

a a o 1M

a

33NÜ1331J3H lN33y3d

45

■ ruirirmlü W . ■,-^,^^r^.^^.~^^^

Page 58: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

M,IJ ..M.iii.i .......I .mi.. ..iin!tsi muni».; i.i'»",mj, iipiigi),i»n.jBi,iniig, . . mi IWJW ,. -«'WA»,»,!—FUU^I.I .jwsarwiv'«»«»»»'.!»™»^^^ ■iiwf»i.u.j'ji> "wswmh

AFMI.-TR-75-17

CO co to

ii «co »

D O

o a

—r~ o o o CD

-T— a a

a ID

—r~ a a

-r~ a o

a CSJ

o -LD

ID O Z

a. X

ID O - Qi c

o

' ' *J

JZ US

3 - ' - LD X ■PS

» C1 W§

«*« Z o IxJ f- o _l 1 o UJ >

_i in

o a: O x

CO

cu s-

o en

o CD

O

O

a

3-JNt)1331d3y !N33a3d

i

■ 46

■■-'"'■"»«■- -"-ii'ttiw liii'iA?"'1^' •-- •• - ■ . ., aa.,A, m..:... ,jMait.^i j ^-^MjiMttaMUMMiiMrtiy iivVf i j-ilffrtthtf '^^^^^^>^^■> -■ 'Irtflftal^fi^'*^

Page 59: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

i ^ —1 S?8B? pa^Ht gaqy3gM|i|!i*ljMfV. -wtw-p I ppn i-*k" "'V^U«|iiUi,«m^l«,L.L._WWMP"!*^'JPJS-'■ I-1 ^WüifupiJLi'.wpWI1

\

AFML-TR-75-17

o o

a

r~ □ D

d o

D o

Q 03

1 a a o o Q O D O a io •a- CM

o .1/5

LO

O o o

in

If] o Z L0 D - Of f« (_)

i—«

E w

LO X IN) h- • a

!

E X •>- <S> l>1 5»

3 r— UJ O

78

a

33NöiD31J3>J iN33y3d

47

- ■ ' — -— ■ . - ■ ■ ■

Page 60: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

V -I W ll J.WW.' I, !." UJWPM!;! •iHPi'i. wa «,".»■ *«?!*^«p*p u i .41. IU in. in ii.^ii ^Mp^pW^I^.IBI II lili^^lp^P^lllgWit Jllltl I- ''»■» Mi-'>i;i'i -».I ., ■.iiMIW.i.i.M». "^

AFML-TR-7S-17

o . U1

o o

in o z LD O

- OcL ■— l_)

o

i

o D

a a

—|— a □ D ca

~l— o a □ to

~r~ a o a ■a-

□ C\J

LD r CSJ ^— « ta «""' 2"

Ld 1

bJ >

O CT ü 3

E X ■<- on c/i >•

i o _J in

o CD

O CM

D

3aNbiD31J3y !N33y3d

48

■ , ■■■■ - - -■

Page 61: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

^^^--^T^»! 'mg^ff^gfms^mv^ <***;*<' ''*' ■ -vw - -•- ■».- —■■■ ... i

N.vv..l>..H>l Lt^llllllll,)

(I AFML-TR-75-17

-t

T

1 O 0-

f— a a

d o

~T~ O □ D 03

-r-

□ a

—r~ a a

-T—

a o o CM

o

05

3

o o

in □ - ot

•1 <_)

03 X CM H- -a —■ z

Id -J UJ

oj

I &

\!

o CD

O

O

O

o

s-

o

33Ntfi3.rid3.VI lN33y3d

49

lljMil?>'«"»**l:-"™w»a",~"^" " '- i ■ ■■■-'■>.■ ^. _____„._ ^———»—

Page 62: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

I.JJWDHBHH! ..H!. I I,-J-"rl-'»yw.l"'Hl-^Mt1BfWII^^WPyl ,. .'»■! ' "'*«'»<»

'""*^ ii— wwi mm n;^

1,1 '■ ' '■' '.. ' PI«'" •Wmm,mmV„mMmmlmmmm--r-mf

AFML-TR-75-17

t~< o M CO W . p O Li o H . S I ft „ H „ K M 0 o, k o (X a

r-

a o ci o

a o d to

-r- a a

T-

O o

—r-

o o d M

IM (_

J °

\:

> i IX

D O

o

CO o o

o r- O

I o

33NÜJ.331J3H INSDJOd

50

-^^-^^ täütetüi aiil^iteiitifat^iiiiaii^^

Page 63: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

Ai-'..-, ...iinBBtpii|H'-w.i..-.;:-t.»-^'1 i. myii.-iiLH'.«.i|'."i:wii-u <W*.JW.WHEJIWW

AFML-TR-75-17

! !

w o W ■

a» £0-

C/3 or

1° i

H „ w p „

r- o

o o d

o o d 10

o

33NH1331J3y 1N93H3J

/<

o o

d

10 in O • K

U •-I

c w

N X

rH C3 z ÜJ _i ÜJ >

O a O 2

I

o i— o

I o

OP o

51

I fittlr-i-vr«

Page 64: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

■ -,- — v- :■'. ■■■ -

"T ILL- '■ i>jnipm^Tiippjwi.u ipHjja i mn *w*

AFML-TR-75-17

LZJ "to ™

o D

O D

—r-

o o o en

—I— a o a

-1-

a a ü ■a-

a a a CVJ

o

CM

o >■

Si

10 o z LT> a - Cf •-' u

i—i

x: w

LD I CSJ i—

■ C3 «—' Z LU _J W >

O cc o X

o

<0

o .— o I o

o CO

o CD

o •«r

o

o CM

o

33Nt)1331J3y lN33a3d

52

<MV«zts***mJ*mu*w*»u^™->'*

■-.A^*»,^.,.*^,:, ■■..■-ii^>^,- ^,.^...,t. 81 »Mfc a. j«t .^MHi^AiaM»»

Page 65: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

•v. ,i in .Uli».II ."I ipmiM J,,in|)1liJ».|,r^H%BJl,»'»"-l'-1

uriiiii»»-^ '■* -^' '■ ' '■»■

«.(l|l»WI.,l. JH.I,!! II« BUM."' ^i"*.i.'i'H»»wpWH,J--1'.1.1'. !r" ■) i imm» JI in w«m«iiu,.i

f I M

AFML-TR-75-17

i ,

1 . m « UJ » o " ee: a. a.

o o a o

-v~ o a a

O a □ 10

o o

o a o

o

a: -^. ro o tsl

<

\!

10 o jr LD a - <£ ri u

>—« C w

LD r CSJ •— • u ■1 z

UJ _i UJ ^»

O rr CJ I

o .— o I o

o CD

o U3

o

O

O CM

a

33NÖ1331J3« iNSGNSd

HJÜIi

53

itf'fUMlriilfitiitittiiii r-i*te^:''rariv*'a*^-'4-^ /AW-^MA'^V^^«»^^^^ i

Page 66: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

"N—W—tmmm (ty pUfW^a'.JIjS^^fKpJVIJJ.-^'^i..' * "-.."»iM« ' * i JMPJ! ^BRPnnPPWPI^ Jii, . P.I»pi|*Wk'IIMP "u""^-'g »Hi^Miw-yjiijwiP^i^iiLW^iiiiMiJitiwiyi

AFML-TR-75-17

or o

o

IT. w

"J< H in P

2

W

u> c

•p™ L- 3 o 03 n

i to

i. o 4-

<D E

•i—

h- CM to

to r— >*fr CD T3 i- C 3 ro

-t-> 05 VO i- ■* Q) O. i/>

§ C o

►- ■r- +->

s- H o r— w o c > at aj 00 cc

<D

3

+ o fM +■

o O o o 1 1 1

oc 1

U.) 3HnXVH3dIAf3X

54

," —w .";,i"*,C*.''"~-. .'.;■■■:' ■ -!..■■-'! :■'.. ■".L^'-.">" ".l"-."''.'."1"!""

Page 67: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

.1 ..I ■ ■»..»»■»" " ' «■ • >-m> ■ ' •• I i.. <«■■*» i| • •I»V^>--~^H

AFML-TR-75-17

; —

3C O

O

s- -O «O U.

fM CM r- O

on

0)5

t .e^ in PS W

<* in

p-i z$ ?'

£ <V en i- C => O

«3 +J I- 3 w Q) r—

2 Q. O 6 >

tH 53 <y H l- OS

0 c in •!- c i- 01 3

QJ i. 3

o +

o o o o 1 1

^o cc 1

(•!„ ) 3HajLVH3d^3i

55

■ ,,-.^/t fa*iinf** nw«->wj* JS****WH- «Bow. iiahUMr*.

jawa^ ■■- - ^jjtfiij If. MBJ^^Jto.^wW^k^,*^^..,^ «mm»«.

Page 68: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

9. iiuiJyRl^ jW" Jyu» 14WJIMPI »'fl- '"»T * '*'»-,: *<■* ^" ■■^BIWglB —.r-.i.jum.i.. 'V «f «HJ»."f.|"' iu,PTOP I'm ■■■-.„■ - — -- ' ■>' 1«

■III i «».. "*-

piliiJii ll.l l.iupp>% ■'

AFML-TR-75-17

(M vC t—i -4_

t f

> > o &! a a

I—

o a-

D1 C

s. Q

< (M a.

Ul r-

1- o f-

E ,—. 1— CM w <J3

w 10 i— > «*

in h P 4- c 2 3 IT3 HH +J

2 0) lO I- «* *— at

w Q. to

<u o +J

L. 3

2 t—i

H t*

O r— </) O C > a> cu

oo a:

00

0) s» 3 en

LL.

o

+ o o O o o

CM 1 1 1

oc 1

(3.) 3HllXVH3dlAI3I

56

_v»aiMT<i,Hi 'Villilltar fi-iM* £ ..

iiiäjr;- :iiäa AAvJi^üia» .. S»;J,.^...^j'mt:j<„a^,-,.n.jia.^;

i

Page 69: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

^peP"np^mnnp«(iiJiij-J4i «pwwüwsi^«1' W.«if£j^A^U!QPH!|JL*.-|4*I

AFML-TR-75-17

■*

;» > 11 o

K K

or. o

o

o in

C

M

S- CM O VO H- r-

«* <U E -O

CO ■r- C

W 1— <0

in H 1/1 <£>

P > «ä-

2 0) l/l »—I s. c V" 3 O ^ -t-> -I- -— (0 +■»

W S- 3 <D r— *^ Q. O s E > d) CD

h 1— CC

X i-H

gu

re

19.

S

enso

r D

urin

g

o o +

o O o o • !

•O 1

00 1

(i. ) 3HniVH3dW3I,

i-

57

..«^^^^^■■^ u..-^ ■stok^^A .,^^^3^^ faafettijai^,,.a^ftaiaiaaiaii»J ■»

Page 70: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

'smmsfim ■■"■•'■»"iii.

.. ■»PrW.l*. )B»l«-lf»HliH|,l.>,..|.™i,

■ --■—r- ■ *•*.

—'""" —"'• i ,i i I«P, .ii|i!i|ippB^3>p««KmB ItiBllMII- . •

AFML-TR-75-17

<M

> >

cc o

o O"

en c

■i—

s-

Q

O O

r\] i—

Is- I

D.

S. o

<+-

CD E

W5 1— CM U4 CO h l/> r—

* > ** LO M*

2 CD "O t- f= 3 A3 2 4-' «J CO S-<3"

W <u D. V)

Ol o H ■♦->

r^ i. 3 O r- t/1 O C > HI 01

00 on

d CM

oc dJ

3 en

o o

+ o o o o •V]

1 <*

1 1 00

1

j , i

§ 1 I '■' 1

*' 1 k f y. 1 St. J

(Jo) 3HflIVH3dW31

58

.. aäfli^i.^feg^S&^jttli^ -- ■^^^ii^z^M^ins&ii^

Page 71: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

11 i mum .ppywiBujip»«^»w»»w"» p '^IHW»'»,,MBWiPB»^»-1 W."'U,u . )■»-i »».in.' m i Hi.'-«».«.?, i - lM!BmifH|

AFML-TR-75-17

o

o a> 0^ >

>

o 1—"

CO

(M t-

Cfl

O <£> 4- r—

«a-

■r- C

> ** w (U i/i

-V H S- C 3 O

ITl P -t-> •!- v ro +->

t- 3 <U i—

£ Q. O

*-' CD 0) to 1- cc

2 o c H c s-

sO 01 3 PO 00 C

CD s_ 3

Jo) 3ani,v>i3dVM3x

59

m ■

^^^^;i^t^-Ä^^iVr,^.:.,^J.*.,...rv.-.-v- ■. '.;>,■■ .:;...:^^.;:-.,,, , ..-«^^^iiifaita**^. ^ja^Js!

Page 72: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

■■ '"' t^T?^i

■— «c -!!WW.w»«»/n.a,.!j.»nnuiii.!,iji ip#jiimLii.!»Hii.,,-4^.j-,M.im ,i^piB»wfwwii ill. ,ju«mwpiniP9PW!^Ri!fPn*«wm>f<nmqj

AFML-TR-75-17

fM ^C

vC <tf •* > > u 0

05 «

cc o

o

0) c o o

'r— r—

fM •r- f^ 1/1

CM o •r- t—

S- CM O VD 4- .—

■■—■ **• W 01 w E-a

-t H •r- c 1— 03

in '_> 2 l/l (A

> -* 2 *—' 3 O w 2

+•> -r- as +J 4. 3

H

t- O) o c l/l • 1—

c S-. (1) 13 in a

CM CM

CD S-

o -I"

o CM

o o o o CM

1 1 -u CO

1

(äO) aHPiivH'jdiAiajL

60

'—.."„i1 ":' . .—

Page 73: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

L 1,1)111 pi IJ^ -jm^pflppflHTT-^r^W 14 J HOJIllHliilJi .WfflllWi^Wi^^^^M'LHtR,«,^«!;!^^ ■!«?"

AFML-TR-75-17

i ■■-

^ sO * *f

> > Ü 0)

X «

00 o

0 0^

00 0 0

0

(M in r^

ime

for

0 nd

4162

en t— (T3

W to 10

H > •*• D CD Ol

2 2

i. c 3 O

■rJ ■!- CO •*->

W 0. 0

< 1 § a! i-i h- ac H

%- Ü) vO 0 c m in •!-

C i.

1/1 Q

CO CM

Ol u

00 3 1—1 en

1 1 1 1 1 —r- r O

+■

0 CM +

O O CM

0

1

0

• c a

1

>

-.

i

(Jo) 3HnXVH3dH3X

61

,„..- irt^toMg±JS~£^ ■^-V.. ^-.V;^., ... ; ; , -ÄWiji

Page 74: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

)i. a.w ■iijjmLi»i.mim,i» .JJI

AFML-TR-75-17

, 1 sC •* ■>f

> > (U 0

05 «

oo o

o o-

o o d

N 00 r^-

ime

for

0 nd

4162

^ 1— to CO W

l/) lO > <*■

«* H CD to

Lr, P i. c £ 3 O

s tO +-> $- 3 01 i— Q. O w g >

2 y- DC vH

H o c rO C i-

0) 3 oo a

CM

CD i~

00 3 cH cr>

o o 4-

o O o o IN

1 1 -c 00

1

(Jo ) 3H!lXVU3dW3I

62

*.*,I.^'.r*--r-.>"^. i^^^^^^ du aitoiiBiiiiittifl^eaia ^M»:.«^ ^^H-ife^

Page 75: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

MfgHJk); t»'»'^^^<^;"MJ.|^j'.iV».t'MB-'#»J.#',p'l),-^MW«.i;1111 ..,i'lW'1..J!JI«M»IHfMHM^PUt,lJii)-L4'»»l'W<'-"-ll.f-Wr-'., -i..UJ.HI'-HIH».. IWU-J -H.""■■"■- '■-' .■^w.'.'W'y. -■ . -i.- ».!J»yjy,lJJlll.lHl J'gJg^J*"»-' J»

'***<*-—mm*mtmmHm <JL ■ '-""^^TNi ■ 11 ■■ ' ^————— •■- -*-, i i

AFML-TR-75-17

i i

•■£>

> > oc o

0J o c cr o o

•f"

•r- (/) ~>.

ro O

CM 3

(VJ S-CNJ

r~

vs Time fo

46 and 416

w 01 10 w i- f=

't H 3 O

in P cfl -4->

£ S- 3 0) r—

i—i a. o 2 E >

at ai i-a:

W &- CD

§ o c 10 T-

H 0) 3 •~o I/) Q ro

igure 25

.

oo *• r-H

o o +•

o o o o

1 1 1 oc

1

(A,,) aHfixvciadwaa,

63

$ ■■ ■ - - ■ .~- ■ ■■■■■■ «_: ■ j^.- ■^.„-..wl^jk^- A.4-^ VJI .i.,.. ^i .^^^.^ ^h.^.^^-J l^„:v 4;^,^,,^: ^ l-,^-^

Page 76: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

""^ I I—I«,,.Ml MIL I '»'"^rV»! »I ».I ll *—II, ■ "' -^.-^fcl .Ill . .

AFML-TR-75-17

f\l *£> r—I

^ <* > ^ 0 <u

03 «

oo o

o c o o

1/1

ro O

CSJ r—" <

<\] a r- i. CM

O lO 4- i—

«a- 0) E -o •l- c 1— <TJ

.—, (/I 10 m > ** W

"* H CD (/) v. c

in Z) 3 O

Z ■»-> -r- 10 ■*->

y—i i- 3

S <U r— a. o "■**'

QJ 5 w 2

H- Oi

1- O)

H o c 10 •!-

vO 1= t- m 0) 3 00 Q

CvJ

s.. 3

o

+ o

+ o oo

o

I

o

(3„) 3HQXVH3dW3X

64

-' mil .MB'-Mnit'Myrilii'^iiihlirif^'-^-|l[ilii|-ATiHlfMW-|faai.'tliriiliir.- n irn MM

... --IT i^iiyfttj^TjfiBiiiiiiiigiijtisi' 'tfjt^tfi*

if^ffW ^Hy**^" '-"•••■ ajrtlJMWBit^il tf iT'iniifc"'-i

Page 77: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

-****s. ,^3™^v't™r'=?i*",:*'""'''-*''^: !I■"^T*?^, sa: r—^HPÜC^PI 1.414LU L JUUJRIUIQ1.JPIiPI|||pWll^^^MipVil4. -,' l^'P^*!!1 W^*P?*Zv$

AFML-TR-75-17

if

i

■m 1

N sC 1—1 sC <* X*

> > 0 1) « «

oc o

O

01 t. 3 CM +J iO CO r™ h<*

N 01 h- Q.TJ

§ ro 1-

«O

O <f- (/>

C <u a

en Is W 1- 3

Tf H </) O IT) P > >

2 1—1

01 01 o: i. 3 O)

HJ T- w s- u

Ol 3 2- D.Q KM

H Sw C

L. O) O L. is> 01 C M- 01 OJ t/i Q:

r-s <M

01 00 i-

CT>

O

+ o +

0 O O O

1 1 1 00

1

U„) 3HniVH3dW31

65

... «p»'. i- 1 ,. II,II..-..„..

" __ ,^i^aiBi^ij&^ "^rrOWIiiHa»', .

Page 78: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

■i ' » ■ I «—i

l«W»l»lH(, .. ^|iJM»JU»M!.i.Ji«lw»y?W^(!«WlfWP.-._-J«.-.!J i|l-,««H!U"1 ll^"1 »W!«J.J--IiWl*»^"'.l|J(jp)lllll«

AFl^-TR-75-17

-r >

r o a-

•?

• in

W H

s w

o 4J I/)

■r- l/l <D

<u o c aj i. 0)

<*- ai

o

e

to >

51 4J O to •r- en to en CJ «*

CO (XI

0J i- =3

o o in

o o

o o

o o

o o

(S«HO) 30MVXSIS3H

66

'- ]fl ■^^k-.;-i^-:,^L^^a^^ | •■■-■-■r-lnfcltfr i^tmfciiiii''Tsi<r^'-fiMrMiNiii"Jt-iit i r1? ürliftiri-'r^tlt 'r-^^^^ J> ^.^^.^ -,^ JS,U- ■^^^^^L^-jui>rf^^i»<M-»,^^aR.- -

Page 79: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

it. "PBtMiimiii '■i^,!wwy.rl«|!>i>nkiL.i- - - ..iij« i.jpiijiiijjj|iHpi|iMP|.i!gi!j

AFML-TR-75-17

""■»

—I ^)

o O X

o

<t tM 10 « P

o Ü S

— Z H = - w

M ^ 0 H ™ n-

O £ > r-l CC H & 1—' 2 3 ha

2 w

sDV

5

J |j

67

Page 80: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

Hj^ I '«" '^i! '■■'- -- s... npi'if..."W|:wJ. i.'.Mi WMJHHWimHU <!fc■"■' l"WDimf ffi.W,»*11»*'i^MWWW

AFML-TR-75-17

, . L *. -

o

O

o c

c:

r» 3

o

o

0 Ä O u

2 D in H <: W J <

-o ai

O

c -r- O S-

a 00 o o

SoV

68

WM HM

Page 81: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

"**■' III«WIIII»I il!, ""r''^wi'«»ii

"»■m^ It- ■WmnWVS**-: '■».W'~«'W.«w»»»wi;W!lfPBWWBBilBBtMi'-i'w »M '»,.1« ■»■w1«',l W ."'l^^w^Fl'S'Mg^'*' W||

AFML-TR-75-17

r- o

a ~o o a 7- D

H

W J <

~ W

E o- n i±j

c_> U-

H

snV

69

*^^'j*.j:-W^^VK:.^,Iffil4A*W*»:»'W^ti^i^-ME*^J-^i'iJ jmMWOag^i>«<aB»riHWi»>'5^^^*'*fi^^"' <

'"»*, ■ i __».i^

Page 82: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

IM. I um- in mil, in, v..11— ipin.iii ,iuuiwunm-iJ,". „tm.i-mmriim^jnummiwr-m—v] i. ■. ,.nppipai^^.,ujni».,«»>pii»miui«. n uij.- g,,.,, »-.a, Wtj,i»nm -»p™ il,,»«u(p,.piui.i,n,ii.Lii yjii.m.,11 Hill i|M

AFML-TR-75-17

u- o o >n

u^ t; o c > l/> *^- i*. o m an :- C\j o zz

UJ r--j

T C

■*■ ■'-■-■--«- «i^j»j»«M»«^m-1 .a.»,»inam, v»iMWMHiiffi< ■ iv->,i»,i.-■. „-■•■a

70

t_ .^i.^fe,^,,-,■||^(-|jfj^a«3*-iUi»^.i*.rt-.i . .-..-.=--,.. i. -■-..:.,^.J-i,-J.j^. jf^f

.,,.,..; ,j

Page 83: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

^■^„.„UMIH lll-HJ .^ ^i,,WU ,u UIIMIII^,. -I in« I 11)1111,1,1111.1,1. Ullinpn ■»■ l.iu.p U jpin . MIMIB||irffP'W.l'-^l"lM~l ■- l-'- *'• "'* U'!IIM" "l-1-^1" «**'^

AFHL-TR-75-17

:

i •

•A « 0

z I w 0 h p w h j en <

K w

8 E

§

e o

BDV

71

IMP»*—"» " i '■" IIWIIIIIII iiimiiiiwHWl—m

■■■■ •' . : .. , JJJ..M«,/jjjrI iiiti'ailllirM'liflm»

Page 84: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

«■UUU.IWII ... ..uijjiiupi i._.«dimwit..Pf ■«w»™'!*«"'*,. .«■ii.i».) injJi.uoiiumipn

IIJ_ *~ I 11 '—III II «■■BUPBBIPPW^'-PMPPW ».»iiiuiiiiumm-p*1" —

AFML-TR-75-17

r~ in X D

o 0 -t I tn

£ H a X w

in S H ■n J IS

— U, W

o 00

Z 3 0 o 2 w

■x. s o

STJV

72

;, *$<!*&&**>&~ jfajäiifc... .■^AArtäü^M^ J^^MJfi --ijy ■Vi^yM'-.-f/'. f>L i üMafA^^it^^,^,^,,^.;.^.

Page 85: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

»-Ay ,""-"^T'>i»'i 1^11.1—a—i——».*». ^. _ l^^|»;rWAi*ÄI*W«l!|VPJWi«W,TOI,i,»ilip(pi,^,Jj»|HHItWP

AFML-TR-75-17

I i

'.,

I

I

'<'-..

D.

1

3 §

sD*>7

73

o

I*. 1

0 a

E a: u o

.«^«f^tt^^ Aa^tafc; ^.^a^^^a^w.^Bii -'a^^^^ ^w:^^4^^aiMiä^ . ^:^^^a:AAii;:wA,;^:,^..^v;■.jiaj^i^ia^l^^

Page 86: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

mm»ii,!t>"mvm<^, .,a.>, >1TO^rT^.'l^'llH%W «^JÜP1.!!'."1 I Jlll,(JJ]U.I(fM»||lil|lJHf»l. „i»J..l«ll.l .l.llll.WWr.-.. . ,. *vm0^m*M*,*i><*H3^,!n,>m*'"~'^**iurn* numi *l www—■—■■• *•«--. ?Sm . ■!<■ n i —

AFML-TR-75-17

r f

at

-

o ,N 5

^ <^

2 o

L-~ -t

& p 0 I 2 LJ m

H

W ►J < > a w

-a c

E

c o O U1 10 O

a.

o o

an o o

SDV

74

iaftAAii.tiB'.i. ,, ill iMiiTi- iii^'iifrt'tlimiai<Mrtrmi,iif^'--*'&"°'!>>'"^> ■•

Page 87: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

PRvnu^pRnnqi WgIH--H^UffM»W- 'Tgy^Wy'g?-»^JIH|i<.IJp,i.ll,Kll.U..I)UI. -^W!jig.^Jijl.lf,^^))l'4f^W4.IJWiiip|JI|i;l#P^)

AFML-TR-75-17

to « p 0 ffi Z P 05

H z w J >

a w

o

-o c

s re

0) I.

«- c o o

o ■

C *r- O i— i/> •!-

•r- I/) i V. -■» re n -. 0.0 1 3 cj b 3 1 O uJ

,;

SBV

75 !

.^■■■-gr .•■Jj.^,^u.-,-aw5,.J,'- ..,._« fTJlttiri-.-nUt'ilT! JkMÜÜlL ,-jtoii^a^tii*,J^LiiMiif«aiteu-4j(

Page 88: UNCLASSIFIED AD NUMBER LIMITATION CHANGES · Computer Program MB4 16 3. Assumptions 18 4. Development of Time-Temperature Profiles 19 VIII DISCUSSION OF RESULTS 20 IX CONCLUSIONS

w^www^w^'y!. up ii niiw— mg

w5|!|»^WK!f1; Af ^pf5^1w;'W«B!P,!^^. w^^^lW^^lilSilfutlÄ^r

, ...,.. . .■ ■ ■ ■„■.*■■■■■

AFML-TR-75-17

in » O X z o t/3

H 2 W J < > S a w

o

-o c m

•1" 0) l/> c

o 4- o o '1—

c O 00 l/> *%

m i. o <v c\j o. i < o ö

CD

s»V

76 ■fr U. S. GOVERNMtNT PRINTING OFF ICE: 1975 — O7-6W7B0

. ,-„_^»i»;fe!*)«aiaW* ■-,.^s.JüfM.^aätM ^»^M*,.^ ^i»m.^^. ,i- -^^w^a.^t^ifi»^'--liWirii;te,nii1ii^aäi